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Abstract: Predictive maintenance has been employed to reduce maintenance costs and production
losses and to prevent any failure before it occurs. The framework proposed in this work performs
diesel engine prognosis by evaluating the absolute value of the failure severity using random forest
(RF) and multilayer perceptron (MLP) neural networks. A database was implemented with 3500
failure scenarios to overcome the problem of inducing destructive failures in diesel engines. Diesel
engine failure signals were developed with the zero-dimensional thermodynamic model inside a
cylinder coupled with the crankshaft torsional vibration model. Artificial neural networks and
random forest regression models were employed for classifying and quantifying failures. The
methodology was applied alongside an engine simulator to assess effectiveness and accuracy. The
best-fitting performance was obtained with the random forest regressor with an RMSE value of
0.10 ± 0.03%.

Keywords: diesel engine; machine learning; fault prediction

1. Introduction

Diesel engines are widely used in industrial environments and are thus expected
to be robust. Accordingly, these engines are usually under an effective maintenance
program to avoid unplanned shutdowns due to defects [1]. A few important attributes
influence the choice of a diesel engine for a given application, such as cost, performance,
and useful life [2]. The major application of this engine in several sectors is related to the
reclamation of the portion of crude petroleum that was once considered to be the refuse
of the gasoline refining process. Over time, diesel engine manufacturing technology has
evolved, allowing more robust high-torque and energy-efficient equipment, which can be
applied in environments that require high power, to be fabricated [3].

Diesel engines used in the offshore industry, such as in support vessels and oil produc-
tion units, are subjected to an inhospitable environment, making them more susceptible
to failure. Unfortunately, this kind of machine is prone to performance degradation and
mechanical breakdowns [4]. In addition, this equipment is usually the primary power plant
on ships. For instance, marine diesel engines are prone to damage due to harsh working
conditions, which include, but are not limited to, the presence of water, salt corrosion, and
abrupt vibrations. The failures of such equipment are responsible for approximately 41.6%
of the marine accidents caused by mechanical faults [5]. Therefore, effective fault diagnosis
is essential to improving machinery reliability [6–11]. Furthermore, the maintenance cost
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of diesel engines can vary from 10% to 20% of the total value of a vessel [12,13]. It is
fundamental to have a system capable of preemptively identifying potential motor faults
in order to avoid damage to the production, the workers, and the ship itself [4,14].

Recently, many methods have been proposed to detect diesel engine faults, which
include oil analysis [15], thermodynamic parameters [16], and vibration analysis [17,18],
among others. Furthermore, advances in the development of automation and instru-
mentation technology have led to the development of efficient monitoring devices [19],
contributing to predictive maintenance techniques. These methods typically use input data
in the form of signals. Once the signal has been appropriately diagnosed, it can be used to
determine the best course of action to take.

Intelligent fault diagnosis methods to estimate machine conditions have been widely
applied [7,20–22]. In order to predict combustion failures in the cylinders of engines, the
torsional vibration of high-power internal combustion engines was analyzed in [23] using
the instantaneous angular velocity wave signal. Note that the crankshaft speed is unstable
in these types of engines due to the cylinder firing order. In these tests, a magnetic pickup
sensor was installed on the flywheel of the motor, and the fast Fourier transform, alongside
time series analysis, was used to predict failures. Both techniques attained good results
when applied to identifying combustion failures in the engine cylinders.

The work described in [24] acquired a vibration signal to observe failures in a four-
stroke spark-ignition engine. Tests were performed for (i) normal operating conditions,
(ii) a separation between the candle electrodes, (iii) open intake valves, and (iv) closed
intake valves. The vibration signals were obtained using an accelerometer that had been
placed on the cylinder head. In addition, a tachometer was employed to obtain the number
of revolutions. A temporal analysis of the vibration signal was used, taking into account
the angle of the crankshaft, using as reference the signals recorded when the motor was
operating without defects. Their results showed that a non-intrusive methodology could
be efficiently utilized to assess the diagnosis of both medium and large engines.

Reference [4] focused on a four-cylinder commercial diesel engine. In order to measure
the vibration signal, four piezoelectric accelerometers were mounted on each cylinder
head. Five types of faults were investigated: piston pin fault, piston ring fault, inlet valve
fault, outlet valve fault, and connection rod fault. The rotating speed of the engine was
1500 rpm, and each fault scenario was tested ten times. A method based on kernel indepen-
dent component analysis and the Stockwell transform was used for preprocessing. Twelve
features extracted from this initial procedure were used as input for an artificial neural
network that performed automatic failure classification. The advanced classifier obtained
the accuracy of 93.33% in the failure scenarios.

The work described in [22] developed a methodology for managing the energy effi-
ciency of a vessel, taking into account simulation data and system monitoring. Several
critical situations in the main engine were analyzed and implemented as simulations with
an engine room simulator for a certain navigation route of a very large crude carrier vessel.
Based on the results obtained in this paper, it was verified that fuel consumption and the
emission of gases into the atmosphere considerably increased when the vessel presented
defective or inefficient operating conditions.

A four-stroke high-speed marine diesel engine failure simulator based on an adjusted
dimensional thermodynamic model was used in [25]. The method was validated on a
dataset of real engines. The developed model was able to generate, with great reliability, a
large number of typical thermodynamic diesel engine faults and the standard operating
behavior. The work [26] presents a predictive maintenance system based on the fault
diagnosis of diesel engines using the vibration response of the crankshaft and the variation
in pressure curves inside the cylinders. The work developed a simulation model based
on a zero-dimensional thermodynamic model. A total of 701 scenarios divided into four
operations configurations were observed. Two machine learning algorithms were applied:
random forest (RF) and multilayer perceptron (MLP) neural networks. The accuracy
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obtained by the algorithms was about 99.3%. The authors concluded that the signal–noise
ratio must be small to guarantee good performance.

The proposed system possesses a modular architecture (equivalent to the ones de-
scribed in [27,28]) for a condition-based maintenance system comprising twelve blocks.
As shown in Figure 1, the system is composed of the start block (severity input); diesel
engine performance simulation, which, in dynamic and thermodynamic model blocks,
consists in solving the equations of the model based on the severity applied (start block)
and on the returned fault signals (signals from a fault condition); the dataset generation
block (split into the creation of fault and normal signals, which result from the normal
and fault simulation blocks), which deals with the generation of the normal instances and
their relationship with the fault examples; the additive white Gaussian noise (AWGN)
process block (which adds noise to the signals); the dataset signal block (file in the form of a
dataset according to the applied noise levels); the feature extraction block, which generates
attributes from the dataset that are employed in the regression stage; the feature dataset
block; the cross-validation block, which is responsible for evaluating the generalization
abilities of the model; the regression block (composed of artificial neural networks and ran-
dom forest-based regressors), which performs the machine learning tests; and the last (end)
block, which presents the results. In the remainder of this work, the acronym 3500-DEFault
(diesel engine fault) represents the dataset of 3500 signals from a diesel engine simulation.
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Figure 1. The 12-block diagram of the proposed system.

