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all data analysis independently. I also authored the paper, incorporating comments from 
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Abstract 
 

Internal combustion engines are, and will continue to be, a primary mode of 

power generation for ground transportation. Challenges exist in meeting fuel 

consumption regulations and emission standards while upholding performance, as fuel 

prices rise, and resource depletion and environmental impacts are of increasing concern. 

Diesel engines are advantageous due to their inherent efficiency advantage over spark 

ignition engines; however, their NOx and soot emissions can be difficult to control and 

reduce due to an inherent tradeoff. Diesel combustion is spray and mixing controlled 

providing an intrinsic link between spray and emissions, motivating detailed, 

fundamental studies on spray, vaporization, mixing, and combustion characteristics under 

engine relevant conditions. An optical combustion vessel facility has been developed at 

Michigan Technological University for these studies, with detailed tests and analysis 

being conducted.  

In this combustion vessel facility a preburn procedure for thermodynamic state 

generation is used, and validated using chemical kinetics modeling both for the MTU 

vessel, and institutions comprising the Engine Combustion Network international 

collaborative research initiative. It is shown that minor species produced are 

representative of modern diesel engines running exhaust gas recirculation and do not 

impact the autoignition of n-heptane.  

Diesel spray testing of a high-pressure (2000 bar) multi-hole injector is 

undertaken including non-vaporizing, vaporizing, and combusting tests, with sprays 

characterized using Mie back scatter imaging diagnostics. Liquid phase spray parameter 

trends agree with literature. Fluctuations in liquid length about a quasi-steady value are 

quantified, along with plume to plume variations. Hypotheses are developed for their 

causes including fuel pressure fluctuations, nozzle cavitation, internal injector flow and 

geometry, chamber temperature gradients, and turbulence. These are explored using a 

mixing limited vaporization model with an equation of state approach for 

thermopyhysical properties. This model is also applied to single and multi-component 

surrogates.  

Results include the development of the combustion research facility and validated 

thermodynamic state generation procedure. The developed equation of state approach 

provides application for improving surrogate fuels, both single and multi-component, in 

terms of diesel spray liquid length, with knowledge of only critical fuel properties. 

Experimental studies are coupled with modeling incorporating improved thermodynamic 

non-ideal gas and fuel properties.   
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1. Introduction 

1.1. Overview and Motivation 
Transportation is a necessity in society which can be achieved through various 

modes using a range of energies, with one key method being personal vehicles 

conventionally powered by internal combustion engines. The practicality, versatility, and 

success of the internal combustion engine developed over 125 years ago (Pischinger et al. 

2006), along with its continued adoption in developing nations, make the internal 

combustion engine the primary mode of power generation for both personal and 

commercial land transportation vehicles (Pischinger et al. 2006). Conventional internal 

combustion engine powered vehicles are projected to decrease at an annual rate of 0.5% 

over the next 25 years in the US, with gasoline internal combustion engines decreasing at 

an annual rate of 0.7%, and diesel combustion engines actually increasing at an annual 

rate of 4.7% in the U.S. for light-duty vehicles (used in personal transportation) (EIA 

2011). Furthermore, alternative fuel-vehicles, including flex-fuel, hybrids, natural gas, 

electric, liquefied petroleum gas and fuel cells are expected to grow at an annual rate of 

7.3% over the next 25 years (EIA 2011). Although transition to alternative vehicles is 

occurring, the rate of this changeover is slow and therefore internal combustion engine 

powered vehicles will continue as a popular transportation source.  

Although the trend for fuel efficiency is increasing, by 70% from 1975 to 2010, 

along with increasing acceptance of hybrid or electrified vehicles (4% of production in 

2010 for light duty vehicles), the sheer magnitude of liquid-fueled vehicles continues to 

increase, thereby increasing fuel consumption (US EPA 2010c). Transportation fuel 

usage continues to increase in the US with transportation accounting for almost 30% of 

the total global energy used in 2007 making up more than 50% of global liquid fuel 

consumed (EIA 2010). Although the transportation energy sector consumption is 

projected to grow 0.6% annually over the next 25 years, this rate is slower relative to 

historic trends, including an average annual rate of 1.2% from 1975 to 2009 (EIA 2011). 

The US in particular is a large consumer of transportation energy with nearly 30% of all 

its energy consumed for transportation (EIA 2010). Putting this into perspective, if the 

petroleum used in the United States in one day was put into 55 gallon drums these would 

form a line from New York to Los Angeles passing through Detroit and Houston (Nesbitt 

et al. 2011b). Transportation energy is currently supplied mostly by petroleum, being 

97% of the total consumption, with 65% for gasoline and 20% for diesel engines 

(McIllroy et al. 2006), with only 3.4% being renewable energy (Davis et al. 2010). 

Despite this low percentage of diesel fueled transportation vehicles, they are continuing 

to rise at a projected growth rate of 1.6% compared to gasoline with a projected 0% 

average growth rate over the next 25 years for all engine types (light-duty, heavy-duty, 

etc.) as these engines are becoming increasingly accepted based on engine improvements 

in noise and emissions (EIA 2011).  

Rising fuel consumption has numerous detrimental impacts including emissions, 

reliance on imported oil which negatively impacts the US economy and national security 

due to high oil prices and shortages, consumption of a non-renewable resource, and 
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carbon dioxide production which may contribute to global warming (EIA 2009). To 

combat these trends research is needed to improve engine technologies to enable the 

reduction of fuel consumption and emissions while avoiding negative impacts on engine 

power, performance, and drivability. It is expected that advancement in fuels and engine 

technologies and components could provide 25-50% improvements in efficiency, a need 

that is vital for economic and environmental reasons (McIllroy et al. 2006).  

Although these engine technologies are well accepted and established, there still 

exist large areas for improvement in regards to emissions and thermal fuel efficiency. 

Engine performance is linked to the physical, thermodynamic, and chemical properties of 

the fuel including the effects that these properties have on fuel and charge-gas 

preparation and mixing, combustion including initiation and rates, and emissions 

formation in a diesel engine. It is this injected fuel, which is mixed with the charge-gas 

that subsequently combusts providing the useful work output based on the input fuel 

energy. Therefore fundamental combustion and spray research and knowledge is 

imperative for these improvements.  

1.2. Background 
There are various types of internal combustion engines currently used which 

differ based on how fuel is introduced, ignited and combusted. Two primary internal 

combustion engines are gasoline (spark ignition) and diesel (compression ignition). Spark 

ignition (SI) engines are typically fueled with gasoline and ethanol blends and used in 

light duty passenger vehicles, whereas compression ignition (CI) engines are 

conventionally diesel fueled and used in on-road medium- and heavy- duty and off-

highway equipment applications. In the United States the major reliance is on spark 

ignition engines for light-duty vehicles, whereas in other countries the main mover is 

diesel engines. Diesel engines are advantageous and have the potential to comprise a 

larger percentage of light-duty vehicles in the United States, as is typical in Europe, due 

to their higher thermal fuel efficiency with a peak at forty-five percent in comparison to 

gasoline engines which peak at thirty-five percent (US DOE 2010), along with increased 

durability and higher low-end torque (Jones 2008).  

The higher efficiency of diesels relative to SI engines is attributed to several 

factors including a higher compression ratio (not limited by combustion knock as in SI 

engines) which yields improved efficiency based on the thermodynamic cycle, and their 

load control mechanism with CI engines using fuel control (SI engines control load by air 

flow restrictions) limiting energy wasted by not requiring a throttling restriction. There 

are also options to further change combustion and engine operating strategies to improve 

CI engine efficiency, including injection pressure increases (Jones 2008) which can 

promote fuel air mixing. As such, injection pressures over the last 30 years have 

increased from 800 to 2000 bar (Mahr 2002). Higher injection pressures, to 2400 bar, 

have been realized in 2010 using common rail systems with advanced (small hole) nozzle 

designs, with expected advancements to 3000 bar by 2015 and 4000 bar by 2020.  When 

these pressure increases harness even more advancements including supercritical 

injection or variable spray nozzles, there are expected improvements of up to 4% in fuel 

efficiency (NAP 2010).  
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As a result of their efficiency, diesel engines exhibit a fuel economy advantage. 

Fuel economy is inherently linked to carbon dioxide emissions, a greenhouse gas which 

is thought to contribute to global warming. CO2 is produced in combustion since as the 

fuel reacts with the charge gas it produces CO2 and H2O while converting the fuel 

chemical energy to thermal or sensible energy, heating the product gases to enable the 

engine to extract energy from the working fluid. Carbon dioxide production is directly 

proportional to fuel consumption with every carbon atom in the hydrocarbon fuel 

yielding one carbon dioxide molecule so consequently minimizing fuel consumption 

provides reductions in CO2. In the United States there are standard targets defined for 

CO2 emissions and fuel efficiency including for example the CAFE fuel economy 

standard, which regulates fuel consumption for light duty vehicles (Sissine 2007). 

Greenhouse gases are also being regulated through the US EPA, in particular CO2 

emissions for light-duty and medium-duty passenger vehicles, starting with model year 

2012 (US EPA 2010d). Standards are also currently being proposed to regulate 

greenhouse gas emissions, more specifically CO2 and N2O, for medium and heavy duty 

vehicles to complement the long-existing standards for light duty vehicles. These 

standards propose a 9% reduction by 2016 for light heavy-duty vehicles (large pick-up 

trucks) (US EPA 2010b; Johnson 2011). 

Current limitations of diesel engines are their high particulate matter (PM) 

(composed of dry soot, soot which does not oxidize during combustion and exits the 

tailpipe is termed particulate matter, and soluble organic compounds) and oxides of 

nitrogen (NOx) emissions which require complex after-treatment systems to meet 

increasingly stringent emission standards (Bennett 2009). Diesel engines operate using 

mixing-controlled combustion where fuel is directly injected into the chamber which 

autoignites to form a diffusion flame at close to stoichiometric conditions, which has 

implications in NOx and soot emissions (Pickett et al. 2004). NOx emissions are 

detrimental as they can lead to ozone production, with PM being a potential carcinogen 

(Knight et al. 2011). The recent on-road heavy duty diesel engine standards in 2007 and 

2010 require a factor of 10 reduction in PM (from 0.1 to 0.01 g/bhp-hr) and NOx (from 

2.0 to 0.2 g/bhp-hr) respectively (US EPA 2010a). These standards have reduced 

emissions levels drastically from the first established levels in 1978, as summarized in 

Figure 1.1.  
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Figure 1.1: History of NOx and PM emission standards from 1978 to present. In 

1978, 1984, and 1987 there were no established PM standards. Data from US EPA 

2010A. White text numbers denote NOx, black text numbers denote PM standards.  

Achieving these reductions is complicated as there exists an inherent NOx – soot 

trade-off based on the temperature-equivalence ratio path which fuel-air mixing and 

combustion follows. Equivalence ratio is defined as the ratio of the actual fuel to air ratio 

of the mixture to the stoichiometric fuel to air ratio, with stoichiometric conditions being 

defined as the exact amount of air required to consume all of the fuel. NOx is formed in 

higher-temperature, near-stoichiometric combustion regions with soot forming in the 

lower temperature, fuel-rich regions of the combustion zone (Kitamura et al. 2002; 

Pickett et al. 2007), as defined in Figure 1.2.  

 
Figure 1.2: NOx-soot formation based on the equivalence ratio – temperature path 

of combustion. Adapted from (Kitamura et al. 2002; Pickett et al. 2007).  

Figure 1.2 outlines that current combustion / sprays in diesel engines follow a path which 

travels through both regions of soot and NOx formation. Reducing the combustion 

temperatures will alter the equivalence ratio – temperature path shifting its trajectory to 

reduce residence times and traverse through lower soot and NOx regions to assist with 

emission reduction. Improvements in fuel-air mixing provides a reduction in rich zones 

which can reduce levels of soot formed (Akihama et al. 2001).  

This path and regions of soot and NOx formation are inherently linked to the 

combusting spray plume. The liquid portion of the plume penetrates to a quasi-steady 

value, with the vapor phase continuing to penetrate forming a rich fuel-charge gas 

mixture, which at the tip provides the initial region of soot formation. The equivalence 
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ratio is decreasing as the fuel and charge-gas mix, with temperatures increasing, leading 

to this region being surrounded by a lifted, diffusion flame at achievement of a near 

stoichiometric mixture. Varying levels of soot are formed inside this flame as a function 

of equivalence ratio and temperature, including maximum levels towards the tip, with 

thermal NOx produced on the outer edges of the diffusion flame (high temperature zones, 

near stoichiometric combustion as defined in Figure 1.2) (Dec 1997).  

There are several proposed methods to overcome or minimize the NOx – soot 

tradeoff relationship which is inherent to conventional diesel combustion, including 

engine operational strategies and after-treatment systems. Operational strategies consist 

of changes to the operating environment including charge-gas conditions via low 

temperature combustion or mixture dilution with exhaust gas recirculation (EGR), and 

injection strategy changes for example elevated injection pressures or multi-pulse 

injection strategies (Matthews et al. 2004). Low temperature combustion reduces flame 

temperatures inhibiting NOx formation, while eliminating fuel-rich combustion zones to 

reduce soot formation, by up to 90% and 70% respectively, however, this application is 

limited due to carbon monoxide emissions, hydrocarbon emissions, penalties in fuel 

efficiency, and its limitation under full-load conditions (Knight et al. 2011). Low 

temperature combustion can be achieved via the use of EGR to provide a dilute fuel-air 

mixture to reduce NOx and increasing fuel injection pressure which enables reduction in 

spray hole diameters to improve mixture formation providing low PM (Pischinger et al. 

2006; Knight et al. 2011). Other strategies are the use of small orifice diameters (with 

increased injection pressures required to match combustion rates), either under high 

dilution (high EGR levels) at typical diesel combustion temperatures which reduces 

flame temperatures while still providing complete combustion with minimal soot because 

of sufficient fuel-air mixing before the lift-off length (location of the stabilized 

combusting flame relative to the injector tip) is reached, or through the use of a reduced 

flame temperature and elevated oxygen levels (i.e. no dilution) (Pickett and Siebers 

2004). Another strategy involves the use of conventional sized orifice diameters with an 

oxygenated fuel under high dilution (EGR) conditions to provide cool temperatures to 

limit soot inception and NOx formation (Pickett and Siebers 2004). Furthermore, diesel-

fueled homogeneous charge compression ignition (HCCI) combustion can also be used, 

which relies on volumetric autoignition and combustion of lean or dilute charge mixtures 

to yield low flame temperature (low NOx) and less rich (leaner) mixtures for low soot 

levels, which can be achieved by premixed early direct-injection strategies, or late 

injection strategies, with the requirement that fuel injection is complete before 

autoignition to ensure high levels of fuel-air mixing (Kimura et al. 2001; Dec 2003; 

Klingbeil et al. 2003). Currently, HCCI combustion is limited by control strategies and is 

restricted to low load applications (Pickett et al. 2004). High load applications are a 

current limitation for HCCI engines based on the high levels of exhaust gas recirculation 

needed to adequately control the start of combustion, which is required to limit 

combustion knock (Wimmer et al. 2006).  Furthermore, HCCI limitations are apparent 

based on the control difficulty, which is increasingly compounded with fuel variability as 

the process of HCCI combustion is largely kinetically controlled.   

Additional methods to minimize soot and NOx emissions involve complex after-

treatment hardware to meet emission standards. This hardware includes an oxidation 
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catalyst (hydrocarbon and carbon monoxide reduction), continuously regenerating PM 

trap, and lean NOx reduction system or a selective-catalyst-reduction / urea system for 

NOx reduction. Although successful, these systems are costly emission reduction 

methodologies.  

The NOx-soot tradeoff is largely tied to the mixing controlled methodology of 

diesel combustion and fuel efficiency. Improvements in combustion and fuel efficiency 

typically lead to increases in NOx formation, whereas unburnt hydrocarbons, carbon 

monoxide and soot emissions are increased under incomplete combustion conditions due 

to poor mixing (Yanowitz et al. 2000). Diesel combustion and emission formation is 

inherently linked to the spray (injection) vaporization and fuel-air mixing processes. This 

process involves liquid fuel being injected into the combustion chamber at high pressure 

(injection velocity) conditions, after which the fuel spray atomizes and subsequently 

mixes and penetrates across the chamber. As the fuel penetrates, there is a liquid core of 

fuel (liquid length) led by a fuel-charge gas vapor mixture, which is combusting at the 

leading edge under the correct conditions, as a lifted diffusion flame. This fuel 

progression across the chamber includes the entrainment of charge gases into the spray. 

This entrainment of hot charge gases increases the temperature of the fuel-charge gas 

mixture, resulting in vaporization and subsequent autoignition when the fuel and air 

mixture reach correct proportions and temperature. Injection parameters and charge gas 

conditions strongly control the resulting fuel-air mixing, autoignition, and combustion, 

along with the interaction between vaporization and combustion. The entire diesel engine 

process involves fuel spray penetration and subsequent mixing with charge-gas in the 

combustion chamber, which directly governs flame formation at combustion, meaning 

that momentum flux, penetration, mixture composition and temperature are all 

interrelated in diesel processes (Pastor et al. 2008). 

The process of the fuel vaporization in the charge gas (air or air plus recirculated 

exhaust) directly controls combustion. One key parameter defining the efficiency of this 

air-fuel mixing is liquid length. The liquid length is the location from the injector to the 

leading edge of the liquid core of the spray, which reaches a quasi-steady value during 

portions of the injection, while the vapor phase continues to penetrate. At the liquid 

length the rate of fuel injection is equal to the rate of fuel vaporization, and past this 

region only vapor fuel exists and fuel vapor continues to mix with the charge gases. A 

reduction in liquid length indicates an improvement or more efficient fuel-air mixing 

(Payri et al 2011c). Liquid length is inherently linked to injection and charge gas 

conditions, increasing as orifice diameter increases, charge gas temperature and density 

decrease, fuel volatility decreases, or fuel temperature decreases, with no influence from 

injection pressure (Canaan et al. 1998; Siebers 1998; Siebers and Higgins 2001).  

Another parameter controlling diesel combustion is lift-off length, which defines 

the location relative to the injector tip that the lifted diffusion flame stabilizes at. Lift-off 

length increases for a reduction in charge-gas density and charge gas temperature, and an 

increase in nozzle orifice diameter or injection pressure (Siebers and Higgins 2001). The 

parameter influences for liquid length and lift-off length are summarized in Table 1.1.  
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Table 1.1 

Liquid length and lift-off length trends.  
Increase in Parameter Liquid Length Lift-Off Length 

Orifice Diameter + + 

Charge Gas Temperature - - 

Charge Gas Density - - 

Fuel Volatility - Unknown 

Injection Pressure No Change - 

Fuel Temperature - Unknown 

The relationship between these two parameters, lift-off length and liquid length, 

for a given operating condition influences levels of soot formed in the combustion 

process (Siebers and Higgins 2001; Siebers 2008). For conditions where the lift-off 

length is less than the liquid length, all of the fuel has not yet vaporized by the onset of 

combustion, which results in a fuel rich diffusion flame and increased levels of soot 

formation (Siebers and Higgins 2001; Siebers 2008). In contrast, for conditions where the 

lift-off length exceeds the liquid length, the fuel has fully vaporized by the onset of 

combustion with sufficient fuel-air mixing which reduces rich-combustion zones thereby 

decreasing soot (Siebers and Higgins 2001; Siebers 2008). This ideal combustion regime 

(of liquid length less than lift-off length) can be achieved by reductions in orifice nozzle 

diameters which reduces both liquid length and lift-off length, albeit with a reduced 

influence for lift-off length; increases in injection pressure which increases lift-off length 

without a change in liquid length; or reductions in charge gas temperatures and densities 

achieved using exhaust gas recirculation and charge-gas cooling to also reduce NOx 

(Siebers and Higgins 2001).  This operational strategy is shown schematically in Figure 

1.3.  

 
Figure 1.3: Schematic of liquid length and lift-off length relationship relative to soot 

and NOx emissions. Adapted from Siebers and Higgins 2001.  

By optimizing fuel air mixing with improved atomization and vaporization, the 

liquid length reduces which can provide reductions in soot emissions. To ensure liquid 
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length is optimally minimized (to ensure optimal vaporization without hindering 

combustion or efficiency), an improved understanding of the interaction of parameters 

including injection processes, spray structure, and behavior under a range of ambient 

conditions is required. Current injection strategies lie in between the two regimes shown 

in Figure 1.3 with operation at moderate injection pressures and nozzle diameters 

(Siebers and Higgins 2001; Siebers 2008), however, with an improved understanding of 

property dependent liquid length to enhance fuel vaporization, along with the use of 

advanced piezoelectric injectors, this transition will become increasingly adopted. 

Although there is a great deal of knowledge of spray and combustion 

characteristics under conventional operating conditions, it is important to extend this 

boundary to consider advanced combustion and injection strategies, such as elevated 

injection pressures and reduced nozzle diameters, along with the use of advanced 

injectors including piezoelectric in place of solenoid for improved fuel control (Payri et 

al. 2011c). Not only are experimental studies important, modeling studies including 

simplified 1-D correlation models based on conservation principles are also useful. For 

example, thermophysical property modeling including the use of surrogate (simplified 

model) fuels provides the ability to develop computational tools. Ideally, these tools are 

predictive and an efficient means to improve designs for high combustion and fuel 

efficiency, low emission, engines through modeling as opposed to time-intensive 

experimental testing (Farrell et al. 2007). 

1.2.1. Sustainability Issues 
Assessing the sustainability and impacts of a concept or material object is 

essential when implementing a new technology or product into society. A sustainability 

assessment will ensure that the new technology or product provides significant long-term 

benefits compared to the current infrastructure which it is replacing or improving. This is 

a difficult concept based on the lack of a concise, accepted definition of sustainability. A 

commonly held definition for sustainability is that from the Brundtland Report 

(Brundtland et al. 1987) which defines sustainable development as meeting the needs of 

present generations, while still reserving sufficient resources for future generations to 

meet their own needs. Based on this definition diesel fuel from petroleum is not a truly 

sustainable fuel source as it is non-renewable in nature, thereby motivating not only 

increasingly fuel efficient technologies using diesel fuel, but also the development, and 

integration of alternative fuels into conventional engines.  

Alternative fuels for diesel engines can include biodiesel, green-diesel, e-diesel, 

and dimethyl ether, as examples. It is important to consider the sustainability of these 

fuels since biofuels offer the potential to transform the transportation infrastructure into a 

more sustainable operation, based on their renewable nature and feedstock availability. In 

2005 the Department of Energy (DOE) projected that there are 1.3 billion dry tons of 

sustainable biomass, including agricultural land and forestland, available annually in the 

US for the production of renewable fuels (Perlack et al. 2005). With the expected process 

improvements, the 1.3 billion dry tons of biomass converted to biofuels could replace 

30% of the US 2005 petroleum consumption (Perlack et al. 2005).  

Biodiesel, a biomass-derived fuel, is promising in that it is renewable, 

domestically produced, biodegradable, and provides beneficial reductions in emissions 
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including soot (Szybist et al. 2007). Biodiesel is a natural, energy alternative to diesel, 

and hence is a clean fuel (Bozbas 2008). It is designed for use in diesel engines, either in 

blends, for example 20% biodiesel (B20) or as 100% pure biodiesel (B100). This 

blending with conventional diesel fuel exploits the unique characteristics of biodiesel 

which enhance sustainability, while minimizing the negative aspects of the fuel, in 

regards to for example reduced engine performance associated with 100% pure biodiesel.   

Biodiesel can reduce atmospheric CO2 since it decreases fossil fuel consumption, 

with the CO2 combustion emissions also being biologically cycled by plants using them 

for photosynthesis (Sheehan et al. 1998). Due to the oxygen content in the fuel, biodiesel 

decreases emissions of PM, CO, and HC, but causes a slight increase in NOx emissions. 

However this trend in NOx emissions is inconclusive and inconsistent since NOx 

emissions decrease under certain engine and fuel-blend conditions (US EPA 2002; 

Demirbas 2007). Greenhouse gas emissions are decreased by approximately 41 to 54 

percent when compared with diesel fuel (Hill et al. 2006; Koh and Ghazoul 2008). This 

reduction is partially attributed to the decreased carbon dioxide emissions with biodiesel 

combustion than with conventional fuels (Bozbas 2008). Sulfur dioxide emissions are 

reduced due to the minimal sulfur content in the fuel (Bozbas 2008). There is also a 

reduction in unburned hydrocarbon emissions, carbon monoxide, polycyclic aromatic 

hydrocarbons, nitrated polycyclic aromatic hydrocarbons and particulate matter (Groom 

et al. 2008; Murugesan et al. 2009).  

There are several advantages to using biodiesel as a replacement transportation 

fuel for conventional diesel. It is easily portable, readily available, renewable, exhibits 

enhanced combustion efficiency, has decreased sulfur and aromatic content, and 

promotes decreased petroleum importation (Demirbas 2007). Using biodiesel enhances 

combustion efficiency based on the oxygen content in the fuel with the 11% oxygen 

content by weight reducing hydrocarbon, carbon monoxide and particulate emissions, 

based on its improved combustion (Radich 1998; Demirbas 2007). The oxygen in the fuel 

also promotes complete combustion and hence fuller conversion to carbon dioxide 

products thereby reducing the solid carbon fraction of particulate matter when compared 

to conventional diesel fuel combustion (Bozbas 2008). 

Despite these numerous advantages, there are still disadvantages to the use of 

biodiesel as a transportation fuel. This includes reduced energy content in the fuel, 

potentially enhanced nitrogen oxides emissions, decreased engine power, issues with 

engine compatibly, increased price, and amplified engine wear (Demirbas 2007). Issues 

with power and torque are also prevalent, including an average 5% reduction in power 

when using biodiesel as compared with petroleum derived diesel fuel (Demirbas 2007). 

Additionally, the decreased energy content and heating value of biodiesel results in an 

increased specific fuel consumption when compared with diesel, with vehicles requiring 

approximately 10% more biodiesel then conventional fossil derived diesel to travel the 

same distance (Demirbas 2007; Frondel and Peters 2007). This fuel consumption increase 

results in a predicted fuel economy reduction of 0.9 to 2.1% miles per gallon when using 

B20 fuel blends, and 4.6 to 10.6% when using B100 fuel blends (Demirbas 2007). 

Biodiesel does not fare extremely well as a cost-effective transportation fuel, being up to 

double the cost of conventional diesel fuel (Demirbas 2007).  
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Despite increased costs, there do exist several economic benefits of biodiesel as a 

transportation fuel. These include value added to the feedstock used for biodiesel 

production, increased job availability especially in regards to rural manufacturing, along 

with raised investments in equipment and plants (Demirbas 2007). There is also reduced 

reliance on crude oil imports with increased agricultural support thereby yielding 

enhanced labor and market opportunities for domestic crops (Demirbas 2007). 

Other alternative fuel sources for diesel engines include green diesel, a 

deoxygenated diesel fuel produced from biomass (Kalnes et al. 2009) and e-diesel, a 

blend of diesel with 15% ethanol to yield a low cost, reduced emissions fuel source 

(NREL 2002), both of which are in the early stages of development and are not 

commercially available. Green diesel is unique due to its high cetane number with 

reduced emissions attributed to the lower aromatic and sulfur content in the fuel (Kalnes 

et al. 2009). Another promising alternative fuel is Dimethyl-Ether (DME) which can be 

derived from natural gas or biomass and is very clean burning with essentially zero soot 

emissions (Semelsberger et al. 2006). 

The implementation of biofuels will assist in reducing society’s dependence on 

foreign oil sources resulting in a favorable economic impact by minimizing the current 

trade imbalance attributed to petroleum. Biofuels take advantage of natural resources, 

including biomass, thereby improving the sustainability of the fuel and the accompanying 

combustion technologies when successfully employed. To assess the sustainability of 

biofuels several factors must be considered. These include the fuel being technically 

achievable, economically competitive in comparison to conventional fuels, 

environmentally beneficial, and easily accessible (Demirbas 2007). Furthermore, 

alternative fuels need to yield net energy gains and be mass-producible without having 

detrimental impacts on the food supply (Hill et al. 2006). This expansion in alternative 

fuel use is being promoted via several initiatives including the Renewable Fuels Standard 

which requires 36 billion gallons of renewable fuels used for transportation by 2022 (US 

Congress 2007).  

The United States in particular has developed several policies promoting 

renewable energy and energy conservation. One of the first developed policies was the 

1978 National Energy Act which produced the Public Utility Regulatory Policies Act 

encouraging facilities to utilize renewable energy sources for electricity (Duffield and 

Collins 2006). This act has provided a solid basis for the development and incorporation 

of renewable energy sources as a whole. In 1998 the Energy Conservation 

Reauthorization Act was implemented to facilitate biodiesel tax and fuel use credits, 

providing alternative fuel vehicle credits for using a certain amount of biodiesel to satisfy 

the requirement of alternative fueled vehicles being used in governmental vehicle fleets 

(Duffield and Collins 2006; MIIFQC 2006). In 2001 the Department of Energy (DOE) 

created a Biomass Research and Development Initiative, administered by the National 

Biomass Coordination Office providing grants for research, development, and 

demonstration projects for biomass derived energy sources, including biodiesel 

(Yacobucci 2008). The 2004 American Jobs Creation act provided fuel tax credits up to 

one dollar per gallon of biodiesel based on the feedstock used for manufacturing, 

including oil crops, animal fats, and recycled oils and fats (Duffield and Collins 2006). 

One objective of this act and tax credit was to provide biodiesel cost reductions for 
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consumers (MIIFQC 2006). This tax credit motivated an almost four-fold increase in 

biodiesel production between 2004 to 2005, contributed by 53 biodiesel production plants 

in the US, leading to the planning of another 40 plants to meet the increased demand 

(Duffield and Collins 2006).  

The United States Department of Agriculture (USDA) also developed policies and 

regulatory agencies, including the Commodity Credit Corporation (CCC) which 

stimulates demand and reduces crop surpluses, encouraging the production of biodiesel 

(Duffield and Collins 2006). The CCC administered a USDA bioenergy program 

beginning in 2001 which reimbursed biodiesel producers for expanding their production 

capacity, promoting biodiesel growth (Yacobucci 2008). In 2005 the Internal Revenue 

Service (IRS) established a biodiesel tax credit as part of the American Jobs Creation act 

of 2004, extended by the Energy Policy Act of 2005, which enables biodiesel producers 

to claim a one dollar per gallon tax credit for agri-biodiesel, which is fuel produced from 

virgin agricultural products, and a credit of fifty cents per gallon for biodiesel 

manufactured from previously used agricultural products, including for example recycled 

fryer grease (Yacobucci 2008). The Energy Policy Act of 2005 implemented a 

Renewable Fuels Standard which requires incorporating set quantities of biofuels each 

year to slowly introduce these fuels, with this act also extending the biodiesel fuel excise 

tax credit and granting small-scale biodiesel producers an income tax credit (Duffield and 

Collins 2006). This renewable fuels standard is administered by the Environmental 

Protection Agency (EPA) and was expanded by the Energy Independence and Security 

Act of 2007, having quotas for biomass-based diesel fuel use(Yacobucci 2008). A new 

renewable fuels standard was developed, the Biofuels Security Act of 2007, which further 

expands the renewable fuels standards developed in the Energy Policy Act of 2005 (De 

La Torre et al. 2007).  

Various policies are in place to promote the integration of alternative renewable 

and biomass derived fuel sources into society, in a sustainable manner. These fuel 

sources however must still be thoroughly researched and investigated both considering 

combustion and emissions formation, but also using detailed life-cycle assessments. This 

is neccessary to ensure the fuel is providing a benefit to society when integrated, in terms 

of not only financial costs, but also environmental costs including greenhouse gas and 

other emissions. These assessments must consider the full life-cycle of the fuel, from 

production through combustion, to provide the most accurate understanding of its 

sustainability. For example, a well-to-wheel analysis of petroleum diesel fuel, soybean 

based biodiesel, and renewable diesel fuels from hydrogenation using a life-cycle 

analysis approach provides key information on energy and greenhouse gas emissions. 

The production of and burning of soybean based biofuels (biodiesel and renewable 

diesel) will yield increases in energy use, however, fossil and petroleum energy use is 

reduced, in excess of 52% and 88% respectively, along with an excess of 57% reduction 

in greenhouse gas emissions, relative to petroleum based diesel fuels, for one particular 

study (Huo et al. 2009). Therefore, the effects of total energy and greenhouse gas 

emissions must be considered in a full cycle analysis to ensure alternative fuels are 

sustainably integrated. The experimental methods, techniques, and model developed in 

this current work will provide tools needed for a more thorough study on these alternative 

diesel fuels to facilitate their sustainable integration.   
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1.3. Problem Statement 
There are several key challenges in liquid-fuel combustion especially with the 

incorporation of new engine technologies for emission reductions coupled with the 

integration of novel, sustainable fuel sources (McIllroy et al. 2006). This requires 

providing an understanding of vaporization and mixing processes for these novel fuel 

sources, which may be best accomplished by advanced spray models (McIllroy et al. 

2006). As discussed, diesel combustion and emissions formation is largely controlled by 

the fuel spray and subsequent fuel-air mixing and vaporization. Improving the 

understanding, or knowledge, of spray mixing including vaporization and liquid phase 

spray behavior under engine-relevant and advanced combustion and injection strategy 

conditions is imperative to comprehend the fundamental governing behavior of these 

processes. This includes quantifying the quasi-steady nature of liquid length, and the 

underlying causes and implications of this behavior, for conventional and alternative 

fuels. To achieve this, research tools are needed that enable independent isolation and 

control of parameters to understand the contributing behavior of injection properties 

including pressure, nozzle design, or fuel type, and ambient conditions including oxygen 

concentration or exhaust gas recirculation (EGR) level, density, or temperature. By 

optimizing fuel-air mixing, fuel consumption (and correspondingly CO2 emissions) along 

with NOx and soot emissions will be reduced to facilitate meeting stringent emission 

standards while maintaining high efficiency. This research is conducted to quantify and 

understand the influence of injection and combustion strategies including varying charge-

gas conditions on the resulting spray behavior from a multi-hole injector, which directly 

correlates to emissions and fuel economy. By better understanding spray characteristics 

and fuel air mixing, hardware methodologies and strategies can be implemented to 

enhance this mixing which can assist in fuel economy improvements and hence carbon 

dioxide reductions. This knowledge is required for multi-hole production injector nozzles 

where current research is limited.   

1.4. Goals and Objectives 
This research consists of two key goals which are achieved through several 

objectives. The first goal is to improve the understanding of non-vaporizing, vaporizing, 

and combusting spray characteristics under various fuel injection and ambient states at 

conditions relevant to diesel engines using an optically accessible combustion vessel with 

Mie Scatter imaging. This includes liquid length, penetration, cone angle, lift-off length, 

and flame length of diesel sprays along with the plume-to-plume variations from a multi-

hole injector, and in particular focus is on the fluctuations around a quasi-steady liquid 

length. Achievement of this goal will contribute to the diesel spray community based on 

an extensive study expanding knowledge on spray characteristics from a multi-hole 

injector, as well as by providing detailed exploration of, and knowledge on, liquid length 

fluctuations and their hypothesized causes, along with plume to plume spray variations. 

The second goal is the development of a generalized equation of state thermophysical 

property methodology with application to single component and multi-component 

surrogate fuels to compare to experimental results and to quantify property dependent 

liquid length using a 1-D model under conditions relevant to diesel engines. Use of this 



13 

equation of state method advances the knowledge of thermophysical fuel properties and 

model application based on the requirements of only hydrocarbon fuel property constants 

which are readily available in place of tabulated properties. These goals will be achieved 

through a series of objectives, as outlined below:  

• Develop the combustion vessel research facility for diesel spray studies including 

thermodynamic state generation capability for replicating diesel engine conditions 

and necessary subsystems.  

• Apply chemical kinetics modeling to the combustion vessel preburn procedure for 

thermodynamic state generation to quantify the influence of mixture properties, 

and the procedure, on the resulting fuel autoignition.  

• Integrate optical diagnostics to quantify the macroscopic spray structure and 

characteristics of penetration, liquid length, cone angle, and lift-off length.  

• Develop robust image processing methodologies and techniques to quantify spray 

characteristics.  

• Use the combustion vessel to characterize diesel sprays over a range of conditions 

pertinent to current and advanced technology diesel engines including charge gas 

temperature and density, fuel injection pressure, and temperature.  

• Quantify diesel spray plume to plume variations in liquid length and fluctuations 

about a quasi-steady value.  

• Examine the validity of an existing spray correlation for vaporizing (liquid length) 

sprays in comparison to experimental data.  

• Develop an equation of state dependent set of property relations to evaluate 

enthalpy, saturation pressure / temperature and fuel compressibility properties 

using fuel critical properties.  

• Integrate thermophysical property relationships from an equation of state to 

evaluate the existing liquid length correlation providing a robust methodology for 

property-dependent characterization to facilitate parametric studies and surrogate 

fuel development for matching vaporization characteristics.  

• Compare results from the liquid length correlation to experimental results 

considering both diesel sprays in the Michigan Technological University 

Combustion Vessel and data tabulated in the Sandia Engine Combustion Network 

database, which includes liquid length for fuels of cetane and diesel. 

• Use liquid length models with single and multi-component surrogates to identify 

the relationships between boiling point matching diesel distillation properties to 

accurately predict diesel spray liquid length and vaporization characteristics.  

• Use diesel spray experimental results in conjunction with liquid length models to 

evaluate property dependent liquid length including parametric modeling for 

hypotheses on the cause of liquid length fluctuations including vessel temperature 

gradients, fuel pressure fluctuations due to cavitation and eccentric needle lift, and 

injector design parameters influencing discharge, velocity and area contraction 

coefficients.  

Through achievement of the above objectives, a fully functional research 

laboratory will be developed, with thermodynamic state generation capability for 

fundamental studies of conventional and advanced diesel combustion strategies including 

those to minimize the NOx-soot tradeoff, under well-controlled conditions. Furthermore, 
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experimental results will be used to verify an existing liquid length correlation, with 

application to diesel and alternative fuel surrogates, which will provide insight into the 

causes of the quasi-steady liquid length behavior, which has implications for soot 

formation. The developed equation of state approach for thermophysical property 

determination provides a tool, which considers non-ideal effects, for surrogate fuel 

development and application for matching fuel vaporization characteristics. Furthermore, 

this tool helps to fill the void which exists between surrogate fuels and chemical kinetics 

which are well developed, and thermophysical property analysis and impacts for which 

focus has been lacking, during surrogate fuel development.  

1.5. Method of Solution 
Clearly, understanding diesel spray behavior is important to determine methods 

for improved fuel-air mixing to provide fuel efficiency improvements and emission 

reductions. The following work provides a contribution to knowledge of diesel fuel 

sprays over a wide range of conditions, with particular application on liquid length spray 

behavior including for example fuel effects and hypotheses on liquid length fluctuation 

causes. A literature review is provided in Chapter 2, with discussion on optically 

accessible experimental apparatuses and thermodynamic state generation procedures, 

macroscopic spray characteristics, diesel spray modeling, surrogate fuels, and equations 

of state for determining property relationships, in conjunction with mixing relationships 

for multicomponent fuels.  

Chapter 3 discusses the development and validation of an optically accessible 

constant volume combustion vessel experimental facility for these studies, including 

facility features and applications. In Chapter 4, results from modeling of the procedure 

used for thermodynamic state generation are reviewed, supporting the use of this 

procedure despite the minor species generated. Modeling is applied to both the Michigan 

Technological University combustion vessel, and to the vessels comprising the Sandia 

National Laboratory Engine Combustion Network international research initiative.  

In Chapter 5, the optical Mie scattering imaging diagnostic setup is discussed 

along with image processing methodologies which will be used to characterize diesel fuel 

spray behavior of a baseline multi-hole injector.  

In Chapter 6, results from the experimental studies of diesel fuel sprays over a 

range of ambient and injection conditions are discussed, comparing these results with 

past literature and to quantify the governing parameters and the fundamentals of these 

processes. The aforementioned diesel spray parameters are characterized for the sprays 

under vaporizing, combusting and non-vaporizing conditions. Results are also included of 

the plume-to-plume variations between spray plumes from this multi-hole injector to 

facilitate understanding of the variations between spray plumes under a range of 

conditions, which influences combustion and emissions.  

In Chapter 7, the experimental results from this work will be used in conjunction 

with data from the Sandia Engine Combustion Network (ECN, 

http://www.sandia.gov/ecn/index.php) for cetane as a single-component fuel and diesel, 

for liquid length correlation application. The model used is from Siebers (1998) and 

based on mixing – limited vaporization. In order to apply this model to a wide-range of 

hydrocarbon fuels an equation of state approach is undertaken to facilitate calculation of 

http://www.sandia.gov/ecn/index.php
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the thermophysical properties as required. This approach enables determination of the 

evaporation coefficient necessary for model evaluation, with knowledge of only critical 

temperature and pressure, and acentric factor, along with ideal gas specific heat 

polynomial constants. This ‘program’ of equation of state for thermophysical property 

determination improves the application of these models by facilitating application to 

hydrocarbon fuels and blends, whose property data may not be readily available, which is 

important as new alternative fuels are considered. Furthermore, this will assist with 

surrogate fuel development by enabling application of both single and multicomponent 

mixtures to best match and predict liquid length behavior to that of conventional, and 

alternative, diesel fuels including understanding the influence of distillation or boiling 

point matching on accurate prediction of diesel spray behavior. This approach and 

application is reviewed, and application is provided to various single and multi-

component surrogates. Investigation is also undertaken to define the lower limit of this 

model on predicting liquid length based on atomization limited regimes, achieved by 

evaluating the penetration at the transition time to a charge-gas entrainment dominated 

regime.  

Chapter 8 quantifies the fluctuations of the diesel spray liquid length about a 

quasi-steady value and the influence of operating parameters on these trends. Results are 

also included for higher frame-rate images to better understand the frequency content of 

the diesel spray liquid length fluctuations. Hypotheses are presented as to the cause of 

these fluctuations including chamber temperature gradients, injection pressure variations 

attributed to eccentric needle movement and cavitation, along with variations in injector 

coefficients based on flow and geometry. These hypotheses are investigated using 

parametric modeling with the Siebers liquid length model in conjunction with the 

equation of state approach for thermophysical property modeling.  

Summary and key conclusions are presented in Chapter 9. Chapter 10 discusses 

future work which includes experimental study of diesel spray liquid length for single 

and multi-component surrogate fuels, additional model improvements, and updates to the 

combustion vessel research laboratory. Additional work will also be undertaken to further 

explore the proposed hypotheses for liquid length fluctuations. Appendices (Chapter 12) 

include data and image processing programs, along with chemical kinetics modeling and 

equation of state thermophysical property modeling programs for liquid length. 

Additional supplementary data and further details for methods of solution will also be 

provided in the appendices.  

The results from this dissertation contribute to the understanding of diesel spray 

liquid length including the quasi-steady spray fluctuations using both an experimental 

along with a thermophysical modeling approach with a mixing limited vaporization 

model. The developed equation of state approach for thermophysical property modeling 

provides application for selecting and quantifying surrogate fuels, both single and multi-

component, for diesel spray studies, yielding fundamental knowledge and application for 

alternative fuel development and integration. Surrogate fuels do exist, along with 1-D 

correlation models for liquid length, however, there is a need for a methodology to 

evaluate these models for surrogate fuels, with knowledge of only critical fuel properties, 

for the cases where tabulated property data is not readily available. This equation of state 
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method with the 1-D mixing limited vaporization model provides an advanced tool and 

process for these applications. 
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2. Literature Review 
This chapter includes a review of literature relevant to the current research. 

Review is included on experimental apparatuses and in particular optically accessible 

instruments, along with the preburn procedure for thermodynamic state generation. 

Discussion is also included on macroscopic spray characteristics including spray 

penetration, liquid length, cone angle and lift-off length, along with plume to plume 

variations and liquid length fluctuations.  Diesel spray modeling is also discussed with a 

focus on 1-D spray models for characterizing spray parameters and trends. Review is also 

provided on surrogate fuels, commonly used in diesel spray modeling, along with the use 

of equations of state for determining property relationships in conjunction with mixing 

rules for multicomponent fuels. This literature review sets the stage for the scope and 

application of this work relative to existing research.  

2.1. Experimental Apparatus 
The study of combustion and sprays can be undertaken with the use of various 

experimental apparatuses. All setups have advantages and disadvantages and are useful 

for certain types of study. The main techniques include conventional diesel engines, 

modified engines for optical accessibility, constant volume combustion vessels using 

heating or preburn procedures which could be sequential or premixed, constant pressure 

flow rigs, and rapid compression machines. For fundamental and detailed research on 

diesel sprays and the ensuing combustion and emissions formation, in conjunction with 

injection into a well-controlled environment, the use of optical diagnostics are 

imperative.  

Using a conventional diesel engine is advantageous for combustion and sprays 

research as conditions are those of the actual engine environment, however, research 

applications are limited as the engines do not provide the optical access needed for 

visualization. This visualization is advantageous to understand the fundamental 

underlying behaviors. Furthermore, in conventional engines it can be difficult to control 

and study advanced combustion strategies based on limitations of the engine in regards to 

operating conditions, injection strategies, and fuel compatibility, as examples. This lends 

to the development of optically accessible apparatuses that emulate or reproduce 

conventional engine conditions while enabling the application of optical and laser 

diagnostics for spray and combustion studies.  

Diesel engines can and have been modified to provide optical access to the 

combustion chamber to enable visualization of processes which occur in an actual engine. 

This optical access can be achieved in various ways; replacing an exhaust valve with a 

window in the cylinder head with additional windows around the cylinder top (Bradsley 

et al. 1988; Espey et al. 1997), installing a fused silica piston top with retained bowl 

geometry and valve cutouts in addition to other side windows (Matthews et al. 2002) or 

installing windows in the piston, with supplemental access through windows in the liner 

near the cylinder head (Baert et al. 2009). Other methods include replacing the piston 

with a flat fused silica piston crown window or  with an exhaust valve  being replaced by 

a window along with windows being added around the upper portion of the cylinder wall 
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to provide more optical access (Kokjohn et al. 2011). Or, the use of a modified single-

cylinder Caterpillar engine for optical experiments, however, it must be noted that this 

optical version provides more crevice volumes than production based on the requirements 

for optical accessibility with a window in the piston and five additional windows around 

the upper cylinder wall (Mueller and Musculus 2001).  Others use multi-cylinder engines 

with one cylinder modified for optical accessibility with fused silica windows in the 

piston, cylinder wall and cylinder head (Verbiezen et al. 2007). Despite having this 

optical access for realistic engine flow conditions, it is still difficult to accurately quantify 

and control the ambient environment for study, and conditions can be limited in regards 

to achieving and analyzing advanced combustion and injection strategies. Furthermore, 

because of the optical access, there are reduced pressure limits and resulting compression 

ratios which can be used, reducing some applicability in comparison to conventional 

engines (Mueller and Musculus 2001; Baert et al. 2008). Engine flows can also be altered 

due to these optical modifications limiting applicability.  

Another apparatus, constant volume combustion vessels, are a well-known and 

extremely utilized tool for characterizing fundamental spray and combustion 

characteristics including studies on spray mixing (Naber and Siebers 1996), vaporization 

and liquid penetration (Siebers 1998, 1999; Bougie et al. 2005; Pickett et al. 2009), flame 

standoff length (Higgins and Siebers 2001; Ito et al. 2003), and diesel soot emissions 

(Pickett and Siebers 2002; Ito et al. 2004), as examples. There are two main types of 

constant volume combustion vessels, heated vessels and pre-combustion vessels, for 

reaching ambient conditions. Heated combustion vessels have lower temperature and 

pressure limits compared to that of the pre-combustion vessels and have reduced 

applicability for future advanced combustion strategies since they are constrained by 

electric heater capabilities (Fujimoto and Sato 1979; Baert 1989; Labs et al. 2005; 

Nishida et al. 2007; Baert et al. 2008; Pawlowski et al. 2008). Pre-combustion vessels can 

achieve a wider range of conditions, enabling study at conditions not currently attainable 

or used in existing technology engines, permitting the study of advanced combustion 

strategies. These conditions are achieved with a fuel-lean, oxygen-enriched spark ignited 

combustion event, after which cool-down due to heat transfer occurs, at a rate more than 

an order of magnitude longer in comparison to diesel injection and combustion. Preburn 

vessels typically use either sequential direct CV filling or premixed mixing vessel filling. 

The premixed filling is time consuming, but that of sequential filling risks mixtures that 

are not uniform and also have the potential for repeatability issues test to test.  

These apparatuses are advantageous in that they allow high levels of optical 

access for a wide range of laser and optical based diagnostics while also providing the 

ability to quickly change environmental operating conditions to study a range of 

phenomena with good control over the conditions including temperature, density, and 

pressure along with simulated dilution and EGR via different premixtures (Hurn and 

Hughes 1951; Oren et al. 1984; Naber and Siebers 1996; Siebers 1998; Verhoeven et al. 

1998; Johnson et al. 2009). Different mixtures are used including gaseous hydrocarbons, 

hydrogen, carbon monoxide, argon, nitrogen and oxygen, with additional modifications 

to match engine specific conditions including water levels or carbon dioxide for EGR 

conditions (Hurn and Hughes 1951; Dyer 1979; Oren et al. 1984; Naber and Siebers 

1996; Siebers 1998; Verhoeven et al. 1998; Azetsu and Ito 2007; Kim et al. 2008; 
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Nguyen et al. 2008; Baert et al. 2009). Despite these advantages, constant volume 

combustion vessel devices have difficulty providing environments with realistic engine 

flows. Typically preburn procedures are required to provide the thermodynamic state for 

diesel engine study which produces reactive minor species, and engine geometry and 

cycling rates cannot be replicated for direct comparisons (Oren et al. 1984). An additional 

application of these vessels is that their conditions are well-controlled, and well-

characterized, providing use for Computational Fluid Dynamics (CFD) modeling 

including development, validation and calibration, which in synergy with experimental 

engine studies, can provide insight and knowledge for diesel engine advancements (Hurn 

and Hughes 1951; Reitz and Rutland 1995; Labs et al. 2005; Vishwanathan et al. 2009).  

Constant pressure flow rigs are another optically accessible apparatus similar to a 

constant volume vessel. However, in contrast to a constant volume device, there is a 

continuous flow of gas through the rig to enable achievement of thermodynamic 

conditions representative of diesel engines providing a constant pressure environment. 

These flow rigs provide significant optical access for the application of laser and optical 

based diagnostics. However, constant pressure flow rigs typically have lower limitations 

in regards to the maximum temperatures (1000 K) and pressures (150 bar) which can be 

achieved as they rely on gas flow for thermodynamic state generation along with heaters 

for achieving elevated temperatures representative of diesel engines (Baert et al. 2008; 

Payri et al. 2011a). The utilization of these rigs requires substantial time in order to meet 

new test conditions based on the required heating and flow variations (Baert et al. 2008).  

Rapid compression machines (RCM) are one other optically accessible 

combustion apparatus used to study spray and combustion behavior. Rapid compression 

machines work by compressing a uniform mixture of fuel and oxidizer to conventional 

engine conditions, with the piston kept in compression so that the conditions are constant 

volume (Kistopanidis and Cheng 2006). Despite their optical access, rapid compression 

machines can be difficult to build and control, experience vibration issues, exhibit 

differences in cycling rates and cylinder geometry, and characterizing in-chamber 

conditions and replicating realistic diesel engine flows is complicated (Baert et al. 2008). 

Based on the requirements for hardware of the RCM, there are limitations on the pressure 

and charge densities achieved and they are typically reduced relative to conventional 

engine operation (Baert et al. 2008).  

These aforementioned apparatuses are compared and evaluated in regards to 

ranked advantages and disadvantages as shown in Table 2.1. 
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Table 2.1 

Evaluation of different apparatuses for studying fundamental spray and 

combustion. Scale: + signifies a benefit, - signifies a disadvantage, 0 signifies no 

definite advantage or disadvantage.  

Apparatus Type 

→ 

Characteristic ↓ 

Engine 
Optical 

Engine 

Constant 

Volume 

CV: 

Preburn 

Constant 

Volume 

CV: 

Heated 

Constant 

Pressure 

Flow Rig 

Rapid 

Compression 

Machine 

Optical access - + + + + + 

Engine flows + + - - - - 

Geometry + + - - - - 

Condition 

Characterization 
- - + + + 0 

Condition Control - - + + + 0 

Range of 

Achieved 

Conditions 

- - + 0 0 0 

Combustion vessels are a well-accepted and consistently used apparatus, as they provide 

a tool to acquire fundamental spray and combustion knowledge under well-controlled 

conditions. The results from these spray and combustion studies can be applied to diesel 

engines for validation and confirmation of results in regards to fuel efficiency and 

emissions reduction.  

2.1.1. Preburn Procedure for Thermodynamic 

State Generation 
Constant volume combustion vessels can use a preburn procedure to reach the 

elevated pressures and temperatures and generate the thermodynamic state representative 

of diesel engines, including air and air plus EGR. Different mixtures result in different 

specific heat capacities of the charge gas which is important in vaporization and 

combustion (Baert et al. 2009), different temperature and pressure levels, and also 

different charge gas compositions for injection in regards to major and minor species 

levels for simulating engine EGR. The main procedure used in the vessels is similar, a 

gaseous mixture is produced either in an exterior mixing vessel (Pickett et al. 2010; 

Nesbitt et al. 2011a), or is sequentially filled into the CV chamber (Meijer et al. 2011). 

Gaseous mixtures used vary between institutions, not only in the gases used in the 

mixture but also in the composition. Typically, gases used consist of gaseous 

hydrocarbons, hydrogen, carbon monoxide, argon, nitrogen, and oxygen (Azetsu and Ito 

2007; Pickett et al. 2010; Meijer et al. 2011; Nesbitt et al. 2011c). Different mixtures 

used are derived for various reasons, for example to reach a desired level of oxygen in the 

products (Naber and Siebers 1996), to match the specific heat capacity of air with the use 

of argon (Baert et al. 2009), to match the oxygen ratio to other gases after combustion of 

1:3.76 (oxygen to nitrogen) to be similar to air (Kim et al. 2007), or to match the water 

and carbon dioxide levels found in an engine as the result of EGR (Johnson et al. 2009), 

as examples. Other mixtures can be used such as a CO, Air and O2 mixture which yields 

a mixture with CO2 levels different than typical in a diesel engine except for high EGR 

conditions (Nguyen and Honnery 2008).  
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There are pros and cons to the different gases utilized which also lead to 

differences in achieved conditions. For example, acetylene is proposed to be preferred 

over hydrogen as acetylene will produce less water than the pre-combustion of hydrogen 

minimizing condensation inside the vessel on the windows (Oren 1984) or on the injector 

tip which can lead to rusting. Different fuels are used in the gaseous mixture, typically 

acetylene, hydrogen or ethylene, as these gaseous fuels are known to ignite easily in lean 

mixtures which is required for this thermodynamic state generation (Baert et al. 2008). 

Originally at Sandia National Laboratory, the composition for gaseous fuel was ethylene 

and hydrogen in a ratio of approximately 1:4 (Siebers 1985), however, that mixture has 

since been modified to a ratio of 1:6 of hydrogen to acetylene which is currently in use 

(Naber and Siebers 1996; Siebers 1998; Nesbitt et al. 2011c). Other institutions use 

higher levels of hydrogen relative to the hydrocarbons, for example a ratio of 

approximately 1:11 of ethylene to hydrogen (Verhoeven et al. 1998), whereas others just 

rely on hydrocarbons, for example straight acetylene without any hydrogen (Fujimoto et 

al. 2005).  

Argon is also added to some pre-combustion mixtures with acetylene in an effort 

to match the specific heat capacity of air. To ensure mixture accuracy, small partial 

pressures in the gas mixture should be avoided as these small additions can compound 

errors in the procedure (Baert et al. 2009). The order of the mixture creation is typically 

governed by the properties of the gases added. For example, fuels are typically added first 

(to account for the low pressure stability limit of acetylene), followed by dilution gases 

such as nitrogen, and finally the oxidizer (typically oxygen) is added to avoid passing 

through a spontaneous combustion regime for safety (Baert et al. 2009). The literature 

shows there is not one preferred mixture for the pre-combustion process, rather, there are 

a range of mixtures in use to reach the desired temperature and pressure conditions, all 

exhibiting pros and cons in regards to peak temperatures, minor species produced, and 

species at injection in comparison to that of air or EGR in a diesel engine. The details of 

the mixtures, including composition and minor species produced, are not well 

characterized. Research is limited into the minor species produced from the differing 

mixtures, including their levels relative to those in conventional engines, and their 

influence on the spray, ignition and combustion processes. This fundamental knowledge-

gap will be explored in the current work including the effect of mixture composition on 

ambient composition, and autoignition characteristics.  

2.2. Optical Diagnostics 
Various optical and laser based diagnostics are used to characterize diesel spray 

and combustion behavior. High speed imaging is a technique which is as advantageous as 

it is simple, relatively low cost, and can provide information on spray and combustion 

structure, and geometry, including penetration and cone angle as examples, that cannot 

always be achieved from laser or particle sizing techniques (Chigier 1983). Key optical 

based diagnostics are Schileren or shadowgraph imaging, and Mie scattering. 

Shadowgraph diagnostics provides information on the vapor phase of fuel sprays as this 

diagnostic detects density gradients by collecting the collimated light which passed 

through the region of interest, and Mie scattering is used to quantify the liquid phase of 

the spray based on scattering principles.  
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Shadowgraph diagnostics work by passing collimated light through the sample 

region of interest, and collecting the shadows of the light using an imaging device. These 

diagnostics enable visualization of density gradients caused by changes in refractive 

indices, which correspond to vapor phase fuel spray behavior as an example. Various 

configurations of optics and acquisition can be applied, with one common form being a z-

type system. This includes the use of two mirrors, one which collimates the light, with the 

other collecting the light after it passes through the test region, which is subsequently 

imaged (Settles 2001). To provide a Schlieren image, a knife edge if placed after the 

collecting optics but before the camera to block out a portion of the light, enabling 

visualization of density gradients which are not blocked based on knife edge orientation 

(Settles 2001).  

Scattering diagnostics  rely on removing energy from an incident light wave with 

a portion of this energy re-emitted, and therefore these diagnostics require a light source 

to provide the energy for scattering and a collection medium (Hecht 1987). Depending on 

the particle size, different types of scattering occur. Mie scattering is an elastic scattering 

technique which is dependent on spherical particles larger than the wavelength of light 

(Martinez-Martinez et al. 2010). Other diagnostics include Rayleigh scattering which is 

light scattering by particles that are small relative to the light wavelength to determine 

vapor and liquid concentration phases along with temperature and species measures as a 

combustion diagnostic (Hecht 1987; Martinez-Martinez et al. 2010).  

Diagnostics are also being developed which enable almost simultaneous image 

acquisition, with consistent line-of-sight imaging, including visualization of both liquid 

and vapor spray characteristics (Parrish and Zink 2011). This involves the use of one 

camera with frame straddling, to visualize both the Schileren and Mie signal, with 

illumination provided by high-speed light emitting diodes (LED’s) timed such that they 

provide illumination for the diagnostic at staggered timings for image capture (Parrish 

and Zink 2011). This diagnostic provides information on the vapor and liquid phase of 

the spray characteristics, without differences in camera location, which removes the 

spatial camera location influence from the image results.   

Laser based diagnostics are also applicable to spray and combustion studies. Laser 

diagnostics work by the interaction of electromagnetic radiation with sprays and 

combustion flames enabling the measurement of temperature, velocity, and constituent 

concentrations, using for example scattering, absorption, or emission techniques (Kohse-

Hoinghaus et al. 2005). Various diagnostics can be used including laser induced 

incandescence (LII) for soot formation, light extinction which is a line of sight method 

for soot optical thickness, laser scattering similar to Mie scattering with the use of a laser 

sheet for illumination and scattering, laser induced exciplex fluorescence (LIEF) for 

characterizing fuel-air mixing formation and evaporation phenomenon, and others, 

depending on the desired areas of interest. There are several unique optical and laser 

based diagnostics which can provide a wide range of information on spray and 

combustion processes. Phase doppler anemometry (PDA) enables measurement of 

diameters and velocities of fuel droplets (Martinez-Martinez et al. 2010). Particle image 

velocimetry (PIV) is used to measure velocity fields which is related to air entrainment 

and is important in fuel-air mixing, which relates to fuel efficiency and emissions.   



23 

2.3. Macroscopic Spray Characteristics 
There are several parameters of sprays that can be studied, including macroscopic 

(large-scale) and microscopic (small scale, i.e. droplet) characteristics. Of interest in the 

current work are macroscopic spray characteristics which will be defined here. 

Macroscopic spray characteristics consist of penetration (flame length for combusting 

conditions), liquid length, cone or spray angle, and lift-off length. A schematic defining 

these macroscopic spray characteristics is provided in Figure 2.1.  

 
Figure 2.1: Definition of macroscopic spray parameters for non-vaporizing, 

vaporizing and combusting sprays, including penetration, cone angle, liquid length, 

and lift-off length.  

The fuel spray is injected into the combustion chamber at high velocity based on 

the injection pressure, and the fuel propagates across the chamber where it experiences 

drag forces causing it to decelerate and at the same time there is momentum transfer 

based on ambient gas entrainment in the spray (Sazhin et al. 2003). As the fuel jet is 

injected and propagates it breaks-up into ligaments and atomizes, with these processes 

being essential to ensure efficient fuel-air mixing (Bae and Kang 2006). The first drops 

transfer energy to the surrounding charge gas which provides less resistance to further 

drops allowing them to penetrate further, sustaining the fuel propagation (Lefebvre 

1989). Therefore, there are competing factors during this process which compensate each 

other including air entrainment attributed to momentum transfer, and conversely, the 

spray break up processes (Sazhin et al. 2003). Results suggest, and correlations show, 

that the momentum transfer occurs very quickly, after which the spray is entrainment 

dominated, as will be discussed. Spray and combustion properties are interrelated with 

quasi-steady flame lift-off location typically in the vicinity of the liquid length in reacting 

sprays for engine relevant conditions (Siebers and Higgins 2001; Hottenbach et al. 2010). 

