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Dielectrophoretic Assembly of Carbon Nanofiber
Nanoelectromechanical Devices

Stephane Evoy, Michael A. Riegelman, Nevin Naguib, Haihui Ye, Papot Jaroenapibal, David E. Luzzi, and
Yury Gogotsi

Abstract—We report a technique for the assembly of bottom-up
nanomechanical devices. This technique employs the dielec-
trophoretic manipulation of nanostructures within a multiple
layer lithography process. Mechanical resonators were specifically
produced by assembling and clamping tubular carbon fibers
onto prefabricated pads. Our preliminary results showed that an
assembled cantilevered fiber with length = 5 m and width of

= 180 nm possessed a resonant frequency of = 1 17 MHz.
A shorter = 3- m-long singly clamped resonator of similar
width showed a resonance of = 3 12 MHz. This frequency
range is in agreement with the low gigapascal bending moduli
previously reported for carbon structures showing extensive
volume defects. This technology would allow the integration of
bottom-up nanostructures with other more established fabrication
processes, thus allowing the deployment of engineered nanodevices
in integrated systems.

Index Terms—Detectors, materials processing, microelectro-
mechanical systems, microresonators, nanotechnology.

I. INTRODUCTION

T
HE LAST several decades have seen a phenomenal

growth in the availability of computational power and

communications capacity. A second microelectronics revolu-

tion is underway, defined by the integration of transistor-based

electronics with micromechanical and nanomechanical actua-

tors, micropumps, and valves, as well as physical, biological,

and chemical sensors. These integrated systems are poised

to receive, process, and distribute large quantities of data

concerning the physical world, and offer great interest for the

development of distributed sensor networks in a wide range

of commercial and military applications. Nanometer scale

research and development provide control over materials at

the level of individual atoms and molecules. At these lengths

lie the basic phenomena that determine health versus disease,
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govern chemical reactions, control electronic behavior, and de-

termine materials strength. Such nanometer scale engineering

offers new approaches for the implementation of materials and

devices that would offer key attributes of low-cost, low power

consumption, and high sensitivity in integrated systems.

The manipulation of individual nanostructures is necessary

for the characterization of their electrical and mechanical

behavior, the analysis of their response to outside agents and

stimuli, and, more importantly, their eventual integration into

single-chip systems. Following the pioneering work of Pohl

[1], we and others have used dielectrophoretic (DEP) forces to

manipulate and assemble nanostructures from liquid suspen-

sions. Dielectrophoresis is defined as the motion of uncharged

polarizable particles in a nonuniform electric field. These forces

were used to trap biomaterials such as single-virus particles,

capsids, and latex spheres [2]. More recently, dielectrophoeretic

manipulation enabled transport measurements across individual

DNA strands trapped within nanometer-scale electrode gaps

[3]. The DEP assembly of single-walled carbon nanotubes

(SWNTs) has also been reported, demonstrating its viability

for the assembly of such materials [4]–[6].

While dielectrophoresis presents demonstrated potential for

the manipulation of nanostructures, it also offers the important

advantage of being compatible with standard microelectronics

foundry technologies, eventually allowing the on-chip as-

sembly and integration of nanodevices with transduction,

readout, signal processing, and communications circuitry. We

have proposed a novel integrated systems technology based on

the DEP assembly of nanostructures (Fig. 1). We have obtained

a preliminary proof of this concept by successfully positioning

one-dimensional metallic nanowires onto prefabricated sites of

silicon circuitry, and have reported the preliminary integration

of such structures with CMOS chips [7]. Cantilever-based

devices specifically represent promising platforms for high-per-

formance sensing devices. Sensors based on a mechanical

resonating element enable the frequency modulation of the

output, thus greatly improving the stability/noise-immunity of

the reading [8]. This report, therefore, describes the fabrica-

tion and characterization of mechanical resonators produced

through the DEP assembly of tubular carbon nanofibers.

II. EXPERIMENTAL

Experiments were performed using commercially available

Pyrograph tubular carbon nanofibers purchased from Applied

Sciences Inc., Cedarville, OH. The fibers were grown by cat-

alytic chemical vapor deposition (CVD) using methane as a

1536-125X/$20.00 © 2005 IEEE
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Fig. 1. DEP integration of nanodevices. (a) Functional structures are designed
using “bottom-up” synthesis techniques. (b) Dielectrophoresis allows the
inclusion of these structures within a multilayer fabrication process and
(c) their integration with prefabricated processing circuitry.

precursor. The material was then heat treated at 3000 C to

graphitize the carbon and remove the catalyst, suspended in iso-

propanol at a concentration of 0.1 mg/mL, and ultrasoniced for

30 min. The solution was then filtered through a 10- m micro-

pore membrane (Osmonics Inc., Minnetonka, MN) to dispose of

the shorter fibers. The fibers were re-suspended in isopropanol

at a concentration of 0.1 g/mL, and ultrasoniced for an addi-

tional 15 min immediately prior to assembly. Structural inspec-

tion of the material was performed using a JEOL 2010F trans-

mission electron microscope (TEM). The end material consisted

of a distribution of tubular nanofibers with diameters ranging

from to nm, lengths ranging from to m,

and wall thicknesses ranging from to nm.