It is also important to emphasize the differences between the main contributions of
this work and the ones presented in [26]. Namely, the latter focused on diagnosing faults
in diesel engines using machine learning algorithms that were trained using a dataset
consisting of 701 fault events. This contrasts with the dataset employed herein, which
employs 3500 instances of fault event signals. These signals were obtained by developing
improved versions of the algorithms responsible for generating these signals. Furthermore,
the main idea of this work resides not only in identifying the existence of a fault but also in
its corresponding severity (in the form of a numerical value), which is usually the main
object of interest in real-world applications. In the context of this work, severity assessment
refers to the process of evaluating the gravity of an identified fault or malfunction in a
diesel engine. It involves determining the extent to which the fault affects the engine’s
performance, safety, and reliability. Severity assessment is not performed in the literature,
with one of the main reasons being the lack of a suitable database of signals. Our approach
is capable of predicting low-severity fault events up to ±50% variance in parameter input,
effectively anticipating fault occurrence and thus enabling our prognosis system.

This work is organized as follows: Section 2 presents the main concepts of the diesel
engine model that was used to generate the fault signals. This section also describes (i) the
mathematical foundation of the dynamic torsional model of the crankshaft, (ii) the model
verification, and (iii) the failure simulation model. The dataset and the feature extraction
process are described, respectively, in Sections 3 and Section 4. The results and discussions
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are detailed in Section 5. Finally, concluding remarks and future work ideas are presented
in Section 6.

2. Diesel Engine Model

This section presents the main characteristics of the diesel engine model that was used
to create the failure signals. These were later employed to train the regression models that
were developed for prognosis by assessing the fault and corresponding severity. In order to
simulate the behavior and operation of a diesel engine under normal and fault conditions,
the following models were developed:

1. A zero-dimensional thermodynamic model (0D).
2. A lumped mass model for the torsional vibration of the crankshaft.
3. A fault simulation model.

This work used the specifications and characteristic curves of a 4-stroke marine diesel
engine with six cylinders, a turbocharger, and a common rail injection system [29]. Table 1
presents the technical specifications of this engine.

Table 1. Diesel engine’s technical specifications.

Stroke type 4 strokes

Cylinders 6 in line

Valve control On the head cylinder

Cylinder valves 2 valves

Diameter of the cylinder 105 mm

Piston stroke 137 mm

Connecting rod length 207 mm

Total displacement 7118 L

Compression ratio 16, 8:1

Inlet valve closing angle 203◦

Exhaust valve opening angle 507◦

Maximum torque and power 900 N.m/191 kW

Rotation (in max. torque) 1600 RPM

Ignition order 1–5–3–6–2–4

Direction of rotation Counterclockwise (viewed from behind the wheel)

Rail pressure 350 a 1400 bar

Cooling water temperature 80–100 ◦C

The thermodynamic model was validated using the pressure curves inside the cylinder,
while the torsional vibration model used the nominal torque curve, both provided by the
manufacturer. The sections that follow present a summary of the diesel engine models that
were developed during the course of this work.

2.1. Thermodynamic Model

The 0D model, based on the design data, can adequately describe the operation of the
diesel engine used as a reference [30]. It was obtained with the application of the first law
of thermodynamics, considering the control volume presented in Figure 2.
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t

Figure 2. Control volume of the thermodynamic analysis.

This behavior leads to an expression for calculating the temperature of the gases inside
the cylinder [29,30], given in Equation (1).

dΨ
dθ

=

(
δQt

dθ
− δQw

dθ
− P

dV
dθ

)
1

mcv
, (1)

where the terms dΨ
dθ , δQt

dθ , δQw
dθ , and dV

dθ represent the rates, depending on the angle of the
crankshaft, θ, of (i) the temperature variation of the gases inside the cylinder, (ii) the heat
supplied to the system due to the burning of fuel, (iii) the heat transferred by the cylinder
walls, and (iv) the volume of the combustion chamber, respectively. In addition, P, m,
and cv represent the instantaneous pressure of the gases, the mass of the mixture, and the
specific heat at the constant volume of the mixture, respectively. Furthermore, considering
that the gas mixture inside the cylinder behaves as an ideal gas, Equation (2) is obtained.

dP
dθ

=

(
mR

dΨ
dθ
− P

dV
dθ

)
1
V

, (2)

where dP
dθ denotes the variation rate of the pressure P (Pa) inside the cylinder depending

on the rotation angle of the crankshaft θ (degrees), m is the mass of the gas mixture inside
the cylinder (kg), R is the constant of the gas mixture inside the cylinder (J/kg-K), Ψ is
the instantaneous temperature of gases inside the cylinder (K), and V is the instantaneous
volume inside the cylinder (m3).

Equations (1) and (2) summarize the thermodynamic behavior of the diesel engine.
However, it is worth mentioning that depending on the application, the performance of the
engine depends on several operational parameters to characterize the power and torque.
More details of the presented 0D model can be found in [29].

2.2. Torsional Vibration Model

Considering the engine performance, the lumped mass model properly represents the
dynamics of the crankshaft [29,31,32]. In the equivalent model, two dampers, the crankshaft
pulley, the gear train, all six cylinders, and the flywheel were considered, totaling 11◦ of
freedom [32,33]. Therefore, by applying Newton’s second law, Equation (3) is obtained.

[J]
{

θ̈(t)
}
+ [C]

{
θ̇(t)

}
+ [K]{θ(t)} = {M(t)} (3)

where the parameters [J], [C], and [K] denote the torsional inertia, damping, and stiffness
matrices of the analyzed system, respectively, provided by the manufacturer; {θ(t)},

{
θ̇(t)

}
,

and
{

θ̈(t)
}

are the response vectors of displacements, velocities, and angular accelerations
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of the crankshaft for each considered degree of freedom; and {M(t)} is the vector of torques
applied to the crankshaft, which depends on the consumer-requested power.