2.3.1. Spray Penetration 
Penetration is a spray phenomenon which defines how far a fuel jet traverses the 

combustion chamber with respect to time and its corresponding air entrainment which is 

required for fuel-air mixing and efficient and complete combustion. Penetration can be 

defined for non-vaporizing sprays defining the entire spray. For vaporizing sprays it 

defines the distance the vapor portion travels, and for combusting sprays, termed the 
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flame length, it defines the distance the tip of the combusting flame travels relative to the 

injector as determined from natural luminosity images. The location of the leading edge 

of the spray is essentially a trade-off and balance between two opposing factors, first the 

momentum (kinetic energy) with which the fuel is injected, and second, the entrainment 

provided by the ambient charge gas (Lefebvre 1989; Martinez-Martinez et al. 2010). 

Various correlations have been developed for spray penetration with some examples 

provided in Table 2.2.  

Table 2.2 

Spray penetration correlations.  

Author Correlation Notes 

Dent 1971 𝑆(𝑡) = 3.07 �∆𝑃𝜌𝑎 �0.25 �294𝑇𝑎 �0.25 �𝑑𝑜𝑡 
Developed from theory of 

gaseous sprays and from 

experimental data 

Hiroyasu and Arai 

1990 𝑆(𝑡) = 0.39�2∆𝑃𝜌𝑓 𝑡 ; 𝑡 < 𝑡𝑏 

𝑆(𝑡) = 2.39 �∆𝑃𝜌𝑎 �0.25 �𝑑𝑜𝑡; 𝑡 >  𝑡𝑏 𝑡𝑏 = 28.65 ∗ 𝜌𝑓 ∗ 𝑑𝑜�∆𝑃 ∗ 𝜌𝑎 

 

tb is the time to droplet 

breakup after injection, 

before breakup the fuel is 

a continuous liquid spray 

Jimenez et al. 

2000 𝑆(𝑡) = 0.6−3𝑈𝑜𝑡0.9 �𝜌𝑎𝜌𝑓�−0.163
 

Empirical Relation 

Jawad et al. 1999 𝑆(𝑡) = 𝐶1∆𝑃0.25�𝜌𝑓0.25𝑡𝜌𝑎−0.14 
C1 experimental constant 

This list is not all inclusive as some relationships are discussed in more detail in later 

sections. It is solely meant to represent the breadth and variation of penetration 

relationships. The above relationships have numerous similarities in regards to parameter 

dependencies including injection pressure (injection velocity), fuel and charge gas 

densities, with some including orifice properties (nozzle diameter). The weighting of the 

parameter however varies with the differing correlations, for example injection pressure 

to the 0.25 power, whereas a linear dependence on injection velocity (Jimenez et al. 

2000) represents a square-root injection pressure dependence. The Dent (1971) and 

Jawad et al. (1999) correlations do not include the impacts of fuel density directly, along 

with Hiroyasu and Arai (1990) in their long time-scale correlation, even though different 

fuels are known to yield different penetrations (Wang et al. 2010).  

Various parameters impact fuel spray penetration as summarized in Table 2.3.  

Table 2.3 

Penetration parameter influence (Arregle et al. 1999; Martinez-Martinez et al. 

2010). 
Parameter Penetration Trend for an Increase in Parameter 

Injection Pressure ↑ 

Ambient Density ↓ 

Ambient Temperature Can ↓, but not conclusively 

Nozzle Orifice Diameter ↑ 
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When fuel vaporization is occurring penetration is slowed relative to the non-vaporizing 

fuel jets which is likely caused by the cooling of the entrained air due to vaporization 

(Siebers 2008). In combusting cases, the fuel jet penetration (before ignition), is initially 

reduced due to vaporization, and after ignition and combustion has started, the fuel jet 

then begins penetrating faster than the non-vaporizing case (Siebers 2008). This is 

attributed to conservation of momentum, with a reduction in fuel jet density as 

combustion (heat release) progresses, with this combustion also decreasing air 

entrainment thereby increasing penetration (Siebers 2008).  

It is ideal to match fuel spray penetration to the combustion chamber design, 

meaning over-penetration should be avoided to prevent impingement on the chamber 

walls due to increases in emissions, but under-penetration should also be prevented to 

ensure maximum fuel and charge gas utilization in the entire chamber for optimum 

combustion efficiency (Lefebvre 1989).  

The diagnostic commonly used for characterizing spray penetration is Mie 

scattering (under non-vaporizing conditions) or Schileren or Shadowgraph imaging, 

applicable under both vaporizing and non-vaporizing conditions based on visualization of 

density gradients.  

2.3.2. Liquid Length 
Liquid length (LL) is another macroscopic spray characteristic which is defined as 

the distance from the nozzle exit to the farthest location the liquid phase of the spray 

travels to while the vapor phase continues to penetrate across the chamber (Martinez-

Martinez et al. 2010). Liquid length is typically characterized under vaporizing (0% 

oxygen), non-combusting conditions for ease of study, but is representative of behavior 

under combusting conditions, before ignition, as well. At the liquid length, the rate of fuel 

injection balances with the fuel evaporation rate which causes the diesel spray to reach a 

quasi-steady position (Siebers 1998). The charge-gas and fuel mixture has reached 

saturated conditions which thereby defines the rate of evaporation and the liquid length.  

Liquid length characterizes the atomization and evaporation processes of the fuel directly 

relating to the fuel / charge-gas mixing rates (Canaan et al. 1998).  

Liquid length is governed by the fuel mass fraction which is controlled by fuel-air 

mixing. This dependency on the fuel-mass fraction enables definition of an evaporation 

rate coefficient, B, which is the fuel mass fraction over 1 minus the fuel mass fraction. 

Liquid length is proportional to the square root of B + 1 over B based on Siebers (1999) 

liquid length model. This yields a proportionality relationship for the liquid length as 

defined by equation (1). 

 
LL =  

�1 − Yf
Yf  (1) 

Time-dependent liquid length is directly related to jet breakup. The first break-up regime 

timing is estimated by equation (2), and is a function of various parameters (Hiroyasu and 

Arai 1990).  

 tb =
15.8ρfdo

Cd�2ρa∆P
 (2) 
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Liquid length increases proportional to the square root of time until the break-up 

regime with this break-up time defined by the above relationship, after which, liquid 

length becomes essentially constant when considered macroscopically. This break-up 

regime characterizes the transition from fuel injection dependent behavior to that 

governed by atomization and vaporization as characterized by the ambient gas 

surroundings.  

Various correlations have been proposed for liquid length based on experimental 

and empirical relationships, as summarized in Table 2.4. Liquid length is established and 

fluctuates about a mean value; these relationships define the quasi-steady state properties.  

Table 2.4 

Select liquid length correlations.  
Author Correlation 

Bracco 1983 𝐿𝐿 = 7.15 �𝜌𝑓𝜌𝑎�0.5
 

Yule and Salters 1995 𝐿𝐿 = 2.65 ∗ 103 ∗ 𝑑𝑜𝑊𝑒𝑎−0.1𝑅𝑒𝑓−0.3 �𝜌𝑓𝜌𝑎�0.08
 

There exist several liquid length relationships or correlations, which will be discussed in 

more detail in future sections. Of those presented here both show a fuel and ambient 

density influence, albeit of differing magnitudes. Furthermore, the Yule and Salters 

(1995) correlation also includes the influence of orifice diameter which is known to 

linearly influence liquid length (Siebers 1998), along with other fluid properties through 

the Weber and Reynolds number. As seen in the above table, liquid length is dependent 

on various parameters including nozzle and injection parameters, ambient gas conditions, 

and fuel properties, as further defined in Table 2.5. 

Table 2.5 

Liquid length parameter influence (Siebers 2008; Kook et al. 2009; Martinez-

Martinez et al. 2010). 
Parameter Liquid Length Trend for an Increase in Parameter 

Fuel temperature ↓ 

Ambient density ↓ 

Ambient temperature ↓ 

Nozzle orifice diameter ↑ 

Fuel boiling point ↑ 

Fuel volatility ↓ for diesel like fuels 

Injection pressure No effect 

Several of these trends are intuitive, for example increasing temperature of the charge gas 

will increase vaporization and reduce the LL of the fuel, and an increase in ambient 

density will cause increased entrainment to the fuel, with saturation conditions being 

achieved at a shorter distance, thereby decreasing the LL. Other trends are not as innate 

including injection pressure as this is known to influence penetration, however, an 

increase in injection pressure does not change liquid length. An increase in the ambient 

entrainment which occurs with an increase in injection pressure or velocity is offset by 

the fueling rate as it maintains the same fuel-air mixture at an axial location (Kook et al. 

2009). Conservation of mass is required, and an increase in fuel flow rate provided with 
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an elevation in injection pressure, proportional to the injection velocity, will be met with 

the same magnitude increase in vaporization rate (also proportional to the injection 

velocity) in regards to entrained charge-gas mass flow rate, which signifies that injection 

pressure does not have an impact on diesel spray liquid length (Siebers 1998).  This 

negligible influence of injection pressure on liquid length supports the use of elevated 

injection pressures to improve fuel-air mixing which assists with emission reductions 

while still avoiding liquid fuel impingement on the cylinder wall to minimize unburnt 

hydrocarbon emissions.  

Other trends are not well defined including that for fuel volatility in regards to 

governing and correlating parameter. It is agreed that as volatility is increased liquid 

length decreases (Fisher and Mueller 2010), however, the correlating volatility point is 

conflicting. More specifically, Siebers (1998) reports that liquid length increases with 

T90 (90% distillation point) of the fuel, whereas Higgins et al. (1999) have proposed that 

for alternative fuels T90 is not valid due to the high latent heat of vaporization of the 

fuels. Canaan et al. (1998) proposed that the T50 (50% distillation point) point is the 

controlling factor in liquid length. With these inconsistencies, there is much to learn 

about the controlling factors in fuel characteristics, be it 50 or 90% distillation point, or 

others, which is information that is important in surrogate fuel definition and application.  

There have been observations of recession of liquid length after the end of 

injection meaning there is a decrease in the maximum liquid length. This is attributed to 

the entrainment wave traveling downstream with the entrainment wave characteristics 

depending on various properties including fuel and fuel rate of injection (ROI)  along 

with ambient conditions (Kook et al. 2009). The entrainment wave is a representation of 

the mixing behavior which occurs after the end of injection, traveling through the 

combustion chamber. The entrainment must reach the quasi-steady liquid length before 

vaporization is complete in order to cause the liquid length to recede which is not the case 

in low temperature or density ambient conditions (Kook et al. 2009).  

Various diagnostics have been applied to characterize diesel spray liquid length 

behavior for both conventional diesel fuels and single or multi-component mixtures 

(Siebers 1998, 1999; Fisher and Mueller 2010; Pickett et al. 2010, 2011) along with 

studies for alternative diesel fuels and their blends including biodiesel (Genzale et al. 

2010). One common underlying characteristic of this and many other past liquid length 

studies is the use of single hole nozzles for spray characterization as opposed to multi-

hole nozzles which are representative of production diesel engines. This leads to a 

fundamental knowledge gap due to the presence of plume to plume variations from multi-

hole injectors which can translate to changes in fuel and charge-gas mixing resulting in 

combustion or emissions differences. These variations can be attributed to the small 

tolerances in manufacturing, geometry, flow cavitation or other phenomenon as will be 

discussed. There is a lack of reliable information on these plume-to-plume variations 

because of researchers overlooking the importance of different spray plume hole 

characteristics on spray characteristics. 

Methods to study liquid length include Mie scattering which relies on light 

scattering off of fuel droplets along with laser based techniques of absorption and 

extinction. Mie scattering is the commonly used diagnostic for studying liquid length 

(Pickett et al. 2011). Despite being well accepted, Mie scattering application is limited 
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since the illumination method and method of light collection is known to influence the 

experimental results making direct comparison of findings between facilities difficult 

(Pickett et al. 2011). In Mie scattering, typical illumination methods are volume 

illumination (Zhang et al. 1997; Siebers 1998; Higgins et al. 1999) to visualize all 

droplets, or laser-sheet illumination, on the spray axis to visualize a portion of the spray 

(Baert et al. 2009; Fisher and Mueller 2010). In addition to these illumination 

methodologies, the orientation of the illumination can vary being side (Siebers 1998; 

Fisher and Mueller 2010), head on (Zhang et al. 1997), or back illumination with a 

diffuser (Desantes et al. 2006). The results vary as each setup including methodology, 

orientations of illumination, and collection, likely possesses variations in optical response 

depending on the concentration of droplets in the region of illumination. The influence of 

optical setup on liquid length was investigated by Pickett et al. (2011) by consideration of 

nine optical setups including Mie scatter imaging with different light source setups 

(orientation, light source, and other parameters) and extinction based measurements, 

using both continuous-wave light sources with a high speed camera or photodiode and 

the use of a short laser pulse to image the spray. Key conclusions from this work was that 

light extinction diagnostics may be better than traditional light scattering diagnostics as it 

is essentially self-calibrating, however, these limitations can be short-lived due to beam-

steering effects. Regardless, the limitations of conventional Mie scatter diagnostics need 

to be acknowledged in regards to its sensitivity to the light source illumination yielding 

differences in scattering intensity causing variations in spray shape and measured liquid 

length properties. Different diagnostics have pros and cons and the limitations of the 

diagnostic must be considered and acknowledged when interpreting and presenting the 

results.  

2.3.3. Cone Angle  
Cone angle is a macroscopic spray characteristic representing the dispersion or 

spreading of the spray. It is the angle of a single plume and can be defined for vaporizing, 

non-vaporizing and combusting conditions, but it is difficult to characterize under 

vaporizing conditions due to the narrow spray width of the liquid phase. Ideally, good 

dispersion is desired (large cone angle) to ensure fast mixing of the liquid and gas phase 

with a high evaporation rate for optimum combustion (Lefebvre 1989). As the cone angle 

increases, there is increased air entrainment which can enhance fuel-air mixing. 

Consistent measures of cone angle are difficult to achieve as there is no single accepted 

definition or measurement technique for cone angle (Lefebvre 1989; Siebers 2008). This 

is largely attributed to the fact that the cone angle depends on the imaging diagnostic with 

Mie scattering only recording light in a small solid angle as scattered by the liquid phase 

whereas shadowgraph imaging records significantly more scattering and absorption 

yielding variations in cone angle measurements (Klein-Douwel et al. 2007).  

Various correlations have been proposed to explain cone angle trends, as 

summarized in Table 2.6.  
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Table 2.6 

Correlations for cone angle.  
Authors Correlation Terminology / 

Restrictions 

Martinez-Martinez et al. 

2010 tan θ
2

= 0.13 ∗ �1 +
ρaρf � 

Ambient density < 15 

kg/m
3
 

Hiroyasu et al. 1980 θ = 0.05 �do2ρa∆pµa2 �0.25
 

Radians 

Hiroyasu and Arai 1990 θ = 83.5 � l

do�−0.22 �do
D

�0.15 �ρaρf �0.26
 

 

Delacourt et al. 2005 θ = 114.6 ∗ arctan �0.31 ∗ �ρaρf �0.2� 
 

Siebers 1999 tan θ
2

= C1 ��ρaρf �0.19 − C2�ρfρa� 

C1 constant 0.26, 

orifice dependent; C2 

is 0 for non-vaporizing 

fuel jets, 0.0043 for 

vaporizing fuel jets 

As detailed in the table, not only are there various correlations for cone angle, there are 

varying parameter influences, including parameters considered and the weight or 

relationship for this parameter relative to cone angle. This could be attributed to the 

differing, non-uniformly accepted definitions for cone angle. All correlations show an 

ambient gas density effect, albeit of different magnitudes, with most also including an 

orifice parameter effect either directly through orifice diameter or indirectly through 

constants, with the exception of Martinez-Martinez et al. (2010) and Delacourt et al. 

(2005.) Klein-Douwel et al. (2009) have proposed a common relationship for cone angle 

as summarized in equation (3). 

 tan �θ
2

� ∝ ρamPfndhatB (3) 

In the above relationship, the exponents vary significantly, for example m, the density 

dependence ranges from 0.1 to 0.5, injection pressure dependence n, ranges from -0.115 

to 0.35 power, hydraulic nozzle diameter a, ranges from 0.15 to 0.508 power, and the 

time dependence is presented as -0.40 for one condition while others are at steady state 

(Klein-Douwel et al. 2009). Therefore, although cone angle is known to depend on 

various parameters, the consistency is not well defined which most likely is largely 

impacted by inconsistencies in cone angle definition, being for example the angle at 60 

nozzle diameters (Lefebvre 1989) or at 60% penetration (Pastor et al. 2001), as will be 

discussed in more detail in future chapters. Additionally, it is known that fuel spray cone 

angle can also be considerably influenced by needle lift and when the needle is at full lift, 

the cone angle has typically reached a constant value (Tomohisa et al. 1997). 

Parameter influence is better understood by the comparison provided in Table 2.7.  
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Table 2.7 

Cone angle parameter influence (Arregle et al. 1999; Martinez-Martinez et al. 2010). 
Parameter Cone Angle Trend for an Increase in Parameter 

Injection pressure  No influence 

Fuel to ambient density ↑ unless ratio is >0.04 then independent 
Ambient temperature ↓ 

L/d ratio ↓ 

Nozzle diameter No influence 

Ambient density ↑ 

As discussed, cone angle is influence by various ambient conditions with some 

inconsistencies in trends related to definitions of cone angle and large influence of cone 

angle on the processing methodology.  

2.3.4. Lift-Off Length 
Diesel sprays are a lifted flame phenomenon requiring definition of the lift-off 

length parameter to understand the spatial onset of combustion. Flame lift-off length is 

defined as the most upstream location of the combusting spray, which is a lifted turbulent 

diffusion flame (Siebers and Higgins 2001). This lift-off length is defined as a quasi-

steady location (fluctuations due to turbulence) where reaction of the mixed fuel and air 

is occurring (Higgins and Siebers 2001). Lift-off length is influenced by various ambient 

and injection parameters as defined in Table 2.8.  

Table 2.8 

Lift-off length parameter influence (Higgins and Siebers 2001; Siebers and Higgins 

2001). 
Parameter Lift-Off Length Trend for an increase in parameter 

Ambient density ↓ 

Ambient temperature ↓ 

Nozzle orifice diameter ↑ 

Injection pressure ↑ 

Oxygen concentration ↓ 

The lift-off length is important in understanding combustion and emissions 

formation. There is a link between fuel-air mixing upstream of the lift-off length and the 

resulting soot formation with soot decreasing as the fuel-air premixing upstream of the 

lift-off length increased since as the air entrainment increases, the average equivalence 

ratio at the lift-off length is reduced to a value which minimizes soot formation (Siebers 

and Higgins 2001).  

A diagnostic commonly used to quantify diesel spray lift-off length is OH 

chemiluminescence imaging (310 nm) which is line-of-sight and time-averaged, since 

OH occurs under high temperature, stoichiometric combustion conditions at flame-

stabilization locations providing an indication of high heat release regions (Higgins and 

Siebers 2001). Additionally, natural combusting luminosity images can be used to 

provide a qualitative indication of spatial soot distributions (Kook et al. 2005) along with 

an indication of lift-off length.  

There is a relationship between liquid length and lift-off length, and in particular 

fuel vaporization and combustion which is governed by the ambient gas and injector 

properties (Siebers and Higgins 2001). Two sets of conditions can occur. The first 
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condition is that with a liquid length shorter than the lift-off length, meaning that fuel 

vaporization is complete before combustion zones are reached, and therefore there is no 

interaction between vaporization and combustion processes. The second condition is a 

liquid length longer than the lift-off length, which causes the spray to have a cool-core 

which has vaporized fuel that is surrounded by a rich reaction zone and vaporization 

cooling can influence the combustion rate, yielding a reduction in laminar flame speed 

and an increase in lift-off length (Siebers and Higgins 2001). For the case of a shorter 

liquid length relative to the lift-off length, there may be less soot formed due to a more 

intense central reaction zone based on enhanced fuel-air mixing before the lift-off length 

(Siebers and Higgins 2001).  

2.3.5. Plume to Plume Variations 
As discussed previously, many spray and combustion studies focus on single hole 

nozzles and therefore do not provide sufficient information to fully understand 

production multi-hole nozzles based on the potential for plume-to-plume spray 

interactions. Multi-hole nozzles are used in production diesel engines as required for fuel 

and charge-gas mixing in the cylinder, providing more efficient combustion while 

lowering particulate emissions (Ramirez et al. 2009). Single hole nozzles do have 

advantages for fundamental spray and combustion research in that there is not 

interference in optical diagnostics from adjacent spray plumes making diagnostic 

application easier, and single hole nozzles are shown to be fairly representative of multi-

hole nozzles providing the necessary fundamental information in a simplified manner, 

being limited in regards to the influence of the number of nozzle holes and their 

placement and plume interactions (Prashanth et al. 2006). Multi- and single-hole injectors 

have different rates of injection which can translate to spray characteristics hence provide 

different results, which are likely attributed to the different internal flow characteristics of 

the nozzle (Ramirez et al. 2009). There are limitations in applying single hole nozzles to 

characterize multi-hole behavior based on differences in the end of injection ramp down 

rate which can be up to four times slower for multi-hole injectors relative to single-hole 

injectors (Kook et al. 2009). Furthermore, cavitation onset is asymmetrical which can 

translate to spray characteristics having a different influence on a multi-hole injector 

(Soteriou et al. 1995), and turbulence levels in multi- versus single hole nozzles are also 

different (Chaves et al. 1995).  

Research on plume to plume variations is limited. Even in work that characterizes 

multi-hole spray behavior, plumes are typically grouped to provide a common result for 

all plumes as opposed to quantifying the individual plume to plume variations and limited 

work tries to understand the causes and reasoning for these variations. Manufacturing 

differences, along with other internal flow geometry variations and eccentric needle 

movement can yield differences in plume to plume spray behavior (Powell et al. 2011) 

and understanding the plume-to plume variations is important since hole to hole behavior 

is not always repeatable (Pickett et al. 2011). Differences in nozzle hole diameters, 

attributed to manufacturing tolerances, can result in uneven fuel pressure distribution 

once the needle begins to lift off of its seat, and hence the spray plume variations are 

most prevalent at start of injection and are reduced once the needle has reached full lift, 
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but transversal and vertical needle oscillations can still occur while the injector is in its 

energized, fully open, state (Karimi 2004; Karimi 2007).  

Different injector technologies are used including valve-covered orifices (VCO’s) 

and sac-type nozzles which have a sac that is filled with fuel for providing fuel to the 

holes, with the influence of injector type being important in downstream spray 

characteristics. This sac-type nozzle can help provide more uniform and symmetric 

feeding of the holes, in particular during the transient needle lift which is advantageous, 

however, a limitation is that the residual fuel in the sac volume can cause the release of 

large fuel droplets at the end of injection which yields high soot levels (De Risi et al. 

2000). It has also been proposed that spray asymmetry is the result of cavitation which 

can be more prevalent in certain holes from a multi-hole injector being more customary 

in VCO nozzles, however, after engine operation of a mini-sac injector, carbon particles 

can be deposited which alters nozzle hole properties yielding higher hole to hole spray 

variation in this type of injector as well (De Risi et al. 2000). De Risi et al. (2000) found 

that despite differences in nozzle geometries and imperfections due to machining, there 

was no correlation to spray asymmetries except under engine fatigue tests, signifying that 

some other phenomenon is at work, for example cavitation. Spray symmetry is improved 

by the use of double-guide needle geometry, however, the plume-to-plume variations are 

not eliminated (De Risi et al. 2000).  

2.3.6. Liquid Length Fluctuations 
Liquid length reaches a quasi-steady value during injection, being quasi-steady 

due to fluctuations which exist about the mean liquid length value at steady state. These 

fluctuations are evident in liquid length spray characterizations; however, the underlying 

reasons for these fluctuations are not conclusive. Many researchers attribute these 

fluctuations to turbulence (Higgins et al. 1999; Kurvers and Luijten 2010; Som and 

Longman 2011). There is high frequency content in the force signal (for fuel momentum 

measurements used in mass flow rate determinations) during injection signifying pressure 

vibrations in the high pressure fuel line to the injector, on the order of 3-5 kHz, with these 

fluctuations also being present in the injector needle which can translate to downstream 

spray characteristics (Peters 2007). After the end of injection, the oscillation in needle lift 

and low frequency mechanical vibrations can cause fluctuations in liquid length with 

frequencies between 10 to 15 kHz with a fluctuation of ±15% of the mean value (Peters 

2007). Siebers (1998) found a quasi-steady liquid length with ±11% fluctuation with 

frequencies in excess of 2 kHz, and attributed this to turbulence.  

Another potential cause of the fluctuations in liquid length is due to slugs of 

concentrated liquid fuel breaking away from the main core of the spray, with these slugs 

being due to the fluctuation of the sprays structure due to either air entrainment or needle 

oscillation (Crua 2002). Pickett et al. (2009) attributed liquid length fluctuations to the 

large scale structures evolving at the jet tip, which can lead to a break in the connected 

liquid region. This causes a cluster of droplets to become isolated from the spray which 

subsequently evaporate resulting in a decrease in penetration, which they attribute to 

turbulence in the spray and not experimental uncertainty as the fluctuations are larger 

than the test-to-test repeatability.  
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2.4. Spray Modeling 
Diesel spray and combustion are difficult to accurately model especially in the 

predictive sense. This requires a model which can not only quantify the physical 

phenomena, but also the detailed chemical and thermodynamic processes which occur. 

These phenomena include the chemical reaction processes, turbulence, thermodynamics, 

mixing, vaporization, entrainment, spray dynamics and combustion, along with others 

(Manely et al. 2008). Diesel sprays are a high velocity phenomena which result in small 

temporal and spatial scales further complicated by their two-phase nature (Pastor et al. 

2008), and the length and time scales of the combustion and engine processes. To 

accurately span this wide range of length scales, various approaches are required 

including quantum mechanics, molecular dynamics, Kinetic Monte Carlo, Direct 

Numerical Simulation (DNS), Large Eddy Simulation (LES), and Reynolds-Averaged 

Simulations (RAN) (Manley et al. 2008). Developing modeling capabilities which 

incorporate all of these phenomena that is predictive and can be validated with 

experimental data would facilitate the development of engines to harness technological 

advancements and new strategies to not only reduce emissions, but also increase fuel 

efficiency. Modeling can also be used to understand spray penetration and liquid length 

over a range of conditions to minimize wall impingement (Lefebvre 1989). There are 

various levels of spray modeling in regards to complexity ranging from simple models 

for spray penetration or liquid length, to more complex computational fluid dynamics 

models. These CFD models themselves haveh different levels of complexity in regards to 

the sub-models which are incorporated and used, including ligament formation and 

subsequent breakup, droplet break-up and evaporation, turbulence effects on the spray, 

and air entrainment during the injection event, all which must be accurately modeled for 

the CFD model to be valid (Sazhin et al. 2003).  

Various simplifications can be applied in the diesel spray modeling which when 

done correctly, still uphold the model validity. For example, sprays can be modeled and 

studied assuming a continuous model of a gas jet based on the inherent similarity of these 

two phenomenon, with this assumption having been used in several models and studies 

(Adler and Lyn 1969; Musculus and Kattke 2009; Desantes et al. 2011). This 

simplification to gas jet modeling is acceptable when the same momentum and mass flow 

rate is applied (Pickett et al. 2011). It  is especially valid under the high boost and 

injection pressure conditions along with small orifice diameter injectors representative of 

conventional engines due to complete atomization inside the spray close to the nozzle 

exit (Smallwood and Gulder 2000)  resulting in fast dynamic equilibrium between the 

droplets and the surrounding ambient charge (Pastor et al. 2008). Models can also be 

simplified to a spatial dimension, while considering time-varying boundary conditions. 

For example with variables averaged over the entire cross-section of the spray to predict 

evolution for both vaporizing and non-vaporizing conditions providing this simplification 

while still revealing information on spray tip penetration along with property evolution 

along the spray (Wan and Peters 1999).  

There are pros and cons to each of the different modeling procedures based on the 

desired application as outlined in Table 2.9.  
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Table 2.9 

 Comparison of CFD and 1-D spray models (Aneja and Abraham 1998; Pastor et al. 

2008; Kook et al. 2009) 

Modeling Type 
1-D Phenomenological Spray 

Models 
CFD 

Methodology Control volume analysis 
Conservation equations with mesh and 

solver 

Pros 

Provides the basic physics to solve 

the problem of spray 

characterization 

More accurate representation of real spray 

behaviors 

Enables straight forward 

identification of the influence of 

boundary parameters on results 

Multidimensional model 

Guide spray models with CFD 

applications 

Predict details of fuel-ambient mixing under 

complex in-cylinder flow conditions 

Aid interpretation of combustion 

measurements 
 

Cons 

Simplified model, usually requiring 

several assumptions to enable 

simple solutions 

Hinders identifying the link between 

macroscopic spray results and boundary 

conditions of the problem 

Rarely predictive in nature 
Requires large computational time to solve 

small cells 

 

Typically sensitive to numerical resolution 

and grid or mesh size, and mesh refinement 

is essential for accurate results 

 
Limitations for atomization in regards to 

grid resolution 

 Model validation is imperative 

 
Currently limited by spray modeling 

uncertainty 

For a first order simplified macropscopic approximation to a spray problem, 1-D 

phenomenological or multi-zone models are typically sufficient. However, the continued 

improvement to CFD models, along with the incorporation of increasingly accurate sub-

models, will improve CFD model applicability to assist with predictive model 

development to advance the state of internal combustion engines. Overviews of some of 

the relevant 1-D spray models for spray penetration and liquid length will be discussed 

next.  

2.4.1. 1-D Spray Models 
There are two key classes of 1-D spray models which will be discussed, those 

focusing on conservation equations applied to control volumes or surfaces, and those 

based on tracking fuel mass particles using a Eulerian approach.  

2.4.1.1. Conservation Equation Methodology 
There are various one-dimensional spray models for understanding spray 

characteristics, some of which are summarized below.  These spray models are typically 

based on two different vaporization limitations, that which is droplet limited (Abramzon 

and Sirigano 1989) meaning that the vaporization rate is restricted by droplet surface 
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inter-phase transport with the other, the more accepted and commonly used phenomena, 

being mixing limited vaporization which assumes that local processes including mass, 

momentum, and energy transport are faster than the global fuel-air mixing rate  so that 

droplets are always in thermodynamic equilibrium with the ambient (Siebers 2008; 

Luijten and Kurvers 2010). Before discussion in detail, a summary table reviewing the 

models discussed is provided in Table 2.10.  

Table 2.10 

Overview of conservation equation methodology spray models.  

Reference Model 
Rate of Injection 

Profile 
Solution 

Naber and 

Siebers (1996) 

Penetration of non-vaporizing 

isothermal fuel jet 
Top-hat 

Conversation of mass; 

Conservation of momentum; 

Integral control surface 

Musculus and 

Kattke (2009) 

Spray and mixing behavior 

after end of injection – 

entrainment wave 

Input rate of 

injection profile, 

can be variable 

Expansion of Naber and 

Siebers 1996; Discretize 

spray into multiple control 

volumes 

Siebers (1999) 
Liquid length based on mixing 

limited vaporization 
Top-hat 

Based on Naber and Siebers 

1996; Addition of 

conservation of energy 

equation; Control volume 

analysis 

Versaevel et al. 

(2000) 

Liquid length, assuming 

thermodynamic equilibrium at 

every axial position in the spray 

Top-hat 

Based on Naber and Siebers 

1996 and Siebers 1999 

models; Integral control 

surface with conservation of 

fuel mass flow rate, 

momentum and enthalpy 

Luijten and 

Kurvers (2010) 

Liquid length, incorporating 

real gas effects 
Top-hat 

Incorporated real gas effects 

into Siebers 1999 and 

Versaevel et al. 2000 models 

through an enhancement 

factor 

Desantes et al. 

(2009) 

Liquid length, mixing limited 

spray evaporation 
Top-hat 

Mass and energy balance, 

fuel mass fraction 

determination of evaporated 

fuel, energy conservation 

The majority of the models to be discussed build upon that originally developed by Naber 

and Siebers (1996) in some form, with the exception of the Desantes et al. (2009) model. 

All of the models, with the exception of Musculus and Kattke (2009) rely on a top-hat 

rate of injection profile, which presents with reasonable accuracy the actual injection 

profile, however, this is a limiting factor in these models. These models will now be 

reviewed in more detail.  

One well known and accepted scaling model is that of Naber and Siebers (1996). 

This model is a scaling law for the penetration of a non-vaporizing (isothermal) fuel jet 

under quiescent conditions assuming a top-hat injection rate and an idealized diesel fuel 

jet which can be applied to the entire spray behavior over time. This model is based on 

the fuel jet penetration analysis of Wakuri et al. (1960), with some modifications. These 

modifications include (Naber and Siebers 1996):  
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• Non-dimensionalization of the analysis including ambient gas and fuel density 

orifice parameters. 

• Estimate for an arbitrary constant in the correlation based on fuel concentration 

and velocity profiles as applied to turbulent two-phase jets. 

• Development of an inverse relationship for time versus penetration distance 

correlation.  

• Derivation of mean equivalence ratio as a function of axial distance.  

This scaling model is developed with the application of mass and momentum 

conservation principles with this model fuel jet defined such that its characteristics 

represent that of a real fuel jet. Derivation is based on the use of integral control surface 

techniques being applied to idealized, isothermal, incompressible fuel jets, as applied to 

the control surface shown in Figure 2.2.  

 
Figure 2.2: Control surface for the spray penetration model. Modified from Naber 

and Siebers (1996). 

The mass and momentum balances applied to the above control surface are 

provided in equation (4).  

Mass: 

Momentum: 
ρfAf(o)Uf = ρfAf(x)Uf(x) ρfAf(o)Uf2 = ρfAf(x)U(x)2 + ρaA(x)U(x)2 

(4) 

These mass and momentum relationships are solved taking into consideration 

these simplifying assumptions (Naber and Siebers 1996): 

• Radially uniform velocity and fuel concentration profiles. 

• Instantaneous start of injection. 

• Constant injection velocity. 

• Modeled fuel spray has the same mass and momentum fluxes as the equivalent 

real spray.  

• No velocity slip between the fuel and entrained air implying dynamic equilibrium 

between the liquid and gas phases.  

• Quasi-steady flow with uniform growth rate meaning constant spray spreading 

angle. 

• Minimal azimuthal flow at the orifice exit. 

The final dimensional penetration relationships developed by Naber and Siebers 

(1996) are defined in equation (5). 
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S =  Cv ∙ �2
(Pf−Pa)ρa t, Valid for t < tr 

S =  � Cv∙�2Caa∙tan (θ/2) ∙ ��(Pf−Pa)ρa ∙ do ∙ t, Valid for t > tr 

tr =

�Ca
2

Cv tan �θ
2

� df ∙ �ρ��Pf − Paρf
 

df = �Ca ∙ do ρ� =
ρfρa 

(5) 

As the Naber and Siebers liquid length model is a simplified model enabling parametric 

studies of spray penetration, it has several limitations. These include the use of a single 

control volume requiring the injection rate to be steady, and transient effects cannot be 

considered. 

The Naber and Siebers penetration model was further improved upon by 

Musculus and Kattke (2009) by dividing the spray into multiple discrete control volumes 

axially along the jet as shown in Figure 2.3.  

 
Figure 2.3: Model with discrete control volumes, adapted from Musculus and 

Kattke (2009).  

The goal of this model was to look at spray and mixing behavior after the end of 

injection to understand the entrainment wave. This wave is shown to travel downstream 

at twice the initial jet propagation rate subsequently increasing mixing by up to a factor 

of three. This increase in mixing can help to reduce soot formation but can also yield 

incomplete combustion and high levels of unburnt hydrocarbons due to the creation of 

lean mixtures near the injector. Between control volumes, mass and momentum transport 

is solved numerically to provide information on fuel mass, entrained ambient mass, and 

the ratio of fuel to entrained ambient mass. Other improvements are a polynomial radial 

profile for mixing and velocity that approximates a real jet distribution as opposed to the 

uniform profiles used previously. With this multiple control volume approach, variable 

injection rates can also be included to better approximate real diesel sprays. Assumptions 

are as follows: 

• Non-vaporizing jet. 
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• Incompressible flow. 

• Turbulent and molecular viscous forces acting on each control volume are 

neglected. 

• Neglect axial mixing of momentum due to molecular and turbulent diffusion. 

• Neglect net force due to axial pressure gradient. 

• Constant jet spreading angle during injection and after the end of injection 

transient. This constant jet spreading angle is a known limitation since researchers 

have found that there is a transition where spreading angle increases with axial 

distance, i.e. the model doesn’t capture the transition from narrow jet angle 

upstream to a wider jet angle downstream (Pickett et al. 2011). This transition in 

spreading angle is especially important for modeling of the liquid phase region.  

• Normalized radial profile of mean axial velocity is unchanged during the end of 

injection transient. 

• Neglect density variations across the jet. 

Inputs to the model are mass and momentum rate shapes, with the output of the 

model being the fuel to ambient ratio throughout the jet, which is used to define the spray 

conditions based on the expected fuel to ambient ratio for different characteristics. 

 Model development is undertaken by defining the transient transport equations for 

fuel mass and total jet momentum for each control volume as shown in equation (6).  

 ∂mfdt = ṁf,in − ṁf,out 
 ∂Mdt = Ṁin − Ṁout 

(6) 

Where the ‘dots’ on the mass and momentum define integral fluxes crossing the upstream 

and downstream faces of each control volume. These are defined by equation (7).  

 ṁf = ρf � X�fu�dA 

Ṁ = � ρ�(u�)2dA 

(7) 

The over-bars on the parameters define the turbulent, transient, components of the spray. 

The jet cross sectional area is defined in equation (8). 

 A =  π(tan (θ/2)z′)2 (8) 

Where z’ is the distance from the virtual jet origin to the control volume of interest. The 

model assumptions rely on non-uniform profiles for velocity and fuel volume fraction (a 

modification from the Naber and Siebers (1996) model) and these are defined in equation 

(9), resembling a Gaussian error function.  

 X�f
X�f,c = (1 − ξα)2 

u�
u�c = (1 − ξα)2 

(9) 

Where ξ is the ratio of the radial coordinate r to the jet width R, which is defined as 

tan(θ/2)z’. The exponent, alpha, is variable, and is chosen to fit the evolving radial 

velocity profile as the flow exits the nozzle. Downstream of the nozzle the radial profile 
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becomes self-similar leading alpha to be defined as 1.5, representing a fully developed 

profile. The entrainment rate is defined in equation (10).  

 ∂ṁe∂z
= ρa ∂∂z

(u�A) (10) 

The model predicts the cross-sectionally averaged turbulent mean velocity, 𝑢�. 

Even though the Musculus and Kattke (2009) model was developed for nonvaporizing 

sprays it can be used to estimate the extent of fuel vaporization based on the predicted 

mixture distribution. This model however does not provide an explicit solution for 

penetration. A steady state penetration solution can be developed but this requires various 

steps and numerical integration including solving mass flux and momentum flux, along 

with the entrainment rate relationship, and spatially integrating the momentum over the 

length of the jet (Musculus and Kattke 2009).  

Models have also been developed for characterizing the liquid length of the 

vaporizing spray. This includes a model from Siebers (1999) which is based on mixing 

limited vaporization, i.e. atomization and interphase transport are not the limiting factor, 

rather, mixing is the limiting factor in controlling the liquid length. This requires that the 

ambient gas mixture in the vaporization region be saturated (Siebers 2008), a key factor 

in model development. Siebers (1999) liquid length scaling model is developed based on 

the Naber and Siebers (1996) spray model which defines mass and momentum 

conservation equations, and with the inclusion of the energy equation, can be extended to 

liquid phase spray behavior with liquid length being defined as the axial distance along 

the spray where saturation occurs. These conservation equations are applied to the control 

volume shown in Figure 2.4.  

 
Figure 2.4: Control volume schematic for the liquid length model. Modified from 

Siebers (1999). 

The definition for liquid length in the model is the location along the spray 

centerline where the mixture fraction is equal to the mixture fraction for saturated liquid-

vapor equilibrium where just enough hot ambient gas has been mixed with fuel to fully 

vaporize the fuel (Siebers 1999). Siebers liquid length model has limited application for 

low gas densities and temperatures because in these regions droplet transport processes 

begin to drive the vaporization processes in place of mixing. Model assumptions are 

similar to that of Naber and Siebers (1996) and are listed here (Siebers 1999):  

• Quasi-steady flow with constant spray spreading the result of air entrainment. 

This spreading angle is governed by injector properties and fuel and ambient gas 
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densities defining turbulent momentum transport from the injected fuel to the 

entrained gases. 

• Perfect mixing, achieved by uniform velocity, temperature and fuel concentration 

profiles. 

• No velocity slip between entrained ambient gas and the injected fuel. 

• Fuel flow is locally homogeneous, i.e. neglect atomization processes and droplets, 

due to fast transport processes at droplet surfaces in comparison to the rates of the 

spray mixing processes. 

• Vapor phase fuel is saturated and in thermodynamic equilibrium with liquid phase 

fuel and the entrained ambient gas.  

• Neglect gas absorption in the liquid phase and recovery of kinetic energy in the 

region of fuel vaporization.  

• Idealized phase equilibrium: 

o Raoult’s rule applies (Cengel and Boles 2008): This rule states that the 

partial vapor pressure of a component in a mixture is equal to the vapor 

pressure of the pure component, multiplied by its mole fraction in the 

mixture), as defined by equation (11). 

 Pi,a = Yi,a ∗ PTotal = yi,f ∗ Pi,s(T) (11) 

Where the saturation pressure is the pressure at the interface temperature, 

T, and PTotal is the total pressure on the gas phase side (i.e. outside of the 

fuel-entrained gas mixture).  

o Dalton’s rule applies (Cengel and Boles 2008): This rule applies to gases 

and defines the pressure of the mixture Pm as given by equation (12).  

 𝐏𝐦 = � 𝐏𝐢(𝐓𝐦, 𝛖𝐦)𝐤
𝐢=𝟏  (12) 

Where Pi is the pressure of each gas at the mixture temperature, Tm, and 

mixture volume, υm, essentially meaning that the total mixture pressure is 

a sum of the individual gas pressures at the mixture temperature and 

volume.  

To develop the liquid length model, conservation of mass, momentum and energy 

must be applied at the injector inlet and at the location of complete fuel vaporization, the 

liquid length. This derivation is a multistep process that begins first with applying 

conservation of mass and energy to the control surface for complete vaporization due to 

fuel-gas mixing as provided in equation (13).  

 ṁf(LL) = ρf(LL) ∗ A(LL) ∗ U(LL) ṁa(LL) = ρa(LL) ∗ A(LL) ∗ U(LL) 
(13) 

At the liquid length, gas and fuel densities are dependent on their partial pressures.  

Next, conservation of energy is applied to the control surface. This starts with the 

generic form of conservation of energy as provided in equation (14).  

dEcvdt = Q̇cv − Ẇcv + � ṁi �hi +
vi2
2

+ gzi� − � ṁe �he +
ve2
2

+ gze�ei  (14) 
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Kinetic and potential energy are neglected along with work and heat on the control 

volume. As the flow is assumed to be quasi-steady, the time derivative is zero, 

simplifying the conservation of energy relationship to equation (15).  

 � ṁihi = � ṁeheei  (15) 

This simplified conservation of energy relationship is applied to the control 

volume. Inlet conditions are relative to the injected fuel and entrained ambient gas; exit 

conditions are defined by the mixed and vaporized saturated fuel. Applying these 

concepts to the conservation of energy relationship yields equation (16).  

 ṁf(LL) ∗ hf�Tf,Pa� + ṁa(LL) ∗ ha�Ta,Pa�
=  ṁf(LL) ∗ hf(Ts) + ṁa(LL) ∗ ha�Ts,Pa − Ps� 

(16) 

Based on conservation of mass, the mass flow rate of the injected fuel is equal to 

the mass flow rate of the fuel at the liquid length, with the same reasoning applied to the 

ambient gas mass flow rate.  

The evaporation coefficient, B, is defined by determining the fuel to ambient gas 

mass flow rates from both conservation of mass and conservation of energy, as provided 

in equation (17). 

  ṁf(LL)ṁa(LL) =
ρf(LL) ∗ A(LL) ∗ U(LL)ρa(LL) ∗ A(LL) ∗ U(LL) =

ρf(LL)ρa(LL) (17) 

Applying a real gas equation of state to the above relationship which includes 

compressibility, provides the final fuel to ambient mass flow rate relationship, as 

determined from the conservation of mass and shown in equation (18).  

 ṁf(LL)ṁa(LL) =
ρf(LL)ρa(LL) =

Ps ∗ MWf
Zf(Ts, Ps) ∗ R ∗ Ts ∗ Za(Ts, Pa − Ps) ∗ R ∗ Ts(Pa − Ps) ∗ MWa

=
Ps ∗ MWf ∗ Za(Ts, Pa − Ps)

Zf(Ts, Ps) ∗ (Pa − Ps) ∗ MWa 

(18) 

At the liquid length the ambient gas is saturated since the vapor phase fuel is in 

thermodynamic equilibrium with the ambient gas per an earlier assumption. The same 

relationship for fuel to ambient mass flow rate is derived using the conservation of energy 

relationship as shown in equation (19). 

  ṁf(LL)ṁa(LL) =
ha�Ta,Pa� − ha�Ts,Pa − Ps�

hf(Ts) − hf�Tf,Pa�  (19) 

Using these two ratios of fuel mass flow rate to ambient mass flow rate, the 

evaporation coefficient, B, is defined in equation (20). 

  

 B =
ṁf(LL)ṁa(LL) =

Ps ∗ MWf ∗ Za(Ts, Pa − Ps)
Zf(Ts, Ps) ∗ (Pa − Ps) ∗ MWa

=
ha�Ta,Pa� − ha�Ts,Pa − Ps�

hf(Ts) − hf�Tf,Pa�  

(20) 

To calculate the evaporation coefficient which is used in the liquid length 

determination, the saturation temperature must be determined. Once this is known all 

other terms can be evaluated as saturation pressure is governed by saturation temperature 

which then permits the evaluation of compressibility and enthalpies which together with 

known parameters enable calculation of the evaporation coefficient. Solving for the 
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saturation temperature requires an iterative solution of the two right-hand terms in the 

above equation.  

The outcome of the conservation of mass and energy application is an expression 

for the evaporation coefficient which is a key component of the liquid length model. The 

next step is to characterize the axial variation of the fuel to ambient gas ratio based on 

mass and momentum conservation which originates from the Naber and Siebers (1996) 

model. In this definition, it is assumed that characteristics for the vaporizing sprays 

considered are similar to non-vaporizing isothermal sprays which equates to having 

locally homogeneous flow with the requirement that temperature effects do not change 

the mean fuel to ambient gas mass flow rate ratio significantly over any axial spray 

location. This assumption has been validated by Naber and Siebers (1996). Conservation 

of mass and momentum are defined in equation (21).  

Mass 

 

Momentum 

ṁf(x) = ρf ∗ Af ∗ Uf ṁa(x) = ρa ∗ A(x) ∗ U(x) ṁfUf = ṁf(x) ∙ U(x) + ṁa(x) ∙ U(x) 

(21) 

These above relationships are used in conjunction with several other intermediate 

relationships as defined in equation (22) which stem from the Naber and Siebers (1996) 

spray penetration analysis.  

  

A(x) =  π ∗ (x ∗ tan �α
2

�)2 

Af =
π
4

df2  

df = �Ca ∗ d 

x+ = �ρfρa ∗ dftan �α
2

�  

x� =
x

x+ tan �α
2

� =  atan (θ
2

) 

(22) 

Typically, x
+
 is defined without the tangent angle term; however, this term is necessary as 

it takes into effect the density different between ambient gas and injected fluid, required 

based on the exchange between the two fluids. The last relationship in the above equation 

defines the idealized spray angle (α) relative to that of the measured spray angle (θ). The 

axial variation of fuel and ambient gas mass flow rates is defined by combining equations 

(21) and (22) as provided in equation (23). 

 ṁf (x)ṁa(x) =
2�1 + 16 ∙ (x/x+)2 − 1

 (23) 

Taking the axial variation of the fuel to ambient gas mass flow rate as provided in 

the above equation and evaluating at x equal to the liquid length defines the mass flow 

rate ratio as B and hence a relationship for liquid length is provided in equation (24), 

where B was defined in equation (20). 
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LL =
ba �ρfρa �Cadotan (θ/2) ��2B + 1�2 − 1 (24) 

There are limitations in Siebers model as discussed, the first being the assumption 

of uniform velocity profile. Second, this model decouples the fuel and ambient gas at the 

liquid length which is not appropriate based on the fuel and gas interaction, rather, the 

fuel and ambient gas should be treated as one medium, characterized using the saturated 

mole fraction of fuel in the gas (vapor) phase (Luijten and Kurvers 2010).  

Another spray model for liquid length is that of Versaevel et al. (2000) which is 

derived using both the Naber and Siebers (1996) and Siebers (1999) spray models, being 

a 1D model coupled with a 3D code. This model is quite similar to that of Siebers (1999) 

with the major modification being that thermodynamic equilibrium is assumed at every 

axial position (x) in the spray which provides additional information about spray 

formation upstream of the liquid length location. Assumptions in this model are as 

follows: 

• No velocity slip between gas and liquid phases.  

• Constant pressure for the whole system. 

• Velocity, density and temperature profiles are top hat. 

• Constant jet angle. 

• System is at thermodynamic equilibrium. 

• Assumes that velocity is equal to the velocity of the spray tip to enable 

determination of the time-dependent penetration length.  

• Assumes radially uniform velocity and concentration profiles across the spray.  

• Only valid for vaporizing sprays under mixing-limited vaporization assumption 

and under conditions where liquid impingement on the wall is avoided.  

• Real gas effects are neglected.  

Integral control surface techniques are used on the idealized quasi-steady diesel 

spray to solve conservation of fuel mass flow rate, momentum, and enthalpy applied to 

the control volume shown in Figure 2.5.  

 
Figure 2.5: Control volume for the Versaevel et al. liquid length and penetration 

model. Modified from Versaevel et al. (2000).  
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For the fuel mass balance, the liquid fuel mass flow rate at the injector hole is 

equated to the remaining liquid fuel mass flow rate at x in addition to the gaseous 

evaporated fuel mass flow rate at x as defined in equation (25).  

 ρfoAoUfo = ρf(1 − m)AU + YfgρgmAU (25) 

Where m is the void fraction, Yfg is the vapor fuel mass fraction in the gas phase and U is 

the gas and liquid velocity at any axial location. Evaluating the above equation for the 

two velocity definitions results in the air-fuel mass ratio, ∆, is defined in equation (26). In 

comparison to the Siebers (1999) model, this air-fuel mass ratio is equivalent to 1/B.  

 ∆=
ṁaṁf =

m(1 − Yfg)ρgρf(1 − m) + mYfgρg (26) 

For the momentum balance, the liquid fuel momentum flow rate at the injector 

hole along x is equated to the remaining liquid fuel momentum flow rate at x in addition 

to the gaseous mixture momentum flow rate at x as defined in equation (27).  

 ρfoAoUfo2 = ρf(1 − m)AU2 + ρgmAU2 (27) 

This momentum balance is combined with the previously discussed mass 

conservation principles to yield a new relationship for the air-fuel mass ratio along with 

other supplemental equations as provided in equation (28).  

 ∆2=
m2(1 − Yfg)2ρg2A

Aoρfo(ρf(1 − m) + mρa) 

 

A =  π(df/2 + xtan(α/2))2 

 tan �α
2

� = ac ��ρaρf �0.19 − 0.0043�ρfρa� 

tan �α
2

� = atan �θ
2

� 

(28) 

The constant ac is given the value of 0.105 for liquid length.  

The energy balance is defined by equating the liquid fuel enthalpy flow rate at the 

injector hole and the entrained air enthalpy flow rate, to the liquid fuel enthalpy flow rate 

at x in addition to the fuel vapor enthalpy flow rate at x plus air enthalpy flow rate at x as 

defined in equation (29), which is rewritten in terms of specific heats. 

 ṁfohfl(Tfl) + ṁaha(Ta)
= ρf(1 − m)AUhfl(T) + YfgρgmAvhfg(T)
+ ṁaha(T) ∆ � cpa(s)ds = � Yfg∆

1 − Yfg − 1�TaT Lv(T) + Lv(Tf) + � cpfg(s)dsT
Tf  

(29) 

Where A is the spray area at the axial coordinate x, subscript fl represents the fuel in the 

liquid phase, a corresponds to ambient, and fg represents the fuel in the vapor phase.  

Penetration or liquid length is solved for by using a Newton-Raphson method on 

the three nonlinear conservation equations of mass, momentum, and energy. The 

equations are solved for the air-fuel mass ratio, void fraction, gas phase density, mass 

fraction of fuel in the gaseous phase, and temperature of the gas-vapor mixture at x. This 
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is a set of three equations in five unknowns so additional information is required to close 

and solve the problem. This includes developing relations for the mass fraction of the fuel 

in the gaseous phase and the density of the gas phase, as provided in equation (30), 

determined based on the fundamental definitions for liquid length behavior. Up to the 

liquid length, due to thermodynamic equilibrium, the fuel partial pressure equals the fuel 

saturated vapor pressure which defines the saturated mole fraction of the fuel in the gas 

phase which can then be converted to mass fraction as defined.  

 
Yfg =

1� Pa
Ps(T) − 1� MWa

MWf + 1

 
(30) 

This first relationship is used for axial locations less than the liquid length where 

there is some liquid fuel left. The second required relationship is based on the uniform 

pressure assumption which enables developing a relationship between the gas phase 

density, temperature and mass fraction of the fuel in the gas phase as shown in equation 

(31).   

 ρg = ρa TaT 1

Yfg MWa
MWf + (1 − Yfg) 

(31) 

This equation is valid for an axial location greater than the liquid length where all liquid 

has disappeared so the void fraction is 1. Together, these equations close the problem to 

provide results for liquid length spray behavior.  

Versaevel et al. (2000) did not provide an explicit relationship for liquid length, 

rather they state that the mass, momentum and energy conservation equations are 

iteratively solved at each axial location (x) in the spray, and the liquid length is then 

defined as the location (x) where the void fraction (m) is equal to 1. This led to Luijten 

and Kurvers (2010) taking the Versaevel et al. (2000) model to develop an explicit 

relationship for liquid length, using the definition of void fraction being 1. This involves 

simplifying the above set of equations starting with equation (27) using the knowledge 

that the gas phase density is the sum of the fuel (vapor) and ambient densities at the 

liquid length. Using definitions of mass flow rate to eliminate velocity terms and area 

definitions, a relationship is provided for the liquid length with a definition for the 

evaporation coefficient, B, as provided in equation (32). 

 

LL =
14a ∗ � ρfoρa(LL) �Cadtan �θ

2
� ��2B + 1�2 − 1 − 12a �Cadtan �θ

2
� 

B = � ρfoρa(LL) 0.5de
0.5de + LLtan(∝/2) √B + 1 

de = �Cad 

(32) 

The second group of terms on the right hand side of the equation takes into account that 

the spray actually starts from within the nozzle which is important at high temperature 

and density conditions. This explicit relationship for liquid length enables comparison to 

that defined by Siebers (1999).  
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Both the Siebers (1999) and Versaevel et al. (2000) model neglect most real gas 

effects. Luijten and Kurvers (2010) modified these two models to include real gas effects 

which are important under the conditions of study here, asserting that Siebers does not 

correctly account for real gas effects and that Versaevel et al. (2000) neglects them all 

together. Fuel injection occurs at high pressure which could alter the phase equilibrium 

due to non-ideal gas effects which is significant at ambient densities relevant for diesel 

combustion (Luijten and Kurvers 2010).  

Siebers (1999) model does incorporate real gas effects based on the 

compressibility factor, Z, however, this is done in such a way that fuel and ambient gas at 

the liquid length are decoupled which is not valid due to the interaction of the fuel and 

ambient. Luijten and Kurvers (2010) have proposed a modification to the Siebers (1999) 

mass conservation relationship to incorporate these real gas effects as shown in equation 

(33).  

 ρf(LL)ρg(LL) =
Yfgρg(1 − Yfg)ρg =

XfgMWf(1 − Xfg)MWa (33) 

This requires determination of the saturated mole fraction of the fuel in the gas phase 

which is accomplished using a flash calculation with an equation of state, which is a 

vapor-liquid equilibrium calculation for a binary mixture (charge-gas and fuel), using 

mole fractions and fugacity. The Peng-Robinson equation of state is used and the fuel-

ambient is modeled as a two-component binary mixture. For the flash calculation, 

equilibrium is defined by equation (34) using fugacity coefficients, Φ, which are 

computed from the equation of state.  

 
XfgΦfg�pa, Ts, Xfg, Xag� = XflΦfl(pa, Ts, Xfl, Xal) 

XagΦag�pa, Ts, Xfg, Xag� = XalΦal (pa, Ts, Xfl, Xal) 
(34) 

In order to appreciate the deviation from ideal gas effects, Luijten and Kurvers 

(2010) introduced the enhancement factor fe which is the ratio of saturated partial vapor 

pressure in a mixture to the saturated vapor pressure of the pure fuel as defined in 

equation (35).  

 

fe =
XfgPa

Ps  (35) 

At low pressure, representing an ideal gas, fe is 1, with this factor becoming increasingly 

important at high pressure and low temperature conditions. This enhancement factor can 

be used in the mass conservation equation to mitigate the need for flash calculations 

which results in a new definition for the mass flow rate ratio, B, including real gas 

effects, as shown in equation (36). 

  B =
ha(Ta, pa) − hg�Ts, Pa, Xfg�
hg�Ts, Pa, Xfg� − hf(Tf, Pa) =

fePsMWf(Pa − fePs)MWa (36) 

Comparing this relation to the original form in Siebers (1999) (equation (20)), the 

ratio of compressibility factors found in the Siebers equation is now replaced by the 

inclusion of the enhancement factor as a multiplier on the saturation pressure. Based on 
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the inability to decouple the fuel vapor and ambient gas, the mixture enthalpy at the 

liquid length (hg) is now included as opposed to that of pure components requiring 

evaluation with departure functions and an equation of state.  Considering these enthalpy 

terms, the difference between ideal gas and real gas enthalpy is small signifying that 

effects on liquid length will be small due to the larger effect from temperature relative to 

that of pressure.  

Taking a similar approach to include real gas effects to the Verseavel et al. (2000) 

model, the fuel vapor mass fraction, equation (30), is modified to include this 

enhancement factor (again determined from flash calculations), as shown in equation 

(37).  

 
Yfg =

1� Pa
fePs(T) − 1� MWa

MWf + 1

 
(37) 

One final required modification is that of the gas phase density definition as it was 

originally defined assuming the ideal gas law equation of state still holds. However, this 

must include the compressibility factor as updated in equation (38).  

 ρg = ρa Za(pa, Ta)
Zg(pa, Ta, Xfg) TaT 1

Yfg MWa
MWf + (1 − Yfg) 

(38) 

Compressibility factors are calculated using the Peng-Robinson equation of state 

in conjunction with Van der Waals mixing rules. It should be noted that Zg, which is the 

compressibility factor of the saturated gas-vapor mixture, is a function of axial location as 

the composition and temperature continue to change along the spray so this 

compressibility factor must be included in the iterative the solution. Other real gas effects 

would need to be included in pressure terms, however, it was determined in the Siebers 

real gas analysis that pressure effects are small on the liquid length and for that reason no 

other changes were made.  

Comparing the modified Siebers (1999) and Versaevel et al. (2000) models with 

real gas effects it was determined that the B term is the same for both models. The 

Versaevel model (with real gas effects) yields reductions in liquid lengths relative to that 

of Siebers. Another difference is attributed to the ambient density in the Versaevel model 

being evaluated at the liquid length (saturation temperature), whereas for Siebers this is 

evaluated at the ambient temperature which will impact the fuel mass and momentum 

conservation. Luijten and Kurvers (2010) recommend the use of the Siebers (1999) liquid 

length model in conjunction with real-gas effect modifications as a scaling model for 

liquid length and also support the neglecting of considering non-ideal enthalpy for liquid 

length models.  

Desantes et al (2009) have also developed a model based on the mixing-limited 

spray evaporation defining liquid length as the location along the spray where the energy 

from the ambient air is enough to vaporize the fuel. This is computed based on a mass 

and energy balance along with determination of the fuel mass fraction of evaporated fuel 

with their scaling model presented in equation (39). In this scaling model, K is a constant 

of the spray. This relationship is modified with the application of energy conservation 

which includes enthalpy relationships applied to the fuel mass fraction of evaporated fuel.  
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LL = Kdo�ρfρa ∗ 1

Yf,evap 

LL = Kdo�ρfρa ∗ �1 +
∆hf(Tf, Tevap)∆ha(Ta, Tevap)� 

(39) 

This scaling model is limited, as are the other aforementioned models, as it does not 

account for the changes in physical fuel properties in the liquid phase including viscosity 

and surface tension which govern atomization (Payri et al. 2011b, 2011c).  

2.4.1.2. Eulerian Approach – Fuel Mass Particle 

Tracking 
Another subset of models involve tracking fuel mass particles using Euerlerian 

approaches. One such example is the 1D spray model developed by Pastor et al. (2008) 

which characterizes and predicts spray flow under inert and reacting conditions. This 

model looks at the relationship between local fuel-air mixing processes, spray dynamic 

evolution, and transient tip penetration. As it is based upon the mixing controlled, it can 

be applied for both a gas jet and a diesel spray under conventional engine conditions 

(Pastor et al. 2008). By assuming that the diesel spray can be represented as a turbulent 

gas jet, this provides an estimation of property distribution of temperature, and density 

within the spray, in addition to tip penetration provided with most other 1D spray models 

(Pastor et al. 2008). This 1D spray model is an expansion of that proposed by Desantes et 

al. (2007) which tracked discrete fuel mass particles along the spray axis and is restricted 

to inert conditions with limited application to transient injection rates. This new version 

of the model uses a Eulerian approach which is advantageous for transient spray 

evolution without the need for corrections as was done in past versions. This 

methodology can be extended to reacting conditions to model transient flame evolution 

(Pastor et al. 2008). Assumptions are as follows:  

• No air swirl which provides spray axisymmetric conditions. 

• Fully developed turbulent flow yields self-similar radial profiles for conserved 

variables (ratio of conserved variable by centerline does not depend on axial 

location). Assumes Gaussian radial distribution function. 

• Schmidt and Prandtl numbers are 1. Schmidt number is a representation of the 

relative rate of momentum and mass transfer. Prandtl number represents the ratio 

of momentum to thermal diffusivity.  