Using an approach reported by Smith et al. [9], individual

fibers were dielectrophoretically positioned onto capacitively

coupled electrode pairs fabricated on a silicon wafer (Fig. 2).

First, a 300-nm electrically insulating SiO layer was grown

using thermal oxidation at 1000 C. A first set of electrodes

was patterned out of a 170-nm layer of Au, with an underlying

30-nm layer of Cr, using photolithography and liftoff. The

electrodes were then buried under 300 nm of CVD SiO .

Top floating electrodes with gap spacings varying from 1

to 5 m were then fabricated in a similar metal layer [see

Fig. 2(a)]. The top electrodes are capacitively driven by feeding

a 45-V 100-kHz assembly signal between the sets of buried

electrodes for 5 min. This signal was provided by a Topward

8110 function generator, and amplified by a Bogen GA-6A

amplifier [see Fig. 2(b)]. Following assembly, a final electron

beam lithography step is performed to deposit a 200-nm-thick

“clamping” layer onto the extremities of selected structures

using the assembly electrodes themselves as alignment marks.

The nanofibers are then released by etching down the under-

lying oxide layers in a 10 : 1 buffered HF for 45 s [see Fig. 2(c)].

Preliminary mechanical assaying was performed using an

interferometric method originally developed for the charac-

terization of surface machined silicon nanoelectromechanical

Fig. 2. DEP assembly of carbon nanotube resonators. (a) Assembly is
performed on microfabricated pads capacitively coupled to buried electrodes.
(b) A 100-kHz signal is applied between the buried electrodes to induce the
assembly of the tubes across the top pads. (c) Structures are clamped using
post-assembly lithography and released by partial etching of the oxide layer.

systems (NEMS) resonators [10], [11]. The chip is mounted

onto a small piezoelectric element (Radio Shack 273-059),

which is inserted in a small vacuum chamber pumped down to

the 10 –torr range [see Fig. 3(a)]. The piezoelectric element

is then actuated by the tracking output of a Hewlett-Packard

ESA-L1500A spectrum analyzer amplified by an ENI UA-400A

power amplifier. An He–Ne laser ( nm) was focused

onto the nanofiber device using a 0.35-NA microscope ob-

jective. When actuated at resonance, relative motion of the

structure with respect to the underlying substrate modulates the

reflected signal through interferometric effects [see Fig. 3(b)].

The modulated signal is reflected back through the micro-

scope objective. A beam splitter is then employed to divert the

reflected signal toward a New Focus 1601 ac coupled photode-

tector, whose output is fed to the input of the spectrum analyzer.

While the diameter of the resonating structures is substan-

tially smaller than the laser wavelength, their surfaces induce

sufficient amount of optical scattering and interference with

an underlying substrate to generate a reflected optical signal

that is discernible by the photodetector. The same technique
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Fig. 3. Schematic diagram of interferometric setup employed for
nanomechanical characterization of assembled resonators. (b) Resonant
cantilever induces modulation of reflected signal through interference with
underlying substrate.

has indeed previously been demonstrated for the assaying of

surface machined resonators with lateral dimensions as small

as 50 nm [11].

III. RESULTS AND DISCUSSION

Fig. 4 shows TEM micrographs of typical fibers that have

been directly deposited from solution onto a sample grid. The

tubular fibers show diameters ranging from nm to

nm, and wall thicknesses from nm to nm. Some

fibers also show bamboo-shaped features [see Fig. 4(a)], which

have previously been observed in large-diameter tubes grown

by CVD [12]–[14], and can be regarded as stacking of truncated

conical graphene sheets [13]. A higher resolution TEM image

[see Fig. 4(b)] reveals the finer detail of this conical scroll struc-

ture, which is similar to the one described in [15]. Finally, the

same image shows that tube surface also possesses a “herring-

bone” wall structure and chemically stable arched edges [16]

that were induced by the 3000 C heat treatment employed to

graphitize the carbon and remove the catalyst.

Fig. 5 shows a typical nanofiber dielectrophoretically assem-

bled across a 2- m gap. This particular micrograph was taken

prior to the clamping and release of the resonator. At its ex-

tremity, the nanofiber shows an outer diameter nm.

However, the tube cross section shows partial compression that

rather results in ribbon-shaped geometry. Additional inspection

by scanning electron microscopy (SEM) confirmed the domi-

nance of such ribbon-shaped geometry both prior and after as-

sembly. Such deformation is common for large-diameter nan-

otubes having thin walls [17].

While fibers are successfully assembled across a majority

of the gaps, the reliability of this approach is first limited

by our ability to trap a single structure free from obstruction

arising from the assembly of additional fibers in a same gap.