Inertial and combustion torques are two types of torque acting on the crankshaft.
Inertial torques are due to the alternative movement of the component masses (piston, pin,
rings, locks, and a fraction of the connecting rod that has reciprocating movement). They
can be obtained with the kinematic analysis of the crank–crank system. On the other hand,
the combustion torque is due to fuel burning. It can be calculated using the pressure curve
inside the cylinders estimated using the thermodynamic model. Equations (4) and (5) are
the loads acting on the crankshaft due to the inertia of the system and the combustion
inside the cylinder.

Fr = mrrΩ2
(

cos θ + l cos 2θ − l3

4
cos 4θ +

9l5

128
cos 6θ

)
, (4)

Fc = P
πD2

4
. (5)

Considering the load distribution, the resulting torque in the cranckshaft is given
in Equation (6).

M = r(Fr + Fc)(sin θ + cos θ tan γ), (6)

where Fr, Fc, and M are the alternating force, the force due to combustion, and the torque
exerted on the crank, respectively; the variables mr, r, Ω, and l are the reciprocating mass,
the crank radius, the crankshaft rotation in rad/s, and the ratio between the crank radius
and the connecting rod length; and γ is given by tan γ = l sin θ

1− l2
4 + l2

4 cos 2θ
. Further details on

torsional vibration model development can be found in [32].

2.3. Model Validation

The simulation results were compared with the experimental pressure and torque
curves provided by the manufacturer. Figure 3 compares the pressure curves inside the
cylinder at speeds of 2500 rpm and 2100 rpm and depicts a good agreement between
the experimental and simulated data. In addition, the errors of maximum pressure and
indicated medium pressure were 0% and 5%, respectively. This allows us to conclude that
the model satisfactorily and reliably represents the engine performance.

P1(θ)

P1(θ)

P2(θ)

250 300 350 400 450 500
0

50

100

150

Crankshaft Angle (degree)

P
re
ss
u
re

(B
ar
)

P1(θ) measured

P1(θ) simulatedP1(θ)

P1(θ)

P2(θ)

250 300 350 400 450 500
0

50

100

150

Crankshaft Angle (degree)

Pr
es

su
re

(B
ar

)

P1(θ) measured
P1(θ) simulated

(a) (b)

Figure 3. Validation of the developed thermodynamic model for different rotations: (a) 2100 and
(b) 2500 RPM.

The 0D model was only applied to one cylinder. However, it can be expanded to all
cylinders, provided that the ignition order is respected [29]. This behavior is shown in
Figure 4, which presents the pressure curves (the excitation torques acting on the crankshaft
were calculated). Note that it is possible to observe, in Figure 3, the simulated P1(θ) and
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experimental P1(θ) measured pressure profiles. Figure 5 shows the instantaneous torque
curve due to each cylinder.
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Figure 4. Pressure curves according to the ignition order at 2500 RPM.
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Figure 5. Torque curves according to the ignition order at 2500 RPM.

Figure 6 shows the torsional vibration response in the region near the flywheel at
2500 rpm. Note that the torque supplied by the engine is the average value of the torsional
vibration function in the time domain.
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Figure 6. Torsional vibration for normal signal of crankshaft at 2500 RPM.

Comparing the simulated torques and the nominal torques provided by the manufac-
turer, an error of 7% was obtained, which allows us to conclude that the torsional vibration
model is valid for this engine pattern and it is reliable.

2.4. Fault Simulation Model

Diesel engine operation depends on the functioning of its subsystems and compo-
nents [34]. Any fault they may suffer during the engine’s useful life affects the operating
condition of the engine to a greater or lesser degree (depending on the nature and type
of fault). Although the failure model developed in [29,33] is more general in the sense
that it also simulates structural failures in the crankshaft, in this paper, only three types
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of failure of thermodynamic nature will be considered: (i) failure of the intake system,
which can lead to pressure alteration inside the intake manifold, ∆Pi, due to turbocharger
malfunction, corrosion of the intake valve, etc.; (ii) failure of the injection system, which can
change the mass of injected fuel, ∆m f , due to the variation in injection pressure, corrosion,
nozzle clogging, etc.; (iii) and loss of compression ratio, ∆r, due to piston corrosion. It
should also be noted that ∆Pi simultaneously affects all cylinders once it is a global failure.
On the other hand, ∆mc and ∆r separately affect each cylinder, i.e., they are local failures.
The fault vector is defined as presented in Equation (7).

∆ f =
{

∆Pi, ∆mcj , ∆rj

}
, for j = 1, . . . , 6, (7)

where j represents the cylinder number and each element of ∆ f is a fault parameter, defined
as a percentage of the value under the normal operating condition. Therefore, the pressure
curves inside of the 6 cylinders, Pj, is represented in Equation (8).{

Pj
}
= (Fθ , OP, ∆ f ), for j = 1, . . . , 6, (8)

where OP is the set of operational parameters that influence engine performance under a
given normal operating condition. Equation (8) enables the torsional vibration for the fault
condition to be simulated.

3. Dataset

The dataset used to train and test regression models must emulate all operating
scenarios under study. In our case, the dataset has to include signals containing enough
knowledge to distinguish different diesel engine defects as well as the corresponding
severity levels. The dataset employed in this work covers four operational conditions that
will be described in Sections 3.1.1–3.1.4.

Engine rotation at 2500 RPM was applied in all scenarios because it presented the
lowest joint error value (between the simulated and experimental instances) in estimating
the maximum and mean pressures of the burning cycle. The joint error was obtained in the
validation step of the dynamic/thermodynamic models by taking into consideration the
deviation that exists between the values produced by the models and the ones provided by
the manufacturer of the equipment.

The dataset contains 3500 distinct fault signals, which were constructed using the
model detailed in Section 2, for four distinct operational conditions: the normal condition,
“pressure reduction in the intake manifold”, “compression ratio reduction in the cylinders”,
and “reduction of the fuel quantity injected inside the cylinders”. The 3500 fault scenarios
consist of 250 instances from the normal class, 250 instances from the “pressure reduction
in the intake manifold” class, 1500 instances from the “compression ratio reduction in the
cylinders” class, and 1500 instances from the “reduction of the amount of fuel injected
into the cylinders” class. This dataset is named Diesel Engine Faults Features Dataset
(3500-DEFault) and is publicly available among the Mendeley datasets [35].

3.1. Fault Classes

This section presents the scenarios analyzed in this research work. Four different types
of scenarios were evaluated, namely:

• Normal operation;
• Pressure reduction in the intake manifold;
• Compression ratio reduction in the cylinders;
• Reduction in the amount of fuel injected into the cylinders.