• Neglect laminar contributions to transport processes meaning that the flow is 

insensitive to the initial uniform radial profiles, which is only valid at the intact 

length (defined as the farthest location from the nozzle where the fuel mass 

fraction along the centerline of the spray is equal to 1). When the fuel mass 

fraction along the centerline is less than one, the cell has reached the fully-

developed flow region. 

• Spatially uniform velocity of the spray at the injector exit. 

• Spray angle definition is the location where the self-similar axial velocity profile 

(ζ) is 0.01 which provides a relationship for a constant, k, relative to the self-

similar Gaussian profiles as shown in equation (40).  
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k =

ln �1ζ�tan2 �θ
2

� (40) 

• Locally-homogeneous flow is assumed meaning local equilibrium for thermal and 

velocity conditions enabling modeling of the spray as a gas jet.  

• Spray is assumed to be constant pressure which allows neglecting compressibility 

effects.  

• Ideal mixing is assumed to make possible the calculation of local density as 

defined by equation (41).    

 ρ(x, r) =
1∑ Yi(x, r)ρi(x, r)i  

(41) 

The model is implemented by dividing the spray axially into several cells across 

the spray cross section of thickness ∆x with  conservation equations for axial momentum, 

fuel mass, and energy being formulated and applied to each cell to solve for axial 

velocity, fuel mass fraction and enthalpy as defined in equation (42).  

 
Axial momentum 

 

 

Fuel mass 

 

 

 

Energy 

M(xi, t) − M(xi+1, t) =
ddt �� ρ(x, r, t) ⋅ u(x, r, t) ⋅ dV� 

mf(xi, t) − mf(xi+1, t) =
ddt �� ρ(x, r, t) ⋅ f(x, r, t) ⋅ dV� 

H(xi, t) − H(xi+1, t) =
ddt �� ρ(x, r, t) ⋅ (h(x, r, t) − ha,∞) ⋅ dV� 

(42) 

Specified boundary conditions are:  

• Momentum, fuel mass, and enthalpy fluxes at the nozzle exit (i = 0) are constant 

or a function of time, with momentum and fuel mass being obtained 

experimentally.  

• Spray cone angle is considered to be constant with time and can be considered as 

a fit in the model.  

• Explicit relationship between local density and other unknowns is applied which 

requires defining a function or state relationship which governs composition and 

thermodynamic conditions.  

To determine spray characteristics, the conservation equations are reformulated 

and solved for every time instant and axial position. This solution provides the on–axis 

velocity, fuel mass fraction, and enthalpy at the cell inlet and outlet which with the self-

similar radial profile relationship enables calculation at other positions. This involves the 

use of state relationships to account for the different air and fuel temperatures occurring 

in vaporizing sprays. For vaporizing sprays, the turbulent Lewis number is assumed equal 

to 1 allowing fuel mass fraction to be calculated from equation (43).  

f(x, r, t) =
h(x, r, t) − ha,∞

hf,0 − ha,∞  (43) 
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Local conditions assume adiabatic mixing of fuel and air, and the following 

procedure is undertaken to solve the equations: 

1. Local mixing enthalpy is calculated.  

2. Inert adiabatic mixing hypotheses is applied to the two streams to obtain the local 

composition, 𝑓 + 𝑌𝑎 = 1.  

3. With enthalpy and fuel mass fraction range known the local temperature is 

calculated assuming an ideal mixture from ℎ(𝑇, 𝑓) = ∑ 𝑌𝑖 ⋅𝑖 ℎ𝑖(𝑇). 

4. Calculate density of each mixture component at this local temperature using a real 

gas equation of state with a compressibility factor. Calculate local mixture density 

for the range of the fuel mass fractions.  

This model calculation enables determination of the fuel mass fraction range 

showing  a characteristic fuel mass fraction defined as fevap which is the fuel mass fraction 

where the last fuel droplets are seen meaning no liquid fuel but vapor is saturated.  This is 

the fuel-mass fraction that represents maximum liquid length. These fuel mass fraction 

characteristics are evidenced by a change in slope of the temperature curve, and also, the 

leveling off of the Yf,v/f curve. If f > fevap, this is the liquid spray core, and as f increases, 

air entrainment is increasing, enthalpy transfer to the mixture is increasing, and the spray 

is approaching the liquid length.  

To summarize, this modeling involves using thermodynamic properties of 

pressure (constant), temperature, and density of the fuel at the orifice exit, and air in the 

ambient, in state relationships to compute density, temperature, and mole fraction as a 

function of fuel mixture fraction. With this information, the radial integral F is calculated 

and then used to solve the conservation equations for axial momentum and fuel mass to 

provide velocity and fuel mass fraction along the centerline which then yields output 

results of velocity, fuel mass fraction, temperature, and mole fraction of I as a function of 

x, r, and t. 

 Various profiles can be applied for axial velocity or other parameters to more 

realistically approximate spray behavior, for example, Desantes et al. (2011) applied a 

Gaussian based velocity profile for the axial velocity as defined in equation (44). 

 

U(x, r) = Uc(x)exp �−α �r
R

�2� (44) 

Where r is the radial-position perpendicular to the spray axis (radial coordinate), α is the 

Gaussian distribution shape factor, x is the distance along the spray (axial coordinate), 

U(x,r) is the local spray velocity, and Uc is the velocity at the sprays axis (centerline).  

Other models neglect the liquid computation of the spray entirely by treating the 

liquid portion of the spray as a source of vapor mass, momentum, and energy, termed a 

Virtual Liquid Source (VLS) model which helps to overcome the unknown physics 

behind spray atomization processes (Abraham and Magi 1999). To achieve this, model 

inputs include the maximum liquid core length and the time to reach this length to 

overcome grid limitations. The key model assumption is that the volume of mass 

occupied by the liquid fuel component is small relative to the total injected fuel. The 

required fuel properties in these models have been defined using tabulated data typically 

from API handbooks (Schihl et al. 2006) and various other correlations (Gimenes 2006), 

avoiding the application of a generalized equation of state approach.  



51 

2.5. Surrogate Fuels 
Spray modeling requires an understanding of fuel properties and behavior 

including thermodynamic and chemical kinetic properties of the fuel. This is complicated 

as these properties of real fuels are typically unknown due to the multiple components, 

and therefore, a simplified representation of these complex fuels are required to meet 

computational limits. This has led to the development of surrogate, or model, fuels with 

the goal of representing the thermodynamic and chemical properties of real fuels, such as 

diesel, to help advance the state of combustion and fuels models. Surrogate fuels are 

simplified versions of real fuels which can be used in spray and combustion models such 

as those for CFD to simplify studies of complex multi-component real fuels to better 

understand the underlying relationships and characteristics of fuels including 

vaporization, mixing, ignition and pollutant formation. These fuels can also be used in 

fundamental experimental tests to provide results for model validation, and better 

understand the underlying spray and combustion characteristics with a simpler fuel.  

These fuels are typically single or multi-component mixtures of well-understood 

fuels that can replicate physical, thermal, and chemical properties of conventional fuels. 

This may require matching physical properties including density, fuel energy content, 

evaporation characteristics including boiling point, flash point and vapor pressure, 

thermal conductivity, surface tension, viscosity and others, along with the chemical 

properties of composition, carbon to hydrogen ratio, flame speed, ignition delay, sooting 

tendency and others (Slavinskaya et al. 2010). Different levels of surrogate fuels are 

developed including property targets to match fundamental physical and chemical fuel 

properties, development targets which match kinetic and fluid dynamic processes 

important for mixture behavior, and finally application targets including matching engine 

operating characteristics of combustion efficiency and emissions (Farrell et al. 2007). The 

best surrogate fuel uses the smallest number of components while meeting the targets of 

fuel properties to minimize computational complexity while upholding applicability. 

Certain surrogates may be best for spray characteristics whereas others may best 

reproduce combustion characteristics based on the overall characteristics of the fuel.  

Combustion and spray models can be largely simplified through the use of 

surrogate fuels. This requires developing surrogates which are a combination of simple 

species with well-known chemistry, ideally with the same functional groups as diesel 

fuel, to ensure best representation. These surrogate fuels must accurately react with 

oxidants at the correct reaction rates participating in the correct chain reactions. 

Limitations with surrogates must be acknowledged in their model applications 

remembering that surrogates are a discrete set of components which are trying to emulate 

a close to continuous spectrum of components characteristic of real fuels (Battin-Leclerc 

2008).  

Surrogates are desired to match the chemical composition of diesel fuel, however, 

this is complicated as diesel fuel composition varies significantly based on production 

methodologies with a cetane number of 40-56, carbon numbers of C10 – C24, boiling 

point range of 190 – 360°C, and composition of 25-50% normal iso-paraffins, 20-40% 

cyclo-paraffins (napthenes), and 15-40% aromatics. It can also include lightly branched 

iso-alkanes with one or two side methyl groups (Farrell et al. 2007, Pitz and Mueller 

2011). This information must be considered when developing and applying surrogate 
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fuels. The composition variability makes the development of a single surrogate for 

representing diesel fuel difficult (Farrell et al. 2007). To further complicate the matter, 

the composition of hydrocarbon real fuels can include various additives or impurities 

such as sulfur, oxygenates, and anti-knock agents which must be considered in surrogate 

development (Tsang et al. 2003). Additionally, ignition improvers are also mixed in with 

standard diesel fuel to improve the cetane number, and reduce the ignition delay, such as 

2-ethylhexyl nitrate, which must also be considered in surrogate development as they 

influence the combustion processes and emissions formation (Farrell et al. 2007).  

In addition to diesel, surrogates must also be developed for alternative fuels, such 

as biodiesel which is composed of fatty acid esters produced via transesterification of 

animal fats or vegetable oils using methanol or ethanol (Radich 1998). Not only must 

individual surrogates be understood, but those of diesel-biodiesel blends need to be 

considered as blending may be phased in. Surrogate modeling of biodiesel is different 

when compared to diesel as it has a more homogeneous distribution of components based 

on its molecular structure (Farrell et al. 2007).  One advantage of developing a surrogate 

for biodiesel is that it is typically composed of a smaller number of components, on the 

order of ten, which simplifies surrogate development relative to the significantly higher 

component quantity for diesel (Pitz and Mueller 2011). Renewable diesel, another 

renewable fuel, is produced by hydrotreating bio-derived oils and fats, primarily 

composed of n-alkanes and iso-alkanes but, details on the composition are unknown 

which hinders surrogate fuel development and modeling capability of this fuel (Pitz and 

Mueller 2011).  

Surrogates can either be single-component or multi-component. As more 

components are added, applicability and representation of real fuels is improved, 

however, computational time and surrogate complexity is increased which can hinder its 

implementation. Multi-component surrogates are sometimes difficult to develop as the 

species may interact between components in a mixture, which must be considered (Pitz 

and Mueller 2011).  

Various surrogate components are recommended depending on the fuel being 

replicated. Components of interest for diesel are n-decane, iso-octane, 

methylcyclohexane, toluene, n-hexadecane, heptamethylnonane, n-heptane, n-

octadecane, n-decylbenzene, 1-methylnapthalene, n-dodecane, decahydronaphthalene 

(decalin) and tetralin, (Tsang et al. 2003; Farrell et al. 2007; Anand et al. 2011). The 

chemical formula and structure groups of these components are provided in Table 2.11. 
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Table 2.11 

Chemical formula and structure groups of suggested diesel surrogate components.  
Surrogate Components Chemical Formula Structure Groups 

decahydronaphthalene (decalin) C10H18 8 CH2 (Ring), 2 CH (Ring) 

heptamethylnonane C16H34 9 CH3, 3 CH2, 1 CH, 1 C 

Iso-octane C8H18 5 CH3, 1 CH2, 1 CH, 1 C 

n-decane C10H22 2 CH3, 8 CH2 

n-decylbenzene C16H26 1 CH3, 9 CH2, 1 =C (Ring), 5 = CH (Ring) 
n-dodecane C12H26 2  CH3, 10 CH2 

n-heptane C7H16 2  CH3, 5 CH2 

n-hexadecane C16H34 2 CH3, 14 CH2 

n-octadecane C18H38 2  CH3, 16 CH2 

methycyclohexane C7H14 1 CH3, 5 CH2 (Ring), 1 CH (Ring) 

1-methylnaphthalene C11H10 1 CH3, 3 =C (Ring), 5 =CH (Ring) 
tetralin C10H12 4 CH2 (Ring), 2 =C (Ring), 4 =CH (Ring) 
toulene C7H8 1 CH3, 5 =CH (Ring), 1 =C (Ring) 

The surrogate components span a wide range of hydrogen to carbon ratios, and exhibit 

various structures including both ring and non-ring groups. These components, based on 

their differing chemical composition, will provide a range of physical and chemical 

properties, which when combined in varying compositions, and with other components 

not listed here, can produce various fuels to replicate diesel, or other alternatives, 

including biodiesel for example, which requires the addition of oxygenated components 

(Agarwal 2007).  

Some examples of conventional, in-use, surrogates for diesel fuel are provided in 

Table 2.12. 
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Table 2.12 

Select diesel surrogate fuel recommendations.  
Reference Proposed Surrogate Formula Notes 

Farrell et al. 

2007 
n-heptane C7H16 

Limitations in ignition if mixing controlled 

due to the differences in fuel volatility along 

with the single component nature of the 

fuel. 

Farrell et al. 

2007 
n-heptadecane C17H36 

Matches fuel vaporization based on 

matching of T90, liquid length, and density 

of real diesel fuel.  

Only matches physical properties not 

chemical kinetics. 

Farrell et al. 

2007 

70% volume n-decane 

and 30% volume of 

methylnaphthalene 

 

Matches the diesel boiling range, hydrogen 

to carbon ratio, cetane number, density, 

ignition delay and heat release rate.  

Predicts emissions lower than expected, 

partially attributed to reductions in liquid 

penetration relative to that of diesel. 

Natelson et 

al. 2008 

n-decane, n-

butylcyclohexane and n-

butylbenzene in a 1:1:1 

mixture by volume 

 

Chosen to match complexity of three HC 

classes commonly found in real diesel fuel.  

Increased reactivity in comparison to diesel 

fuel.  

Tsang et al. 

2003 

70% cetane and 

hexamethyl nonane 

mixture, 30% alpha-

methylnapthalene 

 Matches cetane number. 

Mathieu et 

al. 2009 

39% pylcyclohexane, 

28% n-butylbenzene, and 

33% 2,2,4,4,6,8,8 

heptamethylnonane by 

mass 

  

Mati et al. 

2007 

23.5% n-hexadecane, 

19% iso-octane, 26.9% 

n-propylcyclohexane, 

22.9% n-propylbenzene 

and 7.7% 1-

methylnaphthalene 

 
Matches quantities of chemical classes in 

diesel. 

Myong et 

al. 2006 

Iso-octane, n-dodecane 

and n-hexadecane 

mixtures in varying mass 

levels of 6:3:1, 1:1:1 or 

1:3:6 

  

Siebers 

1999 
n-heptadecane  Relevant for spray and liquid length models.  

Espey and 

Dec 1995 

Mass weight 67% 

heptamethylnonane and 

33% cetane 

 
Low sooting; imporved optical diagnostic 

application. 

Gustavsson 

& 

Golovitchev 

2003 

3:7 mixture of toluene 

and n-heptane 
 

Similar cetane number and should represent 

soot formation, however, does not consider 

physical properties of the fuel. 

Various surrogates have been used and experimented with, however, as mentioned in the 

table above, there are limitations with these surrogates. For example, several surrogates 
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may match certain fuel properties, such as cetane number for example, but do not match 

other diesel fuel properties, including physical properties, which influence spray 

characteristics (Gustavsson and Golovitchev 2003). Therefore although a surrogate may 

match diesel combustion characteristics (through chemical properties), it may have 

limited applicability to diesel spray or vaporization characteristics (in regards to physical 

properties), or vice versa. Additionally, the breadth of these surrogates in regards to 

composition and complexity show that the complex composition of diesel fuel is difficult 

to accurately match, and that one surrogate may not be the ideal solution, depending on 

characteristics which are attempting to be matched.  

Surrogates are also being developed for alternative fuels to facilitate their 

modeling to ensure efficient integration into conventional diesel engines. A proposed 

surrogate for biodiesel is methyl deaconate (Herbinet et al. 2008). Another proposed 

surrogate for biodiesel fuel from rapeseed oil could be n-hexadecane (Dagaut et al. 2007; 

Herbinet et al. 2008). As was discussed with diesel, developing a surrogate for biodiesel 

is complicated due to the variation in biodiesel components as a function of production 

method and feedstock. Biodiesel is composed of esters of methyl palmitate, methyl 

stearate, methyl oleate, methyl linoleate, and methyl linoleate at varying levels dependent 

on the feedstock used and composition of that feedstock assuming methanol is used in the 

transesterification process, if not, compositions vary further (Herbinet et al. 2008).  

For surrogates used to represent spray and vaporization properties, the 

vaporization processes in the fuel must be considered. This is further complicated as there 

are different theories on the control of vaporization. Certain researchers have defined the 

vaporization and resulting liquid length as being controlled by the high boiling point 

(lower volatility) component of the diesel surrogate (Siebers 1998; Myong et al. 2006). 

Other work has shown that vaporization is neither batch-distillation like (not controlled 

by volatility differences) nor onion-skin like (controlled solely by volatility differentials) 

but a mixed mode mechanism is more likely. Vaporization can be even further 

complicated by the attainment of super-critical conditions at an early time in the process 

(Farrell et al. 2007). Others have found that for diesel-like sprays there is no preferential 

evaporation of a two-component fuel representing diesel fuel sprays which is largely 

attributed to the rapid droplet evaporation and mixing processes not providing time for 

preferential evaporation (Hottenbach et al. 2011).   

2.6. Property Relationships – Equations 
of State 

Equations of state exist to represent the pressure-volume-temperature 

relationships of fluids exhibiting varying levels of complexity, ranging from the simple 

ideal gas law, to complex relationships with numerous constants, of up to 50 or more 

(Martin 1979). As expected, as the complexity and number of constants increases, on 

average, the equations become increasingly accurate in representing fluid properties, 

however, their application is increasingly difficult and computationally intensive. By 

manipulating the cubic equation of state in the general form, several equations of state 

can be derived which are summarized in Table 2.13 and are expressed either in terms of 

pressure or compressibility, with compressibility defined as Z = PV/RT. 
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Table 2.13 

Equations of state (Martin 1979; Wei and Sadus 2000; Slavinskaya et al. 2010).  
Name Equation of State Coefficients 

Ideal Gas PV = nRT  

Virial Z = 1 +
B
v

+
C

v2 +
D

v3 + ⋯ B, C, D are virial coefficients 

General 

Cubic 

P =  
RT
V

− α(T)(V + β)(V + γ)
+

δ(T)
V(V + β)(V + γ) 

α and δ are functions of temperature, β 
and γ are constants 

Cubic P =  
RT

v − b
− a

v2 + γv + ε a, b, γ, ε  

Lee-Edmister P =  
RT

V − b
− a

V(V − b) +
c

V(V − b)(V + b) 

b = -β = γ 

a = α – βRT 

c = αγ + δ 

 

Van der 

Waals – 

Cubic 
P =  

RT
V − b

− a
V2 

a = α 

b = β 

Redlich 

Kwong 
P =  

RT
V − b

− a
V(V + b) 

a = α 

b = β 

Soave-

Redlich-

Kwong – 

Cubic 

Z =  
V

V − b
− a(T)RT(V + b) 

a(T) = 0.4274 �R2Tc2
Pc � �1 + m(1

− � TTC�0.5�2
 m =  0.480 + 1.57ω − 0.176ω2 

b = 0.08664
RTc
Pc  

Peng-

Robinson – 

Cubic 

P =  
RT

V − b
− a

V(V + b) + b(V − b) 
a = α 

b = β 

Carnahan and 

Starling 
Z =

1 + η + η2 − η3(1 − η)3 − aRTV 

a = 0.4963
R2Tc2

Pc  

b = 0.18727
RTc
Pc  η =

b

4V
 

Carnahan and 

Starling – 

Redlich 

Kwong 

Z =
1 + η + η2 − η3(1 − η)3 − a

RT1.5(V + b) 

a = 0.4963
R2Tc2

Pc  

b = 0.18727
RTc
Pc  η =

b

4V
 

Benedict 

Webb Rubin 

Z = 1 +
f1(t)

V
+

f2(t)
V2 +

f3(t)
Vn + f4(t)

∗ �γ1 +
γ2
V2

Vm � exp (− γ2
V2) 

fi functions with up to 30 parameters, 

γ1, γ2 additional parameters 
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Table 2.13, Continued 
Name Equation of State Coefficients 

Benedict 

Webb Rubin 

Z = 1 +
BoRT − Ao − Co/T2RTV − bRT − aRTV2

+
αaRTV5

+ � c
RT3V2� �1

+
γ

V2� exp �−γ
V2 � 

Ao, Bo, Co. a, b, c, α, γ parameters 

All equations of state have pros and cons in regards to their ease of application 

and accuracy. More specifically, cubic equations of state are typically simple and easy to 

use analytically, but are limited in application to certain mixtures or species based on 

molecular sizes or characteristics. The Benedict Webb Rubin equation is beneficial in its 

ability to treat supercritical components with good precision but is computationally 

intensive.  

Constants in the cubic equations of state can be determined in terms of critical 

properties using two solution methodologies (Martin 1979). The first method is based on 

the fact that at the critical point, the first two pressure volume derivatives equal zero for 

constant temperature derivatives, as expressed in equation (45).  

 �𝑑𝑃𝑑𝑉�𝑇 = �𝑑2𝑃𝑑𝑉2�𝑇 = 0 𝑎𝑡 𝑃𝑐 , 𝑇𝑐, 𝑉𝑐 (45) 

The second methodology considers three equal volume roots at the critical point 

necessitating the rearranging of the cubic equation of state to be cubic in volume on the 

left-hand side, and zero on the right hand side, solving for the three equal roots as defined 

in equation (46). Keep in mind that this solution is valid for all cubic equations of state as 

the general cubic equation of state is the starting point for the derivation of the 

aforementioned cubic equations of state.  

 𝑉3 + �𝛽 + 𝛾 − 𝑅𝑇𝑃 � 𝑉2 + �𝛽𝛾 − 𝑅𝑇𝑃 (𝛽 + 𝛾) +
𝛼𝑃� 𝑉 − 𝛽𝛾𝑅𝑇𝑃 − 𝛿𝑃

= 0 (𝑉 − 𝑉𝑐)3 = 𝑉3 − 3𝑉𝑐𝑉2 + 3𝑉𝑐2𝑉 − 𝑉𝑐3 = 0 

(46) 

Comparing these two equations the roots of volume can easily be determined, however, 

there are four unknowns which requires specifying one of the unknown values. More 

specifically, for the frequently used two-term cubic equations, δ is set to zero.  

Reduced variables, based upon critical properties, are also defined for species 

properties including those for pressure, temperature and volume as shown in equation 

(47).  

 
Pr =

P

Pc Tr =
TTc 

Vr =
V

Vc 

(47) 
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Critical points of molecules are tabulated but can also be evaluated as these points are the 

stability limit of the stable phase which can be determined using a Taylor series for the 

Helmholtz energy (Slavinskaya et al. 2010).  

The choice of equation of state is largely governed by fluid properties. The Peng-

Robinson equation of state is proven accurate for high pressure, non-polar systems, 

relevant to diesel sprays and has been used under these applications in the past (Desantes 

et al. 2007; Luijten and Kurvers 2010).  For standard hydrocarbons the size difference of 

molecules is typically less than a factor of 2, with these molecules being non-polar, 

validating the use of a simple equation of state with simplified Van der Walls mixing 

rules (as will be discussed) (Slavinskaya et al. 2010).  

2.7. Mixing Relationships 
Many surrogates are composed of multiple components to best represent that of 

diesel fuel. This requires the understanding of mixing rules for evaluating properties. 

Standard simple mixing rules do not apply to non-ideal cases when there are large 

differences in molecular sizes, high polarity, and others typically representative of 

conventional diesel surrogates (Slavinskaya et al. 2010). 

 Mixing rules can be applied using various methods. One method is in determining 

constants for the equation of state evaluation, for example the values of a and b for the 

generalized cubic equation of state (Wei and Sadus 2000). This includes various rules as 

summarized in Table 2.14. 

Table 2.14 

Mixing rules for determining a and b from cubic equation of state (generalized). 
Type ‘a’ Relationship ‘b’ Relationship 

Simple a =  � xiaii  b =  � xibii  

Van der Waals a =  � � xixjaijji  b =  � � xixjbijji  

Or, mixing rules can be applied for multi-component surrogates in direct 

relationship to the liquid length model with two differing approaches provided by Schihl 

et al. (2006); a Mean Evaporation Coefficient (MEC) and Mean Liquid Length (MLL) 

method, with the mean evaporation coefficient methodology being preferred. The 

relationships for the MEC method are provided in equation (48), and those for the MLL 

method are defined in equation (49).  

MEC Method 

𝐵𝑚 = � 𝑥𝑖𝐵𝑖𝑛
𝑖=1  

𝑇𝑏,𝑚 = � 𝑥𝑖𝑇𝑏,𝑖𝑛
𝑖=1  

1 = � 𝑥𝑖𝑛
𝑖=1  

(48) 
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MLL Method 𝐿𝐿𝑚 = � 𝑥𝑖𝐿𝐿𝑖𝑛
𝑖=1  (49) 

2.8. Summary 
This review has considered a wide range of topics relevant to the work discussed 

in this dissertation. To reiterate the goals of this current work, these include improving 

the understanding of multi-hole injector spray characteristics under various fuel and 

ambient states using a combustion vessel, and developing and integrating an equation of 

state thermophysical property methodology to compare to experimental results and 

quantify liquid length, including a parametric study for understanding liquid length 

fluctuations and surrogate fuel application. This literature review addresses the scope of 

the existing work meeting the above goals.  

First focus was on different apparatuses for fundamental spray and combustion 

studies, including their advantages and disadvantages. Details were provided on constant 

volume combustion vessels used in the current work, including a review of the preburn 

procedure for thermodynamic state generation with focus on the different mixtures and 

procedures. Optical diagnostics used for these studies were then discussed, with the 

diagnostic used governed by the desired knowledge acquired. The next section of the 

literature review focused on macroscopic spray characteristics of spray penetration, liquid 

length, cone angle and lift-off length, along with an examination of multi-hole injector 

characteristics including plume to plume variations and spray fluctuations of liquid 

length. These characteristics are influenced by a wide range of parameters as will be 

further discussed, including charge-gas conditions, fuel properties, and injector 

characteristics. Spray modeling was also reviewed including an in-depth review of 

simplified 1-dimensional scaling models based on conservation relationships. This 

includes discussion on the Siebers (1998) liquid length model which will be applied in 

detail in Chapter 8 for the current work. Surrogate fuels were then examined as these can 

be used in models and experimental studies to emulate diesel fuel, as diesel fuel is 

complex and thermodynamic fuel properties are difficult to model and analyze. Finally, 

equation of states and mixing properties were considered to understand the different 

equations and their applications, including those relevant for diesel spray characteristics.  

This literature shows that there are several knowledge gaps which when addressed 

in this work, will enhance the knowledge of the field. First, there is minimal investigation 

into the influence of the preburn procedure for thermodynamic state generation on the 

resulting ambient composition, relative to internal combustion engines. It is understood 

and accepted that minor species are generated, however, the influence of these species on 

spray and combustion characteristics, along with the composition relative to diesel 

engines running with exhaust gas recirculation, has not been investigated in detail. The 

investigation undertaken in Chapter 4 including chemical kinetics modeling of this 

procedure, and a comparison over differing mixtures, provides an improved 

understanding of this procedure including comparison to conventional diesel engines and 

influence on spray autoignition. Second, literature has been published discussing the 

fluctuations in diesel spray liquid length about a mean value. Causes of these fluctuations 

have been proposed, however, reasons vary and there is little agreement. This current 
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work will contribute to this understanding by studying these fluctuations over a range of 

conditions and applying a frequency analysis to better understand their characteristics 

(Chapter 8). This will be further studied using a developed liquid length model with an 

equation of state approach for thermophysical properties, enabling a parametric study on 

the implications of various parameters on liquid length trends and application of single 

and multi-component surrogate fuels. Finally, although liquid length models have been 

established, to accurately model the spray they require significant temperature and 

pressure dependent property information. While surrogate fuels and chemical kinetics 

models have been significantly developed, there has been substantially less focus on 

therrmophysical property analysis and impact. As property information is not readily 

available for many surrogates which are proposed to match diesel or alternative fuels, and 

it is often presented in tabulated format making iterative calculations tedious and 

inefficient, thermophysical property modeling is imperative to assist in advancing the 

state of knowledge. With the development of an equation of state approach for modeling 

thermophysical properties for both single and multi-component surrogates, the 

application of a liquid length model is enhanced to provide an improved understanding of 

liquid length over a wider range of conditions, and fuels, along with the capability to 

perform parametric studies and predictive modeling. This work will enhance the state of 

the knowledge by providing an improved understanding of spray characteristics including 

quasi-steady liquid length behavior and thermodynamic state generation, along with 

contribution of an equation of state property model for thermophysical property modeling 

to fill existing knowledge gaps in diesel spray and combustion characteristics. The focus 

on thermophysical property analysis and impact of the current work has been minimally 

explored in the past where focus has been on surrogate fuels and chemical kinetics. This 

will advance the knowledgebase, providing necessary information for development of 

improved surrogates to maintain the transition to alternative fuels and combustion 

strategies to reduce emissions while upholding fuel efficiency and performance.  
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3. Experimental Facility, Test Setup & 

Diagnostics 

3.1. Combustion Vessel 
This experimental work has been undertaken in the Michigan Technological 

University Alternative Fuels Combustion Laboratory (AFCL). The main component of 

this laboratory is an optically accessible constant volume combustion vessel with 

corresponding subsystems for functionality. This vessel is based off the design used at 

Sandia National Laboratory which has had significant success in diesel spray and 

combustion studies over a wide range of conditions (Siebers 1999; Pickett et al. 2010). 

The basis for the functionality of the current facility is the result of collaboration on 

various subsystems between researchers at Michigan Technological University and 

Sandia National Laboratory.  

A Major Research Instrumentation (MRI) grant was obtained from the National 

Science Foundation (NSF), grant number 0619585, in September 2006 to construct the 

AFCL housed in the specifically designated Alternative Energy Research Building 

(AERB) in Hancock. The laboratory, as will be described briefly here, was first 

operational in March of 2009 with additional subsystems and testing capabilities coming 

online as governed by testing and research project requirements. Additional details of the 

various laboratory subsystems during the development stages are provided in the 

references (Nesbitt 2008; Johnson 2009; Johnson et al. 2010; Nesbitt et al. 2010, 2011a).  

The combustion vessel laboratory is a fundamental research tool which enables 

control and isolation of various variables known to influence spray and combustion. The 

combustion vessel has a 1.1 L cubical shaped combustion volume. It is equipped with 

eight access ports which house an intake valve, exhaust valve, and a dynamic pressure 

transducer (Kistler 6001 quartz dynamic transducer with a 5010B Charge Amplifier), 

with the remaining ports holding blank access ports for future instrumentation. There are 

six window ports (102 mm diameter) that contain various assemblies as required for 

testing including sapphire windows, injector windows including diesel both piezoelectric 

or solenoid based, gasoline direct injection, or urea injectors, ignition windows for spark 

plugs with dual fans (Nesbitt et al. 2010) or dual electrodes with a single fan, or blank 

plug windows. Additionally, there exists a rate of injection window fixture for 

quantifying injection profiles and mass flow rates (Johnson et al. 2010). The setup in this 

study utilized three sapphire windows to provide access for optical diagnostics, a diesel 

fuel injector window, a dual-electrode single fan window for thermodynamic state 

generation, and a blank plug window. Refer to Figure 3.1 for details on the CV 

components as configured for the work discussed here.  
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Figure 3.1: External view of the CV in the AFCL facility (Left); Internal view of the 

CV (Right). 

Various subsystems are required for combustion vessel operation. One key system is a 

gas system with these panels shown in Figure 3.1, which enable production of gaseous 

mixtures required for the various ambient compositions under study. Other key 

subsystems are a spark ignition system for igniting combustible mixtures, a fuel injection 

system for supplying liquid fuel to the vessel including fuel system (gasoline or diesel) 

and injector driver (solenoid or piezoelectric), optical diagnostics to provide information 

on spray or combustion characteristics of interest, and a control, monitoring and data 

acquisition system for test operation.  

 The combustion vessel is electrically heated using 16 total cartridge heaters on 

two faces of the combustion vessel (twelve 500 W heaters, four 750 W heaters, 

Chromalox, controlled based on temperature feedback), to either 100 or 180°C depending 

on test conditions. This electrical heating of the vessel is required to ensure the vessel 

seals for testing, with there being seals on each window and access port, consisting of a c-

seal and o-ring.  

The combustion vessel can replicate the thermodynamic state (including pressure, 

temperature, and composition) of the charge gases in diesel engines via a preburn 

procedure. The preburn mixture is composed of acetylene (C2H2), hydrogen (H2), oxygen 

(O2) and nitrogen (N2). By varying the initial mixture composition a wide range of 

ambient oxygen environments can be achieved post-preburn with oxygen concentrations 

of 0 to 21%, simulating vaporizing only environments (0% oxygen) to enable the study of 

spray characteristics to combustion in air (21% oxygen) along with a range of EGR levels 

characteristic of conventional internal combustion engines by varying the oxygen 

concentration. The general relationships for mixture composition, for oxygen 

concentrations greater than 0%, is provided in equation (50), defining species mole 

fractions, where 𝑃𝑂2  is the desired percentage of oxygen post preburn (ranging from 1 to 

21) (Sandia ECN 2010).  

 

C2H2 =  0.03 +
0.02 ∗ �21 − PO2�

21
 

H2 = 0.005 

O2 = 0.0825 + 0.0096PO2 +
0.001

2100
�PO2�2

 

N2 = 0.883 − 0.0095PO2 − 0.001

2100
�PO2�2

 

(50) 

The above equations are used for determining mixture composition for 1 to 21% oxygen 

mixtures. For the 0% oxygen environment, the mixture has been modified to facilitate 
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more complete combustion by the addition of excess hydrogen to the mixture thereby 

elevating the peak preburn combustion temperature. The process and support for mixture 

modification will be discussed in detail in Chapter 4.4. The mixture used for the creation 

of a 0% oxygen environment for vaporizing spray studies is 0.0309 C2H2, 0.0155 H2, 

0.089 O2 and 0.865 N2, on a mole fraction basis.   

The ambient preburn mixtures are created using partial pressure mixing of 

component gases, with C2H2 first, H2 second, N2 third, and finally a 40% O2 / 60% N2 

mixture to complete the fill, with the O2/N2 mixture being used in place of pure oxygen 

for safety. This mixture is produced and stored in a 10 L mixing vessel typically filled to 

5.5 MPa (800 psi) yielding mixtures for tens to hundreds of tests dependent upon test 

(CV fill pressure / density) conditions. The mixing vessel contains a floating piston which 

separates the mixed gases (on the top side of the mixing vessel) from nitrogen (on the 

bottom side of the mixing vessel). This separation is provided to enable the use of 

nitrogen to push the piston up to flow gases from the mixing vessel to the combustion 

vessel as the mixture is consumed and the mixing vessel pressure falls below the required 

combustion vessel fill pressure. This is possible since there is still enough gas to fill the 

combustion vessel based on the volume differential between the two vessels (10 L mixing 

vessel, 1.1 L combustion vessel).  

The creation of the mixture is handled remotely using the process control system 

which automatically mixes the gases and ensures gas stabilization before continuing 

(Nesbitt 2008). Pressures are monitored through the entire fill process, using a pressure 

transducer in the mixed gas line to the mixing vessel, with the mixing vessel top valve 

being open and therefore this transducer reads mixing vessel pressure. Thermocouples are 

also on the mixing vessel and gas lines to the mixing vessel (mixed gas and nitrogen) and 

therefore temperatures are also monitored during mixing to ensure no unintended 

autoignition occurs due to the flammable nature of the mixture. Stabilization is ensured 

by filling with the component gas to the desired partial pressure, within ±2%, and waiting 

for 5 minutes with pressure being monitored to ensure there is no drop in pressure of the 

mixing vessel. If there was a drop in mixing vessel pressure this would signify that the 

piston in the mixing vessel moved (i.e. the mixing vessel mixed gas side volume was less 

than the expected 10 L) and this would yield an error in the mixed gas composition.  

Before the start of mixing, a purge procedure is executed in the mixing vessel 

using acetylene in the mixed gas side of the mixing vessel with nitrogen in the bottom of 

the mixing vessel to ensure the mixing vessel is emptied. This purge procedure moves the 

floating piston in the MV to push out all leftover gases prior to filling. During acetylene 

filling, the nitrogen side of the MV remains open to ensure the piston is pushed 

completely down before proceeding with the remainder of the fill to provide the correct 

mixture composition. Mixing is a slow process, taking typically two hours, which is 

required to ensure the gases are appropriately mixed and that the piston has reached the 

bottom of the vessel to ensure correct gas composition.  

For testing, the CV is filled with the preburn mixture to the desired fill pressure, 

which defines the density conditions of the study, computed via the ideal gas law as 

combustion vessel temperature and mixture molecular weight are also known. This initial 

fill process is undertaken by the control system software. This involves execution of a 

script, a programmed sequence of steps including valve operation, pressure monitoring, 
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etc., which purges the CV once with nitrogen, twice with mixed gas, and then it finally 

completes the fill procedure to the setpoint pressure. When the CV fill with the mixture is 

complete the intake valve is closed yielding a constant volume system and the chamber 

mixing fan (refer to Figure 3.1) is turned on to 7,000 rpm to ensure the gases are well-

mixed. The mixing fan is run during the entire preburn and fuel injection event to ensure 

a uniform mixture; with fan velocities being orders of magnitude less than injected spray 

velocities. The test is initiated in the control system by spark ignition of the mixture using 

the dual in-chamber electrodes (refer to Figure 3.1) either half a second or one second 

after the intake valve is closed, depending on the user programmed test conditions. This 

time delay is used to ensure the mixture is well mixed at the time of ignition. Due to the 

premixed burn yielding a propagating flame as a result of the combustion event, the 

pressure and temperature rise inside the CV with the product gases then cooling due to 

heat transfer to the cooler vessel walls, termed the cool-down stage of the preburn. 

During the cool-down phase the CV pressure is monitored using a dynamic in-chamber 

pressure transducer (located in a CV access port, refer to Figure 3.1) and at the 

predetermined trigger pressure (corresponding to the desired gas temperature at injection 

calculated from constant density conditions) fuel injection is triggered along with 

corresponding diagnostics. High speed data, at 100 kHz, is logged from the time the test 

starts for a user defined length, which is typically three seconds. Logged analog signals 

include chamber pressure, fuel pressure, trigger signal timing, and others as required. 

This data acquisition system interfaces with the process and control software to 

coordinate data acquisition, and trigger signals for injection and ignition.   

An example of this full test procedure, including the premixed burn, cool-down 

and injection event, is shown in Figure 3.2.  

 
Figure 3.2: Temperature – pressure time plot showing the preburn including 

premixed burn and cool down along with diesel combustion event. Temperature is 

that of the bulk gas conditions. 

For this test the CV was filled with a preburn mixture to create 21% O2 post preburn to a 

pressure of 45 bar (bulk gas density of 34.8 kg/m
3
) reaching a peak pressure of 180 bar 

and bulk gas temperature of 1831 K at 0.64 seconds at the completion of the premixed 



65 

burn. As will be discussed, the combustion vessel, due to boundary layers, has 

temperature gradients inside leading to bulk and core gas conditions. Core gas conditions 

exist in the central region of the combustion vessel where fuel is injected, with the bulk 

gas conditions representing the entire combustion vessel considering the cooler boundary 

layers. The cool-down stage is next with this period behaving with a characteristic 

exponential decay in pressure. At the target temperature (1100 K) for fuel injection, as 

determined from pressure and the ideal gas law, at 1.6 seconds, the fuel injection is 

triggered along with image acquisition and illumination (flashlamp) to be synchronized 

with the fuel injection event.   

 The nature of the combustion vessel is such that various crevice volumes and 

boundary layers exist which lead to the existence of temperature gradients inside the 

vessel. These non-uniformities and gradients are present despite the use of a mixing fan 

inside the combustion vessel to mix the gases. This includes the presence of a ‘core’ 

central region of the combustion vessel which is the region of best temperature 

uniformity in regards to mean temperatures and is the location where the gases mix with 

the injected fuel (Naber and Siebers 1996).This core gas temperature is higher than the 

bulk (entire CV region) gas temperature due to the cooler and higher density gases which 

exist in the boundary layers and crevice volumes. A relation is provided for calculating 

core gas conditions from that of the bulk gas as given in equation (51) (Naber and Siebers 

1996; Siebers 1998).  

 
TCoreTBulk = 1 + a ∗ �1 − TWallTBulk� + b ∗ �TBulkTWall − 1� (51) 

This relationship requires knowledge of the wall temperature, Twall, which is the 

heated CV temperature in K (373 or 453 K depending on test conditions), the bulk gas 

temperature, Tbulk, as calculated from the chamber pressure history and initial density, and 

two constants, a and b, which are related to the combustion vessel and represent the 

boundary layers. More specifically, the constant a corresponds to the boundary layer 

thickness and is a function of density, and b represents the ratio of the chamber crevice 

volume to the total chamber volume. The precise constant relationships for the 

combustion vessel are unknown so they are currently approximated using relationships 

provided by Sandia National Laboratory as the two combustion vessels are similar in 

design. These relationships are defined in equation (52).  

 a = 0.0406 ∗ ρbulk
20.28

 𝑏 = 0.026 
(52) 

To undertake analysis of the bulk and core gas conditions, including application 

of equations (51) and (52), CV pressure data is used. CV fill pressure enables calculation 

of the bulk gas density via the ideal gas law as the initial wall temperature and mixture 

molecular weight are known. Next, this bulk gas density is used to calculate the bulk 

temperature at injection since pressure is known at this point and bulk gas density is 

assumed to be constant during the test. Core gas temperature is then calculated from 

equation (51). Finally, core gas density is calculated using the measured CV pressure at 

the time of injection in conjunction with the calculated value for the core gas 

temperature.   

The lean preburn procedure is monitored in the control room via a low-speed 

thirty frames per second movie camera with a sample set of images shown in Figure 3.3. 
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This preburn environment is for a fill pressure of 16.5 bar at 453 K (12.6 kg/m
3 

density) 

to yield 2% oxygen post preburn with the combustion vessel mixing fan on.   

 
Figure 3.3: Preburn propagation example for a mixture yielding 2% oxygen post 

preburn. Time after spark dwell is given on each image showing the transition from 

a laminar to turbulent flame propagating through the combustion chamber. Bulk 

charge-gas density of 12.6 kg/m
3
, CV temperature of 453 K. Images acquired with 

low-speed (30 frames per second) monitoring camera, Samsung SCC-B2311. 

In the first image of the figure, the spark discharge can be seen, evidenced by the two 

bright circles at the electrodes (refer to Figure 3.1 for electrode placement in the 

combustion vessel). This spark discharge initiates the combustion of the premixed charge 

gases, being premixed as the fuel and charge gases are mixed before entering the 

combustion chamber. As the time after spark dwell increases, the flame propagates 

through the combustion chamber, in a turbulent manner. This turbulent flow is a result of 

the combustion vessel fan, which yields a faster combustion event, as well as a slightly 

larger pressure rise (ratio of peak to fill pressure) due to better charge gas mixing and 

reduced heat transfer to the cooler vessel walls when compared to cases run without the 

mixing fan.  

There are instances when the preburn procedure is not used for thermodynamic 

state generation for example, nonvaporizing tests at a lower temperature, below 453 K. 

Under these conditions nitrogen is used as the ambient gas with the CV at the electrically 

heated CV temperature. Fill pressure of the CV with nitrogen defines the density as 

calculated with the ideal gas law, with temperature and molecular weight also being 

known. The experimental test procedure used is modified and undertaken manually. The 

CV is filled with nitrogen, the intake valve is closed, and fuel injection and imaging are 

triggered, still in a synchronized manner. Data is logged for a three second period when 

started by the user. After the test is complete, two manual purges of the CV with nitrogen 

are performed to prepare for the next test.  

3.2. Gas System 
The combustion vessel relies on the aforementioned preburn procedure for 

thermodynamic state generation. To accomplish this gas mixing, a gas delivery and 

metering system is required, with gases being mixed in a 10 L mixing vessel (Autoclave 

Engineers) used for preburn mixture generation, as shown in Figure 3.4.  
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Figure 3.4: Figure A - Gas system for mixture preparation. Figure B – 10 L mixing 

vessel.  

This system is a versatile seven-gas mixing system, developed and manufactured by 

Airgas, which enables switching of gases depending upon the required mixture for study. 

The gases used to create the preburn mixture flow from gas cylinders from the specially 

designed gas room into the gas mixing panel, and are then filled into the 10 L mixing 

vessel (Figure 3.4) via metered partial pressure filling. As acetylene and hydrogen are 

small quantities of fuel relative to the oxygen and nitrogen levels (refer to equation (50)), 

they are filled using a low pressure transducer (Wika model WU-10, 4 bar pressure limit) 

to ensure the most accurate filling, with an accuracy of less than 1% of the span, or 0.04 

bar. The nitrogen and oxygen gases are filled using a 160 bar pressure transducer (Wika 

model WU-10) with an accuracy of less than 0.5% of the span, or 0.8 bar. After the 

mixing vessel is filled with acetylene, the required partial pressures of the remaining 

gases are recalculated in the software based on the actual acetylene fill pressure to ensure 

the most accurate mixture. The mixing vessel includes a floating piston which separates 

the mixture in the top portion of the mixing vessel relative to the bottom portion of 

nitrogen. This setup enables the use of nitrogen to pressurize the mixture to ensure the 

CV can be filled to a high enough pressure to match the desired density conditions for 

study, independent of the pressure of gases in the mixing vessel, taking advantage of the 

volume difference between the CV (1.1 L) and the mixing vessel (10 L).  

Each gas has its own fill circuit on this panel equipped with a slow and fast fill 

unit to ensure controlled and regulated mixing vessel filling, which produces mixtures 

with a 2% accuracy based on settings in the control system for allowed partial pressure 

ranges. The low pressure transducer provides improved accuracy for the small quantities 

of fuel added to the mixing vessel, which assists in proving the correct mixture. 

Increasing the mixture pressure will improve the accuracy of the mixture as a larger 

quantity of gas is added. The upper pressure limit is constrained by the allowable 

pressure of acetylene based on its stability limit of 212 kPa. 

 In the current study, acetylene, hydrogen, oxygen, and nitrogen gases are used but 

the gas system is also equipped with a circuit for methane / ethylene, carbon dioxide, 

carbon monoxide, and others as defined by the CGA gas cylinder fittings. The system 

versatility and customization enables creation of various gaseous mixtures for a range of 

desired ambient compositions for study in the combustion vessel. 
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3.2.1. Operating Regime 
The combustion vessel is a flexible test apparatus as it enables generation of an 

extremely wide range of ambient conditions replicating those found in conventional 

engines while also enabling achievement of conditions that incorporate technological 

engine advancements and alternative combustion strategies. The attainable CV operating 

regime is shown in Figure 3.5 and is based on the current CV preburn mixture.  

 
Figure 3.5: CV operating regime including comparison to engine operating regions 

and critical fuel points. Figure reproduced with permission from Sam Johnson 

(Refer to appendix 12.1.3).   

Several key observations can be made from the above figure. First, the lower temperature 

limit is defined by the minimum heated combustion vessel temperature while still 

ensuring sealing of the vessel for testing. The pressure limit boundary on the upper end 

(350 bar) is based on mechanical design limits of the combustion vessel. The blacked out 

regions not attainable in the CV with the current preburn are based on system limitations 

in regards to maximum cartridge heater temperature (453 K) and preburn achieved 

temperatures and pressures. The upper temperature limit is governed by the preburn 

procedure. The resulting chamber pressure and temperature from the preburn are limited 

by the premixture composition including combustion limits of hydrogen and acetylene as 

well as experimental pressure and temperature conditions for the preburn. Acetylene and 

hydrogen levels in the mixture are kept small to stay near the lean flammability limit 

(equivalence ratio of 0.19 and 0.14 for acetylene and hydrogen respectively (Turns 

2000)) to ensure pressure and temperature operational limits of the vessel are not 

exceeded, and also are used to produce carbon dioxide and water levels which are 

representative of engine operation. Included are curves for a naturally aspirated and a 10 

bar boosted engine, showing the wide span of engine conditions that the combustion 

vessel can replicate using the preburn procedure. Also included in the figure are fuel 

critical properties of temperature and pressure. Above these conditions, the fuels will 

only exist in the vapor phase.  

 Despite these regions of limitation, the combustion vessel is able to effectively 

replicate a wide range of temperature and pressure conditions, including those 

representative of current and advanced technology engines, while exhibiting the unique 

ability to produce a broader set of temperature and pressure conditions which are under 
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study for novel technologies. This includes the transition from conventionally naturally 

aspirated engines to boosted engines, which run under higher pressure conditions, as 

shown in Figure 3.5. 

3.3. Control, Monitoring and Data 
Acquisition System 

The CV laboratory is remotely controlled and operated using a data acquisition 

and process control system from A&D Technology. The control, monitoring and data 

acquisition system (DAQ) consists of two main components. The first is the iTest 

software which interfaces with the hardware including relays, digital inputs and outputs, 

analog inputs and outputs, and temperature inputs, contained in the facility interface 

cabinet (FIC), which does process control of the CV laboratory. This software controls 

hardware and valves, runs preprogrammed user-defined scripts, which are essentially 

sequences of steps that perform a certain task, and monitors pressures and temperatures. 

The second key component is the ADX, AD5435, which is a high speed data acquisition 

system, acquiring analog data. These two systems communicate via Ethernet cables. An 

overview of the control and data acquisition system architecture is provided in Figure 3.6.  

 
Figure 3.6: Overview of the control and data acquisition system architecture.  

The individual components will be discussed in greater detail throughout this section.  

The process control in iTest uses a graphical based interface, as shown in Figure 

3.7.  

 
Figure 3.7: iTest low speed process control screen shot. Left panel shows gas panel 

layout for process control with manual control of valves with scripts for preburn 

mixture creation based on user inputs to the right panel. Pressure and temperature 

feedback is provided on this interface. 
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This software controls, operates, and monitors the facility using various relays, digital 

inputs and outputs, PWM triggers, analog inputs and outputs in the facility interface 

cabinet (FIC), to control air-operated solenoid valves, monitor temperatures, pressures, 

and valve states, as examples. The FIC is shown in Figure 3.8, along with the interface 

for high speed data acquisition (ADX) and triggering as will be discussed.  

 
Figure 3.8: Facility interface cabinet and additional hardware for the data 

acquisition and control system.  

The complete system consists of the process control software, iTest, which 

includes scripting of various procedures such as for producing preburn mixtures, filling 

the combustion vessel, running tests with appropriate triggers, and data acquisition. This 

low speed process control system is coupled with a high speed ADX software setup 

which sends out the necessary injection and ignition triggers, as well as logs all required 

data. The complete configuration for process control and data acquisition and system 

communication is shown in Figure 3.9, as defined for the current test setup.  

 
Figure 3.9: Data acquisition and process control diagram.  

Logged data signals in the ADX include the CV pressure trace, trigger signals (ignition 

and injection, pulse generator), fuel injection pressure, spark current, and any other 

signals of interest, with representative experimental data from testing showing logged 

data and corresponding trigger signals at appropriate timings in Figure 3.10. 
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Figure 3.10: ADX logged signals of CV pressure, triggers for ignition, injection and 

the pulse generator, spark current, and LaVision camera gate. Ignition triggered 1 

second after the procedure commences yielding the preburn pressure rise followed 

by cool down until the desired pressure is reached, injection is triggered (2300 ms).  

The combustion vessel is filled to the desired pressure, and at 1000 ms after the start of 

the test, the 5 TTL pulses for ignition occur, with spark current being measured. This 

results in a premixed burn and subsequent cool-down phase. The pressure is monitored 

during the cool-down, with the injection trigger signal being sent at the predetermined 

set-point pressure, around 2300 ms in the above figure. This injection event is 

synchronized with image acquisition.  

For test operation the iTest system sends the ignition trigger, 5 TTL signals of 

amplitude 5 volts to the spark system, which discharges 5 sparks of 5 A peak current, 6 

ms dwell time (see Figure 3.11). The spark current is measured with a Fluke i200 S 

current clamp placed on the +12 V lead from the power supply to the ignition coil. The 

preburn mixture typically begins combusting on the second or third spark. This preburn 

combustion event results in a pressure rise to a peak pressure after which the pressure 

falls and the temperature cools due to heat transfer.  

 
Figure 3.11: ADX logged signals of spark current, CV pressure, and ignition trigger. 

The ignition trigger is 5 TTL pulses which cause the ignition coils to charge and 

discharge five times to ensure ignition of the preburn mixture. The first ignition 

trigger is sent 1 second after the procedure begins.  
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At the desired pressure during the cool-down, which is a predetermined input into 

the user interface, the iTest system sends a 5 V TTL trigger signal of 1 ms duration to a 

pulse generator. This pressure input is determined by the user, as it corresponds to a 

charge gas temperature, calculated using the ideal gas law with known fill properties (and 

therefore known density). The control system continuously monitors pressure during the 

cool down, starting from a user defined enable pressure which must be 2 bar (30 psi) 

larger than the desired trigger pressure, sending the trigger when the setpoint pressure is 

reached. This pulse generator (Stanford Research Systems DG645), with nanosecond 

timing resolution, triggers the fuel injector, flashlamp, and cameras, as well as sends a 

signal to the oscilloscope and ADX DAQ for synching data logging between the ADX 

and the oscilloscope which logs injector driver monitoring signals, as shown in Figure 

3.12.  

 
Figure 3.12: ADX logged signals of pressure, injection and pulse generator trigger 

along with LaVision camera gate. The injection trigger is sent at the desired 

pressure during the cool down phase.  

The injection trigger in the figure above is the signal that is sent at the setpoint injection 

pressure, to trigger the pulse generator, which then triggers fuel injection and image 

acquisition to ensure synchronized events. The timing resolution of the PWM’s are only 

0.2 ms, whereas the pulse generator can provide nanosecond resolution, with this more 

precise time control required for synchronizing imaging with fuel injection, and therefore 

why the pulse generator is used for the injection triggering.  

There is a delay between the trigger signal sent from iTest and the signals from 

the pulse generator for the cameras and injection event. The flashlamp is triggered with 

the pulse generator at time 0 seconds, with the injector delayed 3 ms and camera delayed 

3.145 ms relative to the flashlamp to account for its warm-up time to ensure steady state 

illumination during the event of interest. This is depicted in the timing diagram in Figure 

3.13.  



73 

 
Figure 3.13: Timing diagram for fuel injection study including camera and 

flashlamp synchronization.  

The triggers are delayed to account for not only the flashlamp rise time, but also the delay 

in fuel output from the injector relative to the driver receiving the trigger. The camera 

acquires images before fuel injection starts to provide a background image for locating 

the injector tip to reference spray parameters to, as will be discussed in the image 

processing section (Chapter 5.4).  

All acquired data from the ADX and oscilloscope is post-processed using user-

created Matlab processing routines. Logged data from the ADX is in a .BDF format and 

is converted in Matlab to a .mat file, which involves reading in the .BDF file format, 

converting it to array format with each channel representing its own array and deleting 

repeated data (every 5 ms 0.2 ms of data on the ADX is repeated). Next, based on a user 

defined text file which has information on channels used in the current data logging, data 

is deleted from channels which were not used in testing and channels are renamed based 

on user defined variables to facilitate data analysis and post-processing. The remaining 

data with correct variable names is saved into a .mat file to enable further processing and 

analysis to be undertaken including converting voltage signals (format of logged data) to 

the appropriate units for the signal such as, converting spark currents to Amps, 

determining preburn characteristics including pressure rise and characteristic exponential 

decay, and characterizing conditions at injection as examples. These processing programs 

are provided in the Appendix section 12.4.5.  

3.4. Diesel Fuel System 
The fuel system used in the current study is a high pressure system designed and 

manufactured by Hydraulics International Inc (Johnson 2009). This system is capable of 

producing output fuel pressures to 4140 bar (60,000 psi), higher than the upper limit in 

current production technology diesel engines and injectors. However, this high-pressure 

capability enables characterization of high pressure diesel sprays and combustion which 

are of interest as a potential solution for diesel emission control of PM and NOx to meet 

stringent emission regulations. Higher injection pressures can provide improved 

atomization and fuel-air mixing, enabling increased EGR, to simultaneously reduce PM 

and NOx (Fischer and Stein 2009). This fuel system utilizes an air operated pump which 

is supplied compressed air to boost fuel pressures to the desired output pressure as shown 

in Figure 3.14, with output fuel pressure controlled by regulation of the inlet air pressure.  
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Figure 3.14: High pressure air operated diesel fuel system.  

The system is multi–fuel compatible to incorporate a wide-range of fuels for study 

including diesel, biodiesel, gasoline, ethanol, methanol, dimethyl ether, and others. Fuel 

is drawn from the tank into the fuel pump, with this tank being provided a positive air 

pressure (2.4 bar). This fuel pump (Hydraulics International 5L-SD-600N) is air operated 

using compressed air and the air regulator is set at one-six hundredth of the desired 

output fuel pressure in psi. The high pressure fuel is stored in two 100 mL accumulators 

before exiting the system via the high pressure fuel line to the injector. There are two 

high pressure transducers which enable monitoring of the systems fuel pressure in the 

iTest control system to verify that injection will occur at the desired pressure conditions; 

a pressure transducer is also installed in a ‘T’ after the high pressure fuel system outlet 

but prior to the pressurized fuel entering the injector with this pressure logged in the high 

speed data acquisition system (ADX).  This fuel pressure transducer is an American 

Sensor Technologies model AST47HPX60000P4A0123, with a 4140 bar (60,000 psig) 

pressure limit.  

 The fuel also undergoes filtering in the system to minimize contaminants reaching 

the injector which can cause operational problems including plugged holes or the injector 

being stuck open. These include filtering the fuel upon filling of the fuel tank (Mr. Funnel 

F1C Filter), and two additional filters in the fuel system. The first is a low-pressure 40 

micron in-line filter (Swagelok B-8TF2-40) between the fuel tank and low pressure inlet 

to the fuel pump, with the second being a 10 micron in-line filter (High Pressure 

Equipment 60F-51HF4-10) between the high pressure outlet to the fuel pump and the two 

fuel accumulators. These filter elements can be cleaned or replaced as they become 

contaminated.  

There is a separate low pressure fuel return system that provides the 10 bar back 

pressure necessary for the piezoelectric injector operation, as shown in Figure 3.15.  

 
Figure 3.15: Low pressure fuel system providing injector back pressure. 
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This system takes fuel from the storage tank at low pressure (less than 2.4 bar) and then 

passes it through a 12 V operated fuel pump (Walbro GSL392), which is controlled via a 

solid state relay in the control software, that increases the fuel pressure to 10 bar. If 

desired, the fuel pressure can be regulated down to lower back pressures depending on 

the required back pressure for the fuel injector using a bypass regulator (Weldon Racing 

A2040-281-A-200). Prior to an injection event, the relay is turned on to power the pump 

which provides the back pressure with the relay and pump being turned off after the 

injection event. This low pressure system is also equipped with a return to the low 

pressure fuel tank from a bypass off the regulator, with this fuel being regulated down to 

2.4 bar (Goreg PR11A11A3E111) before returning to the low pressure fuel tank. For the 

current set of studies, the injection back pressure is kept constant at 10 bar.  

3.4.1. Diesel Fuel Properties 
The fuel used in this testing is ultra-low sulfur diesel (ULSD) fuel, number 2. The 

specifications for the fuel are provided in Table 3.1. These properties are determined 

based on externally performed fuel property analysis.   

Table 3.1 

Fuel property specifications as obtained from experimental testing. 
a
Paragon 

Laboratories Inc. Fuel Testing, December 2010, Report ID: 176559-861958. 
b
Cummins Fuel Property Testing, September 2010. 

Property (unit) Specification 

Carbon (Weight %) 86.94
a 

Hydrogen (Weight %) 13.06
a 

Sulfur (ppm) 7
b
 

Water (ppm) 92
b
 

API Gravity at 289 K (g/mL) 0.8457
a
 

Specific Gravity at 289 K 0.8465
a
 

Gross Heating Value (MJ/kg) 45.578
a
 

Net Heating Value (MJ/kg) 42.806
a
 

Cetane Index 40
b
 

Viscosity at 313 K (cSt) 2.3
b
 

Distillation  

Initial Boiling Point (°F) 441
b
 

0.1 (K) 468
b
 

0.5 (K) 518
b
 

0.9 (K) 576
b
 

Final Boiling Point (K) 613
b
 

3.4.2. Piezoelectric Injector 
The injector used in the current study is a Bosch production (automotive 

application) high-pressure common rail piezoelectric fuel injector with a pressure limit of 

2000 bar as shown in Figure 3.16.  
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Figure 3.16: Piezoelectric injector used in the current study with the nozzle tip 

showing the injector nozzle holes in the image on the right. 

Key injector characteristics of this mini-sac hydroground nozzle are that it has 8 holes, 

with each hole having a mean diameter of 145 µm and 1 mm hole length providing a 

length to diameter ratio of 6.9. The enclosed spray angle is 150 degrees, as shown in 

Figure 3.17. Plumes are also labeled in this figure, with this numbering being used for 

discussions on plume to plume variations in Chapter 6. 

 
Figure 3.17: Injector orientation properties. Plume labeling is also provided to 

reference the spray plumes in all discussions. 

These injectors (piezoelectric) are a newer technology compared to conventional 

solenoid diesel injectors found in current diesel engines. Solenoid injectors utilize a high 

current to initially open the needle to allow fuel to flow through the injector and a 

reduced current to keep the electromagnet open (Lee et al. 2006), defined as the peak and 

hold currents, respectively. Hence, current must be constantly applied during the injection 

event resulting in large power consumption. Piezoelectric injectors rely on an electric 

charge to change the dimensions of the piezoelectric crystals with current only being 

applied at the start of the injection event thereby reducing the overall duration of power 

consumption.   