Nonetheless, roughly 10% of the assembly gaps indeed con-

tained a single well-positioned fiber with significant amount

Fig. 4. Transmission electron micrographs of heat-treated carbon tubes.
(a) Tubes nominally possess an outer diameter ranging from D = 100 nm to
200 nm, and a wall thickness ranging from t = 25 to 50 nm. Some tubes show
bamboo-shaped structural features (arrows). (b) The tube outer surfaces also
show chemically stable arched “herringbone” edges (arrows).

Fig. 5. SEM of assembled carbon nanofiber.

of clamping length on either or both electrodes. In addition,

throughput of the technique is further restricted by the incli-

nation of the assembled structures to stick to the underlying

surface upon release. Such issue could be greatly alleviated by

using a critical point drying process in order to avoid the struc-

tures from being pulled down to the substrate during drying.
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Fig. 6. Frequency response or assembled resonator of length L = 5 �m and
width W = 180 nm.

Nonetheless, a number of the straighter and thicker fibers were

successfully released, thus allowing a preliminary assessment

of mechanical properties.

Fig. 6 shows the resonant spectrum of a released single-

clamped nanofiber. The 7- m-long and 180-nm-wide fiber was

assembled and clamped on one extremity with a free length

m. The structure showed a resonant frequency of

MHz. A similar structure of similar width showing

a free length of 3 m possessed a fundamental resonance of

MHz. Resonance qualities of – were

determined from the width of the Lorentzian frequency response.

These qualities are not necessarily intrinsic to the fibers, but

could be affected by combination of clamping-point dissipation

and viscous damping due to the moderate vacuum employed.

The following relationship between resonant frequency and

dimensions is derived from the Euler–Bernoulli analysis of a

prismatic cantilevered beam [18]:

(1)

with

(2)

and

(3)

where is the resonant frequency, is the length, is the

cross-sectional moment of inertia of a cylindrical tube, is its

area, is its external diameter, is its internal diameter,

is the effective bending modulus, is the density of graphite

( g/cm ) [19], and is a constant for the th har-

monic oscillation .

The bending modulus of carbon tubes has been experimen-

tally assessed by several techniques such as tensile loading tests

[20], [21], observation of thermally induced vibrations [22], and

in situ actuation in the TEM [23]. While the reported Young’s

moduli of SWNTs are typically around a terapascal, such values

tend to be significantly lower in carbonaceous structures of

increasing diameters due to increasing dominance of point de-

fects and structural imperfections. More specifically, Poncharal

et al. observed effective bending moduli in the GPa

range for 20–40-nm-diameter multiwall carbon nanotubes

(MWNTs) grown by an arc discharge method [23]. However,

the same group then observed effective bending moduli as low

as – GPa in structurally imperfect MWNTs produced

by precursor pyrolisis, and concluded that point and volume

defects played a dominant role in the reduction of the overall

bending modulus [24]. Deformation of the tube cross section

is also expected to lower the position of resonance in these

fibers. Indeed, resonant frequency is a strong function of the

transverse dimension of the beam through the cross-sectional

moment of inertia. Departure from a cylindrical geometry to a

more elliptical shape would significantly reduce the moment

of inertia of the fiber along the bending axis. For instance, a

cylindrical nanotube with outer diameter of nm

and wall thickness of nm subject to a partial collapse

that would reduce its transverse dimension 20% while keeping

same cross-sectional area through similar lateral extension

would see its bending moment of inertia reduced by as much as

40%. Using an effective bending modulus of – GPa,

the expected resonances of such fibers would range between

0.8–1.5 MHz for a 5- m-long structure, and between 2.3–3.7

MHz for a 3- m-long fiber, which is in rough agreement with

the observed quantities.

In summary, the range of resonant frequencies of the dielec-

trophoretically assembled nanofibers resonators is in agreement

with the low gigapascal bending moduli previously reported

for carbonaceous tubes showing extensive volume defects [24].

Such characteristics could, therefore, be intrinsic to the conical

scrolls or bamboo-shaped fibers being assembled. In addition,

the partial structural collapse observed in these tubes would also

reduce their resonant frequencies by decreasing their bending

moment of inertia. A more systematic assessment of these prop-

erties would, however, require structures showing better unifor-

mity and of simpler cross-sectional geometry.

IV. CONCLUSION

We have reported a novel technique for the assembly of

“bottom-up” nanoelectromechanical devices. DEP manipulation

allowed the positioning of nanostructures at specific sites of a

prefabricated pattern, enabling the integration of the structures

withinamultiple layer lithographyprocess.Specifically, released

devices were produced by assembling tubular carbon fibers

onto prefabricated pads, followed by their clamping through

a post-assembly electron beam lithography step. Preliminary

mechanical resonances in the low megahertz range were ob-

served in singly clamped 3–5- m-long cantilevered fibers. A

more conclusive assessment of mechanical properties would,

however, require structures showing better uniformity and of

simpler cross-sectional geometry. This technology would allow

the integration of bottom-up nanostructures with other more

established fabrication processes, thus allowing the deployment

of nanostructured devices in integrated systems.
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