3.1.1. Normal

This case represents engine operation without faults. A total of 250 different signals
were generated by simulating using the ∆ f (n)m variable. This stage covers a span between
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0 and 0.1% of maximum severity (with uniform probability distribution) in the 27 input
severity parameters chosen from the thermodynamic/dynamic models ∆Pa, ∆Pr, ∆Tp, ∆ri,
∆mai , ∆mci , and ∆θinji . This stage aspires to emulate the real engine condition without
faults, where the machine variables vary in a slight range near optimal functioning.

3.1.2. Pressure Reduction in the Intake Manifold

Severity values of ∆Pr in 0.2 increments were considered, i.e., ∆Pr ∈ {1.0, 1.2, 1.4, . . . , 50}
(in %), enabling 250 instances of this class to be constructed.

3.1.3. Compression Ratio Reduction in the Cylinders

To generate this type of fault, the use of all cylinders is required. Many instances
with ∆ri ∈ {1.0, 1.2, 1.4, . . . , 50} (in %) severity values corresponding to the cylinders
i ∈ {1, 2, . . . , 6} were evaluated. This strategy allowed 250 distinct examples per cylinder
to be constructed, thus producing a total of 1500 instances of this class.

3.1.4. Reduction in the Amount of Fuel Injected into the Cylinders

The scenarios of this condition also require all cylinders. Several scenarios with sever-
ity values of ∆mci (in %) ∈ {1.0, 1.2, 1.4, . . . , 50}with respect to the cylinders i ∈ {1, 2, . . . , 6}
were considered. A total of 250 different scenarios were addressed for each cylinder, gener-
ating a total of 1500 instances of this class.

3.2. Additive White Gaussian Noise Process

In 3500-DEFault, different noise levels were applied with a signal-to-noise ratio (in dB)
of L ∈ {0, 15, 30, 60}, which was obtained using additive Gaussian white noise (AWGN).
Noise addition was implemented to investigate its influence on the regression performance
and to emulate a measured signal. The clean vector of engine signals Vs is defined in
Equation (9).

Vs =
[
M(t) P(θ) T(θ)

]T , (9)

where the variables T(θ), P(θ), and M(t) represent torque and pressure for a single slide–
crank system, and external torque, without noise addition (Equations (1)–(3), respectively).
Figure 7 shows the variables P(θ), M(t), and T(θ) with different levels L of AWGN, labeled
as V̌s , [M̌(t, L), P̌(θ, L), Ť(θ, L)]. Note that V̌s is a vector with the original corrupted
signals. The addition of white noise for each element Vsi of Vs can be expressed as is
described in Equation (10).

M̌(t) = M(t) + ν,
P̌(θ) = P(θ) + ν,
Ť(θ) = T(θ) + ν,

(10)

The operations carried out in Equation (10) and Figure 7 can be summarized as
presented in Equation (11).

V̌si = Vsi + ν, (11)

where the white noise ν can be characterized as a random process of zero mean and variance
defined by the chosen SNR level L. The SNR is defined as shown in Equation (12).

SNR ,
max[Vsi

2]

E[ν2]
=

AV
2

σN2 , (12)

where E[·] is the expected value and the variable AV is the maximum value for each element
Vsi of vector Vs.
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Figure 7. Process of applying additive noise: (a) M(t) with 15 dB, (b) M(t) with 0 dB, (c) P(θ) with
15 dB, (d) P(θ) with 0 dB, (e) T(θ) with 15 dB, and (f) T(θ) with 0 dB. Note that the black line
represents the original signal without noise. On the other hand, the gray line denotes the signal with
noise. The new variable with AWGN V̌si (·) is V̌si (·) = Vsi (·) + ν, where ν is white Gaussian noise in
L = [15, 0] dB signal-to-noise ratio (SNR).

3.3. Data Normalization

In statistical studies, normalization or feature scaling is widely used to standardize
data and thus optimize data processing. In machine learning, normalization plays a
significant role when attributes can hinder data processing, such as features with dynamic
ranges of different orders of magnitude, measured on different scales, that do not equally
contribute to model fitting. Normalization is a way to standardize and minimize the
problems arising from these dispersions. In addition, by not analyzing data considered
inconsistent, data processing is also more efficient [36]. This work employs minimum–
maximum normalization, which uses the minimum and maximum values of each feature
to define a common range yield, as is illustrated in Equation (13).

Xn =
X −min(X)

max(X)−min(X)
(13)

where Xn is the normalized X array, min(X) is the lowest value of the vector X, and
max(X) is the highest value of the X array. Minimum–maximum normalization sets
all dynamic data ranges to a scale from zero to one and decreases the overall standard
deviation. However, this normalization may exclude outliers, which can bring important
information to the analysis of the dataset [37].

3.4. Partitioning the Dataset

The dataset was divided into two parts, namely, training and test sets. The training
samples were used to teach the regressor about the data pattern, whereas the test samples
were used to evaluate the chosen regressor model. The training set can be subdivided into
training and validation subsets, with the latter being used to fine-tune the algorithm model.

When the dataset used is sufficiently large, the hold-out technique [38] is used to
separate 70% of the instances for training, 10% for validation, and 20% for testing. This
technique might generate overfitting in the classifier, especially when the dataset is not
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large enough to properly train the classifier. In these cases, cross-validation techniques,
such as K-fold, can be applied. K-fold makes the classification algorithms more robust to
overfitting, producing classification models with greater generalization capacity [39–41].

The K-fold procedure randomly divides the dataset into K blocks of approximately
equal size. Subsequently, it uses K− 1 samples to perform the training of the model and a
sample to perform the test. This process is then iteratively performed for each block that
can be used as test data. The performance of this method is given by the mean accuracy
associated with the standard deviation. The values of K usually chosen are K = 5 or
K = 10 [41]. In this work, five K-fold blocks were used, as is depicted in Figure 8, where
the gray blocks correspond to the test sets, and the white blocks are the training sets.

TRAINING SET TEST SET

divide dataset into 5 folds of equal size

20% 80%

run experiments
using 5 different

partitionings

Figure 8. K-fold blocks. Gray blocks correspond to the test sets, and white blocks, to the training sets.

3.5. Dataset Regression

Regression is a statistical method for finding the relationship among variables [42].
Regression algorithms are employed to predict the outcome based on the relationship
among variables obtained from the dataset [43]. The regression algorithm output is a real
number that depends on a hypothesis function defined according to the problem [44]. The
hypothesis function is defined with hidden parameters [45]. These hidden parameters are
optimized for the training set input in the training phase [46].