Piezoelectric injectors have many unique and beneficial characteristics attributed 

to the piezoelectric material properties, motivating their use to improve current diesel 

engine technology due to their fast response timings which helps to provide low smoke, 

NOx, and HC emissions due to more precise fuel control (Wersing 2002). These materials 

exhibit the unique ability of being able to develop electrical charge as the result of 
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mechanical stress by converting mechanical energy into electrical energy and the 

converse, lending these to several applications including motors, igniters, sensors, 

transducers, fuel injectors, and others (Setter 2002; Wersing 2002). However, 

piezoelectric materials have small deformations requiring high driving fields achieved 

through the use of high voltage power supplies which can sometimes require voltage in 

excess of 200 V (Wersing 2002). By developing a multilayer ceramic, which is several 

very thin electrode layers, these disadvantages can be partially counteracted to enable the 

use of piezoelectric materials for diesel fuel injectors. To summarize the operating 

principle of a piezoelectric injector, an electric voltage is applied to the actuator causing 

the actuator to expand thereby lifting the valve off its seat. This allows fuel to flow into 

the low pressure drain from the control chamber resulting in a drop in pressure above the 

control piston. The pressure on the lower end of the nozzle is constant so the resulting 

hydraulic force on the needle causes the needle to be lifted off of its seat opening the 

nozzle outlets allowing fuel to flow into the combustion chamber at high pressures (Mock 

and Lubitz 2008).  

Additional images of a disassembled piezoelectric injector are shown in Figure 

3.18, to provide a further understanding of injector characteristics and composition.  

 
Figure 3.18: Piezoelectric injector, disassembled, showing all components that 

comprise the injector.  

Key components are the needle which is lifted to enable fuel to flow out of the injector 

into the combustion chamber, the nozzle which possesses the holes for the injection 

event, the piezoelectric actuator which controls the control valve and needle motion, 

along with the fuel inlets and returns, and nozzle guide. Additional views of the 

components are provided in Figure 3.19.  
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Figure 3.19: Additional piezoelectric injector assembly pictures. 

Image A is a view looking down the main body of the injector towards the fuel inlet / 

return location, also showing the piezoelectric module. Image B provides a look at the 

base of the main injector body showing placement of the piezoelectric actuator and 

needle guide. Image C shows the injector needle and spring, along with the needle 

guidance, the black discoloration on the tip of the needle is due to the preburn 

combustion gases. Image D provides a view into the end of the injector towards the 

nozzle tip showing the location of the nozzle guide. Image E shows a view of the nozzle 

removed from the end of the injector providing indication of the location of the nozzle 

guides. From these images, the intricate nature of piezoelectric injectors is portrayed 

along with the ability to interchange nozzles of different geometries, including number of 

holes, hole rows, hole length, nozzle diameter, and k-factor (conicity) of the nozzle as 

examples, which are known to govern spray and combustion characteristics. K-factor is a 

nozzle property which is defined as the difference of the outer to inner diameter of the 

nozzle hole divided by the hole length.  

3.4.2.1. Injector Characteristics Influencing Spray 

Behavior 
As will be discussed in Chapter 6, there exist plume to plume variations of spray 

characteristics from the multi-hole injector, which are most pronounced and consistent in 

the vaporizing spray tests based on averaging over several data points to remove random 

noise and fluctuations. Discussed here are injector characteristics which may cause these 

plume to plume trends to provide background information on injector characteristics to 

prepare the reader for the discussions in Chapter 6.  

Injectors are known to experience eccentric needle movement during the start of 

the injection event as the needle lifts off of its seat. This results in differences in pressure 

to each of the holes of the multi-hole injector, which causes the needle to lift in a non-

uniform way, which is translated to downstream spray characteristics (Arcoumanis et al. 

1998; Karimi 2007; Powell et al. 2011). This needle movement is observed at the start of 

injection and does not translate to steady state plume trends as will be shown under the 

repeat tests in the ILASS paper (section 6.2.1) and is also shown here in Figure 3.20 for a 

set of vaporizing (0% Oxygen) spray tests.  
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Figure 3.20: Start of injection spray characteristics for repeat tests at 355 K fuel 

temperature. 34.8 kg/m
3
 bulk charge-gas density, 1100 K bulk charge gas 

temperature, 2000 bar injection pressure.  

Injection was delayed from holes 1, 7 and 8 (labeled per Figure 3.17) relative to the 

others, and had reduced initial penetration; however, as will be discussed in Chapter 6.2, 

this did not translate to steady state characteristics and is not an explanation for the plume 

to plume variations evident during that time region.  

Another potential cause is of plume to plume variations in differences in nozzle 

hole diameter, since an increase in hole diameter leads to a direct increase in liquid length 

(Siebers 1998). A significant difference in hole diameter is required to explain the 

magnitude of plume-to-plume variations seen in Chapter 6.2. Scanning electron 

microscope (SEM) images of the injector nozzle were acquired to understand actual 

injector hole diameters to determine if this was the cause of the plume-to-plume 

variations. Images from these SEM measurements are provided in Appendix 12.2. Two 

sets of SEM images were acquired since the first set showed a significantly reduced hole 

diameter (on the order of 30 µm) for hole two. It was expected that hole two would 

actually have one of the largest hole diameters based on vaporizing spray plume trends. 

Tests were repeated to verify whether the reduction in hole diameter was a real 

phenomenon and not solely an error in SEM magnification setting. These repeat tests did 

not show a significant difference in hole 2 diameter relative to the others, and this 

reduced hole diameter in set 1 was therefore attributed to an error in magnification setting 

(i.e. the magnification on the SEM was set lower than the expected 400X in the imaging 

program).  

Analysis was undertaken on the SEM images to characterize diameters of the hole 

using a curve fit procedure. As the SEM beam was not perfectly normal to the hole, a 

standard thresholding and boundary tracing procedure could not be undertaken due to 

differences in contrast along the spray edge, thereby requiring a modified procedure be 

used. Eight points of the hole edge were chosen by eye in the SEM image, in 

approximately 45 degree increments. These eight points were then curve fit with an 

ellipse (to account for the nozzle hole deviating from being perfectly circular), which 

defined the major and minor radii of the ellipse, as defined in Figure 3.21.  
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Figure 3.21: Curve fit methodology for nozzle hole, modeled as an ellipse.  

The equation was solved for a and b, by curve fitting to the eight user-defined (x, y) 

coordinates which defined the spray edge. Hole diameters, both along the minor axis 

(horizontal) and major axis (vertical), were determined by multiplying the respective radii 

by a factor of 2. A sample result of this procedure applied to the SEM images is shown in 

Figure 3.22.  

 
Figure 3.22: Ellipse curve fitting result to determine hole radius, shown for SEM 

image set 2, hole number 5. 

The SEM image shows that the hole is not perfectly circular or smooth (refer to the lower 

right portion of the spray hole in the above SEM image) which is an artifact of the 

manufacturing process, which will influence the downstream spray characteristics. In the 

figure, boundary points are the (x,y) coordinates determined by eye based on the SEM 

image, centroid, and curve fit.  As defined in the legend, the curve fit was based on the 

elliptical fit as discussed in Figure 3.21. From this particular ellipse curve fit, the 

horizontal diameter (2a) was 147.8 µm, and the vertical diameter (2b) was 141.6 µm, 

giving a mean diameter of 144.7 µm, with an eccentricity of 0.29, defining the elliptical 

nature of the hole. Eccentricity is defined as �1 − 𝑏2/𝑎2, and is equal to zero for a circle. 

Therefore, the increase in eccentricity from zero provides an indication of the extent of 

the non-circular nature of the nozzle hole. Tabulated results for hole diameter and 

eccentricity determined from image analysis for SEM images from test set 1 and 2 are 

provided in Table 3.2. 
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Table 3.2 

SEM image analysis results for hole diameter, test set 1 and 2. 

 Test Set 1 Test Set 2 

Plume 

Number 

Horizontal 

Dia 

(µm) 

Vertical 

Dia  

(µm) 

Mean 

Dia 

(µm) 

Eccentricity 

Horizontal 

Dia  

(µm) 

Vertical 

Dia  

(µm) 

Mean 

Dia  

(µm) 

Eccentricity 

1 144.4 142.4 143.4 0.17 149.5 143.3 146.4 0.29 

2 119.1 114.1 116.6 0.29 147.6 141.6 144.6 0.28 

3 143.8 138.0 140.9 0.28 151.3 141.6 146.5 0.35 

4 143.6 138.3 140.9 0.27 147.2 141.0 144.1 0.29 

5 142.2 139.2 140.7 0.20 147.8 141.6 144.7 0.29 

6 146.9 139.4 143.2 0.32 145.9 142.9 144.4 0.20 

7 147.6 140.9 144.2 0.30 146.2 140.8 143.5 0.27 

8 146.4 138.5 142.4 0.33 150.3 142.3 146.3 0.32 

Test set 1 exhibits a mean diameter of 139.0 µm, including the major outlier for plume 

number 2 as was previously discussed, with an average eccentricity of 0.27. Neglecting 

the hole 2 outlier, mean diameter increased to 142.2 µm with no change in eccentricity. 

For test set 2, the mean diameter was 145.1 µm and mean eccentricity 0.29. These 

diameters are close to the manufacture reported specifications of 140 µm hole diameter.  

A statistical analysis was undertaken to determine the significance of the 

differences between test sets and nozzle holes. There appears to be a systematic error 

between the two sets which could be attributed to a difference in scaling. A T-Test was 

undertaken to calculate the probability that two samples are from the same population, 

assuming they have the same mean. Data is considered for holes 1, 3-8 from test set 1 and 

test set 2 (neglecting the outlier hole 2 which was observed in test set 1). The T-Test is 

undertaken as having 2 tails (distribution), and a type 1 test is used which means it a 

paired or dependent test which was chosen since the same nozzle is used for the hole size 

measurements. The result of the T-test was 0.011 showing a statistically significant 

difference in the data sets because this result was less than 0.05. This statistically 

significant difference was likely attributed to the SEM setup measurement accuracy with 

the 400X resolution being within ±5% of the set magnification.  

Next individual hole diameters were compared for holes 1 and 3-8, again 

neglecting the hole 2 outlier, as shown in Figure 3.23.  

 
Figure 3.23: Test 2 versus test 1 mean diameter comparison.  

There is no trend or relationship between test 1 and test 2 diameters. Although, overall 

the two tests exhibited a statistically significant difference which was likely attributed to 

resolution of the magnification, the individual differences between holes did not exhibit 
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any conclusive relationship attributed to the scatter in the data. The mean diameter of set 

2 was chosen as representative of the actual hole diameter based on the lack of an outlier 

in this test set. This supported the conclusion that the mean diameter of all eight nozzle 

holes is 145.1 µm, with a standard deviation of 1.2 µm, which was less than the 

measurement repeatability since the measurement repeatability of the means for test 1 

and test 2 was 2.9 µm with no significance in the diameter variations. The hole to hole 

variations are minimal and not of significant enough magnitude to explain the overall 

plume to plume variation trends discussed in Chapter 6.2. 

Another potential cause of the spray plume to plume variations is hypothesized to 

be differences in internal fluid flow and geometry. Based on injector geometry, the flow 

of fuel into the injector is not symmetrically about all holes, rather, it is symmetric about 

holes 1 and 5 as shown in Figure 3.24.  

 
Figure 3.24: Injector fuel flow path.  

The fuel fills the injector from above hole 3, but because of the filling angle, the fuel 

could actually flow from hole 6 through 8 in preference depending on how the fuel flows 

around the needle (Graham 2011). Without further studies into the nozzle flow 

characteristics via detailed CFD modeling or advanced diagnostics to characterize 

geometry and flow, the exact flow path remains unknown. Holes 1 and 5 are symmetric 

about the fuel filling location and these holes consistently exhibit reduced liquid lengths 

relative to the others, as will be discussed in Chapter 6.2. Based on this limited 

knowledge of fuel filling and nozzle geometry, it is hypothesized that these internal 

nozzle asymmetries are the cause of the steady state liquid length variations.  

3.4.2.2. Piezoelectric Injector Driver 
The piezoelectric injector used in the current study is driven by an EFS IPoD 

injector driver which provides the necessary high voltage charge to the injector to deform 

the crystal and initiate the injection event. The driver has three operating current modes; 

peak-regulation, multi-peak regulation, and constant current, based on the current profile 

during the injection event. The current study utilized multi-peak regulation mode 

providing several current peaks during the initial charging time as well as during the 

discharge phase in order to match production operation current profiles. Defined input 
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parameters to the driver included peak current, current slope, and open and closing 

voltage as controlled via the interface in Figure 3.25.  

 
Figure 3.25: Piezoelectric injector driver interface. 

In addition to the user defined parameters, the driver interface provides feedback on the 

level of the high voltage power supply to ensure the system is correctly powered and also 

on the piezoelectric capacitance. The driver provides output monitoring signals of driving 

current and voltage, with typical signals shown in Figure 3.26 from an injection event, 

along with the fuel pressure for the injection event. 

 
Figure 3.26: Left figure: Fuel pressure trace top and current and voltage injector 

driver signals on bottom for the injection event. Time 0 microseconds corresponds 

to the start of electronic injector drive. Right figure provides a zoomed in look at the 

injector driver traces of current and voltage at the start of injection.  

From the figure, it is shown that the fuel injection pressure, measured at the high pressure 

fuel inlet to the fuel injector, does not drop until 1.2 ms after the injection event has 

commenced, for these particular test conditions. The driver monitoring traces show that 

there are multiple peaks in current, which increase the voltage, until the desired opening 

voltage is reached. Then the current is no longer applied until the TTL trigger is turned 

off at which time current is again applied in multiple peaks to deform the piezoelectric 

stacks and close the injector such that the voltage is set to the close voltage setpoint. This 

electric charge, achieved by the applied current, deforms the piezoelectric crystals to 

open or close the injector. Monitoring signals are recorded using a Yokogawa 

Oscilloscope DL 9040 at 200 µs / division time scale. These signals are output directly 
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from the driver and their magnitudes are reduced internal to the driver, and therefore 

measured voltage signals are multiplied by twenty and current by two to receive the 

actual driving voltage and current profiles in volts and amperes, respectively.  

The injection duration in regards to fueling is proportional to the length of the 

trigger signal used to fire the injector, i.e. the longer the trigger signal, the longer the fuel 

injection event. For the test shown in Figure 3.26, the electronic injector drive duration 

was 0.6 ms as defined by the length of the current signal from when the current signal 

first goes positive to when it first goes negative after the charging time. The actual fuel 

does not exit the injector until a delay after the electronic current drive starts which is 

0.245 ms later and a slight function of injection pressure and charge-gas conditions. 

There is a small delay between the trigger signal and start of current, of 0.002 ms. The 

physical fuel injection is longer than the commanded duration of 0.6 ms, being actually 

1.05 ms. The fuel injection duration can be related linearly to the trigger duration, as 

shown in Figure 3.27.  

 
Figure 3.27: Actual fuel injection duration relative to the trigger duration. Time in 

equation is in milliseconds.  

The linear relationship of trigger duration to actual fuel duration can be used to 

approximate injection durations relative to the length of the trigger signal acknowledging 

that actual injection duration does vary slightly due to repeatability and different ambient 

and injection conditions. There is a lower limit of 400 µs on the duration for triggering 

fuel injection to ensure voltage reaches the operating level and fuel is injected. Shorter 

duration triggers can be used and fuel will be injected, down to 250 µs, however, voltage 

will not reach the desired set-point for open voltage level under these shorter duration 

conditions.  

Extensive tuning was undertaken to match driver voltage and current profiles to 

production voltage and current profiles. The driver settings of current and voltage are a 

function of the injection pressure; as injection pressure increases, parameters of open 

voltage, peak current, and current slope all increase. The tuning process involved 

matching driver traces to those production driving profiles for the injection pressure 

range of 400 to 2000 bar in 200 bar increments. This involved extensive trial and error 

with parameter sweeps of peak current, open voltage, and current slope to yield the best 

match between the two driver traces over a wide range of injection pressures. This 

iterative driver trace matching led to data trends showing the optimum relationship 

between MTU and production driver parameters for each injection pressure over this 
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range. More specifically, the required setting for peak current is equal to the peak current 

from the production data minus a 1.7 A offset. The current slope for the MTU driver is 

symmetric in the rise and fall slopes and hence this is set to the average of the positive 

and negative current slope for the data which is being matched as production data has 

asymmetric positive and negative current slopes. Current of the production driver does 

not return to zero as is the case with the MTU driver which makes it difficult to match 

traces. Opening voltage is set equal to the average steady state value of the production 

driver trace. The voltage first peaks, then falls off to a steady state value, at which point 

the average value is calculated. The closing voltage is kept as a constant -1 V for all 

injection pressures based on production voltage profiles. Using these determined input 

parameters to match production driving profiles, quadratic curve fits were developed 

relating open voltage, peak current, and current slope as a function of injection pressure 

to determine driver settings for injection pressures where matching production driver 

traces are not available. These fits are shown in Figure 3.28 and were used in defining 

injector driver parameters as a function of injection pressure.  

 
Figure 3.28: Injector driver correlations for open voltage (A), peak current (B) and 

current slope (C) as a function of fuel injection pressure. 

The correlations are shown for fuel injection pressures up to 2000 bar since that is the 

pressure limit of the injector. A table of applied driver settings is provided in Table 3.3 

for tests undertaken in this study.  

Table 3.3 

Injector driver settings used in testing.  
Injection Pressure 

(Bar) 

Current 

(A) 

Open Voltage 

(V) 

Close Voltage 

(V) 

Current Peak 

(mA/us) 

1034 11.3 122.2 -1 2228 

1379 12.4 129.4 -1 2316 

2000 14.5 148.3 -1 2533 

Logged data signals from the fuel system into the high speed ADX include 

injection pressure from a high pressure transducer in a ‘T’ on the fuel system line (see 

Figure 3.29).  
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Figure 3.29: Fuel injector pressure transducer location relative to injector. 

Injector driver signals of current and voltage are recorded on an oscilloscope providing 

indication of the drive trace parameters, as well as electronic injection duration relative to 

the trigger signal. 

From extensive use of the driver, it is evidenced that the injector driving 

characteristics are not consistently repeatable. This is determined by comparison of 

voltage and current traces for identical driving conditions over repeated injection events.  

An example is shown in Figure 3.30, for injection into 14.7 kg/m
3
 charge-gas density 

nitrogen at 914 bar injection pressure for a 0.6 ms electronic trigger duration.  

 
Figure 3.30: Comparison of injector driver traces for identical injection conditions, 

spraying into 14.7 kg/m
3
 at 914 bar injection pressure, 0.6 ms trigger duration. 

The trigger duration is 0.6 ms providing 0.6 ms of signal to the injector driver as 

evidenced by the start of current at 0 ms until the current turns on again at 0.6 ms to 

deform the crystals back to their original state to end the injection event. There is a 

noticeable difference in steady state opening voltage between Test 1 and Test 2 which is 

further understood when looking at a zoomed in trace of the opening multi-peak current 

of the driver traces, as shown in Figure 3.31.  
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Figure 3.31: Zoomed in comparison of injector driver traces for identical injection 

conditions spraying into 14.7 kg/m
3
 at 914 bar injection pressure 0.6 ms trigger 

duration. 

In the zoomed-in representation of current and voltage there is an extra current peak seen 

for Test 2 relative to Test 1 resulting in an increase in voltage for Test 2 relative to Test 1. 

To determine if these differences in driver characteristics influence spray characteristics, 

the images acquired for each of these tests are compared as shown in Figure 3.32.  

 
Figure 3.32: Spray images at 14.7 kg/m

3
 nitrogen at 914 bar injection pressure 0.6 

ms trigger duration. Image is at 0.2 ms after start of injection (0.445 ms after state 

of current) comparing Test 1 and Test 2 injections where Test 2 has the extra 

current peak and larger driver voltage.  

Despite the increase in voltage and extra current peak for Test 2 there are not any 

substantial variations in macroscopic spray characteristics, as shown at 0.2 ms ASOI 

(0.445 ms after start of current (ASOC)) in the above figure, after the occurrence of the 

extra current peak. There are small variations in spray structure in the two images 

attributed to shot to shot injection variation and repeatability, but there are no significant 

differences in penetration or cone angle of the spray as a result of driver variations. This 

is further confirmed by external rate of injection (ROI) measurements which showed no 

significant change in injection rate shape with a change in driver voltage. Despite the 

variations in driver traces and the repeatability issues, these variations in current and 

voltage are not translated to macroscopic spray characteristics.  



88 

3.4.2.3. Rate of Injection Signal 
A rate of injection signal provides an indication of the mass fuel flow rate through 

the injector. Furthermore, this signal, relative to the current trace, provides information 

on the delay for the injector to open relative to when current is first applied. A rate of 

injection signal for the injector used in the current study is shown in Figure 3.33, for a 

2000 bar injection pressure and 1.2 ms electronic trigger duration.  

 
Figure 3.33: Rate of Injection signal for a 2000 bar injection using the production 8-

hole injector nozzle. Rate of injection is the total for all 8 spray plumes, dividing the 

signal by eight provides the average injection rate for a single hole. Reproduced 

with permission from Eric Kurtz (appendix 12.1.4). 

Shown in the above figure is the delay, of 110 µs, in the start of the injection rate, relative 

to the injector current. This is followed by a fast rise to the needle being fully lifted and 

therefore the injection rate is reaching a quasi-steady value. The injection rate does not 

show significant fluctuations during the entire injection event which rules out the 

injection rate as a cause of liquid length fluctuations (refer to Chapter 8). After the 

current turns off, there is a delay before the fuel spray is no longer being injected and the 

needle has returned back to the original position.  

 

3.4.2.4. Chiller for Fuel Temperature Control 
The combustion vessel is electrically heated via cartridge heaters to promote 

vessel sealing and provide an initial elevated temperature for the preburn procedure. 

Typically the vessel is heated to 453 K for combusting and vaporizing spray tests using 

the preburn procedure, but temperatures as low as 373 K were utilized for the nitrogen, 

nonvaporizing, spray studies. The heated combustion vessel results in elevated injector 

and fuel temperatures due to heat transfer from the stainless steel vessel to the injector 

window. However, the injector window has been designed to incorporate a cooling cup 

enabling cooling of the injector to lower temperatures relative to the electrically heated 

vessel temperatures. The cooling cup includes one-eighth inch diameter inlet and outlet 

lines where fluid is passed through the cooling cup to reduce the injector body 

temperature and the fuel temperature relative to the combustion vessel within the limits 

of the chiller unit. A model of the cooled injector window is shown in Figure 3.34.  
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Figure 3.34: A - Cooled injector window model. B – Cross section view of injector 

window model near injector tip showing temperature measurement location. 

Window edge information is removed from the images. Reproduced with permission 

from Chris Green (appendix 12.1.5).  

The cooled injector window also includes a hole for a thermocouple probe to enable 

temperature measurements of the inside of the window near the cooling cup to have an 

indication of achieved cooling during testing, shown in Figure 3.35.  Thermocouples 

were also installed to measure fluid temperature on the inlet and outlet of the chiller to 

provide an indication of inlet fluid temperature and outlet fluid temperature and hence 

heat removal.  

 
Figure 3.35: Thermocouple (TC) probe measurement locations.  

The thermocouples used are Omega Type J and are monitored in the iTest control 

software.  

The coolant used is a fifty-fifty mixture by volume of deionized water and 

ethylene glycol. The chiller is a Fisher Scientific IsoTemp3016D unit which has a 6L 
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bath, a pressure pump capable of 15 L/minute, a temperature range of -22 to 200°C, and 

an 800 W heater with 350 W cooling capacity at 20°C. The chiller has one-fourth inch 

inlet and outlet lines which pass the fluid into the injector window cooling cup and return 

the fluid to the chiller bath to remove heat and cool the injector. The coolant temperature 

is set on the chiller control unit with a minimum setpoint temperature of -22°C used to 

provide maximum cooling. To quantify the cooling effect on injector tip (fuel) 

temperature relative to the CV, temperature mapping was undertaken. This temperature 

mapping involves a chiller setpoint temperature sweep and monitoring of the chiller inlet 

and outlet temperatures at the injector coolant window inlet and outlet, injector window, 

and injector tip using the setup shown in Figure 3.36.  

 
Figure 3.36: Injector tip temperature measurement setup.  

To measure the injector tip temperature the CV window opposite the injector is removed 

and a Type J thermocouple probe is touched to the tip of the injector. This tip temperature 

cannot be measured during testing since a window must be removed and therefore a 

temperature map is prepared to predict the tip temperature under the given test conditions 

based on coolant setpoint and CV heated temperatures.  

A temperature map is prepared by heating the combustion vessel to the desired 

temperature and sweeping chiller setpoint temperature in 10°C increments letting 

temperatures stabilize and then recording tip, window, and coolant inlet and outlet 

temperatures over the range from -22 to 30°C setpoint temperature. The upper limit on 

setpoint temperature is 35°C, since above this temperature the chiller can only operate in 

heating mode and therefore it will not provide the required injector cooling. This data is 

shown in Table 3.4 and is used to produce a temperature map with data extrapolated to a 

wider heated CV temperature than that measured.  
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Table 3.4 

Temperature mapping data.  

CV 

Temperature 

(°C) 

Setpoint 

Temperature 

(°C) 

Cooling Cup 

Inlet 

Temperature 

(°C) 

Cooling Cup 

Outlet 

Temperature 

(°C) 

Injector 

Window 

Temperature 

(°C) 

Injector Tip 

Temperature 

(°C) 

100 -22 -7 3 75 48 

100 0 2 9 78 50 

100 10 11 15 80 52 

100 20 20 22 81 54 

100 30 30 32 83 56 

180 -22 -3 11 137 82 

180 0 2 14 138 84 

180 10 11 17 139 85 

180 20 20 25 140 86 

180 30 30 34 141 87 

In order to extrapolate the data to produce a temperature map, the experimental data 

points are curve fit to the equation (53). 

 TTip = C ∗ TCV + D ∗ TSetpoint + E (53) 

C, D, and E are curve fit constants, and 𝑇𝐶𝑉 is combustion vessel heated temperature in 

°C, 𝑇𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 is the chiller setpoint in °C, and 𝑇𝑇𝑖𝑝 is injector tip temperature in °C, 

determined by applying a linear algebra solution. This equation is assumed to represent 

the temperature behavior. The temperature is extrapolated by solving equation (54).  

 𝑀𝑇 ∗ 𝑀 ∗ 𝑋 = 𝑀𝑇 ∗ 𝐵 (54) 

M is a 10 x 3 matrix composed of CV temperature data in column one and chiller setpoint 

temperature data in column two, from Table 3.4. The last column is a column of ones. X 

is a 3 x 1 matrix of unknowns, C, D, and E from the linear curve fit equation, and B is a 

10 x 1 matrix with the column being the injector tip temperature data from Table 3.4. The 

superscript T denotes the transpose of the matrix. The right hand side of equation (54) is 

solved to yield a 3 x 1 matrix, B’. Combining the first two terms of the left hand side of 

equation (54) yields a 3 x 3 matrix, A, to give the final equation to solve, equation (55). 

 A ∗ X = B′ (55) 

Which is rearranged to provide equation (56) which is subsequently solved. 

 X = A−1 ∗ B′ (56) 

This solution yields the three constants for the curve fit equation, C, D, and E, determined 

to be 0.41, 0.13 and 9.6, respectively, which are then used in evaluating the equation at 

various CV temperatures and chiller setpoint temperatures.  

The extrapolated temperature map is shown in Figure 3.37.  
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Figure 3.37: Injector tip temperature map with grayed region showing extrapolated 

temperature data. 

As expected, as the chiller setpoint temperature decreases for a constant 

combustion vessel temperature, the injector tip temperature is reduced. When the chiller 

was used in testing the setpoint was set to the minimum value of -22°C to provide 

maximum cooling and therefore for testing at 100°C CV temperature the tip temperature 

was 48°C, and for spray testing at 180°C CV temperature, the tip temperature was 82°C. 

Without cooling, the temperatures are 55°C and 90°C respectively. Temperatures are not 

reduced significantly with the cooling, and therefore a new chiller should be integrated in 

the future with improved cooling capacity, along with the use of heat transfer grease on 

the cooling cup to facilitate fluid heat removal efficiency, to enable achievement of 

reduced fuel temperatures. Even without the chiller, fuel temperatures are significantly 

reduced relative to the CV heated temperature. The cartridge heaters are on faces 90 

degrees from the injector tip window and therefore there are reductions in vessel 

temperature based on cartridge heater placement. The location of temperature 

measurement (injector tip inside the vessel) will provide a cooler temperature than the 

base of the window as this is where heating is occurring. Also, the measurement 

technique likely introduces error which will reduce the measured tip temperature as the 

probe is surrounded by air, and the vessel is open to the ambient, not completely 

enclosed, which would reduce the tip temperature due to heat transfer to the ambient 

environment.  

3.5. Spark Ignition System 
The combustion vessel utilizes two electrodes to ignite the premixture for the 

preburn procedure as were shown in Figure 3.1. The electrodes are connected via 

standard spark ignition engine wire leads to two automotive Mitsubishi coils, part number 

19005218, with a secondary energy of 40 mJ, minimum secondary voltage of 35 kV, and 

minimum spark duration of 800 microseconds (Mitsubishi Datasheet).  
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Figure 3.38: Spark ignition system setup for dual-electrode one fan window.  

The spark plug wires are standard production spark ignition engine wires, Carquest WIR 

35-8157. Coils are charged using a 12 V power supply which are controlled via the 5V 

TTL logic to the coils administered by a relay switched in the software control program, 

as outlined in Figure 3.39.  

 
Figure 3.39: Spark ignition system wiring.  

For preburn testing, the trigger signal from the control signal, PWM2 (PWM = pulse 
width modulated signal) is a five-pulse TTL logic signal with a 50% duty cycle and 10 

ms trigger on duration. This signal charges the coil, which has a dwell time of 

approximately 6 ms, and then discharges to produce five sparks from each electrode, as 

was shown in Figure 3.11.This multi-spark event is used to facilitate mixture ignition, as 

mixtures typically do not ignite off of the first spark event. When the preburn mixture 
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ignites and combusts, it will produce the required in-chamber conditions for 

thermodynamic state generation. If the mixture is too lean (i.e. excess air, not enough 

fuel), the preburn mixture will not ignite.   

In extensive testing there have been issues with conducted electrical noise as the 

result of the preburn spark ignition event in the chamber for pre-combustion. More 

specifically, during the five spark plug trigger events there are instances, particularly 

under high pressure conditions, where the firing of the spark plug will cause various 

unwanted phenomenon which can include the pulse generator triggering (even with an 

inhibit on the external trigger, which is a 5V signal sent from the control system to the 

pulse generator to prevent any output trigger signals from the pulse generator when this 

TTL signal is on, which is the case during the spark event), LaVision UltraSpeedStar16 

(USS16) or other cameras triggering, or the Kistler pressure transducer charge amp 

reaching an overload condition signifying excess charge despite no pressure rise in 

nitrogen conditions. Troubleshooting was undertaken in an effort to remove this effect. 

This included, but is not limited to, cable shielding, running the spark system off a 

battery, changing trigger duration (dwell time), decreasing the spark gap, changing the 

spark plug wires, decreasing the plug wire length, and others. Despite these initial efforts, 

even when work-arounds were developed, there was no long term solution to the 

underlying problem. This led to the development of an Electromagnetic Interference 

(EMI) box in an effort to minimize induced noise. This setup was not used in the current 

testing, but discussion is included here for reference as this methodology along with other 

changes, has helped to contain the system in a package with minimal inputs and outputs, 

and reduce (but not alleviate) spark noise and false triggering issues. A picture of the 

modified setup is shown in Figure 3.40, and a schematic of the wiring setup is shown in 

Figure 3.41.  

 
Figure 3.40: EMI box for preburn spark ignition system.  
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Figure 3.41: EMI box wiring schematic. 

A list of components is provided in Table 3.5.  

Table 3.5 

Components for EMI box ignition system. 
Component Manufacturer & Part Number 

Enclosure Hoffman A-1412CHQR 

Battery Disconnect SSR Crydom D2D12 

12V DC Battery Powersonic PS-12120 

Battery Charger AGM P/N PSC-12120F2 

Trigger SSR Crydom DC603S 

5V DC-DC Converter V-Infinity VCD30-D12-S5 

12 V DC-DC Converter Synqor IQ12120QTC08NRS-G 

Capacitor Epcos B41456B5470M 

The key change with this EMI box is the inclusion of all components in a shielded 

box close to the electrodes. Inside this box, the coils are now supplied 12 V from a 

battery in place of a power supply. This battery is connected to a capacitor which 

connects to the relay which is controlled by a digital relay from iTest, five 5 V on/off 

triggers at 10 ms on / off time (50% duty cycle), to charge the coil based on the 6 ms 

dwell time and provide 5 sparks each from the two electrodes. Spark current is measured 

on the positive 12 V lead to the capacitor which provides a measure of charge and 

discharge times of the spark ignition events. To minimize the inputs and outputs to the 

box, this 12 V battery is used in place of the power supply. The current probe, which 

measures primary current, runs to a panel mount BNC inside the box which runs outside 

the box to the ADX data acquisition system. The trigger to the solid state relay (SSR) is 

from iTest PWM2 via a six pair wire with a 12 pin military connector. Two sets of pairs 

are used, one for this SSR, and the other runs to the 5 V power supply to enable voltage 

to flow from the battery via a second solid state relay to permit battery operation to the 

coils. Another output connection on this EMI box is to charge the 12 V battery. The 

procedure for battery charging is to disconnect the 5 V (rack-mounted) power supply 

connection SSR which disconnects the battery from the coils and connect the wall 
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charger to the box to charge the battery overnight. The final outputs on the EMI box are 

two spark plug wires connected to the electrodes. This EMI box is also grounded.  

During preliminary testing of the box, which involved sparking in nitrogen at 48.3 

bar (700 psi), the aforementioned issues still existed. This led again to extensive 

troubleshooting using a differential amplifier into an oscilloscope running from the EMI 

box to the CV fan-electrode window ground. During a spark event, there is a jump in the 

ground signal level on the order of 2-3 V at approximately 10 MHz frequency. This 

shifting in the ground level is significant enough to false trigger devices based on the 

typical trigger threshold of 1.8 V. This led to additional modifications to the setup, 

including the removal of shields around the electrode spark plug wires as it is thought 

that the shielding could cause issues with electric fields, thereby reducing any of the 

benefits achieved with shielding. The potential exists that the noise and ground shifting 

could occur on the spark event before the energy could return to the ground which 

effectively defeats the purpose of shielding the plug wires and grounding this shield. 

Faraday coils were added on the charge amp charge input and the inhibit input to the 

pulse generator to dampen induced noise during the ground shifts. Grounding was 

improved with the ground from the CV top window to the table being disconnected as 

this was inducing ground loops (since the CV is grounded through the table and the table 

is still grounded to the building ground). This disconnection resulted in improved 

grounding between the CV EMI box to one point on the CV fan-electrode window 

achieved by using eight large gauge (small diameter) wires. The final modification was 

the grounding of the LaVision camera metal frame to the CV table which then runs to the 

building ground. It was observed that the LaVision camera was floating (i.e. there was 

infinite resistance between the camera and the table) and any variations in ground levels 

(as observed during the spark event) could be exaggerated and cause false triggering on 

the LaVision camera. These changes and modifications, along with observation 

improvements or issues are detailed in Table 3.6.  

Table 3.6 

Spark ignition system troubleshooting modifications and observations, using the 

new EMI box.  
Modification Observation 

Removal of shields around the electrode spark 

plug wires. 

Improved, shielding may cause electric field 

interference. 

Faraday coil on charge amp input. Improved, dampen induced noise during ground 

shifts. 

Faraday coil on inhibit input to the pulse 

generator. 

Improved, dampen induced noise during ground 

shifts. 

Removal of CV ground strap from fan-electrode 

window to CV table. 

Improved, this ground strap induced grounding 

loops. 

Improved EMI box grounding using multiple 

large gauge (small diameter) wires. 

Improved EMI box grounding. 

Grounding LaVision USS16 camera metal 

frame to CV table.  

Prevented the camera from having a floating 

potential. 

This setup has  helped to alleviate the majority of the false triggering problems which are 

encountered as a results of the spark ignition event.  
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3.6. Optical Diagnostics 
Optical and laser based diagnostics enable characterization of fundamental spray 

and combustion parameters for tests conducted in the optically accessible combustion 

vessel. These diagnostics include high speed imaging of Mie back scattering and 

shadowgraph to image the liquid and vapor phase of the spray, respectively. Both 

methods can also be used to characterize combusting spray jets as well. The key 

diagnostic in the current work is Mie back scatter imaging with the optical setup shown 

in Figure 3.42.  

 
Figure 3.42: Mie back scattering and shadowgraph optical layout.  

The Mie back scattering setup consists of acquiring images of the fuel spray using a 

flashlamp as an illumination source with images acquired with a high speed camera to 

capture spray movement with minimal blurring due to the high injection velocities 

attributed to large injection pressures. The flashlamp light scatters off the fuel droplets 

from the spray and this scattered signal is imaged with a high speed camera. The camera 

was a Photron Fastcam SA1.1 high speed streaming digital camera with a 60 mm Nikon 

Micro-Nikkor Lens, with f-numbers ranging from 2.8 to 32. The light source was the 

Cooke SensiFlash flashlamp with an 8 ms discharge duration providing illumination 

(maximum 1500 J) during the entire injection event with the fuel injection and image 

acquisition delayed to account for the flashlamp warm up time to ensure steady state 

luminosity during fuel injection. The light source is directed at an angle into the CV to 

provide uniform chamber illumination by reflecting light off the angled mirror into the 

CV, which enables visualization of all eight spray plumes, as shown in Figure 3.43.  
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Figure 3.43: Mie back scatter imaging setup.  

Different resolutions, framing rates, and exposure durations are used for the 

different ambient test environments as summarized in Table 3.7. These changes are made 

to minimize the region of interest and hence maximize the camera framing rate to yield 

the most information on spray characteristics. 

Table 3.7 

Image acquisition settings for different ambient environments. 

Environment 
Exposure 

Duration (µs) 

Frame Rate 

(fps) 

Interframe 

Time (ms) 
F-stop Resolution 

Nonvaporizing (N2) 1.81 20,000 0.050 2.8 512 x 512 

Vaporizing (0% O2) 1.65 67,500 0.015 2.8 256 x 256 

Combusting (21% O2) 1.00 20,000 0.050 11 512 x 512 

 The shadowgraph imaging setup enables visualization of density gradients to 

provide information on the vapor phase of the spray by passing a collimated light sheet 

through the combustion vessel and collecting the shadow of the light using a high speed 

camera. Results from this diagnostic are not presented here based on complexity when 

using a multi-hole injector nozzle due to plume overlap and interference. 

3.7. Image Processing Tools 
Image processing is undertaken in the Mathworks Matlab

TM
 software 

environment. All image processing programs, whose details will be discussed in Chapter 

5.4, with the programs included in the appendix (chapter 12.4), being user-defined 

programs. These programs are tailored to the desired analysis including processing 

vaporizing liquid phase, combusting, and non-vaporizing spray parameters of cone angle 

and penetration, along with lift-off length and liquid length. Varying methodologies are 

used as a function of the different test conditions and setups. The Image Processing 

Toolbox coupled with the Matlab software is used extensively in the processing and 

analysis of images. Refer to Chapter 5.3 and Appendix section 12.4 for additional details 

on the image processing methodologies and documentation of the Matlab processing 

files.  
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3.8. Chemical Kinetics Modeling Tools 
Chemical kinetics modeling is undertaken using two software tools. The main 

software is Cantera (Cantera; Goodwin 2003), which is interfaced with Mathworks 

Matlab
TM

. Cantera is a chemical kinetics modeling program which can be used to 

simulate chemical kinetics reactors, thermodynamic and transport processes and 

modeling for chemical equilibrium, simulating reactor networks, preparing reaction path 

diagrams, and others (Cantera).  

In addition to the Cantera software for chemical kinetics modeling, Engineering 

Equation Solver (EES) is used to define initial conditions for the chemical kinetics 

modeling and also to provide basic property information for various ambient environment 

conditions, including specific heat, internal energy, and others. Not only is EES useful for 

evaluating properties of different ambient environments, it has the capability of 

numerically solving sets of non-linear algebraic equations, and can easily undertake 

iterative solutions increasing its applicability to the current work. The EES and m-file 

processing programs for the chemical kinetics modeling used for understanding the 

thermodynamic state generation procedure are provided in Appendix section 12.3.3. Not 

all programs are included due to the quantity of m-files used, including those for differing 

oxygen levels for example; however, a representative sample is included.  
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4. 1Thermodynamic State Generation 

Analysis 
This chapter details the preburn procedure used in the combustion vessel for 

thermodynamic state generation including the minor species generated and their impact 

on diesel spray autoignition behavior. A detailed study was undertaken on the Michigan 

Technological University and Sandia National Laboratory combustion vessel preburn 

procedure using chemical kinetics modeling. An additional comparison was performed 

on all preburn constant volume and constant pressure flow rig vessels currently 

contributing to the Sandia National Laboratory’s Engine Combustion Network (ECN) 

initiative (Sandia ECN 2011). This initiative is an international collaboration effort for 

advancing the fundamental spray and combustion knowledgebase of internal combustion 

engines to promote fuel efficiency and reduce emissions. Partner institutions currently 

include Sandia National Laboratory, Argonne National Laboratory, Caterpillar, CMT 

Valencia, IFP France, Bosch, Georgia Tech University, Michigan Technological 

University, and Technical University of Eindhoven, with institutions continuing to join 

and support this effort. The chapter concludes with discussion on the preburn mixture 

used for 0% oxygen conditions (vaporizing spray studies) with justification for the 

mixture modifications.     

4.1. CV Preburn Procedure for 
Thermodynamic State Generation 

The combustion vessel preburn procedure to generate the thermodynamic state 

characteristic of conventional diesel engines, including temperature, pressure and gaseous 

composition requires spark ignition of a lean and/or dilute fuel-air mixture. This mixture 

can consist of oxygen, nitrogen, acetylene, and hydrogen of varying proportions to yield a 

range of oxygen levels post preburn. By using a range of premixtures, combustion vessels 

can produce well-controlled and well-characterized ambient environments over a range of 

temperatures, pressures, and charge-gas oxygen concentrations to enable fundamental 

studies on the influence of various parameters on spray, ignition and combustion 

(Idicheria and Pickett 2007). This supports fundamental and detailed research on sprays 

and the resulting combustion and emissions formation while using optical and laser 

diagnostics. Unanswered questions have been raised over the use of this preburn 

procedure in regards to the generation of minor species whose levels may differ relative 

to those in an engine, and their resulting influence on the subsequent spray and ignition 

processes, which this analysis covers. Furthermore, different initial preburn mixtures in 

regards to the composition of fuel and air in the mixture, yield different gas compositions 

post preburn including major and minor species along with peak temperatures. Chemical 

                                                 
1
 Section 4.2 of this chapter was previously published in Energy and Fuels 

(http://pubs.acs.org/doi/abs/10.1021/ef101411f). Permission for reproduction is provided 

in appendix 12.1.1.  

http://pubs.acs.org/doi/abs/10.1021/ef101411f


 

102 

kinetics modeling was undertaken to characterize the preburn procedure, the minor 

species produced, and the subsequent influence on autoignition of n-heptane used as a 

diesel surrogate to answer the fundamental questions on the impact the preburn has on the 

kinetics of autoignition. This analysis is motivated by the unanswered questions that this 

procedure has on diesel spray autoignition due to the minor species produced. Details on 

the modeling procedure are provided in Appendix section 12.3. It is undertaken first as a 

detailed analysis for the preburn used both at Sandia National Laboratory and Michigan 

Technological University, which is provided here as a copy of the resulting journal 

publication whose citation is below. The second analysis is applied to compare the 

different apparatuses as part of the ECN including both preburn constant volume vessels 

and constant pressure flow through rigs. Although this material has not been published, a 

collaborative paper is being developed resulting from the ECN workshop, including this 

work on ambient composition, in conjunction with results on nozzle and ambient 

temperature characterizations (Sandia ECN 2011).  

 

Nesbitt JE, Johnson SE, Pickett LM, Siebers DL, Lee SY, Naber JD. Minor 
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ABSTRACT 

Formation of minor species including NO, NO2, and OH during the premixed 

burn and cool-down in a constant-volume combustion vessel (CV) was modeled to 

investigate the effect of these species on the chemical kinetics portion of the ignition 

delay of n-heptane used as a diesel surrogate. Control parameters included ambient 

temperature, pressure, and diluent level (EGR) matched to typical diesel engine 

conditions. For the preburn model, the GRI 3.0 mechanism was used with experimentally 

determined heat loss from the CV. Subsequently, the cool-down premixed burn products 

served as reactant inputs and were mixed stoichiometrically with n-heptane, modeled 

using a reduced reaction mechanism modified to include NO and NO2. Results computed 

with premixed burn constituents were compared to those using dry air and air plus ideal 

combustion residuals with the impact of dilution on ignition delay examined. A 

sensitivity analysis was performed to characterize the influence of OH and NOx levels on 

ignition delay. 

The preburn kinetics simulation showed OH concentrations above equilibrium; 

however, OH was below 100 ppb during the cool-down when fuel spray and ignition 

would occur. In contrast, the slow chemistry due to the low temperature (1750 K) 

prevents NO formation from reaching equilibrium levels; rather, levels are frozen in the 

10-30 ppm range as the cool-down proceeded. This NO level is of the same order for 

cylinder charge concentrations in modern diesels when using 20 to 50% EGR rates 

producing 100-200 ppm in the exhaust. The ignition delay predictions showed that minor 

species of NO, NO2 and OH shorten the ignition delay by 3% relative to dry air, while 

being 6% longer when compared with simulated dilution of 7.6% residuals (19% O2), 

typical of internal residuals in an engine. These kinetics effects are small in comparison 

to changes in oxygen concentration (from 21 to 15%) associated with EGR, which show 

a 170% increase in ignition delay.  

 

INTRODUCTION 

Fundamental and detailed research on diesel sprays and the ensuing combustion 

and emissions formation using optical diagnostics requires fuel injection into a well-

controlled environment at high temperature and high pressure. Although optical engines 

replicate conditions in their metal counterpart, including engine generated flows, they 

have limitations to optical access and the range of conditions that can be produced (Baert 

et al. 2009). Optically accessible combustion vessels, on the contrary, can provide 

significantly improved optical access and can vastly expand the operational ambient 

conditions. As the conditions in combustion vessels are well-controlled, they can also be 

well-characterized. These optically accessible vessels further enable the application of 

novel and non-intrusive optical and laser diagnostics to provide detailed information on 

the physical and chemical processes of high-pressure transient spray combustion, 

including pollutant formation (Dyer 1979; Oren et al. 1984; Naber and Siebers 1996; 

Bougie et al. 2005; Idicheria and Pickett 2007), which is essential for enhancing diesel 

combustion while simultaneously reducing emissions. 

The experimental data generated from these vessels have shown to be valuable for 

developing a detailed understanding by parameterization of combustion characteristics, 

including spray mixing (Naber and Siebers 1996), vaporization and liquid penetration 
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(Siebers 1998, 1999; Bougie et al. 2005; Pickett et al. 2009), flame standoff length 

(Higgins and Siebers 2001; Ito et al. 2003), diesel soot emissions sources (Pickett and 

Siebers 2002; Ito et al. 2004), and so forth. Additionally these results provide excellent 

datasets for computational fluid dynamics (CFD) model development, calibration, and 

validation (Reitz and Rutland 1995; Vishwanathan et al. 2009). Combined numerical 

modeling and combustion vessel (CV) experimental studies have continuously provided 

significant insight and knowledge for the sustained advancement of diesel engines (Hurn 

and Hughes 1951; Labs et al. 2005).  

To create the range of in-cylinder temperatures (750 to 1300 K) that are generated 

by compression, boosting, and exhaust gas recirculation (EGR) in a diesel engine before 

spray injection and combustion, the gases in the apparatus must be preheated by some 

means. Electrical heating is applied in many systems (Fujimoto and Sato 1979; Baert 

1989; Labs et al. 2005; Nishida et al. 2007; Pawlowski et al. 2008). However, typically 

these systems have a limited temperature range, and it is difficult to match the 

composition of in-cylinder gases found in an engine. Alternatively, several investigators 

have utilized a fuel-lean, oxygen-enriched spark-ignited premixed burn to generate the 

elevated temperature. In this process, upon completion of this premixed burn, the product 

gases cool due to heat transfer to the chamber walls at a rate that is more than an order of 

magnitude longer in comparison to a diesel injection and combustion event. In these 

systems, a wide range of temperatures, including ambient to above 1500 K, can be 

generated with the density/pressure controlled by the initial fill pressure. Additionally, 

the premixed gases can be tailored to simulate dilution and EGR in the engine with 

varying oxygen concentrations (Oren et al. 1984; Naber and Siebers 1996; Siebers 1998; 

Verhoeven et al. 1998; Johnson et al. 2009). 

The lean preburn mixture can consist of varying components, including gaseous 

hydrocarbons, hydrogen, carbon monoxide, argon, nitrogen, and oxygen (Hurn and 

Hughes 1951; Dyer 1979; Oren et al. 1984; Naber and Siebers 1996; Siebers 1998; 

Verhoeven et al. 1998; Azetsu and Ito 2007; Kim et al. 2007; Nguyen and Honnery 2008; 

Baert et al. 2009). Mixtures have been applied to control the oxygen concentration in the 

products (Naber and Siebers 1996), to match the specific heat capacity of air by using 

argon (Baert et al. 2009), and to match the water and carbon dioxide levels found in 

engines with EGR (Johnson et al. 2009).  As a result, combustion vessels utilizing this 

procedure can examine a wide range of in-chamber temperature, pressure, and charge-gas 

oxygen concentrations simulating EGR, enabling researchers to address how these 

parameters independently impact the spray, ignition and combustion processes (Idicheria 

and Pickett 2007). However, there are unanswered questions about the use of this preburn 

procedure in regards to the generation of minor species and their influence on the 

resulting combustion process. This includes minor species, such as OH, along with 

oxides of nitrogen, which are set by the peak preburn temperature and cool-down, and 

hence, values may differ from those found in an engine.  

Ignition delay is of central importance to engine performance and emissions 

(Higgins et al. 2000). Studies have shown that ignition delay is a function of several 

parameters, including temperature, pressure, fuel properties, fuel injector parameters, and 

charge-gas composition (Ladommatos et al. 1998; Kobori et al. 2000). In an engine, the 

charge-gas composition is controlled by the level of in-cylinder residuals from prior 
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cycles and EGR, which yields dilution by combustion products, decreasing the oxygen 

mole fraction and hence increasing the ignition delay. Engines can utilize variable valve 

timing for increasing in-cylinder residuals (US EPA 2001; Griffith 2007); however, even 

without this variation in valve timing, the cylinder consists of air with 4-10% combustion 

products (Cong et al. 2009). In addition to dilution from CO2 and H2O, combustion 

product minor species have an impact on the ignition delay.  The addition of small 

amounts of NO and NO2, as low as 1 ppm, to the composition was reported to reduce the 

ignition delay, the magnitude of which is dependent upon temperature and pressure 

conditions, while being most significant at temperatures less than 1200 K (Takita et al. 

2007; Lee et al. 2009; Sjoberg and Dec 2009). Kinetic pathways that yield this ignition 

delay enhancement are believed to be through the HO2 and RO2 (R = alkyl group) 

radicals reacting with NO (Risberg et al. 2006).  

In this work, a single-zone perfectly stirred reactor with heat-transfer and detailed 

chemistry is applied to model the premixed burn and cool-down within the CV. The 

ambient gas composition, including the minor species of NO, NO2 and OH, is predicted 

as a function of the generated temperature and pressure. This modeling is undertaken to 

examine and isolate how minor species formed during this process impact autoignition of 

a hydrocarbon fuel injected into temperatures and pressures characteristic of diesel 

engines. For this, the composition predicted from this premixed burn – cool-down 

simulation is stoichiometrically mixed with n-heptane over a range of temperatures 

characteristic of diesel engine compression with the ignition delay predicted using a 

reduced kinetics mechanism. The impacts of fuel - gas mixing are not included here to 

isolate the kinetic impact of the minor species. Results are compared to dry air and air 

mixed with H2O and CO2 as ideal combustion residuals in the engine charge. Additional 

sensitivity analyses are carried out for the minor species, NO, NO2, and OH, and for the 

impact of dilution with combustion products reducing the concentration of O2. These 

aforementioned analyses fulfill the goals of this paper, which are to isolate and 

understand the chemical kinetics effect of the preburn products, including minor species, 

while neglecting spray dynamics, on the autoignition of n-heptane fuel.  

 

CHEMICAL KINETICS MODELING 
Experimental Mixture Preparation and Combustion. The preburn method for 

establishing the ambient conditions in the constant volume CV has been used extensively 

to produce a wide range of in-cylinder charge conditions characteristic of diesel engines
 

(Johnson et al. 2009) while matching thermodynamic properties, including specific heat 

(Baert et al. 2009). The preburn mixture as utilized at Michigan Technological University 

and at Sandia National Laboratory is composed of C2H2, H2, N2, and O2 such that, at the 

completion of the preburn, oxygen mole fractions from 21 to 0% can be obtained (see 

equation (57)). This enables the simulation of EGR with reduced oxygen concentrations, 

or experimentation in an inert (0% O2), high-temperature environment for spray 

vaporization studies (Naber and Siebers 1996).   

The CV diesel simulation experimental process is shown in Figure 4.1.  
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Figure 4.1. Pressure-time and temperature-time histories of in-chamber conditions 

during the premixed burn, heat transfer, diesel fuel injection, and combustion. 

Produced ambient conditions of 21% O2, density of 14.8 kg/m
3
, and temperature of 

1000 K for fuel injection and combustion. τCD denotes time constant of the cool-

down. Peak pressure and temperature are 74 bar and 1750 K, respectively. 

The lean-dilute mixture is prepared in a separate 10L mixing vessel via a metered 

partial-pressure fill procedure that provides sufficient mixture for 10 - 100’s of test runs, 

dependent upon conditions. Premixed gases are then metered into the CV prior to the 

start of the timeline shown in Figure 4.1, in this case, to a pressure of 20 bar, which 

corresponds to a density of 14.8 kg/m
3
, with the wall and gas temperature at 458 K. Once 

the target pressure is reached, valves are closed and the system becomes constant-

volume. The lean-dilute preburn mixture is ignited at time zero via a spark, yielding a 

propagating flame, resulting in a high-temperature, high-pressure environment of ambient 

gases. Throughout the event, pressure is measured inside the combustion vessel to 

calculate the temperature-time history. A peak pressure of 74 bar and peak bulk-average 

temperature of 1750 K is reached 0.14 seconds at the completion of the premixed burn. 

After the premixed burn stage completes, the chamber pressure and temperature decrease 

due to heat transfer to the chamber surfaces. This is the cool-down period, which has a 

characteristic exponential temperature decay with a time constant of 0.6s in this test. 

When the target temperature of 1000 K is reached at time 0.92s, the diesel fuel injection 

is triggered. Autoignition of the injected fuel occurs if the chamber oxygen and 

temperature conditions are sufficient, resulting in a smaller pressure rise due to the spray 

combustion (Siebers 1998). The injected fuel may be gaseous or liquid.  

Premixed Combustion and Cool-Down Simulation. To simulate the preburn 

process with detailed kinetics, an initial mixture whose composition is provided by 

equation (57), similar to past experimental mixtures (Naber and Siebers 1996) where PO2 

is the desired volume percent oxygen post-preburn, is reacted to produce the desired 

ambient in-chamber pressure, temperature, and composition.  

 
O)H0095.07.3()CO019.04.6(N )95.0(88.05O 

N )95.005.88(O )96.025.8(H 5.0H)C0.0095 -3.2(

2222

22222

2222
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OOOO

OOO

PPPP

PPP

−+−+−+

→−++++

 

(57) 

The chemical kinetics used for simulating the combustion preburn were modeled 

using the Cantera software (Goodwin 2003), integrated into the Mathworks Matlab 

environment. A detailed reaction mechanism, GRI-Mech 3.0, which includes 53 species 

and 325 elementary reactions (Smith et al. 1999), was used. The simulation consists of 
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modeling the preburn and the subsequent cool-down phase using a single-zone, constant-

volume reactor. The simulations included preburn product oxygen concentrations ranging 

from 21 to 1%, all at an ambient density of 14.8 kg/m
3
. 

The simulation steps are described as follows and illustrated in Figure 4.2.  

 
Figure 4.2. Experimental conditions, 458 K and 20 bar, compared with starting 

simulation conditions based on extent of reaction method for 21% O2 and 14.8 

kg/m
3
 premixed burn product conditions. 

To simulate the effect of premixed flame propagation while maintaining a 

simplified reactor, the initial conditions of the simulation are modified compared to the 

experimental initial conditions prior to spark ignition. The temperature and molar 

fractions of C2H2, H2, N2, and O2 are partially reacted to an extent of reaction (α) given 
by equation (58). This equation is valid for producing 21% oxygen post-preburn as 

required. The introduction of the extent of reaction provides an initial condition of 

elevated temperature and pressure to facilitate mixture ignition in the simulation via 

autoignition. Meanwhile, similar chemistry and temperature of the high-temperature 

portion of the premixed flame are mimicked. 

2222
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α  (58) 

The appropriate extent of reaction is determined by forcing the internal energy of 

the reactants and products to remain equal for a given initial elevated temperature, TO. 

Hence, for a given extent of reaction, the concentrations of C2H2, H2, N2, O2, CO2, and 

H2O at an elevated temperature and pressure are the initial input conditions to the kinetics 

model, which correspond to the middle portion of equation (58). Figure 4.2 illustrates the 

technique, showing that the simulation temperature matches the experimental bulk 

temperature with an α of 0.439 and initial temperature (TO) and pressure (PO) of 963 K 

and 40.6 bar, respectively. This extent of reaction method, which relies on equal product 

and reactant internal energy by changing the “alpha” or extent of reaction, to match the 

experimental peak preburn temperature, is used to reduce computational time to ignite the 

preburn mixture and was found not impact the minor species.  

The next step in the simulation process is to model the cool-down by 

implementation of a heat transfer loss after the completion of the premixed burn for times 

greater than 0.14 seconds in Figure 4.1. The heat flux is modeled from experimental 

temperature data for a given percent oxygen condition, with the temperature difference 
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between the in-chamber temperature and the CV wall (Tw = 458 K) computed and 
normalized by the maximum temperature difference. The data are fitted to determine this 

normalized temperature difference as a function of time. The input heat flux to the 

constant-volume reactor code is proportional to this normalized temperature difference 

function. Cool-down results are shown in Figure 4.3, where time 0s corresponds to the 

peak temperature of the premixed burn and start of the cool-down.  

 
Figure 4.3. Temperature during the cool-down comparing experimental and 

simulation results with modeled heat flux. Conditions for cool-down are 21% O2 

post preburn and a density of 14.8 kg/m
3
. Time 0s corresponds to peak temperature 

in the premixed burn and start of cool-down.  

The experimental and simulation data do not match exactly. The model neglects 

temperature inhomogeneities that exist within the CV, which cause differences between 

the bulk temperature, core temperature, and boundary layer temperature. However, the 

results provide a sufficiently accurate time history of pressure and temperature to 

determine species concentrations for the next simulation step, which is fuel injection 

autoignition. The cool-down simulation continues, applying the single-zone, perfectly 

stirred, reactor with heat transfer and GRI kinetics until the target pressure and 

temperature state for fuel injection is reached. At this point in time, the premixed 

burn/cool-down simulation is terminated and data for the pressure, temperature, and 

species mole fractions resulting from the analysis are transferred to the next stage of the 

simulation.  

Diesel Ignition Modeling. Diesel ignition is modeled using a simple, single-

component surrogate, n-heptane. Studies have shown that n-heptane has similar ignition 

characteristics as diesel fuel (Ranzi et al. 1995; Lu et al. 2007; Kolaitis et al. 2009). n-

heptane has a cetane number of 56, which is at the high end for diesel fuel in the United 

States, but close to that in Europe. The n-heptane ignition modeling extracts the state of 

the gases in the cool-down at the target temperature, including temperature, pressure, and 

mole fractions of the 53 species determined from the GRI 3.0 mechanism. This is mixed 

with n-heptane in a stoichiometric mixture, holding the temperature and pressure 

constant. Although the temperature of the mixture is lower than that of the charge-gas, 

using the charge-gas temperature in this study enables comparison to fundamental data on 

ignition. This ideal case is used rather than modeling the complex temperature / 

equivalence ratio time-dependent process on a spray to isolate the kinetics of the preburn 

procedure. Other work studying this time-dependent mixing process includes the use of a 

two-stage lagrangian (TSL) model (Pickett et al. 2006). This composition is input into a 
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constant pressure reactor applying an n-heptane reduced reaction mechanism. This n-

heptane reaction mechanism is a reduced mechanism consisting of 160 species and 770 

reversible reactions (LLNL 2000), which has been modified to include NO and NO2 

species and their reactions yielding 179 total species and 823 reversible reactions, from 

the GRI 3.0 mechanism (Smith et al. 1999). This n-heptane mechanism, although 

reduced, has proven accurate when comparing ignition delay times in a constant volume 

reactor computed with the intermediate mechanism (1282 reversible reactions with 282 

species) (Seiser et al. 2000).  

 Perfectly-stirred reactor simulations are conducted over a range of ambient 

temperatures and dilution conditions using the corresponding minor species mole 

fractions at that respective time during the cool-down. The kinetics are constrained by 

constant pressure and enthalpy conditions because diesel mixing is typically fast, during 

which time there is little change in pressure. The simulation does not include continuous 

evaporation and mixing processes that occur in a diesel spray as the focus of this study is 

to isolate the effect of minor species resulting from the preburn on diesel autoignition.  

 

RESULTS AND DISCUSSION 

Elevated levels of active radicals, including OH, O, and H, accelerate ignition 

processes.  It is also known that NO and NO2 promote chain-branching chemistry, and 

thus accelerate ignition processes of hydrocarbon combustion under low temperature 

(less than 1400 K) conditions (Tan et al. 1999; Takita et al. 2007). It has been 

demonstrated that the addition of NO and NO2 assist in accelerating the oxidation 

processes of hydrocarbon fuels in low temperature chemistry (below 1200 K). The 

essential chemistry is shown below in equation (59)
 
(Tan et al. 1999) 

 
R + O2 + M ⇔ RO2 + M 

RO2 + NO ⇔ RO + NO2 

R + NO2 ⇔ RO + NO 

(59) 

where R is an active radical and M is a third-body. This shows that the driving force to 

accelerate the ignition process is through the catalytic effect of NO and NO2 chemistry to 

form RO radicals. These ignition-enhancing minor species, NO, NO2, and OH, are 

formed during the preburn and hence are essential to characterize in this study. The 

following sections examine the effect these species have over a range of mixture 

temperatures (700 – 1450 K) and dilution levels (1-21% O2) at a constant density (14.8 

kg/m
3
) on the time to autoignition.   