3.5.1. Artificial Neural Networks

Artificial neural networks (ANNs) are computational structures with interconnected
nodes that mathematically model, in a simplified way, the basic principle of cognitive
processing of neurons in the human brain [47–49]. Using algorithms and mathematical
models, ANNs can recognize hidden patterns and estimate non-linear relationships among
elements in a database. Classification and estimation are examples of tasks that a neural
network can perform after a training phase. Neural network accuracy can be continually
improved by training and feeding it with new data [47].

This paper used the sigmoidal activation function, which describes a non-linear output
for each neuron. Consequently, there is non-linearity between the two layers, which is
ideal for recognizing non-linear failure patterns. The sigmoidal activation function was
selected because it presented good results in related research, as described in [50,51]. Addi-
tionally, this paper uses the multi-layer feedforward network called multilayer perceptron
(MLP) [52]. MLP was chosen due to its hidden layer, which can be used to recognize and
classify problems that are not linearly separable. A linear activation function is used in the
output layer, and the sigmoidal activation function is used in the hidden layer.

The trained network is tested by obtaining a prediction for each test point [47]. We
compute the error with respect to the test dataset using quadratic loss as in the training phase.

3.5.2. Random Forest

Random forest (RF) is an ensemble supervised machine learning algorithm that can be
used for classification and regression tasks [53]. This algorithm is formed by decision trees,



Machines 2023, 11, 530 12 of 23

which are simple predictor elements. An ensemble classifier is often more powerful than the
individual predictors that form it [54]. The choice of random forest was due to its excellent
predictive ability not only in diesel engine-related research, as can be seen in [55,56], but also
in fault detection [26,57]. This paper used this algorithm in the regression task.

Each model of the set is used to create a prediction for a new sample. The average
results of each tree characterize the regressor accuracy. Since the classifier randomly chooses
the predictors in each division, the tree correlation decreases. This selection gives strong
and complex predictors presenting low-bias yield in an RF algorithm with low variance.
This selection causes a decrease in error rates. Each predictor is independently chosen.
Because of this independence, the RF has an effective noise response. RF is computationally
more efficient than bagging, since in constructing the algorithm, it only needs to analyze a
part of the original predictors in each division. However, RF needs to use many trees to
form the regressor set. In addition, RF also presents a high level of parallelization, which
allows high computational efficiency to be achieved [53].

Training and test errors tend to level off after some trees have been fitted. The differ-
ence between the bagging algorithm and the RF algorithm is that the latter uses a modified
tree learning algorithm that selects, at each candidate split within the learning process, a
random subset of the features [58].

3.5.3. Regression Metrics

Let P be a discrete variable. The point-to-point correspondence between the numerical
solution and the observational measures of the same variable provides a quantitative test to
measure the ability of the model (or dexterity) to reproduce or estimate observed data [59].
Let Pis and Pio be the severity of the simulated failure and that of the failure observed in the
same point at time i in a numerical domain with N samples, respectively. The fundamental
quantity for the study of errors is the difference di between the predicted or simulated
values of input variable x and output variable y in point i (i = 1, 2, 3, . . . , N) at time t, where
(Pis = P(x, y, t)), and the measured or observed values of the same variables in the same
points x and y at time (Pio = O(x, y, t)), which is simply expressed in Equation (14).

di = ei = Pis − Pio. (14)

Essentially, di = 0 indicates an exact simulation for that point i, while di >> 0 or
di << 0 characterizes non-exact simulations. The further away from zero the value of di
is, the more inaccurate the simulation is. That is, di is equivalent to the ei error of a given
analysis [60]. Although ∑ di provides an idea of the quality of the simulation for a given
variable, it does not explain the particular sources or characteristics of the magnitudes of
the errors. Note that from the basic quantity di, it is possible to derive errors that reflect
different components of the total error [60].

The metric adopted in this work is the root mean square error (RMSE), which is
derived from di and points to the trend or bias. The bias measures the tendency of the
model to overestimate or underestimate the severity of the failure of what was observed.
This trend can be approximated as is described in Equation (15).

RMSE =

[
1
N

N

∑
i=1

(Pis − Pio)
2

] 1
2

. (15)

RMSE is used to express the accuracy of the numerical results, with the advantage
that it also presents error values in the same dimension of the analyzed variable [59]. Let
h ∈ H be a hypothesis–candidate to approximate the unknown function f : X → Y , and let
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D = [(x(1), y(1)), . . . , (x(N), y(N))] denote the labeled sample. In principle, considering
D ⊂ {X ,Y} | D ∈ R, the quadratic error average RMSE is presented in Equation (16).

RMSE(h,D) =
[

1
N

N

∑
i=1

(h[x(n)]− y(n))2

] 1
2

. (16)

Since hypothesis h can be seen as a certain regressor configuration, motivated by
training with a specific portion of the dataset, where h[x(n)] is the adjustment of the
regression variable, for each of the K successive K-fold implementations of the cross-
validation step, the average value of RMSE (µRMSE) after K implementations is described
by Equation (17), and the associated standard deviation of the RMSE (σRMSE) is detailed in
Equation (18).

µRMSE =
1
K

K

∑
j=1

RMSE(j), (17)

σRMSE =

[
1

K− 1

K

∑
j=1

(RMSE(j)− µRMSE)
2

] 1
2

, (18)

where j represents the implementations of the cross-validation set. µRMSE ± σRMSE was
adopted as the metric for evaluating the regressors to quantify the performance of adjusting
the regression curves of the severity variable, using first- and second-order statistics.

3.5.4. Pearson Correlation Coefficient

In order to quantify the performance of the regression curves, the Pearson correlation
coefficient ρ was used. This metric measures the degree of linear correlation between two
quantitative variables. It is a dimensionless index with values between −1 and 1 inclusive
that reflects the intensity of a linear relationship between two sets of data. ρ = 1 describes
a perfect positive correlation between the two variables. ρ = −1 characterizes a perfect
negative correlation between the two variables, i.e., if one increases, the other one always
decreases. ρ = 0 signifies that the two variables do not linearly depend on each other.
However, there may be another dependency that is “non-linear”. Thus, the result ρ = 0
must be investigated with other means.