Minor Species During the Preburn. The first stage of the simulation is the 

adiabatic, constant-volume preburn, which is followed by the cool-down with integrated 

heat transfer using the modeled heat flux based on experimental temperature data, as 

previously described. Results for temperature and mole fraction of OH, NO, NO2, O2, and 

CO are shown versus time in Figure 4.4 for the case with 21% O2 post preburn. In 

addition, the total mole fraction of minor species is shown where this total mole fraction 

excludes O2, N2, H2O, C2H2, H2, and CO2.  
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Figure 4.4. Mole fractions of O2, OH, NO, NO2, and CO along with temperature 

during cool-down.  Total of the minor species is also included for comparison (53 

GRI species excluding CO2, H2O, N2, O2, C2H2 and H2.) Results are for the condition 

of 21% oxygen post-preburn and an initial elevated temperature of 963 K 

corresponding to a maximum temperature of 1748 K.  

The results show that the minor species fraction increases, falling at the end of the 

premixed burn, which is attributed to active minor species and radicals during the 

combustion reaction while fuel is consumed. Once all of the fuel is consumed, the 

majority of the radicals and active minor species no longer exist, leading to a rapid 

decline in minor species fraction to match levels of the minor species of interest (NO, 

NO2 and OH). The mole fractions of NO and NO2 continue to increase after the 

completion of the preburn while temperatures are still high. NO2 continues to increase as 

the cool-down proceeds to about 1100 K, while NO reaches steady state earlier at a 

temperature of 1600 K. The final ratio NO2 (2.0 ppm) to NO (12.1 ppm) is 0.17, which 

falls in the range of that characteristic of diesel engines (0.11 to 0.43) (Kannan et al. 

2009). 

OH responds much differently to the temperature change compared to NO and 

NO2. It reaches a peak of 123 ppm, and then decays exponentially with temperature. Over 

the temperature range of interest, OH is 6.7 ppm at 1400 K and 0.008 ppm at 900 K. The 

mole fraction of CO is high initially during the premixed burn, but drops quickly and 

exponentially during the cool-down period. By 1400 K, the CO level is 0.0175 ppm and 

negligible in comparison to NO, NO2, and OH. The mole fraction of the total minor 

species is first dominated by OH, then by NO at temperatures less than 1300 K. The 

above confirms that NO, NO2 and OH are the dominant minor species during the cool-

down and, therefore, are the focus of the studies in the subsequent sections.  

 Effect of Initial Temperature on NO and NO2. Because NOx is strongly 

temperature- and time- dependent at the temperatures under study, it is worth 

investigating the effect of the maximum temperature of the preburn on the formation of 

NOx.  

In addition to the experimental baseline with a peak temperature of 1748 K, two 

additional maximum temperatures of 1710 and 1795 K were examined with these peak 

temperatures being attained by adjusting the initial temperature. The temperature 
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histories for these three cases are shown in Figure 4.5 for the condition of 21% oxygen 

and density of 14.8 kg/m
3
. The temperature-time histories are shifted to align the peak 

temperatures. The corresponding time evolution of NO is also shown with peak NO 

levels, also shifted to match the time traces for temperature.  

 
Figure 4.5. Temperature histories with three different initial temperatures, with the 

time shifted to match at peak temperature. Additionally, NO mole fraction time 

history for the three cases with peak NO values (symbols). Peak NO for the baseline, 

increase, and decrease cases is 13, 31, and 7 ppm, respectively.  

The concentrations for NO are low, between 7 and 31 ppm, at their maxima; see 

Table 4.1.  

Table 4.1 

NO and NO2 levels during cool-down in comparison to equilibrium mole fractions at 

peak temperature. 
a
Peak NO2 corresponds to the end of the simulation. 

Simulation 

Case 

Peak T 

(K) 

NO 

Peak 

(ppm) 

NO at 

1000K 

(ppm) 

NO 

Equil. 

(ppm) 

NO2 

Peak
a
 

(ppm) 

NO2 at 

1000K 

(ppm) 

NO2 

Equil. 

(ppm) 

NO2 / 

NO at 

1000K 

Increased 

Temperature 
1795 31.3 28.1 3720 4.6 4.5 82.6 0.160 

Baseline 

Condition 
1748 13.4 12.1 3200 2.0 2.0 76.8 0.165 

Decreased  

Temperature 
1711 7.0 6.3 2820 1.1 1.1 72.8 0.175 

This range of NO is comparable to concentrations in the cylinder charge gases of 

a diesel engine operating with 10-23% EGR prior to combustion (engine out range of 

150-350 ppm NO for HD 2002 on a road diesel engine (data from 2002 Cummins 10.8 L 

ISM HD Diesel Engine)). In comparison to their respective equilibrium values at these 

peak temperatures (2820 – 3720 ppm), the NO levels are more than 2 orders of 

magnitude lower. This is attributed to the low temperature, making the chemistry slow 

with respect to the limited residence time near the peak temperature. From Figure 4.5, it 

is seen that peak NO is not formed until after the maximum temperature because the 

thermal NO mechanism is controlled by the slowest reaction (Turns 2006). 
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Characteristic Time for NO Formation. To further quantify the impact of 

temperature and residence time on NO formation in the CV, the characteristic time for 

formation of NO under constant temperature and pressure conditions representative of the 

peak temperatures found in the CV was determined through a set of kinetic calculations. 

In these calculations the starting composition was O2, CO2, H2O, and N2, as defined in 

Table 4.2, with O2 levels of 1, 10, and 21%, representing the composition post-preburn, 

neglecting minor species.  

Table 4.2 

Mole fractions of carbon dioxide, water, and nitrogen for the given percent oxygen 

cases used to investigate the characteristic time scales for NO formation.  

O2 % N2 % CO2 % H2O % 

21 69.3 6.11 3.56 

10 80.0 6.32 3.67 

1 88.7 6.50 3.76 

The calculations were performed in a constant-temperature, perfectly stirred 

reactor over a temperature range of 1600 - 2200 K at a density of 14.8 kg/m
3
, with the 

composition starting with zero ppm NO. The temperature range investigated includes 

those for the premixed burn and cool-down phase, which are of concern for NO 

formation. The residence time in the calculation was then defined as the time when the 

mole fraction of NO reaches 63.2% of its equilibrium value. The results for the 

characteristic time constant are shown in Figure 4.6 in Arrhenius coordinates, compared 

to a diesel engine condition correlation from Heywood (1988). 

 
Figure 4.6. Characteristic time for NO formation in the CV for the cases of 1, 10 and 

21% oxygen at a constant density of 14.8 k/m
3
 compared to that for diesel engine 

conditions (Heywood Correlation (1988)), including Arrhenius-type curve fits for 

the different percent oxygen cases:  𝝉 = 𝑨𝒆𝒙𝒑 �𝑬𝒂𝑹 ∗ 𝟏𝑻� 

The general trend is an exponentially increasing time constant with an increase in 

1/T (decrease in temperature). The time constant increases by 2 orders of magnitude from 

0.24 s at 2000 K to 16 s at 1700 K (for the case of 21% O2). At the peak temperature of 

the baseline preburn (T = 1748 K , 1000/T = 0.572), the time constant for NO formation 
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is 7.2 s, which is more than an order of magnitude longer that the cool-down time 

constant of 0.6 s in the combustion vessel. This further illustrates the kinetic controlled 

and residence time dependence of NO in the premixed burn and cool-down in the 

combustion vessel and confirms the low concentrations as compared to equilibrium 

values. Regarding the impact of O2 percentage, the time constant for NO formation 

decreases with increasing O2 level.  

Diesel Ignition Delay 

Modeling Validation. First, the effect of initial temperature on the ignition delay 

for n-heptane (as a surrogate for diesel) with air is examined. The ignition delay is 

defined as the time between the instantaneous n-heptane mixing with ambient gas and the 

maximum temperature derivative. For stoichiometric combustion of n-heptane at a fixed 

initial pressure of 13.5 bar, the ignition delay is determined over a range of initial 

temperatures from 650 to 1400 K. These conditions are chosen to validate the current 

modified n-heptane mechanism in comparison with the work of Ciezki and Adomeit
 

(1993), as shown in Figure 4.7. 

 
Figure 4.7. Ignition delay for n-heptane combustion code validation, with simulation 

results compared to Ciezki and Adomeit
 

(1993) results, for stoichiometric 

combustion at an initial pressure of 13.5 bar, over a range of initial temperatures 

from 650 to 1400 K.  

The model results agree well with data from Ciezki and Adomeit (1993). The 

ignition delay increases with decreasing temperature until 950 K, then undergoes a 

negative temperature dependence between the 950 and 800 K temperature region, before 

increasing again with decreasing temperature (Gauthier et al. 2004). The region between 

the maximum and minimum peaks in the ignition delay is characterized by a negative 

temperature coefficient (NTC) attributed to a change from a low- to high-temperature 

kinetic mechanism (Ciezki and Adomeit 1993). The NTC region is attributed to the cool 

flame endothermic CH2O reaction.   

To baseline the impact of the CV preburn, the ignition delay was examined for 

stoichiometric n-heptane mixtures with (i) dry air (21% O2 and 79% N2), (ii) air with 

7.6% simulated ideal combustion residuals (residuals include CO2 and H2O, 19% O2) to 

represent internal residual levels characteristic of diesel engines (Cong et al. 2009), and 

(iii) the CV post-preburn composition from the cool-down analysis with 21% O2. These 

mixtures were examined over a range of initial temperatures from 700 to 1450 K at a 

constant density of 14.8 kg/m
3
, as shown in Figure 4.8.  
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Figure 4.8. Ignition delays for stoichiometric n-heptane with dry air (circle symbol, 

solid line), CV gas composition of 21% O2 (triangle symbol, dotted line), and air 

with 7.6% ideal residuals (square symbol, dashed line). 

The trends in all three mixtures with temperature are similar and show a NTC 

region. In the temperature range of 800 -1000 K, the ignition delay for cases (i) and (iii) 

of dry air and the CV have similar ignition delays, being shorter than that of case (ii) with 

7.6% simulated ideal internal combustion residuals. For the high temperature regime, in 

excess of 1000 K, ignition delays of all cases are similar. There is one outlier at 1100 K 

for case (iii), which is likely attributed to an issue with the kinetics mechanism during 

transition into the NTC zone.  

Effect of Minor Species. Here, the ignition delays for stoichiometric mixtures of 

n-heptane and ambient gases produced in the products of the CV preburn for three 

different maximum temperatures / NOx concentration combinations, as simulated in the 

manner discussed above, are compared to dry air with 21% O2 (Table 4.3) and air with 

7.6% residuals of CO2 and H2O, with 19% O2 (Table 4.4). In all cases the stoichiometric 

n-heptane mixture initial conditions for the ignition delay calculations are at a 

temperature of 1000 K and density of 14.8 kg/m
3 

(pressure of 42 bar), which is chosen to 

be a representative condition at the time of diesel injection in an engine (Naber and 

Siebers 1996). These three temperature conditions, as were defined in Table 4.1, are 

characterized to acknowledge temperature gradients which exist as a result of the first 

and last mixtures to burn and to understand this influence on NOx formation and ignition 

delay. Table 4.3 shows that the ignition delays for the CV mixtures decrease with 

increasing NOx. In comparison to dry air, the maximum percent difference in ignition 

delay between dry air and CV conditions is 6%. 

Similarly, Table 4.4 shows the results for 19% oxygen with the baseline being air 

plus 7.6% residuals. The peak preburn temperatures and NO levels are slightly higher 

than those for the 21% oxygen case for the CV mixtures as a result of the preburn gas 

properties which includes more acetylene fuel. For this reduced oxygen case, the n-

heptane ignition delays are longer (by 8% for air plus residual baseline in comparison to 

dry air) for these mixtures in comparison to those in Table 4.3, which is attributed to the 

lower oxygen concentration. Further, opposite to the 21% findings, the ignition delays for 

the CV mixtures are longer by up to 7% in comparison to the air plus residuals baseline. 

This indicates that the sensitivity of ignition delay to ideal residuals (CO2 and H2O) and 

oxygen concentration are higher in relationship to the NO levels predicted for the CV 
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mixtures. The dominant major species of CO2 and H2O produce a trend in a different 

direction, relative to that of the minor species. These results show the importance of 

considering typical major species levels, even these caused by minimal internal residual 

levels. Finally, in both cases the effect of NO and NO2 decreasing the ignition delay time 

is in agreement with past observations (Tan et al. 1999; Takita et al. 2007). 

Table 4.3 

Ignition delay of stoichiometric mixtures of n-heptane with ambient gases for 21% 

O2 at 1000 K and 42 bar, along with percent deviation of ignition delay relative to 

dry air baseline. *Baseline CV Case. 

Gas mixtures 

(21% O2) 

NO  

 (ppm) 

NO2 

(ppm) 

H2O 

(%) 

CO2 

(%) 

Ignition Delay 

(ms) 

Percent 

Change 

(%) 

Dry Air 0.0 0.0 0.0 0.0 0.796 - 

CV (Peak T = 1711 K) 6.3 1.1 3.56 6.11 0.772 -3 

CV* (Peak T = 1748  K) 12.1 2.0 3.56 6.11 0.771 -3 

CV (Peak T = 1795 K) 28.1 4.5 3.56 6.11 0.745 -6 

Table 4.4 

Ignition delay of stoichiometric mixtures of n-heptane with CV ambient gases for 

19% O2 at 1000 K and 42 bar, along with percent deviation of ignition delay relative 

to air with 7.6% ideal residuals (CO2 and H2O, 19% O2) as the baseline. *Baseline 

CV Case. 

Gas mixtures 

(19% O2) 

NO  

 (ppm) 

NO2 

(ppm) 

H2O 

(%) 

CO2 

(%) 

Ignition Delay 

(ms) 

Percent 

Change 

(%) 

Air + 7.6% Residuals 0.0 0.0 1.08 0.93 0.865 - 

CV (Peak T = 1724 K) 7.4 1.2 3.58 6.15 0.926 7 

CV* (Peak T = 1761 K) 14.3 2.2 3.58 6.15 0.920 6 

CV (Peak T = 1807 K) 33.0 5.0 3.58 6.15 0.886 2 

Effects of Temperature, NOx, and OH. Diesel fuel is typically injected into in-

cylinder conditions with a temperature range of 850 - 1200 K as impacted on the engine 

by the initial mixture temperature, compression ratio, and injection timing. Conversely, 

the temperature in the CV can be varied independently from other parameters by 

changing the time of injection during the cool-down (see Figure 4.1). Over this range of 

temperatures the levels of NO and NO2 in the CV have reached steady-state. However, 

OH is decreasing exponentially with temperature, as seen in Figure 4.4; thus its impact on 

ignition needs to be determined. The effect of these minor species over this temperature 

range (850 - 1200 K) on n-heptane ignition delay was investigated for the CV, including 

a 10X increase and decrease, together with dry air, all compared to the CV baseline case, 

Table 4.5; 10X or 1/10X represents multiplying or dividing the mole fraction of the 

species by a factor of 10 to achieve a new mole fraction for the simulation for this 

sensitivity evaluation.  
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Table 4.5 

Stoichiometric n-heptane ignition delay relative to minor species concentrations 

over the temperature range of 850 - 1200 K with 21% O2 in comparison to dry-air. 
a
CV mixtures have a baseline steady-state level of 12 ppm NO and 2 ppm NO2. 

b
Minor species of OH, NO, and NO2 are adjusted by 1/10 and 10X, respectively, for 

sensitivity analysis. 
c
Changes in ignition delay are relative to the CV baseline 

mixture (CV-BL). 

Temp. 
CV Baseline 

Mixture
a Dry Air 

Minor Species
b
 

1/10x 
Minor Species

b
 (10x) 

(K) 
OH 

(ppb) 

Ignition 

Delay 

(ms) 

Ignition 

Delay 

(ms) 

Change 

CV-BL
c
 

(%) 

Ignition 

Delay 

(ms) 

Change 

CV-BL
c
 

(%) 

Ignition 

Delay 

(ms) 

Change 

CV-BL
c
 

(%) 

850 4.1 0.67 0.68 1 0.72 7 0.59 -12 

900 7.8 0.67 0.67 0 0.69 3 0.59 -12 

950 16.4 0.78 0.85 9 0.81 4 0.67 -14 

1000 36.7 0.77 0.80 4 0.79 3 0.67 -13 

1050 79.2 0.52 0.52 0 0.53 2 0.48 -8 

1100 168.0 0.23 0.22 -4 0.23 0 0.22 -4 

1150 345.0 0.17 0.16 -6 0.17 0 0.16 -6 

1200 676.0 0.096 0.092 -4 0.096 0 0.094 -2 

Over this temperature range, the ignition delay is reduced by 2-14% with 10X 

increases in minor species mole fractions. The ignition delay decreases significantly, by 

almost 700%, for a temperature increase from 850 to 1200 K for all mixtures. When 

considering minor species, 10X or 1/10X changes at lower temperatures (850 - 1000 K), 

minor species influence the ignition delay by a maximum of 12%.  

For a better understanding of the individual minor species’ impact on ignition 

delay, individual minor species mole fractions were varied at an ambient temperature of 

1000 K with the results summarized in Table 4.6, defining percent change in comparison 

with the baseline case (1000 K CV preburn) ignition delay being 0.77 ms. Table 4.6 

considers the results of the n-heptane ignition delay in the baseline CV 21% oxygen post 

preburn case at a density of 14.8 kg/m
3 

and fixed temperature condition. These results are 

compared to the n-heptane ignition delay calculated when increasing and decreasing each 

species, NO, NO2 and OH, by a factor of 10 at the fixed temperature condition in the 

baseline 21% oxygen post preburn case (which considers species of CO2, H2O, O2, N2 

and baseline levels of NO, NO2 and OH).  

Table 4.6 

Impact of minor species concentrations on n-heptane ignition delay in comparison 

to baseline equal to 0.77 ms. Temperature is 1000 K for a 21% oxygen combustion 

vessel post-preburn environment.  

 Increase by 10X Decrease by 10X 

Minor Species 
ID 

(ms) 

Change Relative to 

Baseline (%) 

ID 

(ms) 

Change Relative to 

Baseline (%) 

NO 0.69 -10 0.79 3 

NO2 0.78 1 0.78 1 

OH 0.76 -1 0.78 1 
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When NO increases by 10X, there is a significant (10%) decrease in ignition 

delay, which is attributed to the high, 120 ppm level, of NO. 

One essential NOx chemical mechanism for ignition enhancement is RO2 + NO 

⇔ RO + NO2, which yields a chemical pathway such that NO can react with the active 

radical RO2 to produce the highly reactive radical, RO. In this temperature range, NO is 

the predominant minor species controlling the ignition delay, as shown in Table 4.6, and 

this trend has been demonstrated in methane and ethylene air combustion studies 

elsewhere (Takita et al. 2007). Overall, the increase in NOx and OH minor species mole 

fraction enhances n-heptane ignition. Among the three minor species considered, the NO 

effect is most pronounced, followed by OH. This prompted further investigation using the 

current simulation into the sensitivity of minor species NO on the ignition delay of n-

heptane combustion in dry air. Results showed that further increasing the levels of NO 

present reduces the ignition delay of n-heptane, with the effect on ignition delay 

reduction decreasing slightly as more NO is added. This is expected because, as the NO 

concentration increases, termination reactions become more prevalent which consume the 

reactive OH and hence reverse the effectiveness in enhancing the ignition delay, 

consisting of the following reactions in equation (60) (Risberg et al. 2006). 

  NO + OH + M ⇔ HONO + M 

HONO + OH ⇔ NO2 + H2O 
(60) 

EGR Effect. EGR dilution is actively used to reduce NOx formation in modern 

engines. The percentage EGR represented by a given percent oxygen in the intake stream 

is determined by the overall excess air ratio (λ) of the engine, and the hydrogen/carbon 

ratio of the fuel (for diesel, typically 1.85). Attempting to simulate the effect of EGR is 

one of the primary motivations for studies in preburn-type CVs. EGR variation results 

assuming a λ of 1.372 are summarized in Table 4.7.  

Table 4.7 

Volume percent EGR (representing the total of EGR and internal residual gases) at 

time of diesel combustion at an excess air ratio, λ = 1.372, over a range of percent O2 

cases  
% EGR % O2 % CO2 % H2O 

0.0 21 0.0 0.0 

19.0 18 1.9 1.7 

38.3 15 3.8 3.5 

57.6 12 5.7 5.3 

76.9 9 7.7 7.1 

Changing EGR rate in the simulation represents a change in CO2 and H2O, with 

no change in CO or minor species. This choice of λ is characteristic of the typical 

operating range of diesel engines (Stone 2002; Austin 2010). Both the percent oxygen 

and percent EGR are volume based, with EGR percentage calculated as moles of EGR 

over total number of intake charge moles, which is a sum of air and EGR. In a typical 

engine, the operating range of EGR can approach up to 30%, with higher levels upwards 

of 60% being considered for advanced combustion strategies, including low-temperature 

combustion to facilitate emission reduction (Peng et al. 2003; Alriksson and Denbratt 

2006; Eckerle et al. 2008). 
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To understand the EGR effect in the case of the CV preburn procedure, the results 

from the chemical kinetics simulation for the premixed burn at 1000 K are used as inputs 

into the n-heptane autoignition mechanism (both major and minor species), for variable 

oxygen concentrations, with results on n-heptane ignition delay shown in Figure 4.9. This 

study only considers the effect of chemical composition of charge gases on spray 

ignition; it does not include changes in temperature due to EGR addition attributed to 

different mixture specific heats.  

 
Figure 4.9.  Ignition delay as a function of percent oxygen in the premixed burn 

products and respective percent EGR at 1000 K for the combustion vessel, 

compared to that of n-heptane in air and EGR (CO2 and H2O), no minor species.  

The ignition delay decreases as oxygen concentration is increased, in agreement 

with the conclusions from Idicheria and Pickett (2007). The ignition delay decreases 

exponentially as a function of increasing ambient percent oxygen concentration. A 

reduction in oxygen concentration from 21 to 15%, which corresponds to an increase in 

EGR from 0 to 38%, yields a 170% increase in ignition delay. The CV results are 

compared to stoichiometric n-heptane combustion in air and ideal EGR, by changing CO2 

and H2O levels, no minor species. These cases have a longer ignition delay for all percent 

oxygen cases when compared with the CV because of the NO in the combustion vessel 

case, which enhances ignition. Differences between the ignition delay in the CV case and 

that of n-heptane in air plus EGR are minimal, between 7-10% over the range of oxygen 

concentrations examined.  

Understanding how minor species change with percent oxygen is needed to better 

comprehend the factors governing the ignition delay trends, for example, whether it is 

caused by changes in percent oxygen or the prevalence of minor species. As shown in 

Table 4.8, minor species mole fractions of NOx and OH are compared as a function of 

percent oxygen, along with the computed ignition delays.  
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Table 4.8 

Ignition delay for stoichiometric mixtures of n-heptane in the combustion vessel for 

the 9- 21% oxygen cases investigated in Figure 4.9, along with CO2, H2O, NOx and 

OH mole fractions, to characterize the influence of minor species mole fractions for 

different percent oxygen cases on ignition delay. The combustion vessel case is 

compared to that of n-heptane plus air and ideal EGR, with no minor species 

present (NOx and OH are zero). The ambient gas temperature is 1000 K.  

  Combustion Vessel 
n-Heptane Plus Air and 

Ideal EGR 

% O2 % EGR 
Ignition 

Delay (ms) 

H2O 

(%) 

CO2 

(%) 

NOx 

(ppm) 

OH 

(ppb) 

Ignition 

Delay 

(ms) 

H2O 

(%) 

CO2 

(%) 

9 76.9 2.5 3.68 6.33 32.2 27.3 2.7 7.1 7.7 

12 57.6 1.8 3.66 6.29 27.9 29.8 1.8 5.3 5.7 

15 38.3 1.4 3.62 6.23 22.6 32.4 1.4 3.5 3.8 

18 19.0 1.0 3.59 6.17 18.0 34.6 1.1 1.7 1.9 

21 0.0 0.8 3.56 6.11 14.1 36.6 0.8 0.0 0.0 

The key observation is that the change in minor species mole fractions has 

minimal effect on the ignition delay; rather, the dominating trend is an increase in oxygen 

concentration that yields a reduction in the ignition delay. Although minor species vary 

slightly as oxygen concentration decreases in the simulations of the CV, the variation is 

minimal, on the order of 20 ppm NOx and 12 ppb OH, for a 15% change in oxygen 

percentage.  

 

CONCLUSIONS 

Constant-volume vessels are versatile in that they can be used to investigate spray 

dynamics and combustion characteristics at temperatures, pressures, and exhaust-gas 

recirculation (EGR) levels representative of diesel engines. One of the methods to reach 

these conditions uses a preburn procedure which can lead to the generation of reactive 

minor species. This work investigated the formation of these minor species, including 

NO, NO2, and OH, during the premixed burn and cool-down using a chemical kinetics 

model. The impact of these minor species on the subsequent fuel autoignition, in 

particular n-heptane, including its ignition delay was quantified.  

Conclusion points from these studies are the following:  

1) The most significant minor species formed during the cool-down is NO, which is 

kinetically controlled and strongly residence time dependent. NO is frozen below 

equilibrium values because of the low peak preburn temperatures. For a 21% 

oxygen case post-preburn, with a peak temperature of 1750 K, NO peaks at 13 

ppm, freezing around 12 ppm, significantly less than its equilibrium value of 3200 

ppm.  

2) During the cool-down, OH tends to track equilibrium values closely.  

3) The minor species of NOx and OH formed during the preburn tend to shorten the 

autoignition delay of n-heptane mixtures by 3% relative to dry air, and increase it 

by 6% relative to air plus residuals at 1000 K ambient temperature. However, 

relative to the accuracy of the modeling and simulations, and experimental 

measures, this impact is comparatively insignificant.  
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4) Of the minor species considered (NO, NO2, and OH), NO has the largest effect on 

ignition delay, with increases in NO tending to reduce the ignition delay, by 10% 

for a large 10X increase in NO, to 120 ppm NO, for a 1000 K 21% oxygen post 

preburn environment.  

5) Ignition delay increases as EGR increases, which corresponds to a reduction in 

oxygen concentration. More specifically, a reduction in preburn oxygen 

concentration from 21 to 15% (increase in ideal EGR from 0 to 38%) yields a 

170% increase in ignition delay.  

6) Both major (CO2, H2O, and O2) and minor species (NO, NO2, and OH) influence 

the ignition delay. The changes in ignition delay resulting from minor species are 

small relative to those from major species of CO2, H2O, and O2, which increase to 

3.8% (CO2) and 3.5% (H2O), for an oxygen reduction from 21 to 15%, yielding 

an increase in ignition delay by 170%.  

7) The CV is a useful tool for simulating heavy EGR use in an engine. The CV 

ignition delay is reduced by a maximum of 7% for a given percent oxygen case 

relative to that of EGR, when assuming ideal EGR with no minor species. 

Including minor species such as NO, in the EGR would reduce the ignition delay 

further, yielding closer agreement between CV and EGR cases.  

8) The range of NO produced in the CV is not outside that representative of current 

technology compression ignition engines.  

9) The CV allows users to change major species, along with minor species, by 

altering preburn compositions, thus enabling matching of species caused by 

residuals and EGR in an engine.   

10) Change in minor species mole fractions of NO, NO2, and OH have minimal 

impact on ignition delay relative to the change in oxygen concentration.   

There were various simplifications used throughout these simulations; and hence, 

recommendations are presented to increase the complexity and application of these 

studies. This includes utilizing a spray and mixing model, for example the TSL model, in 

conjunction with a multi-zone ignition model to better incorporate the effects of 

equivalence ratio in the study, while improving cool-down heat transfer modeling by 

using a temperature convective heat transfer coefficient to predict, as opposed to 

experimentally fit, heat transfer. Tests should also be undertaken in the combustion vessel 

to validate experimental levels of minor species as predicted from the model and to also 

further understand the experimental influence of the minor species on n-heptane ignition 

delay, relative to results, as determined from the simulations. These results show the 

combustion vessel can be effectively used to study the combustion of diesel fuel over a 

varying set of ambient conditions without concern over reactive minor species produced 

by the preburn.  
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4.3. ‘Spray A’ Ambient Composition 
Analysis 

Michigan Technological University is involved in an international collaboration 

initiative whose goal is to provide accessible spray and combustion knowledge to 

promote collaboration and furthering of experimental and computational research. This 

initiative, termed the Engine Combustion Network (ECN), is led by Sandia National 

Laboratory. The ECN is a joint collaboration effort of institutions which have similar 

experimental combustion vessel facilities, whose common goal is to harness the unique 

capabilities and diagnostics of each facility, to advance the state of combustion and spray 

knowledge. A current focus of the ECN is the ‘Spray A’ condition, which is an 

experimental test condition used by all participating institutions with the same shared 

injector, to compare and characterize different facilities and diagnostics. The Spray A 

environmental conditions include fuel injection with a Bosch common rail solenoid 

injector equipped with a single hole nozzle 0.09 mm in diameter. The injector is supplied 

with n-dodecane fuel at 1500 bar through a common rail, at 90°C tip temperature. 

Ambient conditions include a 0% or 15% oxygen environment with 900 K gas 

temperature at 22.8 kg/m
3
 density. This condition is chosen to represent a low 

temperature combustion condition for engines operating on moderate levels of Exhaust 

Gas Recirculation (EGR). Refer to http://www.sandia.gov/ecn/cvdata/sprayA.php for 

complete details on the ‘Spray A’ experimental conditions.   

 Several institutions are contributing to the ‘Spray A’ study including, Sandia 

National Laboratory (‘Sandia’), Michigan Technological University (‘MTU’), Bosch, 

Caterpillar, CMT-Motores Termicos (‘CMT’), IFP Energies Nouvelles (‘IFP’), Argonne 

National Laboratory, Technical University of Eindhoven (‘Eindhoven’), and Georgia 

Tech University, with others continuing to become involved as the initiative gains 

momentum. These contributing institutions have different vessels including both constant 

volume preburn vessels for thermodynamic state generation and constant pressure 

continuous flow rigs resulting in varying ambient compositions in regards to species used 

to reach the desired oxygen concentration, as will be discussed in Table 4.9. These 

different environments used will lead to differing levels of major and minor species 

produced, which motivates investigation into the influence these differences have, if any, 

on spray and combustion characteristics.   

The comparison of ambient composition is undertaken to fulfill the goal of 

examining and benchmarking the test facilities charge gas compositions, and the 

influence the charge-gas composition has on autoignition in comparison to those in an 

engine through kinetics modeling. The objectives of this analysis and comparison of 

facilities are as follows:  

• Compare major species at injection including composition and mixture specific 

heats.  

http://www.sandia.gov/ecn/cvdata/sprayA.php
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• Compare the preburn environments used in the constant volume vessels including 

cool-downs and minor species produced. This includes the vessels at MTU, 

Sandia, Eindhoven and IFP.  

• Compare n-heptane ignition delay under ‘Spray A’ conditions considering both 

the major species at fuel injection and also the minor species generated during the 

preburn procedure. n-heptane is used in place of n-dodecane (which is used in 

experimental ‘Spray A’ studies) based on the availability of a validated, reduced, 

chemical kinetic mechanism.  

4.3.1. Comparison of Major Species at 

Injection 
First, the major species at injection are compared at ‘Spray A’ conditions. These 

major species vary depending on the different preburn mixtures used and also the 

different initial compositions in the continuous flow rigs. This composition is compared 

in Table 4.9, along with the ambient gas composition specific heat calculated at the 

‘Spray A’ temperature of 900 K. Both Caterpillar (Bazyn and Martin 2011) and CMT 

(Payri et al. 2011a) utilized constant pressure continuous flow rigs and their zero percent 

oxygen environment was achieved as a mixture of oxygen and nitrogen and as a result, 

for a 15% oxygen environment, the ambient composition is 15% oxygen and 85% 

nitrogen with heaters used to achieve the elevated temperature environment as required 

by the ‘Spray A’ condition. IFP (Pickett et al. 2010), MTU (Nesbitt et al. 2011a, 2011c), 

Sandia (Pickett et al. 2010) and Eindhoven (Meijer et al. 2011) all have constant volume 

combustion vessels and utilize preburn procedures of varying initial compositions to 

achieve the desired oxygen level for n-dodecane spray injection. Also included for 

comparison is a modified preburn mixture which has been proposed analytically to match 

the hydrogen to carbon ratio (HCR) of diesel fuel, 1.85, as opposed to the HCR of 1.17 

representative of the current Sandia / MTU mixture (Johnson et al. 2009). This HCR ratio 

of 1.85, to match that of diesel fuel, is achieved by decreasing the C2H2 and O2 in the 

mixture and by increasing the H2 and N2 to reach different CO2 and H2O levels in the 

products to match the HCR of diesel fuel. In the table below, and throughout the chapter, 

the term ‘ideal EGR’ is used to define the ideal engine charge gas with 38.3% EGR.  
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Table 4.9 

‘Spray A’ environment of institutions post preburn, 15% oxygen environment at 

spray injection.  

  
Spray A Environment (Post Preburn) – 

Volume % 
 

Institution 
Vessel 

Configuration 

O2 

(%) 

N2 

(%) 

CO2 

(%) 

H2O 

(%) 

Argon 

(%) 

Mixture 

Specific 

Heat at 900 

K 

(kJ/kg-K) 

Sandia Preburn, Premixed 15.0 75.1 6.2 3.6 -- 1.16 

MTU Preburn, Premixed 15.0 75.1 6.2 3.6 -- 1.16 

IFP Preburn, Sequential 15.0 71.7 1.7 11.6 -- 1.21 

Eindhoven Preburn, Sequential 15.0 71.2 6.4 3.6 4.2 1.13 

CMT 
Flow Pressure 

Vessel 
15.0 85.0 -- -- -- 1.13 

Caterpillar 
Flow Pressure 

Vessel 
15.0 85.0 -- -- -- 1.13 

Ideal EGR 

(38.3%) 
-- 15.0 77.7 3.8 3.5 -- 1.16 

Dry Air  21.0 78.1 -- -- 0.9 1.12 

Modified HCR 

Match Diesel 

(1.85) 

-- 15.0 79.1 2.5 2.3 -- 1.15 

The Sandia / MTU and modified HCR 1.85 ratio have different levels of carbon dioxide 

and water. This is attributed to the different initial mixtures, with the HCR 1.85 mixture 

having decreased acetylene and increased hydrogen content relative to the standard 

Sandia / MTU mixture, with a HCR of 1.17. All mixtures considered have similar 

specific heats, spanning at most 0.1 kJ/kg-K (7%) at the 900 K ‘Spray A’ temperature 

despite the variations in the charge gas at the 15% oxygen environment.  The similarities 

in specific heats will provide similar charge-gas environments at the time of injection. 

Even though these specific heats are similar, it is also interesting to compare the different 

ambient compositions, not just specific heat, for the ‘Spray A’ 15% oxygen condition 

considering the major species of CO2, H2O, Ar, and N2 and their influence on the 

autoignition of the injected spray as will be discussed.  

4.3.2. Comparison of Preburn Environments 
A comparison was undertaken of the different preburn environments including, 

mixture used, minor species generated, and cool down history. A summary of the 

different initial mixture compositions utilized in these preburn vessels is provided in 

Table 4.10. The adiabatic flame temperature under constant volume and constant internal 

energy conditions was computed for each mixture composition at the initial combustion 

vessel heated wall temperature and corresponding pressure to achieve 22.8 kg/m
3
 density 

(‘Spray A’ condition for the Sandia mixture molecular weight). 
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Table 4.10 

‘Spray A’ institution preburn mixture composition comparison  
 Preburn Mixture Composition (Volume %)    

Institution 
C2H2 

(%) 

C2H4 

(%) 

H2 

(%) 

O2 

(%) 

N2 

(%) 

Argon 

(%) 

Molecular 

Weight 

Reactants 

(kg/kmol) 

Initial 

CV 

Temp 

(K) 

Initial 

Pressure 

(MPa) 

Tadiabatic 

(U,V) 

(K) 

Sandia 3.06 -- 0.50 22.63 73.82 -- 28.7 445 2.94 1927 

MTU 3.06 -- 0.50 22.63 73.82 -- 28.7 453 2.99 1933 

IFP -- 0.816 9.39 21.43 68.36 -- 26.4 453 3.25 1772 

Eindhoven 3.15 -- -- 22.64 70.07 4.14 29.3 443 2.87 1946 

The differences in mixture, including species used and composition, changed the 

adiabatic flame temperature and because of this, there are differences in minor species 

created, including NOx which is thermally (temperature) controlled and this minor 

species could potentially influence the resulting spray and autoignition (refer to section 

4.2). The Eindhoven mixture had the highest adiabatic flame temperature, followed by 

the Sandia and MTU mixture and lastly IFP. The small (6 K) difference in flame 

temperature between MTU and Sandia, despite identical mixtures, is due to differences in 

the CV heated wall temperature used (initial temperature). The highest adiabatic flame 

temperature is governed by the energy of the fuel in the reactants, which is controlled by 

acetylene, thereby resulting in Eindhoven having the highest flame temperature based on 

the largest amount of acetylene in their preburn mixture reactants.  

Along with the varying mixture compositions used, all vessels exhibit different 

cool-down histories which will influence the levels of minor species produced. NO and 

NO2 are largely thermally (temperature controlled), with OH, a reactive minor species, 

largely following the cool-down history of the combustion vessel preburn procedure. 

First, experimental temperature traces were compared for each CV preburn environment 

as shown in Figure 4.10 for 15% oxygen conditions. These temperature traces are 

computed from measured combustion vessel pressures. MTU has not undertaken tests at 

this ‘Spray A’ condition and therefore data is presented for a 0% O2 environment at 34.8 

kg/m
3
 ambient density to show the general MTU cool-down behavior acknowledging that 

peak temperatures and times will vary as a result of different mixture characteristics and 

density conditions.  
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Figure 4.10: Experimental temperature-time trace for the four preburn 

environments under ‘Spray A’ conditions. Time 0 seconds corresponds to the time 

of spark. 

The vessels exhibit different temperature-time traces not only in peak temperature, but 

also in cool-down behavior in regards to time to reach peak temperature and to reach the 

desired temperature at injection, 900 K. This peak temperature behavior is largely 

governed by initial mixture composition, the higher adiabatic flame temperature mixtures 

exhibit higher peak temperatures experimentally with reasons for these higher 

temperatures being previously discussed. Sandia exhibits a slightly different behavior in 

peak temperature, when compared to the other vessels, in regards to a large change 

between expected adiabatic flame temperature and actual peak combustion temperature, 

which is likely attributed to the reduced fan speed and fan placement influencing 

combustion. As seen, the four vessels exhibit different cool-down histories, largely 

attributed to fan speed variations as summarized in Table 4.11.  

Table 4.11 

CV fan speed comparisons.  
Institution Fan Speed (RPM) Location 

Sandia 1000 Upper Corner (opposite injector) 

MTU 7000 Top Window 

IFP 3140 Upper Corner (near injector) 

Eindhoven 1890 Lower Corner 

 

As the fan speed increased, the rate of cool-down increased due to increased vessel heat 

transfer. Additionally, the fan will generate enhanced flow motion and turbulence inside 

the combustion vessel which not only increases the rate of cool-down, but also enhanced 

combustion rates. MTU runs at the highest fan speed and has a fast cool down relative to 

Sandia which has the same starting mixture. Sandia runs the lowest fan speed which was 

evidenced in its long cool down and long time to reach the desired temperature for 

injection.  
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The cool downs can be further compared by fitting the experimental temperature 

decay to a modified exponential, quadratic in time, to understand both the rate and time 

constant of the cool down for comparison, which was also used to define the preburn heat 

transfer in  the Cantera chemical kinetics modeling program. The cool-downs were curve 

fit to an equation of the form shown in equation (61).  

  T(t) = Toexp(at2 + bt) (61) 

Where a, b, and c, are constants in the curve fit, t is time in seconds, and T is CV charge 

gas temperature in Kelvins. Applying this curve fit to the experimental temperature-time 

data that was shown in Figure 4.10, cool-down curve fit constants were determined as 

summarized in Table 4.12. For the case of MTU, the 0% O2 data at 34.8 kg/m
3
 was 

interpolated from data at 17.4 kg/m
3
, and 21% O2 data at both 34.8 and 17.4 kg/m

3
 to 

estimate data at 15% O2, 22.8 kg/m
3
 ambient density to match other experimental traces. 

Also included in the table is the time constant of the cool-down decay as calculated from 

1000 to 800 K.  

Table 4.12 

Cool-down curve fit parameters and decay times. *The experimental time from 

spark to peak temperature is estimated based on 0% and 21% O2 data at 17.4 and 

34.8 kg/m
3
 density.  

 Sandia MTU IFP Eindhoven 

Cool Down Curve Fit Parameters 

a 0.05 0.00 0.02 0.07 

b -0.41 -0.77 -0.87 -0.55 

c 7.43 7.51 7.32 7.49 

Experimental Time (s) from 

Spark to Peak Temperature 
0.42 0.13* 0.100 0.25 

Time Constant Cool Down 

Decay (s) 
6.5 1.3 1.2 3.5 

Sandia, IFP and Eindhoven all have a cool down curve fit parameter providing an 

exponential function that is quadratic in time, whereas that of MTU was only linear with 

time which could be caused by various factors. First, MTU runs at a significantly higher 

fan speed (more than double that of the next highest fan speed used by IFP). This 

increase in fan speed should provide more uniform mixing between the gases in the CV, 

promoting the cool-down to be exponential with linear temperature dependence since at 

peak preburn temperature, the mixture is more uniform and will yield a faster rate of cool 

down. The eight access ports of the combustion vessel are large crevice volumes which 

can be considered as pistons in conventional engines for comparison. With the higher fan 

speed, the flow-field will develop more quickly, yielding a true exponential decay, 

whereas at the lower fan speeds, it takes longer for the flow field to develop so the overall 

cool down is exponentially quadratic in time eventually transitioning to a true exponential 

decay in the longer time scales. These explanations were further confirmed by 

considering the value of the ‘a’ parameter in the curve fit which is small for IFP as they 

have a higher fan speed. The trend was not completely preserved for Eindhoven and 

Sandia, but this could be attributed to placement of the fan in the CV and overall 

differences in internal vessel geometries. The curve fit results are shown in Figure 4.11 

and are time shifted so that 0 seconds occurs at 900 K.  
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Figure 4.11: Cool-down curve fits time shifted to 900 K occurring at 0 seconds.  

As shown in the figure, the cool-down curve fits are similar for IFP and MTU, which was  

confirmed by the time constant of the cool-down decay as calculated from 1000 to 800 K 

and summarized in Table 4.12.  

4.3.2.1. Chemical Kinetics Preburn Modeling for 

Combustion Vessel Comparison 
Details on the chemical kinetics preburn modeling for combustion vessel 

comparison are provided in Appendix section 12.3. First, initial conditions defined by the 

extent of reaction method must be determined, using a procedure developed with EES 

(refer to section 12.3.3.1).The results of the EES initial conditions from the extent of 

reaction calculation are shown in Table 4.13 for the four different preburn environments.  

Table 4.13 

EES initial conditions from extent of reaction calculation. X is species mole fraction. 
 Sandia MTU IFP Eindhoven 

T (K) 905 1031 891 1030 

Pressure (MPa) 5.93 6.75 6.24 6.61 

α 0.448 0.444 0.507 0.443 

X H2 0.003 0.003 0.047 -- 

X C2H2 0.017 0.017 -- 0.018 

X C2H4 -- -- 0.004 -- 

X Ar -- -- -- 0.042 

X O2 0.192 0.193 0.182 0.193 

X N2 0.744 0.744 0.700 0.706 

X CO2 0.028 0.027 0.008 0.028 

X H2O 0.016 0.016 0.057 0.014 

Despite the same mixtures and similar starting conditions for Sandia and MTU, the 

elevated reaction temperatures were significantly different. This was attributed to the 

reduced experimental peak temperature for Sandia relative to that of MTU due to their 

lower fan speed.  
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The initial extent of reaction results were input into the Cantera chemical kinetics 

model which is initially set to be adiabatic to determine the ignition delay. This ignition 

delay must be determined as it defines when heat transfer of the cool-down will start. 

Once the ignition delay was determined, heat transfer was implemented starting at this 

ignition delay throughout the remainder of the kinetics model defining the cool-down 

phase. This heat transfer is modeled using an exponential decay curve fit as defined by 

equation (62), temperature was defined in equation (61).  

 
Q = Constant ∗ dT(t)dt = Constant ∗ To(b + 2at) ∗ exp (at2 + bt) (62) 

Where Constant, in the above equation, is a representation of the convective heat transfer 

coefficient. In the Cantera model this constant was not defined, rather the heat flux was 

tuned to match the model temperature-time trace to the experimental data. This heat 

transfer modeling procedure is improved upon that used in the Energy and Fuels 

manuscript (Section 4.2) which included a polynomial relationship for the heat transfer 

modeling. Results for the temperature time trace from this model are shown in Figure 

4.12.  

 
Figure 4.12: Chemical kinetics modeling of temperature time trace in Cantera for 

the four different preburn environments.  

Peak temperature is governed by mixture properties and the differing fan speeds in the 

vessels.  

As discussed in section 4.2, the minor species of interest are NO, NO2, and OH. 

These were tracked during the premixed burn and cool-down to understand levels 

throughout the process and at injection. The minor species of NO is shown in Figure 

4.13.  
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Figure 4.13: NO – time trace from the CV preburns.  

NO is thermally controlled and is governed by the peak temperature of the preburn. As 

the peak preburn temperature increases, the NO levels increase, and therefore Eindhoven 

has the largest NO level, followed by MTU, Sandia and IFP. The time to reach 900 K 

(denoted by the magenta circle) is governed by the cool-down as was shown in Figure 

4.12.  

 Also of interest are NO2 levels during the preburn procedure as shown in Figure 

4.14.  

 
Figure 4.14: NO2 – time trace during the preburn for the four different combustion 

vessels. 

NO2 levels during the preburn are similar to NO in regards to tracking peak temperature 

trends. Peak NO levels are reached earlier than those for NO2, making NO2 more 

residence time dependent than NO. Eindhoven has the largest value of NO2, followed by 

MTU, Sandia, and finally IFP. These trends are governed by the peak temperatures of the 

preburn (Figure 4.12).  

The last minor species of interest is OH, which tracks the preburn temperature-

time trace as shown in Figure 4.15.  
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Figure 4.15: OH – time trace during the preburn environment.  

OH tracks the temperature trace reaching a peak value of OH around peak temperature 

and then OH decreases as temperature decays. At injection, IFP has the maximum level 

of OH, with Sandia having minimum OH. OH levels were below equilibrium at the time 

of injection, by over four orders of magnitude as will be quantified.  

NO levels resulting from the preburn procedure are significantly less than 

equilibrium. Peak OH levels occur at the time of the peak preburn temperature, and are 

close to equilibrium values but levels dropped sharply as cool-down proceeded with heat 

transfer occurring. These equilibrium levels for constant internal energy and volume are 

summarized in Table 4.14, calculated at the initial CV heated temperature (defined in 

Table 4.9 for each institution).  

Table 4.14 

Equilibrium levels of minor species of interest formed during the preburn event. 

Calculated at the initial CV heated temperature.  
 Sandia MTU IFP Eindhoven 

NO (ppm) 5098 5184 3031 5250 

NO2 (ppm) 93.3 94.0 74.6 92.5 

OH (ppm) 233 240 173 243 

Peak T (K) 1927 1933 1772 1946 

Equilibrium levels for NO and NO2 were more than two orders of magnitude above what 

is typical of that in conventional diesel engines running moderate EGR levels.  

The conditions at injection for ‘Spray A’ (900 K temperature) as determined from 

this preburn chemical kinetics modeling are summarized in Table 4.15.  



 

131 

Table 4.15 

Preburn kinetics modeling output results for conditions at injection. Temperature of 

900 K, density of 22.8 kg/m
3
. 

 Sandia MTU IFP Eindhoven 

Time (s) at Injection 

Relative to Peak Temp 
2.15 0.95 0.55 1.68 

T (K) 900 900 900 900 

Pressure (MPa) 5.81 5.82 6.13 5.71 

NO (PPM) 11.24 59.14 0.11 96.72 

NO2 (PPM) 2.47 9.64 0.02 16.66 

OH (PPB) 3.78 5.24 14.34 3.87 

Mole Fraction CO2 (-) 0.06 0.06 0.02 0.06 

Mole Fraction H2O(-) 0.04 0.04 0.12 0.03 

Mole Fraction N2(-) 0.75 0.75 0.72 0.71 

Mole Fraction O2 (-) 0.15 0.15 0.15 0.15 

At injection, Eindhoven has the largest NO and NO2 mole fractions due to the highest 

peak temperature and these species are thermally controlled. OH is highest for IFP, and 

OH tends to track the temperature time trace of the vessel as it is a highly reactive minor 

species. Minor species levels of NO and NO2 at injection are more than two orders of 

magnitude less than equilibrium levels and are similar to an engine running moderate 

EGR. The minor species of OH at injection are four orders of magnitude less than 

equilibrium levels.  

4.3.3. Autoignition Modeling of n-Heptane as 

a Diesel Surrogate 
The autoignition of n-heptane was modeled in a second kinetics simulation, 

considering first the influence of major species for all vessels and second considering the 

minor species produced in the preburn vessels. The autoignition was modeled using n-

heptane as a diesel surrogate, using the existing validated model from that used in the 

Energy and Fuels publication. This included use of a reduced n-heptane mechanism 

(LLNL 2000), modified to include NO and NO2 from the GRI 3.0 mechanism (Smith et 

al. 1999). The ambient gases, as defined in Table 4.9, are mixed stoichiometrically (to 

yield complete combustion with no excess oxygen) with n-heptane, which were  used as 

inputs into the reactor model at 900 K ambient temperature and 22.8 kg/m
3
 density, 

which defines pressure based on the different mixture molecular weights, to match the 

‘Spray A’ environment. Although the ‘Spray A’ conditions are for n-dodecane fuel 

injection, n-heptane is used here as the diesel surrogate as it provides insight on relative 

changes in ignition delay amongst institutions and vessel types, and this mechanism is 

well validated (Seiser et al. 2000). Furthermore, although n-dodecane mechanisms exist, 

they are known to have limitations, with the developers acknowledging that the current 

mechanism is continuously being updated and improved upon (Wang et al. 2010). Model 

details are provided in Appendix 12.3.2. 
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4.3.3.1. Constant Pressure Flow Rig and Constant 

Volume Combustion Vessel Comparison Considering 

Major Species 
First, this n-heptane autoignition model was used to compare the stoichiometric n-

heptane ignition delay and peak temperatures for all vessels (Sandia, MTU, IFP, 

Eindhoven, Caterpillar, and CMT), along with two other ambient charge gas mixtures. 

This includes an ideal EGR mixture (38.3% EGR to yield 15% O2), achieved with H2O 

and CO2 dilution and a modified HCR mixture discussed previously (Johnson et al. 

2009).  

Table 4.16 

Ignition delay of stoichiometric n-heptane and peak n-heptane combustion 

temperature for constant pressure and enthalpy reactor modeling at ‘Spray A’ 

conditions (15% O2, 900 K, 60 Bar – 22.8 kg/m
3
 Density).  

 
Mole Fractions 

Spray A Environment Mixed with n-Heptane 
  

Institution O2 N2 CO2 H2O Argon 
n-

Heptane 

Ignition 

Delay 

(ms) 

Peak 

Temperature 

(K) 

Modified 

HCR Match 

Diesel (1.85) 

0.148 0.780 0.024 0.023 -- 0.013 0.69 2360 

Dry Air 0.206 0.775 -- -- -- 0.019 0.37 2708 

Ideal EGR 

(38.3%) 
0.148 0.767 0.038 0.035 -- 0.013 0.71 2326 

Caterpillar 0.148 0.839 -- -- -- 0.013 0.69 2374 

CMT 0.148 0.839 -- -- -- 0.013 0.69 2374 

Eindhoven 0.148 0.702 0.063 0.032 0.036 0.013 0.73 2327 

IFP 0.148 0.708 0.017 0.114 -- 0.013 0.65 2313 

MTU 0.148 0.741 0.061 0.036 -- 0.013 0.72 2308 

Sandia 0.148 0.741 0.061 0.036 -- 0.013 0.72 2308 

There were no significant differences in n-heptane ignition delay for the 15% Oxygen 

conditions over the various mixtures when considering the major species in the ambient 

gas composition. There is a significant difference between the 15% oxygen environments 

and that of dry air (21% oxygen), with almost half the ignition delay. There were 

differences in peak temperature, spanning almost 70 K, due to the different ambient gas 

compositions, and when there was less ambient gas dilution by CO2 and H2O, the peak 

combustion temperature of n-heptane increased.  

Comparison between the species is easier when represented as different bar 

charts. First, major species of H2O and CO2 are compared as shown in Figure 4.16.  
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Figure 4.16: Comparison of levels of major species of carbon dioxide and water for 

n-heptane autoignition study.   

Of note are that CMT and Caterpillar do not utilize CO2 or H2O dilution to achieve the 

15% O2 (refer to Table 4.17). This dilution is used by the other vessels, and is also 

representative of conventional diesel engines. IFP had significantly higher H2O levels at 

injection which is attributed to the large amount of hydrogen in their preburn mixture. 

Levels of CO2 and H2O are similar for MTU, Sandia and IFP. These differences in major 

species (CO2, H2O, O2, N2 and Ar) yield variations in peak combustion temperature with 

n-heptane as shown in Figure 4.17.   

 
Figure 4.17: Peak temperature of n-heptane autoignition as a result of different 

levels of major species.  

Peak combustion temperature of n-heptane combustion with lambda of 1 was largest for 

that of dry air which is attributed to the difference in oxygen levels. Caterpillar and CMT 

have the next highest peak temperature which is attributed to the lack of dilution by water 

and carbon dioxide. Although dilution is occurring with nitrogen, the specific heat 

capacity of nitrogen is less than that of both carbon dioxide and water (Turns 2000), and 

the reduced heat capacity of the nitrogen diluents will provide less reductions in flame 

temperature (Kook et al. 2005) when compared to carbon dioxide and water dilution.  

Finally ignition delay was compared for the different institutions when 

considering solely major species as shown in Figure 4.18. 
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Figure 4.18: N-heptane ignition delay variation as a result of different levels of 

major species.  

Again, the first obvious trend is the significantly reduced ignition delay for n-heptane in 

dry air relative to the 15% oxygen conditions, by close to 50%, due to the elevated 

oxygen level. Excluding this difference, there were no significant differences in ignition 

delay for the different vessels, having a span of 0.1 ms which is within the modeling time 

step of 0.1 ms and therefore the variations which do exist are within the modeling 

accuracy.  

4.3.3.2. Constant Volume Combustion Vessel 

Comparison – Major and Minor Species 
Although the ignition delay modeling shows no significant variations of ignition 

delay in n-heptane between the different ambient environments, this modeling assumed 

only major species levels (O2, CO2, H2O, Ar, and N2), however, the preburn procedure 

used at IFP, Eindhoven, and MTU / Sandia is known to generate reactive minor species 

which could influence the ignition delay (Nesbitt et al. 2011c). Therefore, complete 

modeling was undertaken starting with the extent of reaction method to determine 

elevated starting conditions. These conditions were then used to model the preburn 

procedure including premixed burn and cool-down. Finally, the subsequent ignition delay 

of fuel in a charge gas environment considering all 53 GRI species, with minor species, 

was undertaken. The same n-heptane autoignition modeling procedure was used as was 

discussed in Figure 12.19. The inputs to the n-heptane model result from the analysis 

undertaken in section 4.3.2. This modeling was undertaken for the CV preburn vessels 

including Sandia, MTU, Eindhoven, and IFP, while being compared to air plus ideal 

EGR at 15% oxygen and dry air. These results are shown in Table 4.17.  
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Table 4.17 

Comparison of the autoignition modeling results considering the influence of major 

species.  
 n-Heptane Ignition Delay (ms) Peak Temperature (K) 

Sandia 0.69 2302 

MTU 0.66 2302 

IFP 0.68 2307 

Eindhoven 0.67 2320 

Air Plus Ideal Residuals 

(38.3%) – 15% O2 
0.71 2326 

Dry Air 0.37 2707 

The ignition delay for Sandia and MTU are different due to variations in minor species 

levels (Table 4.15) attributed to the cool-down histories of the two vessels (different fan 

speeds). Considering the influence of minor and major species resulting from the preburn, 

there was no significant difference in the ignition delay, less than 5% spread for the 

different vessels, with the exception of it being 90% longer when compared to that of dry 

air.   

4.3.4. Conclusions from ‘Spray A’ Ambient 

Composition Comparison 
Several key conclusions can be made from the comparison of the spray A ambient 

environments, as summarized below:  

• Major Species Comparison – all institutions exhibited similar specific heats in the 

range of 1.12 to 1.21 kJ/kg-K, being within  0.1 kJ/kg-K (7%) of each other, and 

these specific heats matched typical levels in an engine running an EGR level of 

38.3%.  

• Preburn comparison  

o Different cool-down histories were seen in the different vessels which are 

attributed to differences in fan speed causing variations in flow fields. 

o Peak temperature, NO, and NO2 at injection exhibit the following trend, 

Eindhoven, MTU > Sandia > IFP. NO and NO2 are thermally controlled 

and therefore are controlled by the peak temperature. Levels of these 

minor species at injection are more than two orders of magnitude less than 

equilibrium. The peak temperature trend is controlled by both fan speed 

and mixture composition, with acetylene being the controlling fuel 

component, with the Eindhoven mixture having the largest amount of this 

constituent. 

o OH species trend at injection is as follows, IFP > MTU > Eindhoven > 
Sandia. OH levels track with the cool-down process, and are four orders of 

magnitude less than equilibrium at injection. 

• Ignition delay comparison 

o Major species consideration – no significant variation in n-heptane 

ignition delay, with a less than 5% spread (0.04 ms) when considering all 

cases except for IFP. When considering IFP the spread was 0.1 ms which 

is within the model accuracy based on time step definition (0.1 ms) and 

model validity (refer to Figure 4.7). The smallest ignition delay for the 
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15% oxygen cases is seen by IFP being about 0.05 ms shorter than the 

other test cases.  

o Preburn consideration – no variation in ignition delay due to minor species 

from the preburn (less than 5% spread), despite the different levels of both 

major and minor species from the preburn.  

 CV ignition delay is 4% shorter than Ideal EGR (15% O2) 

 CV Ignition delay is 83% longer than dry air (21% O2) 

4.4. Modification to the Preburn 
Mixture 

A modification has been applied to the preburn procedure in regards to premixture 

composition for 0% oxygen mixtures relative to that presented in section 4.2. This 

modified mixture was developed in an effort to improve preburn combustion and is 

applied in the current study.  

4.4.1. 0% Oxygen Mixture Analysis 
Several studies in the combustion vessel consist of injecting fuel into a 0% 

oxygen environment which provides ambient conditions for spray vaporization, without 

combustion, to enable study and characterization of spray parameters. The original 0% 

oxygen mixture, as used at Sandia National Laboratory (Sandia ECN 2010) consists of 

3.2% acetylene, 0.50% hydrogen, 8.25% oxygen, and 88.05% nitrogen. However, using 

this conventional mixture under certain high temperature conditions, diesel combustion 

occurs. This could be attributed to various factors including for example mixture 

stratification when using the remnants of a premixture in the mixing vessel or incomplete 

combustion. This unexpected presence of diesel combustion in a 0% oxygen environment 

led to mixture characterization, as well as sampling of preburn exhaust gases, to 

understand the mixture pre- and post- burn to determine any changes which need to be 

made to the composition.  

4.4.1.1. Mixture Sampling Setup and Test Procedures  
Sampling was undertaken using a Sensors Inc Semtech DS portable emissions 

analyzer with the capability of measuring CO, CO2, O2, NO, NO2 and total hydrocarbons 

(THC). For the current work, THC levels, along with O2, CO, CO2 and NO levels were 

monitored. This includes the use of a heated flame ionization detector (FID) for 

measuring THC, an electrochemical sensor for O2 measurements, a non-dispersive 

infrared (NDIR) analyzer to measure CO and CO2 levels, and a non-dispersive ultraviolet 

(NDUV) analyzer to measure NO and NO2. NO and NO2 were not measured in the 

current work as the analyzer was not calibrated for these gas species. All gases were 

passed through a heated sample line to the Semtech unit to ensure that the hydrocarbons 

were not lost or hung-up in the sample line during transport. The unit communicates 

wirelessly to the control computer where sampling data is logged and processed.  

The THC FID unit is heated to 191°C, which includes a heated filter sample 

system and the FID chamber, with this heating being required to prevent condensation in 

the exhaust sample (Sensors Inc. 2008). The FID fuel is a mixture of hydrogen and 

helium, and a 10,000 PPM THC sample range was chosen based on the FID fuel 
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composition. The NDIR analyzer requires the sample to first be dried by passing it 

through a coalescing filter, followed by a thermoelectric chiller to eliminate water vapor 

which interferes in the infrared channels before measurement of CO and CO2 levels 

(Sensors Inc. 2008). Finally, an electrochemical oxygen sensor was used to characterize 

oxygen levels in the sample which works by flowing the sample through a sensor that 

outputs a signal that is proportional to the partial pressure of oxygen in the sample 

(Sensors Inc. 2008). The NDUV analyzer first dries the exhaust sample with a coalescing 

filter followed by a thermoelectric chiller, removing heavy hydrocarbons which would 

contaminate it.  

For testing, the analyzer must first be calibrated. This includes first zeroing the 

analyzer which consists of a 30 second purge and by using clean air as the sample port, 

the levels of CO, CO2, NO and THC are zeroed. Next, the analyzer was spanned to 

ensure it was appropriately calibrated for the sample measurements. This involves the use 

of a quad-blend span gas which includes CO (3.95%), CO2 (11.8%), NO (1975 ppm) and 

THC (1202 ppm) with the balance Nitrogen, which is connected to the span port of the 

analyzer. This THC range of the quad-blend span gas is small relative to the 10,000 ppm 

THC sample range, but was used based on limited quad-blend span gas availability, and 

the requirement of measuring larger levels of hydrocarbons. The span procedure included 

a 30 second purge and provided readings of the gas constituents which were compared to 

the expected bottle readings to calibrate the analyzer. The system also underwent a span 

for oxygen levels by using ambient air with an expected oxygen level of 20.9%.  

Two different sampling procedures were used in the current work. This involves 

sampling the gases of the preburn mixture before combustion, and also sampling the 

gases after combustion, as shown in Figure 4.19. 

 
Figure 4.19: Two sampling points, pre- and post- burn of the premixture.  

In both cases, a sample bag was filled with the gas mixture to be tested, with the 

sample bag being evacuated during gaseous sample testing by passing the gases through 

the heated sample line into the Semtech analyzer with this test data being logged. When 

sampling gases from the preburn mixture before combustion, a sample is drawn directly 

from the mixing vessel into the sample bag. For sampling of the gases post preburn, a 

different procedure is used. Two preburns are undertaken to ensure adequate sample 

gases, with the preburn products metered from the CV exhaust into the metal sample 

cylinder, as shown in Figure 4.20. After both preburns were completed, the contents of 



 

138 

the sample cylinder were  transferred into the sample bag for metering into the Semtech 

analyzer via the heated sample line.  

 
Figure 4.20: Sampling setup for use of the Semtech in the CV Laboratory for 

preburn sampling (draw sample directly from mixing vessel into the sample bag) 

and post preburn sampling (draw sample which is stored in the exhaust sample 

cylinder into the sample bag).  

4.4.1.2. Mixture Sampling Results and Analysis 
Exhaust gas sampling was undertaken of various preburn mixtures and the 

exhaust post preburn to understand mixture accuracy and combustion efficiency. It was 

with this testing that it was decided to modify the existing 0% oxygen mixture to a new 

mixture with more hydrogen (i.e. a richer mixture) to provide a more complete 

combustion event and therefore have the correct 0% oxygen environment post preburn.  

Testing was undertaken on the original 0% oxygen mixture before and after a 

preburn. The actual mixture composition relative to that expected is summarized in Table 

4.18, based on pressure transducer readings from the fill process.  

Table 4.18 

Gas sampling mixture composition for the original 0% oxygen mixture.  

Species 

Expected Mole Fractions Based on Desired 

Mixture 

(Volume %) 

Actual Mole Fractions Based on 

Measured Partial Pressures (Volume 

%) 

C2H2 3.20 3.21 

H2 0.50 0.54 

O2 8.25 8.72 

N2 88.1 87.5 

As seen in the table, the actual mixture is 0.5% high in oxygen and correspondingly low 

in nitrogen by 0.5%. This mixture deviation will be translated to the actual products post-

preburn, and assuming an ideal complete combustion process, these are defined in Table 

4.19.  
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Table 4.19 

Ideal, complete, combustion products of the 0% oxygen mixture.  

Species 

Expected Mole Fractions Based on 

Desired Mixture 

(Volume %) 

Actual Mole Fractions Based on 

Measured Partial Pressures 

(Volume %) 

CO2 6.40 6.42 

H2O 3.70 3.75 

O2 0.00 0.43 

N2 88.1 87.5 

Based on the error in the initial mixture, the species levels after combustion will be 

almost 0.5% high in oxygen and almost 0.5% low in nitrogen.  

To verify mixture characteristics before and after the preburn, the mixture was 

sampled using the aforementioned procedure with the Semtech emissions analyzer. Based 

on the measuring limits of the analyzer, only oxygen can be analyzed for the mixture 

before the preburn, and post preburn oxygen, carbon dioxide, carbon monoxide, and total 

hydrocarbons (THC, C1 basis) can be measured based on analyzer operating limits and 

the calibration gas used. Mixture measurements are provided in Table 4.20.  

Table 4.20 

Mixture composition testing, pre and post preburn, for a 0% oxygen mixture.  

 

Expected 

Levels – 

based on 

Measured 

Partial 

Pressures 

Mixture 

Before 

Preburn 

– Test 1 

Mixture 

Before 

Preburn – 

Test 2 

Expected 

Levels – 

based on 

Measured 

Partial 

Pressures 

Mixture 

Post 

Preburn 

– Test 1 

Mixture 

Post 

Preburn 

– Test 2 

Oxygen (%) 8.7 8.2 8.1 0.4 1.4 0.7 

Carbon 

Dioxide (%) 
 -- -- 6.4 5.4 5.1 

CO (ppm)  -- --  2850 10200 

THC C1 

Basis (ppm) 
 -- --  5240 2800 

Considering the results of mixture testing before the preburn, oxygen levels are reading at 

a minimum 0.5% lower than expected based on actual partial pressure measurements 

with less deviation when considering expected partial pressure measurements based on 

the equations for mixture definition (Table 4.19). The differences between expected and 

measured oxygen levels, of 0.5%, are within the Semtech measuring accuracy of ±1% 

oxygen (Sensors Inc. 2008). Looking at a carbon balance of the reactants, based on 

partial pressure measurements, there is 6.42 moles of carbon in the reactants. The 

products, based on Semtech measurements are 5.69 moles and 6.12 moles of carbon in 

the products for Test 1 and Test 2, respectively. As carbon does not balance this provides 

an indication of a combustion efficiency less than 100% as not all of the reactant carbon 

is converted to product carbon. This incomplete combustion results in excess oxygen in 

the products, as confirmed with the exhaust gas sampling.  

 Considering the results post preburn, there was less repeatability and larger 

measurement variation. In both tests, oxygen was high and carbon dioxide was low 

relative to what is expected for complete combustion (refer to Table 4.18). This, along 

with levels of THC, further supports the theory of incomplete combustion. Carbon 
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dioxide accuracy is ±3% of the reading (±0.16% in this case), carbon monoxide accuracy 

is ±3% of the reading (±86 to ±306 ppm in this case), and THC accuracy is ±2% of the 

reading (±105 to ±56 ppm in this case) (Sensors Inc. 2008). The variation in 

measurements test to test post preburn could be attributed to various factors. First, 

differences in combustion repeatability attributed to ignition variations or mixture 

stratification of the charge-gas mixture. Second, in sampling, there could be some errors 

attributed to the gas analyzer in regards to mixture hang up in the sample lines or a 

contaminated sample cylinder or bag which would influence the readings. Third, during 

the preburn the gases will be compressed into the crevice volume, and some (not all) of 

the gases will be pulled out of the crevice volumes as the vessel is exhausted, which will 

influence gas sampling results. Despite these variations, it is evident that combustion was 

incomplete, thereby motivating hydrogen addition to raise the combustion temperature to 

promote combustion efficiency and more complete combustion, to achieve the correct 

mixture.  

4.4.1.3. Modifications to the 0% Oxygen Mixture 
Based on the Semtech analysis and the presence of diesel combustion under 

certain high temperature conditions, the 0% oxygen mixture was modified. The 

modification undertaken was such that this new mixture has an increase in the adiabatic 

flame temperature while preserving the fuel-air ratio of the original mixture, to assist in 

more complete combustion. The procedure taken to determine this new mixture is 

outlined here, using two different methods. The first method relies on adiabatic flame 

temperature calculations with the GRI 3.0 mechanism in Cantera, interfaced with Matlab. 

First, the initial adiabatic flame temperature was calculated at constant volume and 

internal energy for a 0% oxygen mixture (original mixture) in the combustion vessel at 

6.9 bar (100 psi) and 453 K. Next, hydrogen was added to the mixture to increase the 

adiabatic flame temperature by 50 K, which after iterating and solving corresponds to a 

2.5 kg addition of hydrogen, along with the addition of oxygen – nitrogen to keep the 

same fuel (acetylene and hydrogen) to air (oxygen and nitrogen) ratio as the original zero 

percent oxygen mixture. The new mixture mole fractions are calculated, followed by the 

corresponding increases in pressure, in regards to required increases in hydrogen and 

oxygen-nitrogen to meet these new conditions of increased flame temperature.  

The second method involves standard thermodynamic relationships, 

acknowledging that the fuel mass multiplied by its lower heating value can be equated to 

the product of the total mass, specific heat, and change in temperature. The fuel is 

composed of acetylene and hydrogen and therefore the lower heating value is for a 

mixture of these constituents. The specific heat capacity is assumed to be that of air and 

is a limitation of the current calculation as the charge-gas composition is different than 

that of air. The results of the two calculation methods both yield similar results. For an 

original 55.2 bar (800 psi) zero percent oxygen mixture, an addition of 0.69 bar (10 psi) 

hydrogen and 1.5 bar (21.9 psi) oxygen / nitrogen mixture (based on a cylinder with 40% 

oxygen and the remainder nitrogen) achieve a 50 K increase in adiabatic peak flame 

temperature. This yields a final mixture mole fraction for the new zero percent oxygen 

mixture of 3.1% acetylene, 1.5% hydrogen, 8.9% oxygen, and 86.5% nitrogen. This 

mixture molar volume percent basis composition is listed in comparison to the original 

mixture in Table 4.21.  
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Table 4.21 

 Comparison of original and modified 0% oxygen mixtures.  

Gas 
Original Mixture  

(Volume %) 

Modified Mixture  

(Volume %) 

Acetylene 3.2 3.1 

Hydrogen 0.5 1.5 

Oxygen 8.25 8.9 

Nitrogen 88.05 86.5 

This modified mixture is used in the 0% oxygen testing undertaken for vaporizing spray 

conditions in this work, and does not yield diesel combustion as expected. There were no 

changes to the 21% oxygen mixture.  

4.5. Conclusions 
This chapter investigated the experimental preburn procedure used in constant 

volume combustion vessels for thermodynamic state generation. The procedure has been 

validated for diesel combustion and spray studies. Even though minor species are 

produced, the levels of minor species are similar to those found in a conventional internal 

combustion engine running 10-23% EGR prior to combustion. The reactive minor species 

have insignificant effects on the autoignition of n-heptane as a diesel surrogate, 

shortening it by 3% relative to dry air, increasing it by 6% relative to air plus residuals 

(within the modeling accuracy). This study supports that the combustion vessel with the 

preburn procedure is an effective tool for use in studying spray combustion over various 

ambient conditions without concern over the reactive minor species produced by the 

preburn. Furthermore, the differing compositions used in the preburn as part of the ECN, 

along with different vessel environments do not yield significant variations in specific 

heats, with all institutions being within 0.1 kJ/kg-K or 7% of each other, with specific 

heats being representative of an engine running 38.3% EGR. Additionally, the 

autoignition of n-heptane is similar for the  different ambient environments when 

considering only major species, with a 6% span in ignition delay over all vessels, with the 

exception of IFP which has the shortest ignition delay, however, the magnitude of this is 

within modeling accuracy. The different preburn vessels exhibit varying cool-down 

histories due to fan speeds influencing the flow fields. Trends for peak temperature, NO 

and NO2, show Eindhoven having the largest levels, followed by MTU, Sandia and IFP. 

For OH minor species, IFP has the largest value, followed by MTU, Eindhoven and 

Sandia. Despite differences in the minor species at injection, the influence of minor 

species on the ignition delay is minimal with less than 5% spread in ignition delay for the 

different institutions, with this ignition delay in the preburn environment matching that of 

ideal EGR at 15% oxygen, being only 4% shorter. Discussion was provided on the 

modifications which were applied to the Michigan Technological University 0% oxygen 

environment to improve combustion efficiency and yield more complete combustion to 

mitigate the presence of diesel combustion in a 0% oxygen (vaporizing) spray 

environment.  
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5. Optical Diagnostic Setup & Image 

Processing Methodology 
The optical accessibility of the vessel enables visualization of spray and 

combustion processes under ambient conditions representative of current technology 

diesel engines. Robust and effective optical diagnostic imaging setups are required to 

take advantage of this accessibility. In order for these images to provide information on 

spray geometry, automated and efficient image processing methods are required to 

effectively characterize spray behavior including penetration and cone angle. The 

accuracy and success of image processing of geometric fuel spray characteristics are 

governed by selecting a method for separation of spray and background levels (Pastor et 

al. 2007) with this threshold being a key driver for successful image processing.  

There are two goals of this chapter. The first is to demonstrate effective and 

efficient characterization of geometric spray properties including cone angle and 

penetration using automated computer based processing methods, which includes 

determining the best indicators for defining effective image processing programs. The 

second goal is to investigate imaging acquisition setup to characterize key components 

required to provide the most robust set of images for successful processing. These goals 

will be satisfied by the following objectives: 

• Present and apply different methods and definitions for diesel spray cone angle 

determination. Provide a recommendation for the best cone angle image 

processing definition and method.  

• Analyze back scatter imaging parameters using two different optical setups and 

three threshold based image processing programs to characterize optimum 

threshold choice and necessary characteristics of imaging setups to ensure robust 

results.  

• Review Mie back scatter imaging setup and processing method used in the current 

research for non-vaporizing, vaporizing, and combusting sprays.  

• Review a proposed methodology for improving non-vaporizing spray cone angle 

determination using Gaussian curve fits to the spray intensity distribution as an 

improvement to threshold based methodologies, which also has application to 

CFD models.  

5.1. Mie Scattering Optical Diagnostic 
Imaging Setups 

Mie scattering is a useful optical diagnostic for visualizing the liquid portion of 

the diesel fuel spray. This diagnostic involves illuminating the spray region with a high 

intensity light source and using a high speed camera to image the light scatter off of the 

fuel droplets. As this methodology relies on imaging scattered light, it enables 

visualization of the liquid portion of the spray. To visualize the vapor phase portion of the 

spray under vaporizing conditions a Shadowgraph or Schlieren technique can be used 

which relies on density gradients (Settles 2001).  
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In Mie scatter imaging, various setups can be utilized including a range of light 

sources, orientations, and cameras. Light sources can include laser sheets or flashlamps 

depending on the desired wavelength and intensity of light. The main requirement is that 

the light source be able to effectively scatter off the fuel droplets with enough intensity to 

provide a high signal to noise ratio (SNR) when imaged with high-speed cameras.  

Depending on injector and camera relative orientation, different spray properties 

from the image can be acquired. In the case of back scattering, as shown in Figure 5.1, 

which provides a view of the spray looking down the axis of the spray, as the camera and 

flashlamp are both pointed at the injector tip from the front, this enables determination of 

parameters of single plumes from a multihole injector including penetration (or liquid 

length) and cone angle.  

 
Figure 5.1: Mie back scatter imaging setup with head-on illumination and 

visualization.  

Details on the components used and camera settings for this image acquisition method 

were provided in Chapter 3.6. A sample image is shown inside the combustion vessel in 

Figure 5.1. 

Mie scattering from the side will yield images with plume overlap from a multi-

hole injector, or if used with a single hole injector, spray penetration and cone angle can 

be resolved as shown in Figure 5.2.  

 
Figure 5.2: Mie scatter setup with side illumination and side view light collection 

showing the top view of the diagnostic setup. Camera used is Cooke DiCam Pro 

ICCD with Cooke SensiFlash flashlamp.  

A sample image of the fuel spray when visualized using this setup is shown in Figure 5.2. 
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Another illumination method is the use of a laser sheet or volume to provide the 

light for scattering. Again, the scattered light intensity from a laser, in this case an Argon 

ion laser, is collected using a high-speed camera as shown in Figure 5.3. The argon ion 

laser is a Coherent Innova 90 used at a wavelength of 514.5 nm at 1 W power, with a 

38.1 mm biconvex expansion lens. The laser beam is expanded to cover the entire region 

of the CV optical access, providing illumination for scattering.   

 
Figure 5.3: Laser scattering setup. Coherent Innova 90 laser at 514.5 nm, 1 W 

power, with a 38.1 mm expanding lens. High speed camera is Cooke DiCam Pro 

ICCD in double shutter mode with 60 mm Nikon Micro-Nikkor lens, f-stop 11. 

A sample image acquired using the laser scattering setup is provided in Figure 5.4.  

 
Figure 5.4: Laser scattering image of baseline injector. Diesel spray into nitrogen at 

373 K, 34.8 kg/m
3
 density, 1700 bar injection pressure, 1.6 ms electronic trigger 

duration. 

This visualization acquires a side view of the spray pattern and therefore plume overlap 

prevents visualization of all eight plumes individually. This prevents determination of 

individual spray characteristics, but provides information on the full spray angle.  

In addition to the laser volume illumination shown in the above figure, light 

sheets can also be utilized to highlight and enable visualization of certain spray plumes 

based on sheet location and orientation. Although different setups are possible, that 

provided in Figure 5.1 is used in this work based on setup simplicity, component 

availability, and robustness, along with the ability to resolve each plume of the multi-hole 

injector. As typical of any optical diagnostic tool, correct and optimal setup of the 

diagnostic is essential to provide high-quality results enabling the application of robust 

and versatile processing tools to not only provide efficient solutions, but also yield the 

most consistent and accurate results.  
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5.2. Characterizing Cone Angle 
Definitions and Methodologies 

Diesel spray cone angle is an important parameter since as the spray propagates 

downstream from the injector tip; it entrains air resulting in the spray spreading. This rate 

of air entrainment and fuel air mixing governs vaporization, combustion and emissions 

formation and therefore characterizing and accurately qualifying cone angle to 

understand condition dependency is essential. There are various methods which can be 

utilized to characterize cone angle, however, there is no one commonly accepted method 

or definition (Klein-Douwel et al. 2007). Methods include, for example, the angle formed 

by an isosceles triangle which has the same area and height of the spray or the upstream 

half of the spray (Naber and Siebers 1996), an angle formed by the spray width at a 

function of the penetration distance such as one-third penetration (He et al. 2008), 50% 

penetration (Morgan et al. 2001), or 60% penetration (Pastor et al. 2001). Cone angle can 

also be defined as the angle formed by the spray width at a distance from the nozzle tip 

which is a function of the hole diameter for example 60 nozzle diameters (Lefebvre 

1989), or the angle formed by an isosceles triangle at the maximum spray width (Senda et 

al. 2004), or curve fit a line through the upstream contour, or the angle formed by a 

tangent of the contour, but, the length to which the contour is considered is ambiguous 

(Klein-Douwel et al. 2007). There are marked differences in the method used for 

determining the cone angle in regards to choosing to compute the angle at a function of 

the penetration distance, or at a fixed distance relative to the injector tip location.  

The ambiguity and variation in cone angle methods makes comparison amongst 

literature results and the definitions and values used in models difficult and inconsistent. 

By using different locations, cone angle results and physical meanings will be different. 

When considering a constant distance for the location of cone angle calculation there is 

consistency in location even as the time after start of injection (ASOI) varies, but, the 

steady region of the spray will move as the spray penetrates. In contrast, when 

considering the distance for the location of the cone angle as a function of the penetration 

distance, this location will change as time ASOI changes and can even change for each 

plume of a multi-hole injector at a constant time ASOI. However, there is the potential to 

look at the same region of the spray even as time ASOI is changed. In addition to 

defining this location to where cone angle will be determined, there is also the choice of 

calculation method which will be used. This can include applying a linear curve fit to the 

determined spray edge and using the curve fit parameters in angle calculation, or only 

using end points in the definition of cone angle, as examples. Potential methods for cone 

angle are now considered. The first option is the calculation of the cone angle based on 

the projected area of an isosceles triangle formed by the spray width at the given 

penetration distance (for example 50% penetration as shown here), as defined in Figure 

5.5 
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Figure 5.5: Projected area isosceles triangle method for determining cone angle of 

the spray. 

A second option for determining cone angle is similar to the triangle method in 

that two lines are drawn from the injector tip to the top and bottom of the spray edge 

respectively at a given distance along the spray. The top and bottom angle formed by 

these lines from the injector tip to the spray edge are calculated and summed to give total 

cone angle as outlined in Figure 5.6. 

 
Figure 5.6: Top and bottom cone angle method calculated at spray edge at 50 

percent penetration for determining cone angle of the spray. 

An additional method for determining cone angle, which is an improvement to 

that defined in Figure 5.6, is to determine the spray edge from the injector tip to a given 

downstream distance, 50% penetration in this example, for both the top and bottom of the 

spray in 1 pixel increments axially along the spray. Two linear curve fits are then applied 

to the determined spray edge points, top and bottom respectively. The angle formed by 

these linear curve fits is calculated to define the spray cone angle. This calculation of 

angle is from the injector tip to the evaluated linear curve fit at the 50% penetration 

distance, as outlined in Figure 5.7.  

 
Figure 5.7: Top and bottom cone angle curve fit method calculated by linear curve 

fit to the spray edge from the injector tip to 50% penetration distance.  
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The edge of the spray is shown in Figure 5.7 as the spray is traversed axially, as 

denoted by the circles on the image. In actual processing the edge locations are calculated 

in 1 pixel increments; only a set of the determined spray edges are shown in the figure for 

ease of visualization. All three methods considered require definition of the location at 

which to calculate the cone angle, in this case it was chosen as 50% penetration, but other 

options are valid including 60% penetration or 60 nozzle diameters as examples.   

In order to determine the preferred method, different methods were applied to one 

set of diesel spray data in Nitrogen to compare results. This analysis is undertaken for 

sprays at 373 K into 34.8 kg/m
3
 nitrogen, with a 2000 bar injection pressure and 0.6 ms 

injection trigger duration, from an 8-hole multi-hole injector nozzle. Images were 

acquired with a back scattering setup using the Photron SA1.1 high speed camera at 

20,000 frames per second, with 1.8 microsecond exposure duration, using the setup 

shown in Figure 5.1. 

From the previous set of cone angle definitions and methodologies, thirteen total 

methods were chosen and results compared (for the average of all 8 spray plumes), as 

shown in Figure 5.8. Methods considered include calculating the cone angle using both 

the curve fit method with the fit being forced through the injector tip location (denoted by 

CF in the legend) or using the projected area of an isosceles triangle (denoted as Triangle 

in legend). This is done at various distances including, 30, 45 and 60 nozzle diameters 

from the injector tip (30Do = 4.2 mm, 45 Do = 6.3 mm, and 60Do = 8.4 mm, 
respectively), along with at 1/3

rd
, 50% and 60% of the penetration location. A final 

method is to calculate the spray cone angle as the angle formed by an isosceles triangle at 

the maximum width of the spray (Max Width Triangle).  

 
Figure 5.8: Cone angle results as a function of time ASOI for different definitions 

and methodologies.  

As shown in the figure, cone angle results are largely influenced by the method and 

definition used. Overall, the trend in cone angle is a decrease to a steady-state value. 

Results are similar, within 0.5 degrees, for the different locations defined as a function of 

the nozzle diameter (i.e. 30, 45 and 60 Do) as the spray does not change significantly 
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close to the nozzle. As the percent penetration distance is increased, from 33 to 60%, the 

cone angle is increased by 2.5 degrees. This can be explained since as the distance along 

the spray increases, the cone angle will also increase downstream from the injector tip, 

due to the progression of air entrainment as the spray propagates. An exception to this is 

the maximum width methodology whose trend varies attributed to the location at which 

the spray angle is calculated not being consistent, meaning it is not consistently 

increasing (percent penetration) nor is it at a fixed value (nozzle diameter location). The 

method of calculating the angle of a triangle at the maximum width is ideally used to 

characterize the large scale vortex structures at the spray periphery while assuming that 

the spray is shaped like an ice cream cone or an isosceles triangle for the cone with a 

semicircle ‘scoop of ice cream’ on the top (Senda et al. 2004), as shown schematically in 

Figure 5.9.  

 
Figure 5.9: Schematic of diesel fuel spray shape, shaped as a cone with a semicircle 

at the tip.  

Although this shape is representative of the majority of the sprays, there are instances 

where the spray width is larger at regions closer to the nozzle location due to extraneous 

spray drops causing variations in the representation of this method due to random 

inconsistencies in spray geometry.  

Some key conclusions can be made in regards to the chosen cone angle definition. 

The triangle method for calculating cone angle typically yields a larger value than the 

curve fit methodology. The triangle method only considers one set of spray edge points in 

calculating the cone angle, and the points at this location could be representative of 

extraneous spray droplets or fluctuations in spray shape, which are not truly 

representative of the overall geometry, therefore over- or under- estimating the actual 

overall spray shape. By using the curve fit methodology, the full spray contour is used to 

calculate the cone angle which minimizes the influence of extraneous data points yielding 

a more representative value of the mean spray cone angle.   

Two methods are chosen for the path forward in calculating spray cone angle both 

utilizing the linear curve fitting with the maximum location used in the curve fitting being 

to 60% penetration or 45Do curve fitting. The 45Do distance is chosen since when the 

spray just starts and for the case of the liquid core of the vaporizing spray, penetration is 

reduced so the larger the factor of the nozzle diameter, the further downstream the spray 

the angle is characterized. This 45Do distance of 6.3 mm is far enough from the injector 

tip where there is background interference, and the spray has also had a 6.3 mm distance 

to develop. A function of the penetration distance is also chosen for calculating spray 

angle to understand how the spray cone angle changes as it traverses the chamber, versus 

that at a fixed distance from the injector hole. Both methods provide different results for 

cone angle, however, both are useful based on the different physics and characteristics of 

the spray which they represent. The 45Do method characterizes the initial spray 

development and the gas entrainment processes near the nozzle exit, whereas the 60% 

penetration distance cone angle is used to characterize the steady state cone angle of the 

jet.  
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5.3. Influence of Optical Setup and 
Image Processing method on Spray 

Parameter Results 
This section discusses the influence of the optical imaging setup and image 

processing method on the determined spray characteristics of penetration and cone angle 

for non-vaporizing sprays. The back scattering imaging setup is prepared such that the 

injector is imaged to provide information on all eight plumes of the injector without 

plume overlap or interference, with the final setup used being discussed in Chapter 3.6. 

Here, the influence of optical setup and image processing method on the spray parameter 

results is studied, using two different image setups in an effort to validate the importance 

of high intensity and uniform illumination on imaging results and robustness of 

processing. The main difference between these two setups is the camera which yields 

variations in imaging conditions and resolution, along with differences in illumination 

techniques. The light source for scattering was the Cooke SensiFlash, setpoint 8 ms 

discharge duration, flashlamp. This light source provides illumination for 6 ms which 

covers the entire injection event, with the injection and imaging delayed relative to the 

flashlamp (3 ms) to account for the previously characterized and quantified warm-up time 

of the flashlamp, yielding a steady state luminosity level during fuel injection (Nesbitt 

2008).  

The first Mie back scattering setup, referred to as Baseline A (BL A), involved the 

Cooke Sensicam QE camera, which acquires 1 frame per image acquisition event. This 

camera was coupled with a 60 mm Nikon Micro-Nikkor lens, f-stop setting of 5.6. 

Images were acquired with an exposure duration of 2 microseconds, using a 0.2 ms inter-

frame time for each image, at 1376 x 1040 resolution. The second setup, referred to as 

Baseline B (BL B), used the Photron Ultima APX RS high speed camera, with a 60 mm 

Nikon Micro-Nikkor lens, f-stop setting of 2.8. Images were acquired with  an exposure 

duration of 3.98 microseconds, with a streaming movie acquired for each test condition 

using a 0.1 ms interframe rate with 512 x 512 pixel resolution. In addition to the camera 

change, this setup also added a mirror to reflect the flashlamp light to provide more 

uniform and complete illumination into the CV, as depicted in Figure 5.10. 

 
Figure 5.10: Back scattering imaging setup – Baseline B. Cooke camera is shown in 

setup but reflecting mirror was only used with the Photron camera.  
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The reflection mirror provides more uniform illumination and ensures more of the 

flashlamp light is passed into the chamber  providing enhanced signal to noise ratio 

(SNR) and contrast making image processing less threshold dependent. The SNR of 

spray to background between the two setups was significantly different, having direct 

influence on the results, with the SNR being improved from an average of 2.3 for the 

Baseline A setup to 4.4 for the Baseline B setup. SNR is calculated by selecting pixels in 

the image, both from the background (noise) and the spray (signal) and diving the signal 

by the noise pixels. This improvement in illumination uniformity is most evidenced in the 

spray images, and is also shown here in Figure 5.11 in the background images.  

 
Figure 5.11: Background images for back scattering setup comparison showing 

improved illumination and larger region of interest in the Baseline B case yielding 

improved images with higher signal to noise ratio.  

In addition to the setup differences already discussed, the image resolution was 

also different between the Baseline A and B cases with these image processing and setup 

specifications summarized in Table 5.1.  

Table 5.1 

Back scattering imaging setup and processing specifications. Differences are 

underlined. *Although Baseline B injector images were acquired with a 0.1 ms inter-

frame time, results presented here are typically only shown in 0.2 ms increments to 

match Baseline A image timings.  
 Baseline A Baseline B 

Camera Sensicam – 1 image Photron – streaming 

Camera Lens 60 mm Nikon Nikkor 60 mm Nikon Nikkor 

Camera Pixel 

Resolution 
1376 x 1040 512 x 512 

Exposure Duration 2 us 3.98 us 

F-Stop Used 5.6 2.8 

Image Scaling 

(mm/pixel) 
0.13 0.21 

Flashlamp Setup No mirror Mirror for reflection 

Flashlamp Cooke Senisflash 8 ms discharge Cooke Senisflash 8 ms discharge 

Interframe Time (ms) 0.2 0.1* 

Additionally, the Baseline B case captured all 8 plumes of the spray with that of the 

Baseline A setup only seeing one plume fully in the spray area based on the image region 

of interest and illumination as shown in Figure 5.11.  
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5.3.1. Test Matrix 
Tests for this imaging setup and processing method study were undertaken at two 

density and injection pressure conditions for non-vaporizing (nitrogen charge-gas) spray 

studies, as summarized in Table 5.2. These are the set-point test conditions with the 

experimental values of density and injection pressure defined in the corresponding 

sections. The CV was electrically heated to 373 K for all tests using cartridge heaters in 

two of the window faces. Under this low ambient temperature (373 K) condition, there 

was minimal vaporization due to the initial boiling point of diesel being 441 K (section 

3.4.1), and as a result, this back scattering technique captures all of the spray.  

Table 5.2 

Set-point test conditions. *Injector electronic drive duration for baseline B was 

reduced from 1.6 to 1.0 ms to minimize fuel spray impingement on windows.  
Density 

(kg/m
3
) 

Fill Pressure 

(bar) 

Injection Pressure 

(Bar) 

Injector Drive Duration 

(ms) 

12.3 14 914 0.6 

34.8 39 1700 1.0 (BL B)/1.6 (BL A)* 

Results are shown in this chapter for the 12.3 kg/m
3
 density condition, with the 34.8 

kg/m
3
 density results presented in Appendix 12.5.  

5.3.2. Back Scattering Image Processing 

Methods 
All images were post-processed in Mathworks Matlab

TM
 to determine parameters 

of liquid phase penetration and cone angle for the spray, as defined in Figure 5.12. 

Penetration is defined as the distance from the injector hole (offset 1.5 mm from the 

center injector tip) to the leading edge of the spray; refer to the right image in Figure 

5.12. Cone angle is defined as the angle of an individual spray plume, at 60% penetration 

distance, using the linear curve fit to the spray edge method.  

         
Figure 5.12: Liquid phase spray parameter definitions from back scattering images. 

The plume penetration parameter determined from the image (Lp) must be scaled 

by the cosine of 15 degrees to account for the plumes leaving the injector at an angle 

(refer to Figure 3.17). A zoomed in view of the injector tip is shown in the right 

image to provide visualization of the reference point for spray parameters as the 

injector hole, which is offset 1.5 mm from the central injector tip.  

For this back scattering imaging since the spray exits the injector at a 15 degree angle 

relative to the plane through the injector tip (refer to Chapter 3.4.2), the penetration as 

determined in the image must be scaled accordingly.  
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The image processing procedure used is outlined in Figure 5.13 with small 

variations made to this general program for the different methods and imaging setups. 

This procedure was applied to each image, corresponding to the different times after start 

of injection (ASOI). Results were determined for each plume of the 8 hole nozzle with 

presented results representing the average of all 8 plumes. The exception to this is for the 

Baseline A case in which results are only shown for plume 1 since all other spray plumes 

cannot be tracked completely due to image resolution and low contrast based on poor 

illumination without the reflecting mirror. At the start of each test day, and after any 

major setup changes, a background image is acquired using the same imaging setup but 

without fuel injection, in the case of baseline A. For the baseline B injector, the 

background image is frame one of the movie as this corresponds to no spray based on 

triggering timings.  

 
Figure 5.13: Back scattering image processing steps. 

Key differences between the Baseline A and Baseline B methods are the order of the 

background subtraction and application of a Gaussian filter in the Baseline A case for 

conversion to a black and white image as will be discussed in subsequent sections.  

5.3.2.1. Baseline A – Image Processing Method 1 (BL 

A IP 1) 
For Baseline A, Method 1, images were resized first to have the injector tip at the 

center and then rotated for each spray plume to have the correct orientation. The spray 

plumes were isolated into rectangular sections with this smaller image having the 

background image subtracted using a method opposite to that provided in the figure 

above. An intensity scaling factor was applied to the background image during this 

subtraction to help normalize the intensity range. The second difference from the 

aforementioned method is the conversion to black and white. Gaussian filtering was 

applied to the image, using a 3x3 rotationally symmetric filter with standard deviation of 

0.5 to reduce pixel noise, and then the image was converted to black and white using a 

constant 0.5 threshold, with the final steps to determine spray geometry the same as those 

presented in the flow diagram.  

5.3.2.2. Baseline A – Image Processing Method 2 (BL 

A IP 2) 
Procedure Baseline A, Method 2, followed the same general procedure as Method 

1. The Gaussian filter was still applied, however, during thresholding to black and white, 

the Matlab function graythresh was utilized which automatically defines the threshold as 

Import spray image and 

background into Matlab,  

Process background 

image to determine 

injector tip location 

which all spray 

parameters are defined 

relative to 

Subtract background image 

from spray image. Increase 

image size padding with 

zeros so injector tip is at 

image center.   

Rotate image CCW in 45 

degree increments to align 

each plume horizontally, 

exiting injector from left to 

right. The next steps are 

taken for each spray plume. 

Isolate spray plume region 

along horizontal line, apply 

mask at the injector tip to 

remove spray plumes which 

are present in the image (at 

45 degrees to the horizontal 

plume).   

Threshold image to black 

and white, use blob 

analysis to isolate the 

spray plume from the  rest 

of the image. Determine 

the boundary of this 

isolated spray plume.  

Caclualate penetration, 

defined as maximum 

horizontal distance from 

injector tip to plume 

boundary.  

Caclulate cone angle at 

60 percent of the 

penetration distanceby 

determining the top 

and bottom spray edge 

from the spray 

boundary.  
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a function of image intensity as opposed to using a constant threshold. This graythresh 

function chooses a threshold to separate the two classes of pixels in the image, in this 

case spray and background, which minimizes their intra-class variance (Otsu 1979). The 

remainder of the processing was identical to method BL A IP 1.  

5.3.2.3. Baseline B (BL B)  
In the Baseline B image processing method, the procedure used was outlined in 

Figure 5.13. The image was converted to black and white using the Matlab function 

graythresh to define the threshold factor as a function of image intensity. No filtering is 

applied to the image.  

5.3.2.4. Method Summary 
Key component differences of the three processing methods, BL A IP1, BL A IP 

2, and BL B are provided in Table 5.3.  

Table 5.3 

Key method differences of the three image processing methods.  
Method Key Method Differences 

BL A IP 1 Gaussian Filtering, 0.5 Constant Threshold Black and White 

BL A IP 2 Gaussian Filtering, Graythresh Threhsold Black and White 

BL B No filtering, Graythresh Threshold Black and White 

5.3.3. Results & Discussion  
Results are presented in the next sections for the 12.3 kg/m

3
 ambient density case 

for these non-vaporizing nitrogen tests using different optical setups and image 

processing methods. Results for the 34.8 kg/m
3
 density case are provided in Appendix 

12.5. Results include those from Baseline A image processing method 1 and 2, and from 

Baseline B, for each density condition, 12.3 kg/m
3
 (Case A) and 34.8 kg/m

3
 (Case B). 

Results are then compared to a penetration correlation. Discussion is provided on 

quantifying the success of the imaging setup and processing method. The BL A image 

processing methods were not applied to the BL B setups and vice-versa.  

5.3.3.1. Case A: 12.3 kg/m3 Ambient Density, 914 Bar 
Injection Pressure 

The first set of tests involved injection into a 12.3 kg/m
3
 ambient nitrogen 

environment achieved by heating the CV to 373 K and pressurizing to 14 bar, case A. For 

the Baseline A case the average fill pressure was 14.3 bar and fuel pressure was 924 bar. 

For the Baseline B case fill pressure was 14.2 bar and fuel pressure was 901 bar. Images 

from both setups are shown in Figure 5.14, with time ASOI displayed on each image. 

Scaling and intensity are not preserved in the images. 
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Figure 5.14: Back scattering images – Top set is from Baseline A setup, Bottom set is 

from Baseline B setup.  Time after start of injection is displayed on the image. 

Conditions are non-vaporizing nitrogen sprays at 373 K temperature, 12.3 kg/m
3
 

ambient density, 914 bar fuel injection pressure with 0.6 ms drive duration. 

Results for penetration and cone angle at 60% penetration are presented in Figure 

5.15, using the optimum value of threshold choice for each processing method – setup 

combination. The choice of these optimum thresholds will be discussed in subsequent 

sections but include a 40% increase in threshold value for Baseline A, Method 1, a 20% 

decrease in threshold value for Baseline A, Method 2, and a baseline threshold value for 

the Baseline B case (1.0 factor). The penetration results are compared to the correlation 

proposed by Naber and Siebers (1996) to predict diesel spray penetration of the spray 

plume as a function of time ASOI over a wide range of conditions as was discussed in 

Chapter 2.4.1.1 and is provided here in equation (63).  

 𝑆 =  �𝐶𝑣 ∗ �2 ∗ 𝐶𝑎𝑎 ∗ tan (𝜃
2

) ∗ ��𝑃𝑓 − 𝑃𝑎𝜌𝑎 ∗ 𝑑𝑜 ∗ 𝑡 (63) 

The first term in the equation is approximated as a constant with value 2.9 (Naber 

and Siebers 1996) as injector parameters of velocity and area contraction coefficient are 

unknown in the current study.  

 
Figure 5.15: Penetration (left) and cone angle (right) as a function of Time ASOI for 

injection at 914 bar into an ambient environment of 12.3 kg/m
3
 nitrogen. 

Penetration data is compared to the Naber and Siebers (1996) correlation.  

Choosing the optimum combination of image processing and image acquisition setup for 

all three test conditions yields similar trends in penetration and cone angle. There is 
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deviation in penetration results from 0.3 to 0.5 ms ASOI which will be investigated 

further in subsequent sections. A sensitivity analysis was undertaken on each image setup 

and processing method combination to understand optimum parameters for data 

processing, as will be discussed.  

In the early times ASOI the fuel spray plume is still being dominated by the liquid 

being injected, and the above correlation is not yet valid (a linear time dependent 

correlation does exist however for this region) until there is a transition in the long time 

limit to the spray being dominated by entrained gas yielding this square root time 

dependence of the correlation (Naber and Siebers 1996). At this lower injection pressure 

(914 bar), the break-up time is longer and hence the transition is longer to a square root 

time dependence as evidenced by entrained gas domination. This time to break-up 

explains the mismatched trends in the early times ASOI. Additionally, the first term in 

equation (63) was approximated as a constant per the recommendation of Naber and 

Siebers (1996), however, the injector used in the current study has a smaller orifice 

diameter which will influence the velocity and area contraction coefficient parameters 

yielding changes in the magnitude of the correlation results. Experimental results also 

show that the cone angle is slightly time dependent (Figure 5.15), and therefore if a non-

constant value was used for the first term in equation (63), the magnitude of this term 

would change as a function of time which would vary the correlations predicted 

penetration and may provide better agreement between the experimental results and 

correlation.  

5.3.3.2. Baseline A – IP 1   
First, the threshold for Baseline A image processing method 1 case (refer to Table 

5.3) was increased by 0 to 50% and decreased by 0 to 40% in increments of 10% to 

understand changes in penetration and cone angle. This threshold was applied in defining 

the characteristics of the Gaussian filter applied to the image with this image being 

converted to black and white using a constant 0.5 threshold. Plots were prepared to 

understand the influence of threshold factor on penetration and cone angle to determine 

the best choice in threshold for characterizing spray parameters, as shown in Figure 5.16.  

 
Figure 5.16: Penetration (left) and Cone angle (Right) as a function of threshold 

factor for BL A IP 1 results. 

The choice of threshold is more influential in determining liquid phase cone 

angle. For penetration, any threshold factor 0.9 or above gives consistent values. 

However, for cone angle increasing the threshold by 30 to 50% provides more 
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representative values of cone angle, showing less influence on the choice of threshold. 

This is also evident in Figure 5.17, illustrating the determined boundary and edges for 

cone angle as a function of threshold choice, showing that the lower threshold factors 

miss some of the spray edge, and these larger factors provide a better outline of the entire 

fuel spray. 

 
Figure 5.17: Spray boundary (left) and edges for cone angle determination (right) as 

a function of threshold factor (displayed on image) overlaid on original spray image. 

These images correspond to Plume 1 0.6 ms ASOI. 

The trend of the boundary missing more spray as threshold factor is decreased is 

counterintuitive but can be explained. In this case, the threshold factor was applied to the 

Gaussian low-pass 3x3 filter, with the factor changing the filter parameters thereby 

influencing the image intensity distribution. An increase in threshold factor causes an 

increase in the magnitude of the 3x3 filter parameters, which results in better noise 

removal and improved intensity separation between the spray and background. This 

better separation of spray and background using an increase in threshold factor will yield 

a smaller portion of scaled intensities less than 0.5, and when applying the standard 0.5 

threshold value to convert to black and white (after Gaussian filter application to the 

image), only small portions of the spray are mistaken to be the boundary when 

thresholded. Reducing the threshold factor changes the filter parameters such that the 

intensity distribution range is smaller. The images confirmed that reductions in the 

threshold factor cause spray to be missed, whereas increasing the threshold factor by 30 

to 50% permits the entire spray boundary to be found providing more accurate 

penetration and cone angle results. A 40% increase in threshold factor was chosen at the 

optimum for this combined best setup and image processing method.  

5.3.3.3. Baseline A – IP 2 
Further investigation was undertaken for the Baseline A setup by modifying the 

image processing method to utilize a threshold value determined automatically as a 

function of image intensity levels as opposed to a constant value threshold which 

accommodates test to test intensity and signal to noise ratio variations. This included 

modifying the processing program such that the factor was applied to the choice of 

threshold, based on Matlab’s graythresh function, to convert an image to black and white 

as opposed to being applied to the Gaussian filter used to prepare the image for 

thresholding. Plots are provided in Figure 5.18 to understand the influence of threshold 

on penetration and cone angle to see if there was a leveling off in threshold factor 

signifying the best choice in threshold for determining these results.   



 

158 

 
Figure 5.18: Penetration (left) and cone angle (right) as a function of threshold 

factor for setup Baseline A, image processing method 2. 

Penetration is constant as a function of threshold factor with the exception of the 

extreme cases of 40 - 50% decrease or increase in threshold factor showing that 

penetration is minimally influenced by the threshold choice. However, variation was 

more significant when considering cone angle results, similar to BL A IP 1. At the largest 

decrease cases there was significant error as the spray was largely overestimated, 

mistaking the background for the spray for the 40 - 50% (0.6 – 0.5) decrease cases. This 

is confirmed by images in Figure 5.19 which show the fuel spray plume for 0.6 ms ASOI 

with the background and cone angle edges overlaid.  

 
Figure 5.19: Spray boundary (left) and edges for cone angle determination (right) as 

a function of threshold factor (displayed on image) overlaid on original spray image. 

Images correspond to 0.6 ms ASOI. 

 

For increases in threshold, namely 30 to 50% (1.3 – 1.5) increases in threshold choice, 

the values fall off for penetration and cone angle as a function of threshold factor 

showing that spray was being missed in these images. The optimum value was seen at a 

leveling in penetration which occurred for the 10 to 20% (0.9 – 0.8) decrease in threshold 

range. Consequently, the 20% (0.8) decrease case was chosen as optimum for this 

combination of image setup and processing method.  

5.3.3.4. Baseline B  
For the Baseline B case the threshold used to convert the image to black and 

white was increased and decreased by 0 to 50% in 10% increments. This factor was 

applied to the threshold determined using the graythresh function in Matlab. Plots in 

Figure 5.20 are shown to characterize the influence of threshold on penetration and cone 

angle to determine if there is a leveling point in threshold which would signify the 

optimum threshold for studying these geometric spray characteristics.   



 

159 

 
Figure 5.20: Penetration (left) and cone angle (right) as a function of threshold 

factor for setup Baseline B. 

For penetration, the full range of threshold factors gave consistent results. At the highest 

factors of 40 to 50% increase, penetration decreased slightly but this change was within 

the resolution and accuracy limits of the system. These plots show that Baseline B 

penetration results were insensitive to choice of threshold over a wide range. This was 

further confirmed by the images in Figure 5.21 which show that all thresholds 

consistently caught the entire spray region, which was possible based on the high quality 

and SNR of the images. Cone angle decreases slightly as the threshold factor is increased, 

however, the change is minimal compared to the other methodologies. 

    
Figure 5.21: Spray boundary (left) and edges for cone angle determination (right) as 

a function of threshold factor (displayed on image) overlaid on original spray image. 

These images correspond to 0.6 ms ASOI. 

 

There was close agreement in penetration between all threshold factors showing the 

minimal sensitivity of results to imaging thresholding. The Baseline B case showed an 

improved image setup and processing method, due to higher image contrast and SNR, 

which was less sensitive to image threshold. The choice of threshold was the baseline 

threshold factor of 1.0 in this case as results were largely insensitive to threshold.  

5.3.4. Summary on Threshold Influence on 

Penetration and Cone Angle 
The objective of this study was to characterize three different combinations of 

imaging setup and processing methods to understand the preferred and most robust setup 

and processing method for spray characterization. The combined results are shown in 

Table 5.4 and Table 5.5, for tests at 12.3 kg/m
3
 and 34.8 kg/m

3
 ambient density, 

respectively. These results include the magnitude of a change in penetration and cone 

angle for a corresponding percentage increase or decrease in threshold, as specified.  
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Table 5.4 

Summary of the impact of threshold factor on penetration and cone angle results, 

for 12.3 kg/m
3
 ambient density.  

 
Threshold 

Change (%) 

Magnitude of Penetration Change 

(mm) 

Magnitude of Cone Angle 

Change (Degrees) 

Time ASOI 

(ms) 
 0.2 ms 0.4 ms 0.6 ms 0.2 ms 0.4 ms 0.6 ms 

BL A, IP 1 
40% ↓ 7.8 16.4 20.9 1.2 3.6 5.6 

50% ↑ 0.1 0.2 0.7 4.7 3.2 4.5 

BL A, IP 2 
40% ↓ 0.3 0.4 11.8 5.3 5.6 5.2 

50% ↑ 3.1 7.6 9.0 2.0 4.1 4.3 

BL B 
40% ↓ 0.1 0.2 0.9 1.7 1.2 1.2 

50% ↑ 0.1 0.7 1.1 1.4 1.2 1.5 

Table 5.5 

Summary of the impact of threshold factor on penetration and cone angle results, 

for 34.8 kg/m
3
 ambient density, injection pressure of 1700 bar.  

 

Threshold 

Change 

(%) 

Magnitude of Pen. Change (mm) 
Magnitude of Cone Angle Change 

(Degrees) 

Time 

ASOI 

(ms) 

 
0.2 

ms 

0.4 

ms 

0.6 

ms 

0.8 

ms 

1.0 

ms 

0.2 

ms 

0.4 

ms 

0.6 

ms 

0.8 

ms 

1.0 

ms 

BL A, 

IP 1 

40% ↓ 3.8 8.9 14.4 18.1 21.9 5.7 8.1 7.0 7.2 8.3 

50% ↑ 0.3 0.3 0.5 0.3 3.0 2.9 6.2 2.8 2.7 3.4 

BL A, 

IP 2 

40% ↓ 0.4 0.3 0.5 13.3 5.4 3.9 5.3 4.1 5.7 1.2 

50% ↑ 1.6 1.7 6.2 7.0 14.1 4.0 8.0 2.0 3.1 5.8 

BL B 
40% ↓ 0.1 0.1 0.1 0.4 0.2 1.4 1.2 1.3 1.6 2.1 

50% ↑ 0.1 0.3 0.5 1.1 2.0 1.4 1.8 1.7 1.9 1.4 

The magnitude of penetration and cone angle change were consistently smallest for the 

Baseline B injector setup and image processing method, relative to that of the Baseline A 

IP 1 and IP 2 setups and processing methods. As shown in Table 5.4, the average change 

in penetration was 0.4 mm for the 40% decrease and 0.6 mm for the 50% increase case 

for the BL B method. Similarly, cone angle changed on average 1.4 mm for either a 40% 

decrease or 50% increase for the BL B method. This is small compared to the change in 

penetration of an average 4.2 mm for a 40% decrease and 6.6 mm for an increase of 50% 

for the BL A IP 2 case, being 5.4 degrees and 3.5 degrees for a 40% decrease and 50% 

increase in threshold factor, for cone angle. For the BL A IP 1 case, the change in 

penetration is an average 15 mm for a 40% decrease, and 0.2 mm for a 50% increase, and 

a change in average cone angle or 4.3 degrees for a 40% decrease and 4.1 degrees for a 

50% increase. Similar magnitude of changes in cone angle and penetration are seen in 

Table 5.5 for the 34.8 kg/m
3
 density case. Cone angle is more largely influenced by 

threshold as expected based on the axial variation of intensity at the spray edge. This 

signifies that both the setup and image processing method for BL B is improved and 

more robust, and will be used in all testing.  

Key conclusions are:  

• Liquid phase cone angle results are largely dependent on imaging setup and 

processing method.  
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o Optimum thresholding parameters are a 40% increase for BL A IP 1, 20% 

decrease for BL A IP 2, and a baseline threshold factor of 1.0 for the BL B 

setup. To reiterate, the BL A image setup did not include a reflective mirror, 

with both image processing methods using a Gaussian filter, with the IP 1 

method using a constant 0.5 factor for thresholding to black and white, and the 

IP 2 method using Matlab’s graythresh method for determining the black and 

white threshold. The BL B method includes the reflecting mirror in the image 

acquisition method, and used no filtering and Matlab’s graythresh to define 

the black and white threshold factor.  

• Liquid phase penetration results are less dependent on imaging setup and 

processing method, showing smaller magnitude changes, relative to cone angle, 

when considering threshold dependence.  

• High SNR optical setups, that provided by the Baseline B setup here including the 

reflecting mirror, yield more robust images improving image processing methods 

by making them less threshold dependent. The SNR for the BL B setup was 4.4 

compared to a SNR of 2.3 for the BL A setup. 

• Sensitivity analyses on image processing thresholds are a good indicator of the 

success of the processing method and help define a robust threshold choice.  

• The optimum and most robust setup and processing method is one with a high 

SNR, uniform illumination, using an automatically chosen threshold value based 

on image intensity distribution without any prefiltering to the raw image. This is 

defined based on the results from the BL B injector.  

Liquid phase spray parameters are influenced by the optical setup and image 

processing method and hence developing robust, threshold-independent image processing 

methods although challenging is imperative to ensure accurate determination of spray 

parameters. Based on the above analysis, the final image acquisition setup and processing 

methodologies were developed. The chosen image acquisition setup of Mie back 

scattering was previously discussed in Chapter 3.6, which is based on the BL B setup. 

Note that relative to the BL B setup here, the mirror position has been changed, with no 

detrimental influence on imaging quality or SNR. This change was undertaken based on 

the use of a different camera and hence different constraints on optics placement. 

Specifics on the image processing methods used for the three ambient environments will 

now be discussed, with slight modifications relative to the original BL B processing 

methodology.  

5.4. Processing Methods for Mie Back 

Scatter Images 
The image processing methodology is similar to that which was used in the BL B 

method and over the three ambient environments, with small modifications, as will be 

discussed. Parameters of interest include spray penetration and cone angle at both 60% 

penetration and 45Do for nonvaporizing sprays, along with penetration and mean quasi-

steady liquid length for vaporizing sprays, and for combusting sprays parameters include 

flame length, lift-off length, cone angle, and total plume intensity. The spray parameters 

are determined in pixels, and are converted to millimeters using the known scaling of 
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0.18 mm per pixel, further scaled by the cosine of 15 degrees to account for the off-axis 

orientation of the spray plumes relative to the injector plane. All image processing was 

undertaken in Mathworks
TM

 Matlab, version 7.10.0 (R2010A). 

5.4.1. Nonvaporizing (Nitrogen Sprays) 
Non-vaporizing sprays are sprays in nitrogen, and with the minimal vaporization 

at the 373 K temperature, the Mie back scattering diagnostic enables visualization of the 

full spray plume. Spray parameters of interest are penetration and cone angle as defined 

in Figure 5.22.  

 
Figure 5.22: Spray penetration and cone angle definitions for nonvaporizing sprays.  

The image processing procedure to determine these parameters involves several steps, 

with this procedure being applied to all spray frames from the movie, and parameters 

determined for each plume of the 8 plumes from the spray. Select tests were undertaken 

at higher frame rates and reduced regions of interest, which then looked at just one of the 

spray plumes. For these cases, spray parameters are determined only for the 1 plume, but 

the same overall methodology is used.  

Image processing first involves reading in the movie into Matlab, and converting 

it from a .avi to a .mat file. The first frame of the movie is the background image which is 

used to define the location of the injector tip, with all spray parameters referenced to the 

nozzle hole, offset 1.5 mm from the injector tip. The background image is normalized so 

intensity spans the range from 0 to 1, and the intensity contrast is adjusted by using 

Matlab’s imadjust procedure by mapping the image intensity values to the full range of 

available intensities based on image bit count (256 counts). The image is then converted 

to black and white using Matlab’s graythresh procedure, with blob analysis undertaken to 

define properties of the regions of interest to effectively find the location of the central 

injector tip. With known injector tip location, the spray images are subsequently 

processed.  

First, the background is subtracted from the spray images to yield images of the 

spray isolated from the background. For each frame, the image is first resized so that the 

injector tip is at the center of the image, and rotation occurs next in 45 degree increments 

so that the spray plume exits the injector from left to right. The rotated image region of 
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interest of the spray is isolated, and further masked to remove the adjacent spray plumes 

as shown in Figure 5.23.  

 
Figure 5.23: Background subtracted, rotated, cropped, and masked nonvaporizing 

spray image.  

Next, the masked spray image is normalized by the maximum intensity so the intensity 

ranges from zero to one, and this normalized image is converted to black and white by 

Matlab’s graythresh, with any extra noise being removed as shown in Figure 5.24.  

 
Figure 5.24: Black and white spray image used for boundary tracing and spray 

property analysis.  

The boundary of the black and white spray is traced, which is used to define the spray 

properties as shown in Figure 5.25.  

 
Figure 5.25: Original masked spray image with traced boundary overlaid.  

 

Penetration is defined as theleading edge of the boundary. The spray width is determined 

from the boundary over the region of interest, which is used to calculate the spray cone 

angle, as shown in Figure 5.26.  

 
Figure 5.26: Spray edge definition and linear curve fits for calculating cone angle. 

Green lines and symbols define the cone angle at 45do, red defines the cone angle at 

60% penetration, and the magenta circle at the tip of the spray defines the 

determined penetration.  

Figure 5.26 shows the determined penetration and spray edge used in the curve fit for 

calculating the cone angle.  
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The example figures shown here are those for one plume from one spray, 

however, the same procedure is applied to the other plumes in each frame by applying 45 

degree image rotation to process each spray plume exiting the injector horizontally from 

left to right, and the same procedure applied for each frame of the entire movie to 

understand spray properties as a function of time ASOI.  

5.4.2. Vaporizing (0% Oxygen Sprays) 
Processing of the 0% oxygen (vaporizing sprays) is similar to that of the 

nonvaporizing sprays, with the parameter of mean steady state liquid length being 

determined. The cone angle and liquid penetration are defined identical to those shown in 

Figure 5.22. Although cone angle is processed, results are not presented here based on the 

difficulty in accurately resolving the cone angle based on the small spray width due to 

vaporization.  

The image movies are read into Matlab in .avi format, and converted to .mat 

format. The background image (frame 1) is first processed to determine the location of 

the central injector tip. This involves normalizing and improving contrast of this image 

(using functions discussed in section 5.4.1), and converting it to black and white. Using 

blob processing, the location of the central injector tip is calculated. Next, background 

subtraction is applied to each frame of the spray image. The background subtracted spray 

frame image sizes are increased such that the injector tip is in the center of the image, and 

the image is subsequently rotated so that each plume exits the injector from left to right. 

The plume is further isolated and masking is applied to remove adjacent spray plumes to 

prevent interference. The image is normalized and subsequently thresholded to black and 

white, with blob analysis being undertaken to isolate the spray region from any 

background noise. The spray boundary is traced which is then used in defining 

penetration and cone angle of the spray as shown in Figure 5.27.  

   
Figure 5.27: Vaporizing spray analysis, left image shows traced spray boundary and 

right image shows determined cone angle (green is at 45Do and red is at 60% 

penetration), with magenta circle at the spray tip denoting penetration.  

It must be noted that as will be shown in images in Chapter 6.2, there are slugs of fuel 

which detach from the leading edge of the liquid spray under these vaporizing conditions. 

These are not considered in the image processing as the fuel spray being processed is 

defined as the continuous portion of fuel propagating from the injector tip.  

Also of interest is the determination of the mean steady state liquid length. The 

liquid length in this case is the same as the penetration as the liquid portion is all that is 

being imaged with the Mie back scatter imaging diagnostic technique. Of interest, 

however, is the mean steady state liquid length (actually quasi-steady based on 

fluctuations).  This is determined during the middle of the injection event, 1 to 2 ms 
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ASOI for the vaporizing spray cases (as injection duration was constant), and is the mean 

of the determined liquid length during this interval.  

5.4.3. Combusting (21% Oxygen Sprays) 
The 21% oxygen combusting spray cases were processed in a similar manner as 

the nonvaporizing and vaporizing spray cases. Parameters of interest, however, are 

different. This includes flame length (similar to penetration in the nonvaporizing spray), 

lift-off length (distance from the injector tip to the lifted flame), cone angle of the flame, 

and total combusting flame intensity. These parameters are defined in Figure 5.28.  

 
Figure 5.28: Combusting parameter definitions of combusting flame length, cone 

angle, and lift-off length.  

The movie is first read into Matlab in the .avi format and converted to the .mat format. 

The method to determine the injector tip location is different in these combusting cases 

since the light intensity without combustion is significantly reduced based on a change in 

f-stop to avoid camera saturation during the high-intensity combustion luminosity. As 

opposed to using the background the image, a frame where the combusting spray has 

developed is chosen, and is normalized and thresholded to black and white. Blob analysis 

is undertaken to determine the centroid location of each of the eight plumes. Lines are 

then drawn from centroid to centroid of opposing spray plumes, with the midpoint being 

determined in regards to both X and Y coordinates. The X and Y location of the injector 

tip is then defined as the mean of all the X midpoints, and the mean of all the Y 

midpoints. This procedure including lines from plume midpoints and the intersections is 

shown in Figure 5.29.  
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Figure 5.29: Injector tip location determination.  

With the injector tip location known, the injector hole location, which is the reference for 

all parameters is determined based on a 1.5 mm offset from the central tip.  

Subsequent frames of the movie are processed to determine the combusting spray 

parameters of interest. This includes first resizing the image so that the injector tip is in 

the center followed by image rotation in 45 degree increments for the correct plume 

orientation. The plume of interest is isolated and masks are applied to adjacent 

combusting plumes, with this image normalized and thresholded to black and white for 

further processing. Blob analysis is undertaken to locate the region of the combusting 

plume, over which the boundary is traced and the leading edge of the boundary relative to 

the injector nozzle hole defines the flame length. The boundary of the combusting spray 

is also used to define the spray edge to 60% penetration, which is then curve fit to define 

the combusting flame cone angle as shown in Figure 5.30.  

 
Figure 5.30: Combusting image processing methodology. Green lines show cone 

angle at 60% penetration (the spray edge points are not shown), yellow shows the 

combusting flame boundary, red circle shows the location of the nozzle hole, and the 

magenta line defines the location of the lift-off-length.  

Cone angle at 45Do is not considered in this case as the 45Do distance, 6.3 mm, is 

typically less than the lift-off length (LOL) and therefore cannot be determined. Another 

parameter included in the figure above is the lift-off length (magenta vertical line), which 

is the location of the lifted flame from the injector nozzle hole. This is determined by 

calculating the intensity radially across the spray in 1 pixel increments traversing the 

spray axially. A threshold total radial intensity is defined, which is 10% of the maximum 

radial intensity, and the first axial location where the summed radial intensity exceeds 

this threshold is the defined lift-off length, as shown in Figure 5.31.  
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Figure 5.31: Lift-off length methodology. Top figure shows the summed radial 

intensity as traversing axially along the spray, along with the lift-off length 

threshold. Bottom image is the combusting spray plume with the determined lift-off 

length denoted by the vertical yellow line.  

The final parameter of interest is the total intensity of the combusting spray plume. As 

camera saturation is minimized, and camera settings are kept identical in regards to 

exposure duration, location, and f-stop, this total intensity can be used to provide an 

indication of relative levels of soot oxidation between test conditions and spray plumes. 

This is determined by summing the intensity of all pixels which are determined to be 

inside the calculated spray boundary, providing a total intensity value in counts.  

5.4.4. Gaussian Image Processing Method 
A novel image processing methodology has been proposed which involves fitting 

Gaussian curves to the spray intensity distribution at radial cross-sections, using curve fit 

parameters to define the spray edge, which are then used in calculating the spray cone 

angle. This method has been shown to be more robust than conventional thresholding 

methodologies. A sample application is provided here for non-vaporizing sprays, with the 

full application accepted for publishing in the ASME ICED Fall Technical Conference 

Proceedings, after paper presentation at the October 2011 conference (Paper Title: 

Characterizing Diesel Fuel Spray Cone Angle from Back-Scattered Imaging by Fitting 

Gaussian Profiles to Radial Spray Intensity Distributions; Co-Authors: Jeffrey D. Naber 

and Seong-Young Lee; Paper number 60034).  