Let X = x1, x2, . . . , xn be the values of a set of points for a regression, with i = 1, . . . , n,
and let Y = y1, y2, . . . , yn be a set of points representing a perfect regression. The Pearson
correlation coefficient is defined as shown in Equation (19).

ρ =
cov(X, Y)√

var(X) · var(Y)
(19)

4. Feature Extraction

Feature extraction was performed by computing the maximum and mean pressure
values from the six pressure cylinder signals, sp1(n), sp2(n), sp3(n), sp4(n), sp5(n), and
sp6(n), and acquiring spectral details from the torsional vibration signal, sv(n) [29]. The
distinguishing fault attributes are presented in Sections 4.1.1–4.1.3.

4.1. Feature Subsets
4.1.1. Estimation of Maximum Pressure Inside the Cylinders

These features correspond to the maximum measure of each discrete pressure curve
related to each cylinder, sp1(n), sp2(n), sp3(n), sp4(n), sp5(n), and sp6(n), yielding Mp1 , Mp2 ,
Mp3 , Mp4 , Mp5 , and Mp6 , respectively. These features are represented by Equation (20).

Mpi = max[spi (n)], (20)
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4.1.2. Estimation of Mean Pressure Inside the Cylinders

These features correspond to the first-order expected values (means) of separately
discrete pressure curves related to each cylinder, sp1(n), sp2(n), sp3(n), sp4(n), sp5(n), and
sp6(n), yielding µp1 , µp2 , µp3 , µp4 , µp5 , and µp6 , respectively. These features are represented
by Equation (21).

E[spi (n)] = µpi =
1
N

N

∑
n=1

spi (n), (21)

where E[·] is the expectation operator µ related to each cylinder pressure curve and N
denotes the number of samples of spi (n).

4.1.3. Spectral Analysis

The spectral analysis calculates the torsional frequency spectrum (analogously to [28]).
It computes the NDFT-point DFT of sv(n) according to Equation (22), yielding Sv(k), which
is then used to compute A(k), F(k), and P(k), denoting amplitude (N.m), frequency (Hz),
and phase (degrees) amounts, respectively.

Sv(k) =
1

NDFT

NDFT−1

∑
k=0

sv(n)Wkn
N , (22)

where Sv(k) denotes the NDFT-point DFT of sv(n), with Wkn
N = e−

j2π
NDFT and j ,

√
−1.

Equations (23)–(25) summarize the subset of features.

F(k) =
kFs

NDFT
, (23)

A(k) = |Sv(k)|, (24)

P(k) =
360
2π

arg[Sv(k)], (25)

where F(k) represents the harmonic frequency of torsional spectrum Sv(k), Fs denotes the
sampling frequency, k is the frequency bin related to a frequency (Hz), P(k) represents the
phase (degree) of torsional spectrum Sv(k), arg[·] denotes the complex argument of the
spectrum, and A(k) denotes the amplitude (N.m) of torsional spectrum Sv(k).

4.2. Feature Vector

Compared with the technique described in [27,28], the methodology proposed in this
work differs due to the application of the feature extraction process in torsional vibration
and the addressing of maximum and mean values in the feature vector. The feature vector
is expressed in Equation (26), which concatenates the three spectral variables previously
described, and is composed, in total, of 84 attributes. The diesel engine employed was
a six-cylinder four-stroke engine (intake, compression, combustion, and exhaust), which
resulted in 24 half-orders that needed to be described in order to fully characterize each
stroke of each cylinder. More details can be found in [29].

Vf = {Mp1 , Mp2 , Mp3 , · · · , Mp6 , µp1 , µp2 , µp3 , · · · , µp6 ,
F(k1), F(k2), F(k3), · · · , F(k24), A(k1), A(k2), A(k3), · · · , A(k24),
P(k1), P(k2), P(k3), · · · , P(k24)}.

(26)

The distribution values of the 3500-DEFault dataset, which is composed of Mpi , µpi ,
F(k), A(k), and P(k), are shown in box plot graphics in Figure 9.
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Figure 9. Box plots of 3500-DEFault dataset for feature subsets F(k), A(k), P(k), µpi , and Mpi ,
respectively, for different AWGN levels: (a) 60 dB, (b) 30 dB, (c) 15 dB, and (d) 0 dB. The plot shows
the median; 25% quartile; 75% quartile; and the lower and upper ranges (whiskers), which are the
max. and min. for each distribution, respectively.

5. Results and Discussions

In the fault regression experiment, a procedure similar to the one presented in Pes-
tana [26,61] was adopted. In this procedure, the ability of a system to identify fault severity
is evaluated by adding the maximum and average pressure, and spectral measures for each
possible fault. In this work, ANN and RF regressors were trained to identify fault severity.
For both regressors, the feature vector was used as an input. The outputs of the regressors
were the fault severity variables, one for each fault severity. The number of trees of the RF
regressor was obtained empirically as in [26]. The algorithm used to implement the ANN
was MLP. The ANN input layer had the same dimension as the feature input vector. The
ANN had one hidden layer, whose number of neurons was empirically obtained with the
tuning of the hyperparameters, as discussed in Section 5.1. Finally, the ANN output layer
had a number of neurons equal to the number of severity variables to be estimated.

For the RF regressor, the 3500-DEFault dataset was divided into two disjoint sets, and
approximately 80% of the signals were used for training, while 20% were employed for
testing. For the ANN regressor, on the other hand, the 3500-DEFault dataset was divided
into three disjoint sets, and approximately 70%, 10%, and 20% of the signals were utilized
for training, validation, and testing, respectively. Each set must represent the fault severity
intensity data with maximum variability. The RF learning (training) process was performed
by applying the bootstrap aggregating (bagging) algorithm. The ANN learning process
was performed by applying the scaled conjugate gradient backpropagation algorithm to
improve the training time. The validation set was employed to avoid overtraining, which
results in generalization capability loss [27].
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In order to avoid biased data performance in regression, the K-fold cross-validation
technique was applied in all regression tests. In order to do so, the 3500-DEFault dataset
was divided in K = 5 folds to circularly change the test subset. Each subset maintained the
proportions of 80% and 20% for training and testing.

The tables and plots in this section are related to the fault regression experiment that
presents the regression RMSE performance on the test data from the 3500-DEFault dataset. In
such tables and plots, Xi represents the test set observed elements, and X̌i is the vector of test
set predicted elements. The total RMSE accuracy regression performance is represented by
W ± σ, where W is the total accuracy and σ is its standard deviation during K-fold validation.