Images are processed using the same method discussed in 5.4.1, with a change 

being applied to the cone angle method. At each pixel axially along the background 

subtracted spray, from 12 to 45 nozzle diameters relative to the injector tip, the intensity 

distribution of the spray cross section is determined. The intensity data from the cross 

section is curve fit to a Gaussian function, as defined in equation (64). Only intensity data 

greater than zero, for which the intensity is always decreasing relative to the centerline, is 

included in the curve fit to ensure accurate results.  
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This curve fit is applied in 1 pixel increments along the spray axis, with curve fit 

parameters being defined. An example of the curve fit applied to spray intensity 

distribution data is provided in Figure 5.32.  

 
Figure 5.32: Example of Gaussian curve fit to spray intensity distribution data.  

The curve fit parameters are used, in conjunction with the intersection of the curve fit 

with intensity equal to zero, to define the sigma which corresponds to the intensity zero 

condition, which effectively defines the spray edge. The sigma of the curve fit in equation 

(64) cannot be used directly because of the intensity offset in the equation. These 

parameters, along with the location of the centerline, define the spray edge. The 

determined spray edges from the Gaussian curve fit are curve fit using a linear fit (as was 

discussed in section 5.4.1) to define the cone angle of the spray. In this curve fitting, only 

parameters determined from acceptable Gaussian curve fits, as defined by a normalized 

root-mean square error less than 5%, are included in the cone angle curve fit. This 

method is successful in defining the spray edge based on the total spray intensity 

distribution as opposed to considering the spray edge at the low SNR outskirts.   

5.5. Summary 
This chapter reviewed different Mie scatter optical setups, and discussed the 

importance of high signal to noise ratio and optimum setup to yield the most robust 

results with minimal influence on the results due to image processing. Also reviewed 

were various image processing methodologies, with again the most robust method being 

defined, including sensitivity studies undertaken to define a metric for optimum 

procedure of both image acquisition and processing. To summarize, the best image 

acquisition setup involves using a flashlamp which is directed partially onto a mirror, 

with the remaining directed into the chamber. The mirror will reflect the light to 

illuminate the remainder of the chamber, which will provide uniform illumination, and 

also high signal to noise ratio. In regards to processing methods, the most robust program 

involves no filtering (acceptable because of the high SNR images), and thresholding to 

black and white using Matlab’s graythresh function, which defines the threshold based on 

image intensity distribution. The image processing methodologies used on the current set 
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of non-vaporizing, vaporizing, and combusting charge-gas environments in the current 

work were also reviewed and key parameters of interest defined. Finally, a Gaussian 

based curve fitting methodology was presented for cone angle calculations, which is 

shown to be more robust and less subjective than standard methodologies in determining 

cone angle.  
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6. †Macroscopic Spray Characteristics 

and Plume-to-Plume Variations 
Diesel fuel injectors in production engines consist of multiple holes to provide 

multiple spray plumes enhancing the in-chamber fuel distribution. Each fuel spray plume 

will: mix with the charge-gas, vaporize, and combust converting fuel energy to useful 

power, working to propel the vehicle while also producing detrimental emissions. The 

fuel-air mixing largely governs the resulting combustion and emissions formation making 

understanding spray behavior imperative, especially the plume to plume variations and 

trends. These variations were investigated using the optical setup discussed in Chapter 

3.6 with the image processing methods discussed in Chapter 5.4.  

Understanding diesel spray and combustion characteristics is important to 

enhance the fundamental knowledgebase of these behaviors, including parameter 

dependencies. In particular, studies using multi-hole nozzles are imperative as a large 

portion of diesel spray studies consider only single-hole nozzles and therefore lose vital 

information on spray plume variations and interactions, as touched on in Chapter 2.3.5. 

Furthermore, the knowledge gained from these experimental studies is used to provide 

data for computational fluid dynamics (CFD) model development, along with tuning and 

validation. This work is also part of a larger experimental study, coupled with CFD 

modeling, to investigate the influence of nozzle characteristics on spray, combustion, and 

soot characteristics.  

The goals of this chapter are to characterize diesel spray behavior, including 

plume to plume variation and trends in spray and combusting flame characteristics, and to 

provide hypotheses for this behavior. These characteristics include penetration and cone 

angle for non-vaporizing sprays; penetration and mean steady state liquid length (mean 

SS LL) for vaporizing sprays; and flame length, cone angle, lift off length and total 

intensity for combusting spray flames. Cone angle was not characterized for vaporizing 

sprays due to the reduced width of the vaporizing liquid portion of the spray and limits in 

image resolution. These goals will be achieved through various objectives: 

• Characterize non-vaporizing (nitrogen) diesel sprays plume to plume variations 

for:  

o Three repeat tests to understand the consistency of plume to plume 

variations.  

o A fuel injection pressure sweep of 1034 to 2000 bar.  

o A reduced fuel temperature (321 to 328 K).  

o A reduction in charge density (34.8 kg/m
3
 to 17.4 kg/m

3
).  

• Characterize vaporizing (0% oxygen) diesel sprays plume to plume variations for:  

o Inclusion of ILASS conference paper which includes discussion of: 

 Three repeat tests to understand the consistency of plume to plume 

variations.  

                                                 
†
Section 6.2.1 of this chapter was previously published in the ILASS 2011 Conference 

Proceedings. Permission for reproduction is provided in appendix 12.1.2.  
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 A charge temperature sweep of 800 to 1300 K.  

o A fuel pressure sweep of 1034 to 2000 bar.  

o A reduced fuel temperature (355 to 363 K).  

o A reduced charge density (34.8 kg/m
3
 to 17.4 kg/m

3
).  

• Characterize combusting (21% oxygen) diesel sprays plume to plume variations 

for:  

o Two repeat tests to understand the consistency of plume to plume 

variations.  

o A charge temperature variation of 950 to 1100 K.  

o A fuel pressure sweep of 1034 to 2000 bar.  

o A reduced charge density (34.8 kg/m
3
 to 17.4 kg/m

3
).  

Not all results from the above objectives are included in this Chapter. The results which 

are not included in Chapter 6 are provided in Appendix 12.6.1 for non-vaporizing sprays, 

Appendix 12.6.2 for vaporizing sprays, and Appendix 12.6.3 for combusting sprays.  

6.1. Non-Vaporizing Sprays 
Non-vaporizing spray studies consist of injecting diesel fuel into 373 K nitrogen. 

Various tests were undertaken in nitrogen including three repeatability tests, a fuel 

injection pressure sweep (1034, 1379 and 2000 bar), a reduced fuel temperature 

(achieved by the injector chiller) and a variation in charge density (34.8 kg/m
3
 to 17.4 

kg/m
3
). Understanding plume to plume variations of non-vaporizing diesel fuel sprays is 

important as it assists in characterizing the behavior of the spray as a whole as there is no 

vaporization. This implies that the full spray is present in the image, i.e. all of the sprays 

momentum as a result of fuel injection. The complete test matrix used for these tests is 

provided in Table 6.1.  

Table 6.1 

Non-vaporizing sprays test matrix. 

Ambient Density 

(kg/m
3
) 

Fuel Pressure 

(bar) 

Injection Trigger 

Duration (ms) 

Fuel Temperature 

(°C) 

Temperature 

at Injection 

(K) 

34.8 1034 0.8 90 373 

34.8 1379 0.8 90 373 

34.8 2000 0.8 90 373 

34.8 2000 0.8 90 373 

17.4 2000 0.6 90 373 

34.8 2000 0.8 82 373 

34.8 1379 0.8 82 373 

34.8 1034 0.8 82 373 

Select results are provided in the main body of the chapter, with the remainder, along 

with discussion on plume-to-plume variations as a function of time ASOI for each test, 

provided in Appendix 12.6.1.  
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6.1.1. Injection Pressure Sweep - Chiller Off – 

328 K Fuel Temperature 
Test conditions for the injection pressure sweep test with the chiller off are 

summarized in Table 6.2. Injection was for 0.8 ms trigger duration (1.4 ms fuel injection 

duration).  

Table 6.2 

Injection pressure sweep test conditions, chiller off.  

 
Injection Pressure 

(Bar) 

Density 

(kg/m
3
) 

Ambient Pressure 

(Bar) 

1034 Bar 990 34.9 38.6 

1379 Bar 1370 34.7 38.5 

2000 Bar 1975 34.8 38.6 

Variation in test conditions of ambient pressure and density were minimal and therefore 

the images will depict solely the influence of injection pressure, as shown in Figure 6.1.  

 
Figure 6.1: Diesel spray images from injection pressure sweep tests, 34.8 kg/m

3
 

Nitrogen, 1034, 1379 and 2000 bar injection pressures, chiller off (328 k fuel 

temperature). 

As injection pressure increased, spray penetration increased, with cone angle trends being 

difficult to deduce from the images. The magnitude of the influence of injection pressure 

on cone angle was quantified by image processing of the spray images. Median 

penetration over all 8 plumes for the three injection pressures investigated with the chiller 

off is shown in Figure 6.2. 
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Figure 6.2: Median penetration as a function of time ASOI for three different 

injection pressures, chiller off.  

As the time ASOI increased, medium penetration increased as the spray is into nitrogen 

and conditions are nonvaporizing. As injection pressure increased, penetration increased, 

expected based on literature (Naber and Siebers 1996). The increase in penetration is an 

average of 10% for an injection pressure increase from 1034 to 1379 bar, and 40% for an 

increase in injection pressure from 1034 to 2000 bar. This is an expected trend and is 

attributed to the increase in fuel velocity and the ability for the fuel to travel farther in a 

given time under the same density and nozzle conditions (consistent aerodynamic 

resistance and droplet size). Also compared was median cone angle as a function of time 

ASOI, shown in Figure 6.3.  

 
Figure 6.3: Median cone angle as a function of time ASOI for three different 

injection pressures, chiller off.  

The middle injection pressure has a wider cone angle by a few degrees during the 

transient early start of injection but, during steady state, cone angles over the three 

injection pressures at 60% penetration were similar. Cone angle increased by an average 

of 6% for an injection pressure increase from 1034 to 1379 bar, with no change for an 

injection pressure increase from 1034 to 2000 bar.  

Also of interest is a more detailed comparison of individual spray plume trends, as 

shown in Figure 6.4 for 0.1 ms ASOI. Penetration for each of the three injection pressures 

is shown and compared to the mean value for that given injection pressure and time 

ASOI.  
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Figure 6.4: Penetration at 0.1 ms ASOI for the injection pressure sweep with the 

chiller off.  

Eccentric needle lift was largely apparent for the 1379 bar injection pressure case based 

on the reduced penetration for holes 1, 7 and 8 relative to the others. This eccentric 

needle lift was also apparent for the 2000 bar injection pressure case, although it was not 

as significant. As injection pressure increased, the penetration should increase, however, 

there were exceptions to this as shown in the figure below which can be explained by the 

following. The presence of transient spray phenomenon including needle lift can cause 

uneven fuel pressure to different injector holes thereby changing the apparent injection 

pressure.  

Also of interest is a comparison of plume trends during a more steady state 

injection period at 0.5 ms ASOI as shown in Figure 6.5.  

 
Figure 6.5: Penetration at 0.5 ms ASOI for the injection pressure sweep with the 

chiller off. 

As injection pressure increased, the liquid penetration increased as expected. Each spray 

plume at a given injection pressure was compared to the mean value over all eight 

plumes, and trends from the mean value were apparent. Some trends were similar for the 

different injection pressures, such as plumes 2 and 7 always having a penetration larger 

than the mean value with plume 4 penetration always being approximately the mean 

value. Other trends were not consistent between injection pressure tests. This leads to the 

explanation that the trends in spray plume to plume penetration behavior may be injection 

pressure dependent as it is known to change internal flow characteristics such as 

cavitation, which would translate to downstream spray characteristics. Furthermore, 
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injection pressure is known to have a direct influence on diesel spray penetration as 

shown in Figure 6.2 which may also be manifested in plume to plume trends. 

6.1.2. Charge Density Effect  
Test conditions for the charge density sweep tests with the chiller off are 

summarized in Table 6.3. Injection was at 0.6 ms trigger duration for the 17.4 kg/m
3
 

density case and 0.8 ms trigger duration for the 34.8 kg/m
3
 density case corresponding to 

1.1 and 1.4 ms fuel duration, respectively. Injection duration for the reduced density case 

was decreased to minimize fuel spray impinging on the CV windows.  

Table 6.3 

Charge density sweep conditions – chiller off.  

 Injection Pressure (Bar) 
Density 

(kg/m
3
) 

Ambient Pressure (Bar) 

17.4 kg/m
3
 1975 34.8 38.6 

34.8 kg/m
3
 1987 17.5 19.4 

As there was minimal variation in injection pressure, the influence of the ambient charge-

gas density on injection pressure can be quantified from these images, which are shown 

for the density sweep tests in Figure 6.6.  

 
Figure 6.6: Diesel spray images from density sweep tests, 2000 bar injection 

pressures, chiller off.  

When density increased, spray penetration reduced due to increased resistance of the fuel 

traversing through the ambient gas. The magnitude of the influence of ambient density on 

penetration and cone angle (Figure 6.7) was quantified by image processing of the spray 

images.  
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Figure 6.7: Median penetration (left) and cone angle (right) as a function of time 

ASOI for the density variation, chiller off, 2000 bar injection pressure.  

As ambient charge-gas density reduced, the penetration increased by 20% and cone angle 

decreased by 9%. The charge gas density has a greater momentum under higher density 

conditions, which provides greater resistance to the fuel spray forcing the spray to spread 

wider due to the increased charge-gas momentum and resistance.  

Also of interest was a comparison of the plume to plume variations for the 

penetration relative to the mean value, as shown in Figure 6.8 for 0.1 ms ASOI and 0.5 

ms ASOI.  

 
Figure 6.8: Penetration at 0.1 ms ASOI (left) and 0.5 ms ASOI (right) for the density 

variation with the chiller off.  

At 0.1 ms ASOI, the transient start of injection behavior was largely evident, consistent 

with other tests. By 0.5 ms ASOI, the penetration established more consistent trends over 

all of the spray plumes; however, these plume trends were not consistent over the two 

density tests. For the lower density case, a part load condition, penetration was greater 

than the mean for tests 2, 3, 4, and 5, less than the mean for tests 1, 7 and 8, and equal to 

the mean for test 6. On contrary, for the high density, full load condition, mean 

penetration was greater than the mean for tests 1 and 7, less than the mean for tests 6 and 

8, and equal to the mean for tests 2, 3, 4 and 5. Even though the overall trends were 

preserved in regards to the influence of density on penetration, the plume to plume 

variations were inconsistent.  
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6.1.3. Summary – Non-vaporizing Spray 

Results & Plume to Plume Variation Trends 
Non-vaporizing sprays were studied over a wide range of conditions, including 

repeat tests, two fuel temperatures, two densities, and a sweep of injection pressure. 

Results were presented in this section (6.1) and also in Appendix 12.6.1. Key 

observations in regards to parameter influence on macroscopic spray characteristics are: 

 There is a 4% spread in penetration and 5% spread in cone angle over the repeat 

test conditions. 

 There is a 4% increase in penetration and 3% decrease in cone angle for a fuel 

temperature increase from 321 to 328 K, which is negligible relative to the spread 

in the penetration and cone angle results for the repeat tests.  

 As injection pressure increased at the elevated fuel temperature of 328 K, 

penetration increased with no change in cone angle at 60% penetration. From 

1034 to 1379 bar penetration increased by an average of 10%, from 1034 to 2000 

bar penetration increased by an average of 40%. Cone angle increased by an 

average of 6% for an injection pressure increase from 1034 to 1379 bar, with no 

change for an injection pressure increase from 1034 to 2000 bar.  

 An increase in injection pressure at the fuel temperature of 321 K resulted in 

similar increases in penetration of 40% for injection pressure increasing from 

1034 to 2000 bar, however, for the smaller increase in injection pressure from 

1034 to 1379 bar, penetration increased an average of 25%. Cone angle showed a 

4% increase from 1034 to 1379 bar and a 7% increase from 1034 to 2000 bar, 

which is seen at the SOI, with levels after development showing no relative 

change between injection pressures.  

 As charge-gas density increased, penetration decreased and cone angle increased 

at 60% penetration. For a charge gas density reduction from 34.8 kg/m
3
 to 17.4 

kg/m
3
, penetration increased by an average of 20% and cone angle decreased by 

an average of 9%.  

 As fuel temperature increased, there was no change in penetration or cone angle at 

60% penetration.  

In regards to plume to plume variations, there were no test to test consistencies in 

regards to certain plumes always being smaller or larger than a mean value, however, 

there were noticeable variations in spray characteristics over the different plumes. By 

removing the camera timing jitter and undertaking several more repeat tests at higher 

framing rates to provide additional data, these trends may become more evident.  

6.2. Vaporizing Sprays 
Several tests were undertaken in a vaporizing, 0% oxygen environment, achieved 

using the thermodynamic state generation procedure. Liquid length will be quantified to 

understand parameter influences and also the plume to plume spray variations. Test 

conditions are summarized in Table 6.4 including targets of charge-gas density, fuel 

temperature, fuel injection trigger duration, fuel injection pressure, and charge-gas 

temperature. This matrix does not show repeat tests, it solely includes the test conditions 

used in the current study.  
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Table 6.4 

Vaporizing sprays test matrix. 

Ambient Density 

(kg/m
3
) 

Fuel Pressure 

(bar) 

Injection Trigger 

Duration (ms) 

Fuel Temperature 

(°C) 

Temperature at 

Injection 

(K) 

34.8 1034 1.6 82 1100 

34.8 1379 1.6 82 1100 

34.8 2000 1.6 82 1100 

34.8 2000 1.6 90 800 

34.8 2000 1.6 90 950 

34.8 2000 1.6 90 1100 

34.8 2000 1.6 90 1200 

34.8 2000 1.6 90 1300 

17.4 2000 1.6 90 1100 

34.8 1034 1.6 90 1100 

34.8 1379 1.6 90 950 

34.8 1379 1.6 90 1100 

34.8 1379 1.6 90 1200 

Results are provided in subsequent sections, with additional results provided in Appendix 

12.6.2. This section starts with presentation of a paper published in the ILASS conference 

proceedings, and subsequently considers additional test conditions to fully quantify 

vaporizing spray characteristics over a range of ambient and injection conditions.  

6.2.1. ILASS Paper – Temperature Sweep and 

Repeatability Sweep (363 K Fuel Temperature) 
This paper was originally published in the May 15-18, 2011 conference 

proceedings for the ILASS Americas 23
rd

 Annual Conference on Liquid Atomization and 

Spray Systems in Ventura California. Copyright permission provided in Appendix 12.1.2. 
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Abstract 

Diesel combustion and emissions formation is spray and mixing controlled. The 

injection event is transient and injectors consist of multiple holes and hence 

understanding the dynamics and variations in plume behavior is important. This includes 

plume-to-plume variations along with spray evolution during the injection event. In this 

study, an eight-hole common rail piezoelectric diesel injector was examined in an 
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optically accessible constant volume combustion vessel under vaporizing, non-

combusting 0% oxygen conditions. Charge temperatures of 800 to 1300 K at a density of 

34.8 kg/m
3
 were investigated. The liquid phase spray penetration was characterized for 

all plumes via processing of images acquired from a high speed camera with images 

taken at 67,500 frames per second with back scattering illumination. Plume-to-plume 

differences in penetration were observed during both the initial transient and after the 

steady state liquid length had been established. Hypothesis and assessment on the basis of 

these plume-to-plume variations are presented and discussed.
 

 

Introduction 

Diesel engines exhibit numerous benefits including high efficiency, optimum 

torque and drivability, and fuel economy advantages (Zhao and Ladommatos 1998; Stone 

2002; Tree and Svensson 2007). However, they exhibit high emissions including NOx 

and particulate matter (Tree and Svensson 2007). These emissions are largely governed 

by spray behavior as the resulting fuel-air mixing and vaporization governs the 

combustion processes (Aneja and Abraham 1998; Jawad et al. 2005; Lee et al. 2005). 

Therefore understanding spray penetration and spreading as determined from cone angle 

and liquid and vapor spray measurements is important to provide a fundamental 

understanding of fuel-spray mixing for combustion and emissions. Furthermore, diesel 

engines utilize multi-hole injectors which can exhibit non-uniformities in spray behavior 

during an injection event. By better understanding the fundamentals of injection, spray 

processes, and spray dynamics including plume-to-plume variations, fuel injection 

systems and engine operating parameters can be better optimized to take full advantage 

of spray properties to reduce emissions and fuel consumption. These results and 

observations may also be used to validate and improve spray models for more reliable 

computer prediction. 

The goals of this paper are to characterize the liquid phase of vaporizing diesel 

sprays from an eight-hole injector using back scatter imaging. Tests are conducted in an 

optically accessible constant volume combustion vessel which enables visualization of 

spray processes under charge conditions representative of current and advanced 

technology diesel engines. Tests including repeats were conducted over a charge 

temperature range of 800 to 1300 K. A charge density of 34.8kg/m
3
 is selected as 

representative of a diesel engine under high load and boost conditions (Naber and Siebers 

1996; Siebers 1998; Pastor et al. 2001; Ramierz et al. 2009). Liquid penetration is 

determined on an individual plume basis and variations between plumes are characterized 

and analyzed to provide insight into plume-to-plume variations and the implications.  

  

Experimental Setup 

The tests were conducted in the optically accessible constant volume chamber 

shown in Figure 6.9. The vessel has an approximately 1 liter internal volume with six 

face-ports housing three sapphire windows, a spark plug – dual fan port, a diesel fuel 

injector port (Figure 6.9), and one blank port. Additionally, there are eight access ports on 

the combustion vessel (CV) cube vertices containing a pressure transducer, inlet and 

exhaust valves, and blank ports. Numerous studies have detailed the operation and 

characteristics of the procedures used for studying vaporizing and combusting sprays in 
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this and similar laboratories (Naber and Siebers 1996; Siebers 1998, 1999; Ito et al. 2003; 

Baert et al. 2009; Pickett et al. 2009)  

 
Figure 6.9: Michigan Tech optically accessible combustion vessel with gas panels for 

mixture creation (Top). Internal view of combustion chamber and external view of 

diesel injector window (Bottom). 

The injector used in the current study is a Bosch Generation III piezoelectric 

common rail fuel injector (external view of mounting in CV shown in Figure 6.9). The 

injector is equipped with a sac-type nozzle, with eight holes arranged equally spaced 45° 

from each other azimuthally. The included angle of these holes is 150°. Each hole is 

nominally 1.0 mm long and 0.145 mm in diameter, with a length to diameter (L/D) ratio 

of 6.9.  

This injector is driven by an EFS IPoD piezoelectric injector driver in multi-peak 

regulation mode, which requires setting peak current, open and close voltage, and current 

slope levels. Drive characteristics were set to match production operation. The electronic 

trigger injection duration was set to 1.6 ms, and the resulting spray was 2.8 ms in 

duration. The fuel supply system is a high pressure system from Hydraulics International 

capable of injection pressures to 4140 bar, compatible with multiple fuels including 

diesel, biodiesel, gasoline, ethanol and others, with ultra-low sulfur diesel (ULSD) fuel 

used in the current study.  

Back scattering imaging is used to visualize the liquid phase spray in the 

combustion vessel. Back, or Mie, scattering imaging involves capturing the spray image 

via scattering light off the fuel droplets and hence this diagnostic enables visualization of 

the liquid portion of the spray in a vaporizing (0% oxygen) environment. The imaging 

setup used is shown in Figure 6.10, along with injector orientation. 
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Figure 6.10: Back scattering imaging setup (Top). Injector orientation and spray 

plume angles (Bottom). 

A Photron Fastcam SA1 streaming high speed digital camera was used. The 

camera was equipped with a 60 mm Nikon Micro-Nikkor lens with an f-stop of 2.8. 

Image resolution was 256 x 256 pixels to capture the spray region of interest with a 

67,500 frames per second frame rate (15 µs inter-frame time) and a 1.65 µs exposure 

duration. The light source for scattering was a Cooke SensiFLASH flash-lamp with an 8 

ms discharge duration. This light source provides illumination during the entire injection 

event, with the injection and imaging delayed relative to the flash-lamp to account for the 

warm-up time of the flash-lamp, thereby yielding a steady state illumination during the 

2.8 ms liquid fuel injection. The light source as shown in the figure is directed at an angle 

into the CV to provide uniform illumination of the entire chamber by reflecting the light 

off an angled mirror. The camera and flash-lamp are remotely triggered by a pulse 

generator (SRS DG645) which also controls the injector to ensure synchronized fuel 

injection, image acquisition and illumination. This optical setup enables visualization of 

all eight spray plumes from the injector as shown in Figure 6.10 with the spray plumes 

oriented 15° off the plane of the injector.  

 

Test Procedure 

This work considers vaporizing sprays in a zero percent oxygen environment. To 

achieve the zero percent oxygen environment in the combustion vessel a premixed burn 

procedure is used (Naber and Siebers 1996; Siebers 1998). The procedure involves spark 

igniting via two electrodes (see Figure 6.9), a mixture of acetylene, hydrogen, oxygen 

and nitrogen to yield zero percent oxygen post premixed burn. The mixture is prepared 

via partial pressure mixing in a 10 L mixing vessel. The initial fill pressure of the CV 

governs the density at the time of fuel injection as determined via the ideal gas law, with 

the combustion vessel being electrically heated via cartridge heaters to 180°C. Fill 

pressure and the pressure throughout the premixed burn and injection event is monitored 

via a Kistler 6001 pressure transducer located in a port of the CV coupled to a Kistler 

5010B charge amplifier.  
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The mixing fan in the top of the CV (refer to Figure 6.9) remains on during the 

premixed burn and fuel injection event to ensure uniform temperature distribution inside 

the chamber. See Figure 6.11 for a graphical description of this premixed burn process. 

 
Figure 6.11: Pressure trace showing CV premixed burn, cool down, and timing of 

diesel fuel injection 

After the peak temperature and pressure inside the CV is reached upon 

completion of the premixed burn, the combustion products then undergo a cool-down 

period due to heat transfer to the CV walls. At the desired time during this cool-down 

which corresponds to the predetermined temperature of study, the control system sends a 

trigger to the pulse generator which outputs the necessary triggers for injection, image 

acquisition and flash-lamp illumination. Data is logged throughout the entire premixed 

burn and spray event, including fuel pressure, spark current of the electrodes for the 

premixed burn, trigger signals, and voltage and current of the injector driver. Further 

information on the process is covered in numerous publications (Naber and Siebers 1996; 

Siebers 1998, 1999; Pickett et al. 2009). 

Vaporizing ULSD spray test conditions investigated in the current work consisted 

of three repeat tests and a charge temperature sweep, with actual experimental conditions 

defined in Table 6.5.  

Table 6.5 

Test matrix with experimental conditions for bulk and core charge density and 

temperature, as well as injection pressure. 
Test Set ρBulk (kg/m

3
) ρCore (kg/m

3
) TBulk at Inj. (K) TCore at Inj. (K) PInj. (Bar) 

Repeat 1 34.7 32.2 1100 1190 1990 

Repeat 2 34.5 32.0 1110 1190 2000 

Repeat 3 34.5 32.0 1110 1200 2010 

Charge 

Temp. 

Sweep 

34.5 32.9 810 850 1990 

34.8 32.7 950 1010 2020 

34.7 32.2 1100 1190 1990 

34.8 32.0 1200 1300 2010 

34.6 31.7 1300 1430 2000 

Fuel pressure was held constant at 2000±20 bar, with a targeted charge bulk density of 

34.8 kg/m
3
. Repeat tests were at 1100 K bulk temperature, with temperature sweep 

conditions targeting 800, 950, 1100, 1200 and 1300 K charge bulk temperature.  



 

184 

There exist boundary layers in the CV and hence temperature gradients which 

leads to the definition of core and bulk temperatures. The mixing fan in the CV helps to 

provide temperature uniformity with there being optimum uniformity in the core region 

of the vessel. This corresponds to the location of the gases that mix with the spray during 

injection where the mean temperatures are uniform but there does still exist temperature 

fluctuations (Naber and Siebers 1996). The core temperature is higher than the bulk 

temperature due to cooler, higher density gases which exist in CV boundary layers, and 

can be calculated from bulk gas conditions via equation (65) (Naber and Siebers 1996; 

Siebers 1998). 

 TCoreTBulk = 1 + a ∗ �1 − TWallTBulk� + b ∗ �TBulkTWall − 1� (65) 

The second and third terms on the right hand side consider gases in the boundary 

layers and crevices, with constant a corresponding to the boundary layer thickness (and is 

a function of density), and constant b representing the ratio of chamber crevice volume to 

chamber volume (Naber and Siebers 1996; Siebers 1998). The CV fill pressure 

measurement enables calculation of bulk gas density, which is used to determine the bulk 

temperature at injection as bulk density is constant during the test. Bulk temperature is 

used to calculate core temperature per the above equation, which is subsequently used in 

the core density calculation again using measured CV pressure at the time of injection.  

 

Image Processing 

Image sets acquired at each test condition were processed in Mathworks Matlab
TM

 

to determine penetration for each spray of the eight-plume injector, as a function of time 

after start of injection (ASOI), which corresponds to the start of liquid fuel. Plume 

labeling is provided in Figure 6.12. 

 
Figure 6.12: Left - Spray plume labeling, yellow dot denotes injector tip location. 

Right – picture of injector nozzle with select holes labeled, holes circle the entire 

nozzle tip in 45° increments. 

Image sets were read into arrays with frame 1 prior to injection used as the 

background image. The center injector tip location is determined, which enables 

calculation of the injector hole locations which are offset from the center of the nozzle 

based on injector configuration (Figure 6.12). Penetration is referenced relative to the 

individual injector hole locations.  

The image processing of each movie frame is composed of the following steps. 

First, the background image was subtracted from the spray image to avoid interference 
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from the injector tip in image processing. To process each plume in a given image frame 

the image was rotated in 45° increments such that each plume was aligned exiting the 

injector tip from left to right. The spray region of interest was isolated along a line from 

the injector tip to the image edge along the spray centerline, and perpendicularly relative 

to this line to visualize the entire width of the spray plume. Masking was applied to the 

adjacent spray plumes to avoid interference. The image was normalized by the maximum 

intensity in the image to yield an intensity scale from 0 to 1.  

With the spray plume isolated from the background, injector tip, and adjacent 

spray plumes, the image is thresholded to black and white. The threshold is determined 

for each spray plume based on Matlab’s
TM

 “graythresh” operator which relies on Otsu’s 

method, choosing a threshold to separate the two classes of pixels in the image, in this 

case spray and background, by minimizing their intraclass variance (Otsu 1979). The 

spray is further isolated from noise in the black and white image by finding the largest 

connected region of the spray via blob analysis. The black and white spray image next 

has its boundary traced, and the leading edge of the boundary along either the spray axis 

or at an angle from the axis is defined as the tip penetration, relative to the injector nozzle 

hole. This penetration is defined as the maximum length of the continuous portion of the 

spray as observed from the back scattering imaging as defined in Figure 6.13.  

 
Figure 6.13: Liquid penetration definition. 

Penetration is converted to millimeters using the known image scaling of 0.18 mm/pixel, 

and is also scaled by the cosine of 15° to account for the angled spray based on injector 

orientation, refer to Figure 6.10.  

 

Results & Discussion 

This section will be broken up into two parts. First, results from three repeat tests 

at 1100 K will be analyzed to determine the variation in individual spray plumes. Next, 

results will be presented on the plume-to-plume variation for the bulk charge temperature 

sweep from 800 to 1300 K.  

 

Repeatability Tests 

Three repeat tests were undertaken for vaporizing sprays (0% oxygen), at a bulk 

charge density of 34.8 kg/m
3
, 1100 K bulk charge gas temperature, and 2000 bar 

injection pressure with a 1.6 ms electronic injector drive duration (2.8 ms liquid fuel 

injection event). Actual test conditions were provided in Table 6.5, with the mean 

injection pressure being 2000 bar (10 bar standard deviation), mean bulk charge gas 

temperature of 1110 K (6 K standard deviation), and mean bulk charge gas density of 

34.6 kg/m
3
 (0.1 kg/m

3
 standard deviation). By characterizing the plume-to-plume trends 

over the repeat tests it can be determined if plume-to-plume variations are a result of 

system repeatability or if they are an inherent phenomenon of the injector and spray. 
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Background subtracted images for these test conditions are shown in Figure 6.14. 

There are plume to plume variations at each time ASOI, as well as fluctuations in liquid 

length of a single plume as time ASOI progresses. This paper focuses on the plume-to-

plume variations including potential causes and implications, not on the fluctuations of a 

single plume.  

 
Figure 6.14: Background subtracted spray images showing steady state spray 

characteristics for the three repeat tests at varying times ASOI. Physical scale is 

shown on the image. 

The median penetration for the eight plumes is plotted in Figure 6.15 as a function 

of time ASOI for the three tests. The median value is used as this does not weight outliers 

in the data and therefore provides a representative value of the combined spray 

characteristics. 

 
Figure 6.15: Median liquid penetration as a function of time ASOI for three repeat 

tests. 

From Figure 6.15 it is observed that the liquid penetration is consistent between 

tests, with the largest deviation of 2.1 mm in early times ASOI for test 1 relative to test 2 

and 3. This is the transient state of the spray during development and hence deviations are 

more prevalent when compared to the steady state spray in the longer times ASOI. The 

penetration increases until 0.75 ms ASOI at which a steady state value is reached, termed 

the liquid length. After this time the penetration fluctuates around this value until the end 
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of injection when penetration falls off following similar observations from reference 

Naber and Siebers (1996). Comparing the average median liquid length over the steady 

state period (0.75 through 2 ms ASOI), the steady state liquid length for all three tests are 

within 0.2 mm of each other when using the average value over steady state, but the 

instantaneous variation during the same steady state period can exceed 1 mm.  

Polar plots of liquid penetration for each test are given in Figure 6.16 to compare 

plume behavior as a function of time ASOI.  

 
Figure 6.16: Polar plots of penetration for three repeat tests, each spoke of the polar 

plot corresponds to physical spray plume placement. 

The eight individual spray plume penetrations are shown in the polar plots in 45° 

increments, with plume 1 at 0°, plume 2 at 45°, etc., (as was defined in Figure 6.10). The 

0.2 ms ASOI condition represents transient spray development, but the remaining times 

(1.0 to 2.0 ms) correspond to steady state spray conditions when the liquid length has 

been established (refer to Figure 6.15). Considering the standard deviation of the 

penetration as a function of time ASOI, it decreases from SOI to 1.0 ms ASOI where it 

reaches a minimum until 2.0 ms ASOI at which the standard deviation increases due to 

end of injection transients. Hence the 1.0 to 2.0 ms region is chosen to represent steady 

state due to the decreased variation in standard deviation. Also included in the polar plots 

is the mean steady state liquid length (mean SS LL) over all eight plumes during steady 

state.  

Considering each polar plot in Figure 6.16 for a given test, the variation in plume–

to-plume penetration is evidenced by different radial extensions of the plume along each 

spoke, at various times ASOI during steady state and looking at the circular radii created 

for each time ASOI which represent the liquid length. The plume-to-plume variation is 
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most prominent at 0.2 ms ASOI, as expected as this is the transient start of injection and 

spray development.  

To further compare plume-to-plume variations and trends over the three repeat 

tests, the mean liquid length was determined from 1 to 2 ms ASOI for each test (which 

consists of 68 data points) and compared to the mean steady state liquid length (mean SS 

LL) for all plumes over the three repeat tests as shown in Figure 6.17.  

 
Figure 6.17: Mean steady state liquid length for three repeat tests over eight spray 

plumes. 

Considering each plume independently and looking at the liquid length for each 

test, the results are similar showing there is minimal test to test variation and high 

repeatability. There is however plume-to-plume variation in liquid length, with certain 

plumes consistently having longer, or shorter, liquid lengths. Plumes 1, 4, 5, 6, and 7 are 

typically shorter than the mean, with plumes 2, 3, and 8 being longer than the mean, with 

the mean liquid length being 10.8 mm. The trends for the repeats are as follows; plume 5 

has the shortest liquid length being almost 11% less than the mean, followed by plume 7 

which is over 3% less than the mean,  and then plume 1 which is more than 2% shorter 

than the mean. Plume 4 and 6 have similar liquid lengths being around 0.5% shorter than 

the mean, with plume 8 being almost 5% larger than the mean, and plumes 2 and 3 

having similar liquid lengths and the largest of all plumes, over 6% larger than the mean.  

 

Charge Temperature Sweep 

A charge bulk-gas temperature sweep was undertaken from 800 to 1300 K to 

understand its influence on plume-to-plume liquid length variations. Conditions were 

vaporizing sprays at 34.8 kg/m
3
 bulk charge density, 2000 bar injection pressure, 2.8 ms 

liquid injection duration. Background subtracted images during steady state are compared 

for temperatures investigated, as shown in Figure 6.18.  
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Figure 6.18: Background subtracted spray images displayed during steady state 

liquid penetration stage for the charge temperatures investigated. Time ASOI and 

scaling is displayed. 

Median penetration over the eight plumes at each test condition was compared to 

understand temperature trends, as shown in Figure 6.19.  

 
Figure 6.19: Median liquid penetration as a function of time ASOI for charge gas 

bulk temperature sweep tests. 

Considering each temperature case independently, over a range of times ASOI, 

there is evidence of plume- to-plume variations in liquid length amongst all temperatures. 

These plume-to-plume variations are quantified to understand plume trends and 

characteristics. As temperature increases, plume penetration (liquid length) decreases as 
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expected due to increased vaporization, with the sensitivity of liquid length to 

temperature decreasing at higher temperatures (Siebers 1998).  

The penetration change with temperature is further understood by considering the 

mean liquid length during steady state as a function of gas temperature, as shown in 

Figure 6.20. Error bars represent the average standard deviation of the mean liquid length 

during steady state over all eight plumes. The gas temperature at the location of the liquid 

spray varies between the vessel wall temperature of 453K to the core temperature (Table 

6.5) due to temperature gradients near the wall. Here the liquid penetration is plotted 

versus the bulk temperature. The experimental mean liquid length data is compared to the 

expected temperature dependence, temperature to the -1.73 power, as proposed by Payri 

et al. 2008 and interpolated from experimental data (Sandia ECN 2011). This data is also 

compared to experimental data from Siebers and Sandia Engine Combustion Network 

(ECN) (Siebers 1998; Sandia ECN 2011) for a bulk gas density of 31.1 kg/m
3
, injection 

pressure of 140 MPa, hole diameter of 0.246 mm, using Heptamethylnonane (HMN) fuel 

to compare bulk gas temperature trends. 

 
Figure 6.20: Mean experimental liquid length during steady state as a function of 

bulk gas temperature including error bars representing one standard deviation of 

liquid length. Data is compared to an expected temperature trend (Payri et al. 2008 

[16]; Sandia ECN 2011 [17]) and experimental data (Siebers 1998 [8]; Sandia ECN 

2011 [17]). 

  The mean liquid length during steady state decreases 49% as temperature 

increases from 800 to 1300 K. This variation in liquid length is nonlinear with 

temperature in agreement with literature (Siebers 1998). As temperature increases from 

800 to 950 K, liquid length decreases 24%, for 950 to 1100 K temperature increase liquid 

length decreases 19%, for a temperature increase of 1100 to 1200 K liquid length 

decreases 13%, and for a temperature increase from 1200 to 1300 K liquid length 

decreases 4%. The experimental and published temperature trends agree within one 

standard deviation of the experimental mean liquid length data. The experimental data 

does not agree with Siebers Sandia ECN data due to the different conditions, injector 

geometry and fuel type, however, the temperature trends for liquid length are preserved 

in the current experimental data relative to that shown by Siebers.  

Figure 6.21 shows the liquid penetration for each plume from the injector for each 

of the bulk charge gas temperatures investigated. These polar plots consider transient 
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spray development (0.2 ms ASOI) as well as steady state spray penetration (liquid 

length). Also included is the mean steady state liquid length (mean SS LL) over all eight 

plumes during steady state. The variation in plume-to-plume penetration is evidenced by 

different radial extensions of the plume along each spoke at various times during steady 

state. During steady state (1 to 2 ms ASOI) plume penetration should be identical as the 

liquid length has been established, however, not only are there fluctuations in penetration 

(refer to Figure 6.19), there are plume-to-plume variations in penetration for a given time 

ASOI. Again, plume-to-plume variation is most prominent at 0.2 ms ASOI, as expected 

as this is the transient start of injection and spray development. 

 
Figure 6.21: Polar plots of plume penetration for various times ASOI (for spray 

development and steady state), charge temperatures 800 to 1300 K. 

To examine if there are plumes that consistently have longer or shorter liquid 

penetration over this range of charge temperatures the individual plume liquid lengths for 
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each charge temperature are normalized by the mean value over all eight plumes. The 

results are shown in Figure 6.22.  

 
Figure 6.22: Mean steady state liquid length (over 1 to 2 ms ASOI) for the charge 

temperature sweep, normalized by the mean liquid length to isolate plume 

influences from temperature effects. 

As the figure shows, plume-to-plume variations are evident as was the case for 

repeat tests. These plume-to-plume variations exhibit similar trends to those observed in 

the repeat tests, with plume 5 having the shortest liquid length on average almost 7% 

shorter than the mean, followed by plumes 1, 4, 6, and 7 which are up to 3% shorter than 

the mean. Plumes 2, 3, and 8 are almost 4% longer than the mean value, considering the 

average temperature trends.  

 

Discussions on Plume-to-Plume Variations 

The plume-to-plume variations in liquid length can yield differences in fuel air 

mixing and emissions, and therefore understanding their causes is essential. There are 

various potential explanations for the plume-to-plume variations. These include nozzle 

configuration, eccentric needle movement, nozzle manufacturing smoothness, and 

variations in nozzle dimensions as discussed in the literature (Arcoumanis et al. 1998; 

Desantes et al. 2005; Karimi 2007; Powell et al. 2011). There is the potential for eccentric 

needle movement, which could cause uneven needle lift and hence yield plume-to-plume 

variations. There is uneven needle lift evidenced in early times ASOI images as shown in 

Figure 6.23 which includes background subtracted images from repeat tests, during the 

start of injection (SOI) where certain holes start injecting fuel before others.  
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Figure 6.23: Images during the early injection portion of the three repeat tests, time 

ASOI displayed on image showing uneven SOI due to eccentric needle motion. 

As shown in Figure 6.23, plumes 1, 7 and 8 consistently inject 0.019 ms after the other 

plumes. However, this change in SOI proposed as a result of uneven needle lift does not 

translate to variations observed during steady state when plume 8 has one of the largest 

liquid lengths, with plumes 1 and 7 having shorter liquid lengths. Hence the eccentric 

needle motion only impacts the plume dynamics during the transient state. The needle 

lift, even though it is double-guided, is likely dependent on the exerted pressure from the 

fuel, which could vary due to differences in internal nozzle geometry. During steady state 

the needle is relatively far away from the nozzle hole entrance as it is fully lifted, and 

therefore it is no longer an influencing factor on the fuel flow, and thus is likely not the 

cause of the observed plume-to-plume variations during steady state.  

Hole-to-hole differences introduced during nozzle manufacturing could 

potentially explain the plume-to-plume variation trends. The nozzle was hydro-ground 

but there could be differences in the smoothness of each hole which would cause 

turbulence or cavitation differences, and this could translate into downstream spray 

characteristics (Arcoumanis et al. 1998). As fluid flows through the nozzle, the flow can 

be two-phase and cavitating both in the sac volume and holes, which changes flow 

characteristics and hence hole-to-hole variations in spray characteristics (Arcomanis et al. 

1999). Furthermore, there could be differences in hole diameters relative to manufacturer 

specifications (Desantes et al. 2005). Observations of liquid length have shown it 

increases linearly with orifice diameter  (Siebers 1999), and therefore the 1.8 mm (19%) 

increase in liquid length observed between plume 5 and plumes 2 and 3 would require a 

19% increase in orifice diameter. To examine this, diameters of all eight holes were 

measured using a scanning electron microscope (SEM, model JEOL JSM-6400). The test 

results showed a mean hole diameter of 145.1 µm, with a standard deviation of 1.2 µm 

(with this standard deviation being less than the measurement repeatability). The 

maximum hole diameter of 146.5 µm was observed for hole 3, with a minimum hole 

diameter of 143.5 µm for hole 7. Hence this variation in hole diameter is not of large 

enough or of significant magnitude to explain the liquid length hole-to-hole variations.  

Instead it is hypothesized that internal flow geometry and conditions in the 

injector are a contributing factor to the observed differences in steady state liquid 

penetration. In this injector design it is know that that the internal injector geometry 

results in the fuel filling the sac from one side of the injector. This geometry can increase 

fuel pressure to certain injector holes which could change internal nozzle flow 

characteristics and translate to spray variations as seen currently. Based on the orientation 



 

194 

of fuel filling, holes one and five are symmetric about the fuel filling location and hence 

the reduction in liquid length as seen with these plumes could be attributed to the internal 

flow geometry.  

 

Future Work 

Hypothesis on the causes of the differences in plume to plume variation have been 

proposed.  Future work is proposed to evaluate a set of injectors to see whether trends 

support the proposed hypothesis. Additionally, detailed studies using CFD or advanced 

diagnostics to study the flow in the injector would provide insight to the causes. With 

respect to spray studies, future work will include the characterization of plume-to-plume 

variations as a function of injection pressure, gas density, and fuel temperature. Similar 

analyses will be undertaken on non-vaporizing sprays and on combusting sprays to 

understand consistencies and trends in plume behavior and determine impacts on ignition 

and soot formation. The time varying fluctuations in vaporizing sprays liquid penetration 

will also be characterized including frequency analyses to understand the phenomenon 

and causes.  

 

Conclusions 

Diesel combustion and emissions formation is largely spray and mixing controlled 

and hence understanding liquid phase spray characteristics is important to determine 

methods to enhance and optimize combustion while minimizing emissions. The current 

work aimed to understand and characterize plume-to-plume variations of the eight spray 

plumes from a multi-hole injector under repeat test conditions and for a charge 

temperature sweep. Using an optically accessible constant volume combustion vessel 

with Mie back scattering diagnostics liquid penetration and mean steady state liquid 

lengths were characterized. Key conclusions are as follows: 

• Liquid penetration increases as time ASOI increases before reaching a steady 

state value where the liquid phase reaches a steady state. Under the conditions of 

this test this takes 0.75 ms. 

• As charge gas temperature increases from 800 to 1300 K mean liquid length of all 

plumes decreases by 49% due to increased vaporization. This decrease in liquid 

length is nonlinear with ambient temperature agreeing with previous published 

studies in the literature. 

• Liquid penetration is initially shorter for plumes 1, 7 and 8 as injection starts; 

however, this difference diminishes over time and is not observed in steady state 

measurements. 

• Under steady state, results show that plumes 2, 3, and 8 consistently have larger 

liquid lengths then plumes 1, 4, 6, and 7, followed by the smallest liquid length of 

plume 5, both under repeat test conditions and over the charge temperature sweep. 

For repeat test conditions, the span in liquid length from shortest to longest is in 

excess of 18%. For the temperature sweep tests, the largest span in liquid length 

from shortest to longest considering all temperature tests is 15%.  

• Measurements of the individual hole diameters indicate that this is not the primary 

factor in the differences in liquid penetration.  
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• Differences in the initial versus steady state liquid penetrations indicate that there 

are two factors controlling the differences in liquid length. It is hypothesized that 

the initial differences are driven by eccentric needle movement. Additionally it is 

hypothesized that the steady state differences are the result of internal flows and 

geometry in the injector. 
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Nomenclature 
a Empirical Constant 

ASOI After start of injection of liquid fuel 

b Empirical Constant 

D Nozzle hole diameter 

L Nozzle hole length 

P Pressure 

T Temperature 

ρ Density 

  

Subscripts  

Bulk Bulk gas conditions 

Core Core gas conditions 

i Nozzle inlet 

Inj Injection conditions 

o Nozzle outlet 

Wall CV wall conditions 

6.2.2. Fuel Pressure Sweep at 363 K Fuel 

Temperature 
An injection pressure sweep of 1034 to 1379 to 2000 bar was undertaken with the 

chiller off to yield a fuel temperature of approximately 363 K, with the influence on 

liquid length being quantified. Ambient conditions are summarized in Table 6.6.  

Table 6.6 

Ambient conditions at injection – fuel pressure sweep, chiller off.  

Test Set 
ρBulk 

(kg/m
3
) 

ρCore 

(kg/m
3
) 

TBulk at Inj. (K) TCore at Inj. (K) 
PInj. 

(Bar) 

1034 Bar 34.6 32.1 1100 1190 1020 

1379 Bar 34.7 32.1 1100 1190 1380 

2000 Bar 34.7 32.2 1100 1190 1990 

Ambient conditions at injection were similar amongst the injection pressure sweep, with 

small reductions in injection pressure relative to the expected set-point values. In all 

figures and discussion, the expected injection pressures were used to reference the tests.  
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Spray images are shown in Figure 6.24 for the injection pressure sweep with the 

chiller off which provides 363 K fuel temperature.  

 
Figure 6.24: Background subtracted spray images. Injection pressure sweep test: 

34.8 kg/m
3
 density, 0% O2, 1100 K, chiller off. 

From the background subtracted spray images it was evident that injection pressure did 

not have a significant impact on fuel spray liquid length during steady state, agreeing 

with literature (Siebers 1999). This was further confirmed by comparing results from the 

image processing shown in Figure 6.25.  

 
Figure 6.25: Median penetration (liquid) as a function of time ASOI for the injection 

pressure sweep at 34.8 kg/m
3
 density, 1100 K, 0% O2, chiller off.  

As injection pressure increased liquid penetration remained similar with negligible 

differences (<1%) in steady state liquid length agreeing with literature trends (Siebers 

1998). This independence of liquid length from injection pressure enables increased 

injection pressures to be used without the worry of liquid cylinder wall impingement. 

Furthermore, this independence showed that increased fuel injection pressures which 

provide increased fuel velocity and fuel flow rate must be the same as the change in the 

overall fuel evaporation rate for different injection pressures, for this independent 
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behavior trend to hold (Siebers 1998). For the 2000 bar injection pressure case steady 

state liquid length is reached earlier which is attributed to a rise in injection velocity of 

the fuel due to an increase in injection pressure and the ability for the fuel droplets to 

penetrate faster to their steady state region where the fuel becomes completely vaporized.  

There exist distinct plume trends as further evidenced in Figure 6.26. Steady state 

liquid length from 1 to 2 ms ASOI for each plume was determined and normalized by the 

mean steady state liquid length over all eight plumes. Normalization was used to 

minimize any injection pressure influence in the comparison. If the normalized liquid 

length was greater than 1 it exceeded the mean, less than one, it was less than the mean 

value. 

 
Figure 6.26: Polar plot of normalized liquid length during steady state (1 to 2 ms 

ASOI), 34.8 kg/m
3
 0% O2, 1100 K, chiller off. 

Looking at trends for the three injection pressures it is seen that plumes 1, 4, 5 and 7 

always were less than the mean value by up to 7%, with that also being the case for 

plume 6 with the exception of the 1379 bar injection pressure case. Plumes 2, 3, and 8 

always exceeded the mean value by approximately 5%. These trends agreed with those 

from both the charge temperature sweep and repeat tests discussed previously (Section 

6.2.1).  

6.2.2.1. Additional Results - Fuel Pressure Sweep 
To further confirm that liquid length is minimally influenced by injection 

pressure, additional tests were performed using this multi-hole injector. Conditions were 

a charge-gas density (bulk) of 5.7 kg/m
3
, temperature of 900 K (bulk), fuel temperature 

of 363 K (no chiller), with a 1.6 ms electronic injection trigger duration. Images are 

shown in Figure 6.27. Framing rates are reduced to 10,000 fps since at this low density 

condition diesel spray liquid length is increased and therefore the region of interest, or 

resolution required, is increased which is achieved by a frame rate reduction.  
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Figure 6.27: Spray images for 0% oxygen environment, 5.7 kg/m

3
 bulk charge gas 

density, 900 K bulk charge gas temperature, 363 K fuel temperature.  

There are no noticeable differences in the images for the influence of injection pressure 

on diesel spray liquid length. Processed results for median penetration over all 8 of the 

spray plumes are shown in Figure 6.28.  

 
Figure 6.28: Median liquid penetration versus time ASOI for a sweep in injection 

pressure.  

As injection pressure increases, there is a faster initial ramp up rate in liquid penetration. 

During the quasi-steady period of 1-2 ms ASOI, injection pressure is slightly larger for 

the 310 Bar case, however, the differences are minimal, at most 5 mm. These small 

reductions in liquid length for an increase in injection pressure is attributed to a change in 

the spray spreading angle which occurs under some test conditions, and will change the 

ambient entrainment characteristics and thereby influence the liquid length (Siebers 

1998). 
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6.2.3. Reduced Charge Density 
Charge-gas density is known to influence spray characteristics as increased 

density results in increased aerodynamic drag of the spray restricting liquid phase fuel 

penetration. Experimental test data is shown in Table 6.7.  

Table 6.7 

Ambient conditions at injection – ambient density variation.  

Test Set 
ρBulk 

(kg/m
3
) 

ρCore 

(kg/m
3
) 

TBulk at Inj. (K) TCore at Inj. (K) 
PInj. 

(Bar) 

17.4 kg/m
3
 17.3 16.3 1110 1170 2010 

34.8 kg/m
3
 34.7 32.2 1100 1190 1990 

Small, insignificant, variations in ambient conditions between the two charge densities 

existed in regards to temperature and injection pressure, but these will not influence spray 

characteristics. Background subtracted spray images for the two charge densities are 

compared in Figure 6.29.  

 
Figure 6.29: Background subtracted spray images. Charge density influence, 1100 

K, 0% O2, 2000 bar injection pressure.  

As the charge gas density decreased spray liquid penetration was noticeably reduced for 

all spray plumes as confirmed in the median liquid penetration plot shown in Figure 6.30.  

 
Figure 6.30: Median liquid penetration as a function of time ASOI for the charge 

density sweep, 1100 K 0% O2, 2000 bar injection pressure.  

As density increased from 17.4 to 34.8 kg/m
3
, median liquid penetration reduced 34%. 

Steady state liquid length was reached for both charge gas density cases around 0.75 ms 

ASOI.  
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Again, it is of interest to compare the normalized mean liquid lengths under both 

charge-gas conditions to understand the plume to plume trends, as shown in Figure 6.31. 

 
Figure 6.31: Polar plot of normalized liquid length during steady state (1 to 2 ms 

ASOI), 0% O2, 1100 K, chiller off, 2000 bar injection pressure. 

The mean steady state liquid length for each charge gas density sweep was normalized by 

the mean value over all 8 plumes to remove the density influence and solely compare the 

plume to plume trends. Plumes 1, 4, 5, 6 and 7 had normalized liquid lengths less than the 

mean (less than one) by 2 to 5%, whereas plumes 2, 3, and 8 had normalized liquid 

lengths larger than the mean (greater than one) by at least 4%, agreeing with prior trends. 

These plume dependencies and consistencies amongst a range of ambient and injection 

conditions confirmed the hypothesis that the plume-to-plume steady state differences are 

likely a result of flow and internal geometry.  

6.2.4. Summary – Vaporizing Spray Results & 

Plume to Plume Variation Trends 
This section looked at vaporizing spray liquid length behavior and trends in plume 

to plume variations as a function of a wide range of conditions including charge density, 

charge temperature, injection pressure, fuel temperature, and repeated conditions. Over 

all conditions distinct and consistent trends emerged in regards to the plume to plume 

variations. Plumes 1, 4, 5, 6 and 7 exhibited liquid lengths less than the mean by an 

average of 5%, and plumes 2, 3, and 8 exhibited liquid lengths in excess of the mean by 

an average of 5%. The consistency in plume to plume variations over all the conditions 

confirmed that the variations were repeatable and not inherent to the specific condition. 

These variations in steady state plume trends are likely the result of injector internal 

geometry and flow conditions, as hypothesized earlier. In addition to the plume to plume 

variations, several general liquid length trends were evidenced, agreeing with literature 

observations in regards to parameter influence on liquid length as discussed in Chapter 

2.3.2. Conclusions are provided for the results presented here in section 6.2 and those 

presented in Appendix 12.6.2.  

• For repeat tests (both chiller off and chiller on) the mean steady state liquid 

length varied by at most 0.3 mm.  

• As charge gas temperature increased, liquid length decreased nonlinearly.  
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o At 1379 bar injection pressure for a 250 K charge gas temperature 

increase from 950 to 1200 K, liquid length decreased 30%.  

o At 2000 bar injection pressure for a 500 K charge gas temperature 

increase from 800 to 1300 K, liquid length decreased 49%.  

• As fuel temperature increased from 355 to 363 K, liquid length decreased 

12%. 

• As charge gas density doubled from 17.4 to 34.4 kg/m
3
, liquid length 

decreased 34%.  

• As injection pressure increased from 1034 to 2000 bar, there was no 

significant impact on liquid length, less than a 1% increase which is within the 

system repeatability and accuracy. 

6.3. Combusting Sprays 
All combusting spray tests were undertaken in a 21% oxygen environment to 

emulate air, achieved by a pre-combustion event. The preburn procedure produces 

species of CO2, H2O, N2, and O2, in addition to levels of minor species yielding 

composition differences relative to that of dry air. All combusting spray tests were 

conducted at the elevated fuel temperature with the chiller off, 363 K.  

The combustion luminosity images were used to characterize flame length 

(distance from the nozzle hole to the leading edge of the flame, similar to penetration in 

other tests), combusting cone angle (angle of a single combusting spray plume), and 

flame lift off length was approximated as detailed in Chapter 5.4.3. Typically, OH 

chemiluminescence diagnostics are used for flame lift off length as OH is known to be an 

indicator for ignition. However, by using natural combustion luminosity an indication of 

lift-off length could be determined and a relative comparison made between tests 

acknowledging that the actual lift-off length reported in literature for OH will be different 

than that provided here. Combusting luminosity images were also characterized in terms 

of spray plume intensities to provide an indication of relative levels of soot oxidation 

again acknowledging that actual soot levels will vary significantly, but this method can 

provide an approximate indication and method of comparison between test conditions. 

Understanding regions and distribution of intensity in combusting spray flames is 

important as differences in intensity can be related to regions of soot formation in the 

spray as these are natural combusting luminosity images.  

Combusting spray tests quantified ignition delay from the pressure measurement 

with pressure traces also used to determine the net heat release from combustion. This 

procedure is outlined in Figure 6.32. To define the ignition delay, the pressure trace 

starting from the peak pressure of the preburn (initiation of the cool-down) to the end of 

the pressure trace was isolated. This pressure trace was then filtered using a low-pass 

Butterworth filter at 2000 Hz with a digital zero-phase filter. The region of the cool down 

was further isolated from the start of the cool-down to the location of the injector driver 

trigger defining the decay stage of the pressure trace. The decay phase of the pressure 

trace was low-pass filtered with a 2000 Hz Butterworth filter and was offset by the 

ending pressure value of the entire pressure trace (not just the cool-down). Offset 

pressure data, along with the time data from the cool-down decay, was  fit to an 

exponential function using a linear curve fit by taking the logarithm of the pressure decay 
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data. The fit of the cool down was evaluated over the entire time region of interest from 

the start of the cool-down to the end of the data with the last value of the pressure (at the 

end of the data) added into this evaluated fit to provide fitted data to the cool down trace, 

assuming no fuel injection or combustion. The evaluated curve fit was subtracted from 

the filtered pressure data from the start of the cool-down to the end of the data trace and 

used to define the ignition delay. Definition of a time vector was required from the start 

of the cool down to the end of the pressure trace, offset by the time of the injector driver 

trigger. Ignition delay was defined as the time, relative to the injector driver trigger, when 

the subtracted pressure trace (data minus the fitted pressure trace) is greater than 0, 

subtracting the delay between the injector driver trigger and start of current (0.002 ms) 

along with the 0.245 ms delay between for the start of fuel relative to the driver start of 

current.  

 
Figure 6.32: Ignition delay definition and determination procedure.  

The pressure trace was also used to estimate the net heat release from the 

combustion event of the diesel fuel. The data region of interest was from the injector 

driver trigger to the peak pressure of the diesel combustion event. This pressure data was 

then filtered using a built-in Matlab smoothing function to facilitate ease of analysis by 

removing extraneous signal noise. The pressure differential (change in pressure) for each 

time step (10 microseconds) was determined over the entire filtered pressure region of 

interest during the diesel combustion event and used in the net heat release rate 

relationship provided by Heywood (1988) shown in equation (66).  

 𝑑𝑄𝑑𝑡 =
𝛾𝛾 − 1

𝑝 𝑑𝑉𝑑𝑡 +
1𝛾 − 1

𝑉 𝑑𝑃𝑑𝑡 =
1𝛾 − 1

𝑉 𝑑𝑃𝑑𝑡  (66) 

This equation was simplified from the generic equation since the combustion vessel is 

constant volume, so the volume – time derivative can be neglected. The pressure – time 

derivative was calculated as previously mentioned using the pressure trace data, volume 
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was constant at 1.1 L which is the internal CV volume, and gamma is a constant 

representing the ratio of specific heats of the charge-gas environment, approximated as 

1.35 for these tests. This equation provided the net heat release rate, with the total heat 

released being the sum of the heat release rate over the entire region of interest. This heat 

release analysis is shown in Figure 6.33.  

 
Figure 6.33: Heat release rate analysis for combusting spray tests.  

The test matrix for the combusting spray tests is provided in Table 6.8.  

Table 6.8 

Test matrix for combusting spray tests. 
Ambient Density 

(kg/m
3
) 

Fuel Pressure (bar) 
Injection Trigger 

Duration (ms) 

Fuel Temperature 

(°C) 

Temperature at 

Injection (K) 

34.8 1034 0.6 90 1100 

34.8 1379 0.6 90 950 

34.8 1379 0.6 90 1100 

34.8 2000 0.6 90 950 

34.8 2000 0.6 90 1100 

17.4 2000 0.6 90 1100 

In the combusting spray tests, plume 7 (which exits the injector and travels upward) will 

be obscured by the fan when it is about 10 mm from the top of the window, or 40 mm 

from the central injector tip, therefore, these results were not included in the median 

values or in the plume-to-plume variation under these obstructed conditions. 