Empirical tests were performed to determine whether for k = 5, the execution time of
each test was reduced [62]. By using K = 5 instead of the usual k = 10, the total execution
time (ToE) of each regression, depending on each method and the evolved noise levels, was
significantly reduced. The ToE was reduced due to the size of the dataset and the parameters
that were optimized in each regressor. In the simplest optimization regression (i.e., ANN),
when K = 5, 13,000 rounds (5 folds × 13 operating variables × 4 noise levels × 50 neuron
configurations in the hidden layer) were performed. The computational ToE was measured
in seconds, while the regression was performed with a personal computer with CPU core
i5-2500 and 8 GB RAM and without GPU, using the two physical cores for parallel processing.

5.1. Regressor Hyperparameter Tuning

Hyperparameter tuning is the step dedicated to adjusting the hyperparameters of the
regressor in order to maximize the training results of the regressors and, consequently,
the testing performance. In the case of the ANN, the hyperparameter to be tuned is
the number of neurons, while in RF, the tuning variable is the number of trees. The
optimization of the hyperparameters of a regressor is implemented during training by
varying the hyperparameters in a predefined set of values and monitoring the RMSE
minimum (i.e., mean and standard deviation). For each hyperparameter simulation, k = 5
is defined in order for the cross-validation step not to reduce the bias results and to extract
the first- and second-order statistics from the obtained results. The tuning curves are
evaluated using the average value of the RMSE, µRMSE, and the variability of the RMSE,
σRMSE, for each simulated hyperparameter during training.

Figure 10 presents the tuning curve plot for each hyperparameter. In these plots,
µRMSE and σRMSE are shown with respect to the number of neurons, in the case of the
ANN, or the number of trees, in the case of RF. In Figure 10, the x-axis shows the range of
values assigned to the simulations of the regressor hyperparameters.

For the ANN, the number of neurons of the hidden layer in the hyperparameter
simulation was tested over the set H = {1, 2, . . . , 1000}. For RF, the number of simulated
trees was tested over the set B = {1, 2, . . . , 1000}. After analyzing each tuning curve in
Figure 10, it was decided that 120 neurons had to be employed in the ANN hidden layer
and 100 trees had to compose the RF regressor. Table 2 summarizes these values.

One can notice in Figure 10 that the tuning curves tend to be minimum transient or
stable. Moreover, there is an intrinsic decrease in the standard deviation of the validation
set. The standard deviation decrease emphasizes the importance of using second-order
statistics aside from first-order statistics when choosing these parameters, since smaller
variability in the training error leads to more stable results.
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Figure 10. Error plots of several tuning curves with AWGN SNR level L = 60 dB in the training step:
(a,d) ∆Pr, and ANN and RF regressors, respectively; (b,e) ∆r1, and ANN and RF, respectively; and
(c,f) ∆mc1 , and ANN and RF regressors, respectively. In the above graphs, the dotted lines represent
µRMSE, and the whiskers represent σRMSE after 5-fold cross-validation.

Table 2. Selected values of the hyperparameters of each regressor.

Regressor Hyperparameter

ANN H = 120

RF B = 100

5.2. Regression Tests

After adjusting the hyperparameters of the regressors in the tuning step (described in
Section 5.1), regression tests were implemented according to studies described in [20,21].
The hyperparameters used in all regression tests are the ones shown in Table 2. With
the purpose of evaluating the noise influence on regression performance, different noise
levels were applied to the 3500-DEFault dataset original signals. Tables 3 and 4, and
Figures 11 and 12 show the results when different SNR levels of additive Gaussian white
noise (AWGN) 60, 30, 15, and 0 dB, respectively, were applied.
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Table 3. Summary of RMSE of each failure parameter (FP) in the regression tests for several AWGN
levels and ANN regressors.

FP
Regressor

ANN-60 dB ANN-30 dB ANN-15 dB ANN-0 dB

∆Pr 0.84 ± 0.06 1.03 ± 0.11 1.62 ± 0.22 1.58 ± 0.34
∆r1 0.85 ± 0.07 1.04 ± 0.13 1.58 ± 0.22 2.19 ± 0.31
∆r2 0.85 ± 0.07 1.02 ± 0.14 1.56 ± 0.24 2.22 ± 0.33
∆r3 0.84 ± 0.05 1.06 ± 0.11 1.64 ± 0.30 2.08 ± 0.29
∆r4 0.84 ± 0.06 1.07 ± 0.15 1.63 ± 0.28 1.90 ± 0.33
∆r5 0.86 ± 0.07 1.04 ± 0.16 1.69 ± 0.32 2.16 ± 0.24
∆r6 0.84 ± 0.05 1.04 ± 0.16 1.62 ± 0.36 1.86 ± 0.18

∆mc1 0.81 ± 0.05 1.05 ± 0.12 1.79 ± 0.33 3.76 ± 0.21
∆mc2 0.83 ± 0.05 1.07 ± 0.14 1.83 ± 0.28 3.16 ± 0.22
∆mc3 0.84 ± 0.05 1.09 ± 0.14 1.67 ± 0.23 3.21 ± 0.18
∆mc4 0.84 ± 0.04 1.12 ± 0.11 1.69 ± 0.37 3.06 ± 0.26
∆mc5 0.84 ± 0.05 1.04 ± 0.15 1.71 ± 0.35 2.82 ± 0.33
∆mc6 0.83 ± 0.05 1.09 ± 0.13 1.65 ± 0.31 2.62 ± 0.32

ToE 15.36 ± 3.57 32.67 ± 5.17 34.11 ± 1.77 32.71 ± 1.50

Table 4. Summary of RMSE of each failure parameter (FP) in the regression tests for several AWGN
levels and RF regressors.

FP
Regressor

RF-60 dB RF-30 dB RF-15 dB RF-0 dB

∆Pr 0.20 ± 0.11 0.35 ± 0.14 0.37 ± 0.14 0.78 ± 0.25
∆r1 0.10 ± 0.03 0.21 ± 0.11 0.36 ± 0.06 1.37 ± 0.13
∆r2 0.16 ± 0.17 0.27 ± 0.25 0.33 ± 0.11 1.18 ± 0.14
∆r3 0.17 ± 0.12 0.24 ± 0.19 0.31 ± 0.08 1.24 ± 0.09
∆r4 0.16 ± 0.07 0.20 ± 0.14 0.38 ± 0.30 0.95 ± 0.16
∆r5 0.27 ± 0.12 0.28 ± 0.18 0.35 ± 0.08 1.12 ± 0.14
∆r6 0.29 ± 0.19 0.26 ± 0.17 0.37 ± 0.13 0.92 ± 0.10

∆mc1 0.26 ± 0.21 0.23 ± 0.06 0.61 ± 0.08 3.16 ± 0.41
∆mc2 0.23 ± 0.12 0.24 ± 0.06 0.69 ± 0.14 2.83 ± 0.08
∆mc3 0.15 ± 0.06 0.19 ± 0.04 0.49 ± 0.10 2.63 ± 0.36
∆mc4 0.22 ± 0.11 0.30 ± 0.11 0.52 ± 0.08 2.62 ± 0.19
∆mc5 0.13 ± 0.05 0.18 ± 0.04 0.42 ± 0.02 2.25 ± 0.09
∆mc6 0.24 ± 0.13 0.25 ± 0.05 0.48 ± 0.06 2.28 ± 0.23

ToE 17.89 ± 1.08 18.94 ± 0.81 22.67 ± 1.01 31.93 ± 1.74

In the tests, all scenarios of the 3500-DEFault dataset were considered; thus, all types
of faults were included. Different fault classes with varying levels of severity were used
to investigate the performance of the regressor. The regressor output layer must be able to
predict different variables. In addition to obtaining the results with the analysis of the degree
of severity of each variable (failure), the output variable precision was also considered. The
tests were defined by the severity level that had to be predicted by the regressor. The severity
levels considered in the tests belonged to S ∈ {1.0, 1.1, 1.2, . . . , 50}%. Figures 11 and 12 show
the prediction curves of the tests with SNRs equal to 60 and 0 dB. Tables 3 and 4 present a
summary of the RMSE values considering regressor and AWGN level L.
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Figure 11. Plots of several regression tests with AWGN SNR level L = 60 dB: (a,d) ∆Pr, and ANN
and RF regressors, respectively; (b,e) ∆r1, and ANN and RF regressors, respectively; and (c,f) ∆mc1 ,
and ANN and RF regressors, respectively. In the above graphs, the black lines represent the perfect
predictions, and the black dots represent the true (x-axis) vs. predicted (y-axis) elements. All graphs
have an interval between zero and fifty (x- and y-axes), that is, with the same amplitudes as the
severity values of the dataset.
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Figure 12. Plots of several regression tests with AWGN SNR level L = 0 dB: (a,d) ∆Pr, and ANN
and RF regressors, respectively; (b,e) ∆r1, and ANN and RF regressors, respectively; and (c,f) ∆mc1 ,
and ANN and RF regressors, respectively. In the above graphs, the black lines represent the perfect
predictions, and the black dots represent the true (x-axis) vs. predicted (y-axis) elements. All graphs
have an interval between zero and fifty (x- and y-axes), that is, with the same amplitudes as the
severity values of the dataset.

By analyzing Figure 11, and Tables 3 and 4, it is possible to see a good performance
of the regressors for a high SNR, with RMSE of less than 1%. The low RMSE values are
a consequence of the low dispersion of the characteristic vector elements and low noise
level present in the signals coming from the machine. In Figure 12, there is an increase in
RMSE value in the presence of a low SNR. One can notice a significant dispersion of the
predictions when compared with the ideal prediction curve.
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By examining Tables 3 and 4, it is possible to observe that the highest dispersion is for
∆mcj . Tables 3 and 4 show the prediction performance in each failure class, where three
failure classes were studied: ∆Pr, ∆rj, and ∆mcj .

The ∆Pr fault, which is global in nature and affects the entire engine combustion
dynamics, was easier to predict once it had strong coupling with the operating parameters
used in this work. The ∆rj and ∆mcj faults, which are local faults that only affect the
dynamics of combustion of one cylinder, had a higher level of prediction difficulty, because
they were only coupled with the variables of the cylinder in question. The regression
performance in the failures referring to the ∆mcj variables was lower than the others,
indicating that this failure class was more difficult to predict. One possibility for improving
the ∆mcj prediction performance could consist in adding more discriminating features and
performing specific adjustments in the regressor.

The Pearson correlation coefficient, displayed in Figures 11 and 12, shows a mod-
erate correlation between the vector of points predicted by the regressor and the perfect
prediction curve. For signals with 60 dB AWGN, the prediction was moderate, whilst for
signals with 0 dB AWGN, the prediction was not as accurate. The latter was caused by the
dispersion of the prediction points due to the high level of noise in the tests. As expected,
ANN and RF regressors presented stable results with low ToE due to the noise level and
the defined adjustment. The obtained results are consistent with [21]. Overall, the RF was
the most stable regressor among the four addressed noise levels. The RF presented the
lowest RMSE amongst the analyses considered. In addition, RF also presented the lowest
dispersion among the cross-validation procedures.

6. Conclusions and Future Work

A quantitative framework for severity analysis composed of signal processing and
regression techniques based on machine learning is proposed in this work. Compared with
traditional classification methods reported in other studies, the proposed framework does
not solely aim at identifying patterns of diesel engine failure. Instead, it assesses the diesel
engine health conditions in the deterioration process by evaluating the absolute value of
the failure severity.

The proposed scheme is crucial, since in practice, the life service of a diesel engine
undergoes a deterioration process before its functional failure occurs. This was accom-
plished by extracting representative statistical parameters from the signals measured inside
the cylinders and from the frequency response of the torsional vibration signal of the
engine flywheel.

The evaluation of the fault severity level was performed using machine learning
techniques that took into account the extracted features. This approach presents important
advantages over traditional numerical methods, namely, it is able to predict the severity
in a shorter time. This time advantage is a consequence of employing a trained regressor.
On the other hand, in traditional numerical methods, there is always a prior need for
convergence to estimate the severity level.

The hyperparameters of the regressors had to be fine-tuned for obtaining the best
classification performance. Furthermore, the regression analysis with four different levels of
white noise was fundamental, as it allowed the robustness assessment of each regressor to
be performed, given the intrinsic increase in the noise level of the measurement. Therefore,
it was possible to define the best regressor for signals with a low SNR. The RF was the most
stable regressor among the four addressed noise levels and presented the lowest RMSE and
the lowest dispersion for the cross-validation procedure.

In this work, the only rotation frequency considered was 2500 RPM. Future work will
further expand the dataset, covering other rotation frequencies. Furthermore, new features
will be incorporated to improve the regression results of fuel failure under loud-noise
conditions. Other regressors, based on kernel machines, will also be studied, such as
support vector machines for regression (SVM) and the Gaussian regression (GP) process.
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