Additionally, as the injector tip was not perfectly centered in the camera region of 

interest, data for plume 1 must be ignored after the combusting plume exits the region of 

interest as the full spray plume could no longer be seen. Experimental results are 

presented in subsequent sections, with additional results provided in Appendix 12.6.3.  

6.3.1. Injection Pressure Variation at 1100 K 

Bulk Gas Temperature 
An injection pressure sweep was undertaken at 1100 K bulk gas temperature, 

considering injection pressures of 1034, 1379 and 2000 bar. Charge gas density was kept 

constant at 34.8 kg/m
3
. Actual test conditions are defined in Table 6.9. 
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Table 6.9 

Combusting test conditions for injection pressure sweep at 1100 K bulk gas 

temperature 

 

Injection 

Pressure 

(Bar) 

Bulk Gas 

Density 

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core Gas 

Density 

(kg/m3) 

Core Gas 

Temperature 

(K) 

Ignition 

Delay 

(ms) 

Net Heat 

Release 

(kJ) 

1034 Bar 1030 34.0 1100 31.5 1185 0.79 0.79 

1379 Bar 1370 33.9 1100 31.4 1190 0.59 1.09 

2000 Bar 2000 33.9 1100 31.5 1190 0.52 1.52 

Density and temperature conditions were similar to the target values with the only 

significant variation being injection pressure. Heat release decreased by 48% as injection 

pressure decreased due to less fuel being injected with the same injection duration. 

Ignition delay decreased by 34% as injection pressure increased from 1034 to 2000 bar. 

Images from these tests are shown in Figure 6.34.  

 
Figure 6.34: Combusting spray images from injection pressure sweep tests, 1100 K 

bulk gas temperature, 34.8 kg/m
3
 density.  

The images show that as injection pressure increased, the flame length increased and 

ignition delay reduced. These parameters, and others, are quantified using image 

processing with results shown in the following set of figures, including flame length 

(Figure 6.35), cone angle (Figure 6.36), lift-off length (Figure 6.37) and combusting 

plume intensity (Figure 6.38). 

 
Figure 6.35: Median flame length versus time ASOI for combusting spray tests, 

1100 K bulk gas temperature, 34.8 kg/m
3
 density. Ignition delay from pressure 

measurement of 0.79, 0.59 & 0.52 ms; injection pressures 1034, 1379 & 2000 bar.  
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As injection pressure increased at 1100 K, the flame length increased by 31% due to 

faster penetration because of increased momentum from the fuel.  

 
Figure 6.36: Median cone angle versus time ASOI for combusting spray tests, 1100 

K bulk gas temperature, 34.8 kg/m
3
 density. 

With injection pressure increases, there were no significant changes in the quasi-steady 

combusting spray flame cone angle for the 1034 and 1379 bar injection pressure cases. 

The 2000 bar injection pressure case had a slight reduction in cone angle, by about 2 

degrees or 8%, relative to the 1034 and 1379 bar cases which exhibit similar cone angles.  

 
Figure 6.37: Median lift-off length versus time ASOI for combusting spray tests, 

1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

An increase in injection pressure yielded an increase in the combusting flame lift-off 

length by close to 40%.  
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Figure 6.38: Median combusting plume intensity versus time ASOI for combusting 

spray tests, 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

As injection pressure increased, the combusting spray flame intensity increased 

signifying an increase in soot oxidation. Actually soot produced may be higher or lower, 

with images showing only oxidized levels of soot. This trend was opposite to that seen at 

the 950 K temperature condition implying that increases in injection pressure may be 

more useful in controlling soot under lower temperature combustion conditions.             

6.3.2. Density Variation  
Also of interest was the influence of density on combusting spray parameters. 

This was undertaken at 2000 bar injection pressure and 1100 K charge gas temperature. 

Ambient charge gas density of 17.4 and 34.8 kg/m
3
 were considered, with actual test 

conditions defined in Table 6.10.  

Table 6.10 

Combusting test conditions for density variation at 1100 K bulk gas temperature 

and 2000 bar injection pressure.  

 

Injection 

Pressure 

(Bar) 

Bulk Gas 

Density 

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core Gas 

Density 

(kg/m
3
) 

Core Gas 

Temperature 

(K) 

Net Heat 

Release 

(kJ) 

17.4 kg/m
3 

1990 16.9 1110 15.9 1170 1.38 

34.8 kg/m
3
 2000 33.9 1100 31.5 1190 1.52 

Injection pressure and temperatures were similar between the two tests, with density 

being increased by about a factor of two. Ignition delays could not be quantified from the 

pressure measurement at the low density case (17.4 kg/m
3
), and therefore were not 

included here. However, it is known that the lower density case has an increased ignition 

delay relative to the 34.8 kg/m
3
 density case, as seen in the images in Figure 6.39. Net 

heat release was similar between the two tests, being 10% larger in the full-load (high 

density) case due to improved fuel air mixing and combustion.  
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Figure 6.39: Combusting spray images from tests at 2000 bar injection pressures, 

1100 K bulk gas temperature, density variation. 

An increase in density reduced the ignition delay and provided increased intensity 

combusting spray flame images, with combusting flame penetration however being 

reduced under these conditions. These results are better understood by quantifying 

median flame length (Figure 6.40), median cone angle (Figure 6.41), median lift-off 

length (Figure 6.42), and median combusting plume intensity (Figure 6.43).  

 
Figure 6.40: Median flame length versus time ASOI for combusting spray tests, 

1100 K bulk gas temperature, 2000 bar injection pressure. 

Increased aerodynamic drag on the spray is observed due to the charge-gas density 

increasing, which results in a flame length reduction of 11% magnitude.  

 
Figure 6.41: Median cone angle versus time ASOI for combusting spray tests, 1100 

K bulk gas temperature, 2000 bar injection pressure. 
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As density increased, cone angle increased by 23% resulting in increased spray spreading 

and air entrainment.  

 
Figure 6.42: Median lift-off length versus time ASOI for combusting spray tests, 

1100 K bulk gas temperature, 2000 bar injection pressure. 

An increase in density yielded a reduction in lift-off length by 25% which was expected 

since flame length reduced due to the increased aerodynamic resistance, which limits the 

penetration of the spray and combusting flame. This restriction causes a reduction in lift-

off length since fuel-air mixing will occur, but over a wider region based on the increased 

spray cone angle and reduced penetration, and as a result, the location of the onset of 

combustion will be closer to the injection tip.   

 
Figure 6.43: Median combusting plume intensity versus time ASOI for combusting 

spray tests, 1100 K bulk gas temperature, 2000 bar injection pressure. 

Combusting plume intensity increased for the larger density condition by close to 90%. 

This indicated that relative soot oxidation levels will be larger for the increased density 

condition, which is expected based on full-load engine operation (higher density 

condition) where there are higher demands on the engine for increased power with 

emission levels increasing. As density increases, pressure is increased in the chamber, 

and all other test conditions are the same, which would provide increases in soot as soot 

formation is known to increase with charge-gas pressure increases (Tree and Svensson 

2007).  
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6.3.3. Charge Gas Temperature Variation at 

2000 Bar Injection Pressure 
A charge gas temperature variation was undertaken at the elevated injection 

pressure of 2000 bar at 34.8 kg/m
3
 charge gas density with the test conditions fully 

defined in Table 6.11.  

Table 6.11 

Combusting test conditions for charge gas temperature variation at 2000 bar 

injection pressure and 34.8 kg/m
3
 charge gas bulk density. 

 

Injection 

Pressure 

(Bar) 

Bulk 

Gas 

Density 

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core Gas 

Density 

(kg/m
3
) 

Core Gas 

Temperature 

(K) 

Ignition 

Delay 

(ms) 

Net Heat 

Release 

(kJ) 

950 K 2030 33.7 960 31.7 1020 0.81 1.61 

1100 K 2000 33.9 1100 31.5 1190 0.52 1.52 

As the charge gas temperature was increased the ignition delay reduced by 36% agreeing 

with expected literature trends (Kobori et al. 2000). Heat release was similar with 5% 

decrease as temperature increased, due to the same injection pressure with a similar 

amount of fuel being injected. Images from the test are shown in Figure 6.44.  

 
Figure 6.44: Combusting spray images from tests at 2000 bar injection pressure, 

34.8 kg/m
3 

density. 

As charge-gas temperature increased, ignition delay reduced and combusting plume 

intensity increased. To provide a better understanding of the influence of charge gas 

temperature on combusting spray characteristics at this elevated injection pressure, 

results from image processing are presented in Figure 6.45, Figure 6.46, Figure 6.47, and 

Figure 6.48, for flame length, cone angle, lift-off length, and combusting intensity, 

respectively.  
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Figure 6.45: Median flame length versus time ASOI for combusting spray tests, 34.8 

kg/m
3
 density, 2000 bar injection pressure. Ignition delay as determined from 

pressure is 0.81 ms and 0.52 ms for the 950 and 1100 K charge-gas temperature 

cases, respectively.  

Median flame length was similar for the two test conditions as charge-gas temperature 

increased, within 2%, as was the case at the lower (1379 bar) injection pressure case 

reconfirming that injection pressure is more of a governing factor in flame length as 

opposed to charge-gas temperature.  

 
Figure 6.46: Median cone angle versus time ASOI for combusting spray tests, 34.8 

kg/m
3
 density, 2000 bar injection pressure. 

Cone angle was similar for both charge- gas temperatures and although the cone angle 

was larger for the 1100 K case the variation was small at steady state. 
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Figure 6.47: Median lift-off length versus time ASOI for combusting spray tests, 

34.8 kg/m
3
 density, 2000 bar injection pressure. 

An increase in charge-gas temperature provided a reduction in lift-off length by 16% for 

this 2000 bar injection pressure case. This trend is more pronounced than that of the 1379 

bar injection pressure case (refer to Appendix 12.6.3.5), with this being the expected 

trend based on literature (Higgins and Siebers 2001; Siebers and Higgins 2001).  

 
Figure 6.48: Median combusting plume intensity versus time ASOI for combusting 

spray tests, 34.8 kg/m
3
 density, 2000 bar injection pressure. 

An opposite trend to that seen at 1379 bar injection pressure case (refer to Appendix 

12.6.3.5) was apparent for combustion luminosity, when the charge-gas temperature 

increased the combusting plume intensity increased, which indicates higher relative 

levels of soot oxidation, as expected for an increase in temperature.  

6.3.4. Summary – Combusting Spray Results 

& Plume to Plume Variation Trends 
A summary of combusting spray results is provided here, discussing tests 

presented in Section 6.3 and in Appendix 12.6.3. 

• Two repeat tests showed high repeatability with minimal shot-to-shot variation, 

with less than a 5% variation in flame length, 1% variation in cone angle, and 6% 

variation in lift-off length between the two tests.  

• As injection pressure increased, flame length and lift-off length increased, cone 

angle and total combusting spray plume intensity decreased, for the 950 K case 

and 1100 K case. The only exception to the 1100 K case was that as injection 

pressure increased, the total combusting spray plume intensity decreased. More 
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tests are needed to understand if this was a real effect due the different ambient 

charge gas temperature, or, if it was an artifact of the imaging diagnostic. 

Although the diagnostic was unchanged for all tests, the Mie scattering technique 

may not be the optimum diagnostic for these combusting intensity studies.  

o An injection pressure increase from 1379 to 2000 bar at 950 K results in 

an increased flame length by 17% and lift-off length by 40%, with 

reductions in cone angle of close to 13%.  

o An injection pressure increase from 1034 to 1379 bar at 1100 K increased 

flame length by an average of 12%, decreased cone angle by 4%, and 

increased lift-off length by 15%.  

o An injection pressure increase from 1034 to 2000 bar at 1100 K increased 

flame length by an average of 31%, decreased cone angle by 8%, and 

increased lift-off length by 40%.  

• As charge-gas density increased from 17.4 to 34.8 kg/m
3
, flame length and lift-off 

length were reduced by 11% and 25%, respectively, and cone angle and total 

combusting plume intensity were increased by 23% and 90%, respectively.  

• As charge-gas temperature increased, there were negligible differences in flame 

length (less than 2%) and no consistent trends in cone angle. Lift-off length 

decreased as the charge-gas temperature increased by 16%, being more 

pronounced at the higher injection pressure (2000 bar). Trends with the 

combusting plume intensity were opposite with temperature for the two injection 

pressures providing no conclusive results without additional repeat tests.  

• Heat release rate is largely driven by injection pressure as this controls the amount 

of fuel injected which contains the energy for combustion.  

• Magnitude of plume to plume variations (as presented in Appendix 12.6.3) with 

the combusting spray tests were more pronounced relative to non-vaporizing or 

vaporizing spray tests. This is attributed to no averaging of parameters as was 

undertaken on the vaporizing spray tests and the combustion variation which 

influenced the repeatability and consistency of the parameters. This also implies 

that the combusting parameters were not as significantly influenced by the 

injector properties which govern the plume-to-plume variations in the non-

vaporizing and vaporizing spray conditions.  

6.4. Lift-off Length and Liquid Length 

Comparison  
A comparison is  also undertaken of lift-off length and liquid length under similar 

test conditions (same injection pressure, density, and bulk-gas temperature at injection), 

with differing oxygen environments based on the measurement, 0% or 21% oxygen. The 

mean steady state liquid length was determined from 1 to 2 ms ASOI for all eight spray 

plumes. This was compared to the mean value of the lift-off length (LOL) over all 8 

spray plumes during the entire injection event. Results are shown in Figure 6.49 for the 

matching conditions at 0 and 21% oxygen, chiller off for all test conditions.   
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Figure 6.49: Mean steady state liquid length compared to the mean lift-off length for 

the matching 0% and 21% oxygen conditions, as labeled in the plot.  

For the majority of the test conditions the lift-off length exceeded the liquid length by at 

least 8%, which implies that fuel vaporization was complete before reaching the 

combustion zone. Under these conditions, less soot is typically formed based on 

enhanced fuel-air mixing before combustion (Siebers and Higgins 2001). Current 

technology diesel engines are running at higher injection pressures and under these 

conditions, the liquid length is typically reduced relative to the lift-off length to enhance 

fuel air mixing and provide emission reductions. For three test conditions, 34.8 kg/m
3
 

density at 1100 K 1034 bar injection pressure, and 950 and 1100 K 1379 bar injection 

pressure, the liquid length exceeded the lift-off length by at up to 20%, which implies that 

vaporization cooling can influence combustion rates and emission formation.   

6.5. Penetration and Flame Length 
Comparison 

A comparison is also made between non-vaporizing penetration and flame length. 

These conditions were at different ambient conditions, namely 373 K nitrogen for non-

vaporizing tests, and 950 or 1100 K 21% oxygen for combusting tests which defines 

flame length. As discussed and determined previously, the charge-gas temperature does 

not influence the flame length. A comparison cannot be made for vaporizing conditions 

as only the liquid phase was visualized for these conditions. Of interest is the influence of 

combustion on the flame length relative to that of a non-vaporizing test condition. This 

comparison was undertaken for four different conditions, first for 34.8 kg/m
3
 density 

1034 bar injection pressure, second for 34.8 kg/m
3
 density 1379 bar injection pressure, 

third for 34.8 kg/m
3
 density 2000 bar injection pressure and last for 17.4 kg/m

3
 density 

2000 bar injection pressure, as shown in Figure 6.50, Figure 6.51, Figure 6.52, Figure 

6.53, respectively.  
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Figure 6.50: Comparison of median penetration and flame length for conditions of 

34.8 kg/m
3
 density 1034 bar injection pressure. 

 
Figure 6.51: Comparison of median penetration and flame length for conditions of 

34.8 kg/m
3
 density 1379 bar injection pressure. 

 
Figure 6.52: Comparison of median penetration and flame length for conditions of 

34.8 kg/m
3
 density 2000 bar injection pressure. 
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Figure 6.53: Comparison of median penetration and flame length for conditions of 

17.4 kg/m3 density 2000 bar injection pressure. 

Initially, penetration and flame length trends were very similar for all four cases 

considered. Around 0.4 ms ASOI, penetration became reduced relative to the flame 

length for the full load (34.8 kg/m
3
 density) condition by close to 7%, however, this trend 

was not observed for the part load (17.4 kg/m
3
 density) condition. As combustion occurs 

the hot products expand as the spray continues to propagate which could enhance the 

spray propagation rate. The exception to this was at the part load condition. This could be 

attributed to slower combustion rates at part load conditions, or camera time jitter in the 

non-vaporizing spray tests which was seen based on the non-linear trend from 0 to 0.1 ms 

ASOI.  

6.6. Measurement Uncertainty 
There exists uncertainties in the experimental spray measurement characteristics. 

These uncertainties have been quantified through the use of repeat tests and are both a 

function of image acquisition setup and method including scattering efficiency, as well as 

a function of the image processing.  

Under nonvaporizing spray conditions, the maximum uncertainty or deviation in 

liquid phase penetration is 2 mm, with the average uncertainty being less than 1 mm. For 

cone angle, maximum uncertainty is 3 degrees with the average uncertainty being 1 

degree, as determined over three repeat tests. For the vaporizing spray tests, the 

uncertainty is maximized for liquid penetration at 2.1 mm based on the largest deviation 

over three repeat tests. However, when considering the mean steady state liquid length 

the uncertainty is reduced to 0.2 mm. Under combusting spray conditions two repeat tests 

were undertaken, the maximum uncertainty in flame length is 2.2 mm, with the average 

uncertainty being 1 .3 mm, and for combusting cone angle this maximum deviation is 2.3 

degrees with an average deviation being 1 degree. Lift-off length shows an average 

uncertainty of 0.5 mm, with the maximum uncertainty being 0.9 mm. 

 Levels of uncertainty are small as defined by the repeat tests, relative to the spray 

parameters of interest. The change in spray parameters as a function of different 

conditions is significantly larger than the levels of uncertainty. Additionally, these 

uncertainties as defined by the repeat tests are in reality of lower magnitude based on the 

fluctuations seen in the sprays (as will be discussed in Chapter 8), as these fluctuations 

are random in nature. This randomness leads to differences in spray characteristics test to 
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test which are not the sole result of the image processing method and image acquisition 

setup but are inherently tied to the random nature of the spray.  

6.7. Summary 
This chapter provides experimental results for non-vaporizing, vaporizing and 

combusting spray tests. Tests were undertaken for diesel fuel sprays using a multi-hole 

injector, for which there are minimal quantified results in the literature due to the 

increased complexity in imaging. This subset of results is part of a larger study which 

includes CFD model development and validation, along with engine testing, for a range 

of injectors based on a project with an industrial partner. Results presented here are from 

one of the tested injectors, which is a production injector, with all others in the larger 

study being prototype injectors with different nozzle characteristics. Quantified 

parameters included; spray penetration and cone angle at 60% penetration for the non-

vaporizing spray tests; penetration and quasi-steady liquid length for vaporizing tests; and 

flame length, lift-off length, cone angle, and total combusting plume intensity for 

combusting tests. Literature trends were confirmed for the various spray parameters, 

including the influence of fuel temperature, injection pressure, charge-gas density and 

charge-gas temperature. Also of interest was a comparison of the plume to plume 

variations. Trends were not consistent for non-vaporizing or combusting spray tests 

which was likely attributed to the consideration of minimal data points, whereas for the 

vaporizing spray tests parameters were averaged over the entire steady state portion, 1 

ms, which included in excess of 50 data points to better isolate and understand the trends 

in the plume variations which were occurring. This resulted in observation of consistent 

variation trends over the spray plumes attributed to the internal injector flow geometry in 

the steady state, and eccentric needle motion in the initial start of injection period. This 

eccentric needle motion at start of injection was also evidenced in non-vaporizing spray 

tests.  
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7. Liquid Length Modeling with an 

Equation of State Approach 
The goal of this chapter is to develop an approach for non-ideal thermophysical 

property evaluation using an equation of state which is integrated into Siebers liquid 

length model (1999). In this model, thermophysical property information is required. 

Siebers (1999) used tabulated property data in their model application, with Schihl et al. 

(2006) using piece-wave curve fits to tabulated property data. These methodologies are 

not readily applied to a wide range of hydrocarbon fuels due to limited availability of 

tabulated property data. Therefore, the development of this equation of approach will 

enable study of liquid length characteristics for both single and multi-component 

surrogate fuels, and will assist in evaluating proposed hypotheses on liquid length 

fluctuations, using readily available fuel property data. This is achieved via several 

objectives. First, it is required to understand the limitations of application of the Siebers 

(1999) liquid length 1-D scaling model relative to the break-up transition time. This limit 

is based on validity of the mixing limited hypothesis which becomes void when the 

injected fuel and not the ambient charge gas is the dominant medium, meaning that the 

break-up stage is complete. This is the case since mixing limited vaporization assumes 

that the local droplet interphase transport is quicker than the global fuel-air mixing rates 

(Siebers 1999; Luijten and Kurvers 2010). Furthermore, this model is utilized to predict 

liquid length, using cetane as a representative fuel for diesel, to provide a first order 

approximation based on readily available thermodynamic properties. Cetane is not the 

optimum choice as a diesel surrogate in regards to matching vaporization characteristics, 

based on its boiling point (560 K) difference relative to the 90% distillation point of 

diesel fuel (580 K) (Schihl et al. 2006), however, it is still effective at providing a good 

representation of diesel spray liquid length (Siebers 1999). The model results will be 

compared to experimental results presented in Chapter 6.2 to verify expected liquid 

length trends are preserved, and the accuracy of cetane as a surrogate for diesel 

vaporization characteristics.  

Next, an equation of state approach is developed for thermophysical property 

evaluation used in the Siebers (1999) liquid length model to predict liquid length for 

various single and multi-component diesel surrogates. Fuel property data is tabulated in 

Appendix 12.7.1.4 for select components in comparison to diesel. The results of this 

approach (equation of state property determination coupled with 1-D liquid length model) 

using cetane as a fuel is compared to experimental results, and also to the tabulated 

property method results. This 1-D liquid length model and equation of state method is 

further compared to single-component cetane fuel experimental data from the Sandia 

National Laboratory Engine Combustion Network (ECN) to validate the equation of state 

approach and model applicability. This model is next used to compare results for various 

single component surrogates, with application also provided for proposed 

multicomponent surrogates relative to diesel experimental data from Michigan 

Technological University and Sandia National Laboratory. This model coupled with the 

equation of state approach provides a detailed tool for studying thermophysical property 
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characteristics, which are important in understanding diesel, and alternative fuels, spray 

and combustion characteristics.  

7.1. Review of Siebers Liquid Length 
Model 

Liquid length can be determined using the scaling law presented by Siebers 

(1999), as was previously discussed in Chapter 2.4.1.1. Fuel is injected into the ambient 

charge gas with the fuel and this charge gas mixing and forming a saturated state at the 

liquid length, as shown in Figure 7.1.  

 
Figure 7.1: Overview of the fuel and charge-gas mixing schematic for the liquid 

length model.  

This scaling law is presented again in equation (67) for ease of discussion, with 

the definition for the evaporation coefficient in equation (68).  

LL =
ba �ρfρa �Cadotan (θ/2) ��2B + 1�2 − 1 (67) 

 B =
ṁf(LL)ṁa(LL) =

Ps ∗ MWf ∗ Za(Ts, Pa − Ps)
Zf(Ts, Ps) ∗ (Pa − Ps) ∗ MWa =

ha�Ta,Pa� − ha�Ts,Pa − Ps�
hf(Ts) − hf�Tf,Pa�  

(68) 

Evaluating this relationship for liquid length provides an improved understanding on the 

influence of various parameters on liquid length, as well as providing use for parametric 

and predictive modeling studies. The solution to the liquid length model requires an 

iterative solution to calculate the saturation temperature, which is used to evaluate the 

evaporation coefficient, B. With this term evaluated the liquid length can be determined 

based on constants, and fuel and ambient charge-gas test conditions as shown 

schematically in Figure 7.2.  
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Figure 7.2: Liquid length solution methodology. 

Details will be provided in subsequent sections on how these thermodynamic parameters, 

including saturation pressure, compressibility, and evaporation are determined for the 

fuel of interest.   

7.2. Application Limitations of Siebers 

Liquid Length Model 
First, it is important to understand limitations on validity of the mixing-limited 

hypothesis, which is the fundamental premise of this model. These limitations are 

determined by consideration of the transition time when the dominant controlling 

medium changes from injected fuel to charge gas entrainment. This relationship is based 

off an earlier scaling law derived by Naber and Siebers (1996) for the full gas phase 

penetration of vaporizing and non-vaporizing diesel sprays. In this relationship, a 

definition for the transition time where the dominant medium controlling the gas phase 

penetration switched, from that of the injected fuel to that of the ambient gas entrained, 

was determined (Naber and Siebers 1996). Penetration is linear with time up to the 

transition time, and square root in time after this period. This transition time provides an 

indication of the region of validity of the liquid length model since the model is based on 

a mixing limited vaporization assumption and is therefore valid only after the dominant 

medium has changed to that of the ambient gas, which is defined by liquid lengths larger 

than the corresponding penetration value at the transition time.  

The definition for transition time is provided in equation (69), and is a function of 

injector and fuel properties, determined via conservation of mass and momentum 

relationships (Naber and Siebers 1996).   
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 tr =
�Ca/2

Cvtan (θ/2) df ∙ �ρ��Pf − Paρf
 

df = �Ca ∙ do ρ� =
ρfρa 

(69) 

Using this relationship and calculating the transition time for the conditions of 

interest in the current work provides an understanding of the limitation of application of 

the Siebers (1999) liquid length model. Values used in the calculation are provided in 

Table 7.1 with these being defined based on literature as parameters were not available 

for the injector used (Naber and Siebers 1996; Siebers 1999).  

Table 7.1 

Constants used in transition time evaluation.  
Parameter Value 

a 0.66 

Ca 0.8 

Cd 0.75 

Cv Calculated from Cd = Cv*Ca, 0.94 

Fuel density is a constant 847 kg/m
3
 based on diesel fuel properties (Chapter 

3.4.1), nozzle diameter is known to be 0.145 mm based on scanning electron microscope 

measurements (Chapter 3.4.2.1). Also required is knowledge of the cone angle of the 

spray which is determined using the correlation (equation (70)) provided by Siebers 

(1998).  

 tan �θ
2

� = 0.26 ∗ ��ρaρf �0.19 − 0.0043�ρfρa� (70) 

Fuel pressure, ambient pressure, and ambient density all vary as a function of test 

conditions with core values used in the evaluation of the transition time (as provided in 

Table 7.2). The results for the transition time, and the evaluated penetration at the 

transition time calculated with the long-time scale penetration correlation (presented in 

equation (71) for ease of understanding) are provided in Table 7.2 for the test conditions 

currently under study.   

 

S =  � Cv ∙ �2Caa ∙ tan (θ/2) ∙ ��Pf − Paρf ∗ dot (71) 
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Table 7.2 

Transition time for various conditions. *Calculated using the long-time scale 

relationship (equation (71)).  

Bulk Gas 

Density 

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core 

Gas 

Density 

(kg/m
3
) 

Ambient 

Pressure 

(MPa) 

Injection 

Pressure 

(MPa) 

Transition 

Time (µs) 

Penetration at 

Transition 

Time (mm)* 

17.4 1100 16.3 5.7 200 21.7 7.3 

34.8 1100 32.2 11.4 103 17.5 3.4 

34.8 1100 32.2 11.4 138 15.0 3.4 

34.8 800 32.9 8.3 200 11.6 3.3 

34.8 950 32.7 9.9 200 11.7 3.3 

34.8 1100 32.2 11.4 200 11.9 3.3 

34.8 1200 32.0 12.4 200 12.0 3.4 

34.8 1300 31.7 13.5 200 12.5 3.5 

The maximum transition time occurs for the lowest density case, being 21.7 

microseconds, with the minimum being reached at the low temperature, high density 

condition. Large differences are evident when comparing the penetration at the transition 

time to the mean liquid length, as shown in Table 7.3. These differences are expected, 

and confirm the validity of the mixing limited hypothesis. This comparison (of liquid 

length to penetration of the full spray at the transition time) is valid because the liquid 

core of the fuel spray continues to penetrate until reaching the quasi-steady liquid length, 

and at this transition time the quasi-steady liquid length has not yet been reached.  

Table 7.3 

Comparing penetration at transition to the mean liquid length over a range of 

conditions. 

Bulk Gas 

Density (kg/m
3
) 

Bulk Gas 

Temperature (K) 

Injection 

Pressure (Bar) 

Mean Liquid 

Length (mm) 

Penetration at 

Transition Time 

(mm)* 

17.4 1100 2000 16.1 7.3 

34.8 1100 1034 10.8 3.4 

34.8 1100 1379 10.7 3.4 

34.8 800 2000 17.8 3.3 

34.8 950 2000 13.5 3.3 

34.8 1100 2000 10.9 3.3 

34.8 1200 2000 9.5 3.4 

34.8 1300 2000 9.1 3.5 

The penetration at the transition time is consistently less than that at the liquid length, by 

at least 50 percent. Therefore for the conditions in the current work the Siebers liquid 

length model will consistently be valid. This is further evidenced when considering the 

ratio of the penetration at the transition time to the mean liquid length as shown in Figure 

7.3, for the conditions in Table 7.3.  
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Figure 7.3: Ratio of penetration at transition time to liquid length for conditions in 

Table 7.3.  

As density is reduced and charge-gas temperature and injection pressure are held 

constant, the ratio of penetration at transition time to the liquid length increases from 0.3 

to 0.45. This is attributed to the longer transition time due to the reduction in 

aerodynamic resistance (charge gas entrainment) which enables the fuel to be the more 

dominant medium for a longer duration. The influence of injection pressure on this ratio 

is minimal, with the ratio changing by only 0.01 for an almost doubling of injection 

pressure. As temperature is increased, for constant density and injection pressure, the 

ratio is increased, by 100% for a 500 K increase in charge-gas temperature. As 

temperature increases, liquid length decreases, with the transition time increasing by less 

than 1 microsecond for this temperature increase (refer to Table 7.2), which results in 

minimal changes in the transition time and therefore this trend in the ratios is expected.   

The validity limit in regards to mixing-limited conditions will be reached under 

low density and temperature conditions. This signifies therefore that as density (or 

temperature) is reduced (which results in increases in liquid length and the relative 

difference with penetration will be increasingly reduced), that the mixing limited 

vaporization assumption validity comes into question. At these lower density and 

temperature conditions, the droplet transport process rates (mass and energy) decrease 

relative to the mixing rates, and therefore a transition occurs from mixing limited 

vaporization (dominated by mass of entrained gas) to that of the processes at the droplet, 

where the fuel-gas mixture strays from saturated conditions thereby limiting the validity 

of this model (Siebers 1999). Although these conditions are not encountered here, this 

discussion provides an understanding on limitations of model applicability which will 

occur under part-load (low density), low temperature combustion conditions. Future work 

will include development of a dimensionless parameter for this ratio, to fully understand 

parameter dependency on the validity of this mixing limited hypothesis.  
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7.3. Liquid Length Model (1999) 
Application – Tabulated Thermodynamic 

Data 
To evaluate the liquid length using Siebers model various steps are required. First 

the evaporation coefficient value must be determined, using equation (72), which requires 

an iterative solution for saturation temperature, refer to section 7.1. The evaporation 

coefficient can then be evaluated using the determined saturation temperature.  

 

 
Ps ∗ MWf ∗ Za(Ts, Pa − Ps)

Zf(Ts, Ps) ∗ (Pa − Ps) ∗ MWa =
ha�Ta,Pa� − ha�Ts,Pa − Ps�

hf(Ts) − hf�Tf,Pa�  (72) 

This evaluation requires knowledge of various thermodynamic properties 

including enthalpies, molecular weights, and compressibility’s at various pressures 

(ambient and saturation) along with temperatures (ambient, saturation, and fuel). 

Thermodynamic properties of common species are typically tabulated, however, 

properties are not known for all species. An equation of state, coupled with 

thermodynamic property relationships, can be used to define thermodynamic properties 

which are unknown for certain fuels or species. This procedure will be discussed in 

section 7.4. Currently, a first order approximation is applied using readily available 

tabulated data for Cetane to evaluate the liquid length model for comparison to 

experimental data. The equations used for property data are provided in Appendix 

12.7.1.1, including those for the determination of enthalpy, density, saturation pressure, 

and compressibility, using the relations set forth by Schihl et al. (2006). Schihl et al. 

(2006) applied piece-wise curve fits to tabulated property data to represent the data in 

equation format to facilitate an iterative solution. Siebers (1999) also used tabulated data 

for property evaluation in the original model via computer databases.  

To solve for the saturation temperature, initial conditions are defined including 

ambient charge-gas pressure and temperature, and fuel temperature (355 K or 363 K with 

or without cooling, respectively), which are known experimental test conditions. The 

molecular weight of the fuel and molecular weight of the ambient (0% oxygen, mixture 

of water, carbon dioxide and nitrogen) environment are also known conditions, being 

226.44 kg/kmol and 28.67 kg/kmol, respectively. Based on ambient test conditions, being 

close to ideal gas conditions, the ambient compressibility for this evaluation is assumed 

to be 1 (Schihl et al. 2006). These values, together with the property relationships, enable 

an iterative solution of equation (72) to define the saturation temperature. This solution is 

undertaken in the Engineering Equation Solver (EES) program, with code provided in 

Appendix 12.7.1.2. With known saturation temperature, the liquid length relationship is 

evaluated using the previously discussed values along with the constant b of 0.41 and fuel 

density is evaluated as discussed in Appendix 12.7.1.1, required in the calculation of the 

spray angle. Liquid length is evaluated using core gas conditions of density and 

temperature as injection and achieved liquid length occur in the core region of the vessel. 

Results are provided in Table 7.4. 
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Table 7.4 

Liquid length as determined from evaluation of Siebers (1999) model using cetane as 

a surrogate for diesel fuel.  

Test 

# 

Core Gas 

Density 

(kg/m
3
) 

Core 

Gas 

Temp 

(K) 

Inj. 

Press. 

(Bar) 

Fuel 

Temp. 

(K) 

Saturation 

Temp. 

(K) 

Model 

Calculated 

LL (mm) for 

Cetane 

Exp. 

LL 

(mm) 

% Diff. 

1 16.3 1170 2010 363 634.6 14.5 16.1 10.5 

2 32.1 1190 1022 363 664.1 9.7 10.8 10.7 

3 32.5 1015 1378 363 643.0 12.2 13.7 11.6 

4 32.1 1190 1376 363 664.1 9.7 10.7 9.8 

5 32.0 1300 1373 363 674.7 8.6 9.0 4.5 

6 32.9 850 1990 363 616.9 16.8 17.8 5.8 

7 32.7 1010 2020 363 642.5 12.2 13.5 10.1 

8 32.2 1190 1990 363 664.2 9.6 10.9 12.7 

9 32.0 1300 2010 363 674.7 8.6 9.5 9.9 

10 31.7 1430 2000 363 664.2 7.8 8.4 7.4 

11 32.2 1190 1068 355 664.8 9.7 12.7 26.8 

12 32.2 1190 1369 355 664.8 9.7 12.4 24.4 

13 32.0 1190 1988 355 664.6 9.8 12.4 23.4 

Percent difference between model and calculate results is computed to compare 

the experimental and model results for liquid length. The largest differences are seen 

under the reduced fuel temperature conditions. Various conclusions can be made from the 

results in the above table, as summarized below.  

• Cetane can be used as a surrogate for diesel fuel spray vaporization 

characteristics, however, the results for model calculated liquid length were at 

most 3 mm shorter than experimental results. The largest deviation occurs for the 

reduced fuel temperature cases. If these are excluded, the modeled liquid length is 

at most 1.6 mm shorter and at minimum 0.4 mm shorter than the experimental 

liquid lengths, providing percent differences between experimental and model 

results of at minimum 4.5%. Results for modeled cetane fuel are reduced relative 

to the experimental diesel fuel agreeing with literature, based on the reduction in 

boiling point of cetane (560 K) relative to that of diesel fuel at 90% distillation 

(580 K) (Schihl et al. 2006, Siebers 1999). Other reasons for the discrepancy 

between cetane and diesel could be attributed to the approximation of injector 

parameters for velocity or area contraction coefficients in place of measured 

values along with evaluation for cone angle using the correlation. Although there 

are differences in the magnitude of the results when using cetane as a surrogate 

representative fuel for diesel, the trends are preserved with model application 

relative to experimental results. This is shown for core-gas temperature trends in 

Figure 7.4.  
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Figure 7.4: Liquid length versus core-gas temperature comparing model and 

experimental results. 34.8 kg/m
3
 core charge-gas density, 2000 bar injection 

pressure.  

The nonlinear influence of core charge-gas temperature on liquid length is 

preserved from the model using cetane as the representative fuel, matching diesel 

experimental results.  

• Fuel injection pressure has negligible effect on liquid length in both the 

experimental and the modeling results as expected based on the scaling law 

relationship and development. This result may be considered by some to be 

counter-intuitive due to the influence of injection pressure on vaporizing spray 

penetration, but can be understood by consideration of the underlying physical 

processes. As injection pressure increases, the vaporization rate increases 

(governed by an increase in the entrained charge-gas mass flow rate), with this 

increase being of the same magnitude of the increase of the fuel flow rate, based 

on conservation of energy assuming turbulent mixing control (Siebers 1998). 

Conservation of mass for the ambient charge-gas entrained and that for the fuel 

flow rate both depend linearly on injected fuel velocity, which is proportional to 

the square root of injection pressure (Bernoulli’s Equation), and therefore no 

change is seen in liquid length for a change in injection pressure. Implications of 

the lack of injection pressure influence on liquid length show that elevated 

injection pressures can be used to assist with improved fuel-air mixing and 

emissions reductions, without concern over fuel spray impingement on 

combustion chamber walls which would yield increases in unburnt hydrocarbon 

emissions.  

• The 8 degree Kelvin reduction in fuel temperature provides a higher reduction in 

the liquid length in the model as compared to the experimental results. This could 

be attributed to uncertainties in measured fuel temperatures based on setup and 

measurement accuracy.  

Despite these variations between model and experiment, the general trends are 

preserved in regards to the lack of influence of fuel injection pressure on the results, the 

nonlinear increase in liquid length with a reduction in charge-gas temperature, and the 

reduction in liquid length with an increase in charge-gas density.  

This tabulated property data application provides validation of the model, with the 

use of cetane being valid as a first order approximation. It also serves to illustrate the 

method of solution in regards to the iterative nature of the saturation temperature and the 

evaporation coefficient determination, and solution for liquid length. This application 



 

226 

also shows that the use of improved surrogates that better represent diesel fuel 

evaporation characteristics is merited, which could be achieved through the development 

of an equation of state approach to account for unknown or non-readily available 

thermodynamic properties for both single and multi-component surrogates, as will be 

discussed.  

7.4. Equation of State Approach for 
Thermodynamic Property Evaluation  

There are several equations of state which can be used to describe thermodynamic 

behavior, as were reviewed in Chapter 2.6. The ideal gas is one such equation of state but 

it is limited in regards to applicability to low pressure conditions or temperatures 

significantly larger than the critical temperature to ensure accurate representation of real 

properties (Eastop and McConkey 1993). These ideal conditions are not representative of 

diesel engine operation. Equations of state, such as the Redlich-Kwong or Peng-Robinson 

as examples, require two properties, i.e. pressure and temperature, from which all others 

can be evaluated, i.e compressibility and volume. The equation of state used is 

determined by the required application, species type considered, and conditions. Diesel 

sprays are known to exhibit non-ideal gas effects based on the pressure and temperature 

conditions they encounter in the cylinder. Fuel is injected as a compressed liquid, 

subsequently vaporizing into the gas state. Various equations of state have been applied 

to diesel sprays, with the Peng-Robinson equation of state being validated for high-

pressure nonpolar systems which are pertinent to diesel sprays (Reid et al. 1987; 

Hohmann and Renz 2003) and will be used here.  

In order to apply and utilize the scaling law of Siebers (1999) for liquid length, 

various fuel properties must be known to enable calculation of saturation temperature and 

therefore the evaporation coefficient. Tabulated properties can be used in these 

evaluations including those from the American Petroleum Institute (API) for example 

(API 1997), as were used in section 7.3, however, due to the iterative nature of the 

problem, tabulated properties are difficult and inefficient to use. Furthermore these 

properties are not readily available for all species. Therefore an approach is presented 

here which uses an equation of state to evaluate thermodynamic properties for known 

species critical properties of pressure, temperature, along with species acentric factor, ω. 

In the Peng-Robinson equation of state,  

P =  
RTV−b − aαV2+2bV−b2, ∝= (1 + (κ)(1 − Tr0.5))2, κ =  0.37464 + 1.54226ω − 0.26992ω2, 

(73) 

ω is the acentric factor which is a molecular property of the species, representing the non-

spherical nature of the molecule, essentially measuring molecule complexity (both in 

regards to geometry and polarity) (Reid et al. 1987). R is the ideal gas constant and Tr is 

reduced temperature, defined as the temperature over the critical temperature, and Pr is 

the reduced pressure, defined as the pressure over the critical pressure. Species constants 

a and b will be defined and discussed shortly. With an equation of state chosen, and 

species properties known (as these are given, see Reid et al. 1987), the thermophysical 

properties must be defined and evaluated to enable application of Siebers liquid length 
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model, requiring use of various thermodynamic relationships and definitions as outlined 

below. Examples are provided here for cetane (hexadecane), C16H34 as the species of 

interest, to enable comparison to results provided in section 7.3. The needed properties 

include critical temperature, pressure, and acentric factor, which are 722 K, 14.1 bar, and 

0.742, respectively (Reid et al. 1987). Also required is the Rackett parameter for density 

definition, and polynomial constants for constant pressure ideal gas specific heat 

capacity.  

To determine the equation of state constants of a and b, the critical properties and 

acentric factor must be known and substituted into the following relationships. These 

relationships are defined by the use of equation (73), along with the knowledge that the 

partial derivative of pressure with respect to volume at the critical temperature is zero, 

and the second partial derivative of pressure with respect to volume at the critical 

temperature is also equal to zero as provided in equation (74). It should be acknowledged 

that these relationships are for pure substances at the critical point (the derivative is 

evaluated at the critical temperature).  �∂P∂V
�Tc = 0 �∂2P∂V2�Tc = 0 

(74) 

Applying these derivatives yields the Peng-Robinson equation of state constants 

as defined in equation (75).  a = 0.45724
R2Tc2

Pc  

b = 0.07780
RTc
Pc  

(75) 

These constants are valid for all species by evaluation of the equations for each species 

critical properties.   

By considering the definition of compressibility, Z = PV/RT, the Peng-Robinson 

equation of state can be written in terms of compressibility (equation (76)), where 

expressions are developed for new parameters, A and B, as a function of prior defined 

parameters.  

Z3 − (1 − B)Z2 + (A − 2B − 3B2)Z − (AB − B2 − B3) = 0 

A =
a ∝ P

R2T2  B =
bPRT 

(76) 

This cubic compressibility format is required for evaluating thermophysical properties. 

The first required property is a saturation pressure-temperature relationship as this 

information is needed for the fuel of interest based on the assumptions in the liquid length 

model. Saturation pressure and temperature are determined based on the vapor-liquid 

equilibrium assumption. For this equilibrium state, the fugacity (f) of the liquid state is 

equal to that of the vapor state, which occurs at the vapor, or saturation pressure. The 

generic fugacity relationship is given in equation (77), and will be evaluated for Peng-

Robinson equation of state.  
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 ln � f

P
� = Z − 1 − ln(Z) +

1RT � �RT
V

− P� dV
V

∞  (77) 

Using the equation of state and the definition for fugacity (equation (77)), the 

fugacity relation for both the liquid and vapor phase of the species can be evaluated for 

the Peng-Robinson equation of state as shown in equation (78), where subscripts denote 

the vapor (gas) or liquid phase.  ln �fg
P

� = Zv − 1 − ln(Zv − B) − A

21.5B ln �Zv + (20.5 + 1)B
Zv − (20.5 − 1)B� ln �fl

P
� = Zl − 1 − ln(Zl − B) − A

21.5B ln �Zl + (20.5 + 1)B
Zl − (20.5 − 1)B� 

(78) 

With fugacity relationships defined, the saturation pressure–temperature 

relationship can now be determined using species critical properties and the solution to 

the cubic equation of state. This saturation condition is defined as the pressure such that 

the liquid and gas (vapor) phase fugacity’s are equal, i.e. fl = fg.  

The solution process involves first defining a temperature (saturation temperature) 

less than the critical temperature (as saturation conditions are vapor-liquid equilibrium 

and only occur under subcritical conditions based on the vapor dome), and evaluating the 

equation of state parameters, for a guess value of pressure (equation (76), using equations 

(75) and (73)). The cubic form of the equation of state in compressibility (equation (76)) 

is then solved which will provide three roots, the largest root representing the equilibrium 

vapor phase compressibility, the smallest representing the equilibrium liquid phase 

compressibility and the middle root is discarded as it has no physical meaning. These 

compressibility roots are then used to evaluate the fugacity relationships, solving for the 

liquid and vapor phase fugacity’s, equation (78). The pressure is iterated until the 

fugacity of the vapor and liquid phase are equal. When this condition is achieved, the 

chosen temperature, and corresponding pressure, define the saturation conditions. This 

procedure is undertaken over a range of temperatures to provide the full saturation 

pressure-temperature curve for the substance, up to its critical point. This procedure only 

requires knowledge of critical fuel properties and acentric factors, which are tabulated for 

hydrocarbons and other species. This procedure is undertaken in EES as it is a program 

well-suited for iterative calculations, and includes a solver for determining real cubic 

roots, setting values to 0 if the roots are imaginary (which occurs at temperatures above 

the critical temperature).  

Next, enthalpies must be determined for the ambient charge-gas and fuel, over 

temperature conditions both at saturation (liquid length) and at injection. An equation of 

state approach is used meaning that enthalpy departure relationships are required for 

determination of the enthalpy terms. Enthalpy departure is defined using the Peng 

Robinson equation of state, with the general relationship valid for all equations of state, h 

– h*, provided in equation (79), where the superscript * denotes the ideal gas state 

(Sandler 1999). Enthalpy departure is valid when used with the vapor-phase 

compressibility for providing vapor phase enthalpies.  

 
h(T, P) − h∗(T) = RT(Z − 1) + � �T ∙ �∂P∂T�V − P� dV

V
∞  (79) 
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The integration limit of V represents real-gas conditions and the ∞ corresponds to 

ideal gas conditions. For the Peng-Robinson equation of state, the enthalpy departure is 

defined in equation (80), based on substitution of equation (73), into equation (79). Terms 

of a and b were defined in equation (73) (Sandler 1999).  

 

h(T, P) − h∗(T) = RT(Z − 1) +

T �d(aα)dT � − a
2 ∙ √2b

ln �Z + �1 + √2�B
Z + �1 − √2�B� 

d(aα)dT = −aκ� αTTc B =  
PbRT 

(80) 

To determine enthalpy of the state from the departure function, the ideal gas 

enthalpy must be determined. This is calculated based on the constant pressure specific 

heat capacity of the ideal gas, using the enthalpy definition provided in equation (81).  

 
h∗(T) = � Cp∗ (T) ∙ dTT

Tref  (81) 

To evaluate the ideal gas enthalpy, a relationship for specific heat is required as this 

property is temperature dependent. The relationship used in each enthalpy evaluation will 

be discussed, as different approaches are used for the different species / mixtures 

considered.  

There are four enthalpies required for evaluation of the evaporation coefficient; 

ambient charge gas enthalpy before fuel injection (Ta, Pa), liquid fuel enthalpy at injection 

(Tf, Pa), saturated vapor phase fuel at the liquid length (Ts, Ps), and the saturated charge 

gas enthalpy at the liquid length (Ts, Pa - Ps) (refer to equation (72)).  

The first required enthalpy is that of the ambient charge-gas, before fuel has been 

injected. The ambient charge-gas is that of the 0% oxygen environment, with only major 

species of nitrogen, carbon dioxide, and water being considered. Although not in the 

current ambient mixture, oxygen properties are also provided for application to other 

gaseous mixtures. The enthalpy departure is evaluated using equation (80), where 

temperature and pressure are that of the ambient charge-gas. To evaluate the enthalpy 

departure the compressibility of the vapor phase must be determined. This requires 

solving the cubic equation of state for the compressibility, equation (76), using the known 

pressure and temperature conditions of the ambient charge gas. To evaluate the cubic 

equation of state, the critical temperature and pressure of the ambient charge-gas mixture 

need to be determined. Critical constants of mixtures are not tabulated (they are only 

available for the individual species), therefore, pseudo-critical properties must be applied 

for determination of the ambient charge-gas enthalpy. For temperature, a simple mole 

fraction average of the pure component critical temperatures is used, known as Kay’s rule 

provided in equation (82) (Reid et al. 1987).  

 Tc,mix = � Yi ∙ Tc,ii  (82) 

The same approach is used for determination of the acentric factor for the 

mixture, equation (83).  
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 ωmix = � Yi ∙ ωii  (83) 

For pseudo-critical pressure an alternative approach is required since the mole 

fraction average methodology only provides accurate results for instances where the 

critical pressure is similar amongst all components, which is not the case for the species 

of interest here as they span nearly an order of magnitude (water is 221.2 bar, carbon 

dioxide is 73.8 bar, nitrogen is 33.9 bar, and oxygen is 50.4 bar) (Reid et al. 1987). 

Therefore, the rule applied for determining mixture critical pressure is the modified 

Prausnitz and Gunn rule, provided in equation (84) (Reid et al. 1987).  

 

Pc,mix =
R ∙ Tc,mix ∙ ∑ Yi ∙ Zc,ii∑ Yi ∙ Vc,ii  (84) 

To determine the pseudo-critical pressure, properties of critical compressibility and 

critical volume are required for each species. These properties are tabulated and readily 

available in the literature (Reid et al. 1987), provided in Table 7.5.  

Table 7.5 

Critical properties of the species composing the ambient charge gas (Reid et al. 

1987).  

 

Critical 

Pressure 

(bar) 

Critical 

Temperature 

(K) 

Critical 

Volume 

(cm
3
/mol) 

Critical 

Compressibility 

Acentric 

Factor 

Water 647.3 221.2 57.1 0.235 0.344 

Carbon 

Dioxide 
304.1 72.8 93.9 0.274 0.239 

Nitrogen 126.2 33.9 89.8 0.290 0.039 

Oxygen 50.4 154.6 73.4 0.288 0.025 

The solution to the cubic equation of state provides the vapor compressibility 

(largest root), which is then used to evaluate the enthalpy departure for this ambient 

temperature and pressure condition.  

As mixture property calculations are now understood, focus returns to the 

evaluation of equation (80) for each of the conditions of interest. To determine the 

charge-gas vapor phase enthalpy from the enthalpy departure, the ideal gas enthalpy must 

be calculated. For this evaluation, the ideal gas specific heat capacity must be determined, 

as a function of temperature, which enables determination of ideal gas enthalpy based on 

integration. This ideal gas specific heat capacity is calculated using NASA polynomials, 

providing ideal gas properties (McBride et al. 1993) extracted from the GRI 3.0 

mechanism (Smith 1999). The polynomial relationship is provided in equation (85), 

where ai are species specific constants, with two sets of constants being provided, based 

on the ambient temperature range, with the midpoint for both being at 1000 K.  

 Cp∗ (T) = R ∙ (a1 + a2T + a3T2 + a4T3 + a5T4) (85) 

 For the ambient enthalpy, the species of interest are those in the zero percent 

oxygen mixture, post preburn, which include water, nitrogen, and carbon dioxide, with 

the required species specific constants for evaluation of the above equation provided in 

Appendix 12.7.1.6. Although not used in the current mixture, constants for oxygen are 

also included for reference. Equation (85) provides the specific heat capacity for 
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individual species, which, based on the definition of enthalpy and the assumption of ideal 

gas, when integrated from the reference temperature to the temperature of interest, 

provides the ideal gas enthalpy, equation (86).  

 
h∗(T) = � Cp∗ (T) ∙ dTT

Tref =  R ∙ �a1T + a2 T2
2

+ a3 T3
3

+ a4 T4
4

+ a5 T5
5

��Tref
T

 (86) 

The reference temperature is defined as 298.15 K (25°C). Since there are two sets 

of ai constants when evaluating this integral, care has to be taken for ambient 

temperatures above 1000 K (the maximum valid temperature of the lower temperature 

range), as there will be a transition in the constants used. Therefore, for temperatures 

greater than 1000 K, the following integral is used.  

 
h∗(T > 1000 K) = � Cpu∗ (T) ∙ dT1000 K

Tref + � Cpl∗ (T) ∙ dTT
1000 K

=  R ∙ �a1lT + a2l T2
2

+ a3l T3
3

+ a4l T4
4

+ a5l T5
5

��Tref
1000 K

+  R

∙ �a1uT + a2u T2
2

+ a3u T3
3

+ a4u T4
4

+ a5u T5
5

��1000 K
T

 

(87) 

Where the subscript l represents the lower temperature range constants, and u represents 

the upper temperature range constants. Equation (87) with species specific polynomials, 

enables calculation of the ideal gas heat capacity at the temperature of interest. As the 

ambient charge gas is a mixture of three species, nitrogen, carbon dioxide, and water, the 

enthalpy of the ideal gas mixture must be computed. This is accomplished by calculating 

the individual species enthalpies in conjunction with a mole fraction weighting, equation 

(88) (Kaminski and Jensen 2005). 

 
hi,mix∗ (T) = � Yi ∙ hi∗(T)i  (88) 

The final ambient charge gas enthalpy at ambient temperature and pressure are 

calculated as defined in equation (89), where the B term is evaluated at the ambient 

temperature and pressure and the i species are carbon dioxide, water, and nitrogen.   

ha(Ta, Pa) = RTa(Zv − 1) +

Ta �dadT��Ta − a
2 ∙ √2b

ln �Zv + �1 + √2�B
Zv + �1 − √2�B�

+ � �YiRi∙ �a1lT + a2l T2
2

+ a3l T3
3

+ a4l T4
4

+ a5l T5
5

��Tref
1000 K

+ YiR
∙ �a1uT + a2u T2

2
+ a3u T3

3
+ a4u T4

4
+ a5u T5

5
��1000 K

T � 

(89) 

To evaluate the second enthalpy, that of the liquid fuel, a modified approach is 

undertaken using equation (90), as the enthalpy departure relationship in equation (80) 

was derived for the vapor phase, (i.e. the vapor phase compressibility must be used and 

the result will be the vapor, not liquid enthalpy as required here as the fuel is not 

vaporized at injection) (Reid et al. 1987). Therefore, a modified expression for liquid 
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phase enthalpy departure is provided, by splitting the process into three terms, accounting 

for the transition from liquid to vapor.  

 hfl − hf∗ = �hfl − hfsl� + (hfsl − hfsv) + (hfsv − hf∗) (90) 

Where the term, hfl, is the parameter of interest (liquid enthalpy at fuel temperature and 

charge-gas (ambient) pressure), and the sl superscript denotes saturated fuel liquid (Tf 

and Pfs), and the sv superscript denotes saturated fuel vapor (Tf and Pfs). Considering the 

three terms on the right-hand side of the equation, the first term is the effect of pressure 

on the liquid enthalpy, the second term is negative the heat of vaporization, and the third 

is the general enthalpy-departure relation for the saturated vapor phase, as previously 

discussed. The effect of pressure on liquid enthalpy is small relative to the second and 

third terms and is therefore neglected, attributed to the nearly incompressible nature of 

the liquid fuel relative to vapor conditions (Reid et al. 1987). Future work should involve 

further investigation into these pressure effects. To determine the heat or enthalpy of 

vaporization, the enthalpy difference of the saturated liquid and vapor at a constant 

temperature, various methods can be used based on critical properties to account for the 

lack of availability of tabulated data. These include the use of a vapor pressure-

temperature correlation, using methodologies based on the law of corresponding states, or 

based on correlations using the normal boiling point (Reid et al. 1987). Based on ease of 

application and accuracy, the Pitzer method is used, which is based on the law of 

corresponding states, requiring knowledge of temperature, reduced temperature, and 

acentric factor, as defined in equation (91) (Reid et al. 1987).  

 ∆hv = RTc ∙ (7.08 ∙ �1 − Tr,1�0.354
+ 10.95ω ∙ �1 − Tr,1�0.456) (91) 

This correlation is valid for reduced temperatures between 0.6 to 1.0. Based on the 

conditions of the current study the reduced temperature will typically be less than 0.6, 

and therefore a modified approach is required to determine the enthalpy of vaporization, 

the Watson method, which in essence captures the variation of the latent heat of 

vaporization with temperature, as defined in equation (92) (Reid et al. 1987).  

 ∆hv,actual = ∆hv(𝑇𝑟,𝑜) ∙ �1 − Tr,actual
1 − Tr,o �0.38

 (92) 

For consistency in the current study, the reduced temperature for the initial temperature 

considered is defined as 0.8, the midpoint of the Pitzer correlation validity range. 

Therefore, using the Pitzer & Watson combined method the enthalpy of vaporization can 

be determined, defined as ‘actual’, required in evaluation of the liquid phase enthalpy. 

The enthalpy departure of the saturated vapor fuel is evaluated, at the fuel temperature. 

This requires determination of the saturation pressure corresponding to the fuel 

temperature, evaluated based on the aforementioned fugacity assumption for vapor-liquid 

equilibrium. With known saturation pressure, the enthalpy departure is evaluated at Tf 

and Pf,s, which also requires solving the Peng-Robinson equation of state for the vapor 

phase compressibility at this temperature – pressure state. With enthalpy departure known 

for the saturated vapor phase, along with the enthalpy of vaporization known, the liquid 

fuel enthalpy, minus the ideal gas fuel enthalpy at the fuel temperature is known. To 

determine the liquid fuel enthalpy, the ideal gas enthalpy of the fuel at the fuel 

temperature must be determined. This is determined by integrating the temperature-

dependent ideal gas constant pressure specific heat capacity of the fuel from the reference 
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temperature to the fuel temperature. The ideal gas constant pressure specific heat capacity 

of the fuel is defined based on a polynomial relationship with tabulated constants, as 

provided in equation (93).  

 Cp,fuel∗ (T) = A𝐶𝑝𝑓 + B𝐶𝑝𝑓 ∙ T + C𝐶𝑝𝑓 ∙ T2 + D𝐶𝑝𝑓 ∙ T3 (93) 

Constants ACpf, BCpf, CCpf, and DCpf, are -1.302E1, 1.539, -8.537E-4, and 1.85E-7 for 

hexadecane, respectively (Reid et al. 1987). The constant pressure specific heat capacity 

is integrated for temperature, and evaluated from the reference temperature to the fuel 

temperature to provide the fuel ideal gas enthalpy, as defined in equation (94), which 

enables calculation of the liquid fuel enthalpy.  

 
hf∗(T) = � Cp,fuel∗ (T) ∙ dTTf

Tref =  R ∙ �ACpfT + BCpf T2
2

+ CCpf T3
3

+ DCpf T4
4

��Tref
Tf

 (94) 

The final liquid fuel enthalpy relationship is provided in equation (95) for evaluation at 

the fuel temperature and ambient pressure. Ambient pressure is not used in the 

calculation based on the neglecting of the term considering the effect of pressure on 

liquid enthalpy. The B term in the enthalpy departure portion of the relationship is a 

function of the fuel temperature and ambient pressure.  

hf(Tf, Pa) = −RTc ∙ (7.08 ∙ �1 − Tr,1�0.354
+ 10.95ω ∙ �1 − Tr,1�0.456) ∙ �1 − Tr,actual

1 − Tr,1 �0.38

+ RTf�Zf,v − 1� +
Tf �dadT��Tf − a

2 ∙ √2b
ln �Zf,v + �1 + √2�B

Zf,v + �1 − √2�B� + R

∙ �ACpfT + BCpf T2
2

+ CCpf T3
3

+ DCpf T4
4

��Tref
Tf

 

(95) 

The next required enthalpy is that of the saturated vapor phase fuel at the liquid 

length, and the temperature and pressure are those at saturation. As the fuel is in the 

vapor phase the standard enthalpy departure relationship provided in equation (80) is 

applied, using the vapor phase compressibility evaluated with the Peng-Robinson 

equation of state at the saturation pressure and temperature. At saturation, although 

mixed, the vapor enthalpy of the fuel and charge enthalpy are not treated as a mixture, 

rather, they are treated as two independent states, which is a limitation of the Siebers 

liquid length model (Siebers 1999; Luijten and Kurvers 2010). The ideal gas constant 

pressure specific heat capacity is integrated from the reference temperature to the 

saturation temperature, which defines the ideal gas enthalpy, and enables calculation of 

the enthalpy of the saturated fuel as defined in equation (96). The B term in the enthalpy 

departure portion of the relationship is a function of the saturation temperature at the 

liquid length. 

hf(Ts) = RTs�Zf,v − 1� +
Ts �dadT��Ts − a

2 ∙ √2b
ln �Zf,v + �1 + √2�B

Zf,v + �1 − √2�B� + R

∙ �ACpfT + BCpf T2
2

+ CCpf T3
3

+ DCpf T4
4

��Tref
Ts

 

(96) 

The final enthalpy required is that of the ambient charge gas at the saturation 

conditions of Ts for saturation temperature, and the partial pressure of the charge gas in 

the total ambient mixture, Pa – Ps, the difference between the ambient pressure and partial 

pressure of the fuel vapor. This ambient enthalpy term is also calculated using the 
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standard enthalpy departure relationship provided in equation (80), with the Peng-

Robinson equation of state being evaluated for the vapor phase compressibility at the fuel 

saturation temperature and charge-gas partial pressure. The ideal gas enthalpy is 

determined by integrating the ideal gas constant pressure specific heat capacity from the 

reference temperature to the saturation temperature, using the procedure detailed in 

equations (86) and (88). The splitting of the heat capacity integral is not required for the 

ambient enthalpy at the saturation pressure as by definition, the saturation pressure must 

be less than the critical temperature of the species, which is less than 1000 K for all fuels 

considered. The final relationship for the ambient charge-gas enthalpy at the saturation 

conditions (corresponding to the liquid length) is provided in equation (97). The B term is 

evaluated at the saturation temperature, and partial pressure of the charge-gas at the liquid 

length (saturation conditions), Ts and Pa-Ps.  

 

ha(Ts, Pa − Ps) = RTs(Zv − 1) +

Ts �dadT��Ts − a
2 ∙ √2b

ln �Zv + �1 + √2�B
Zv + �1 − √2�B�

+ � Yi ∙ R �a1iT + a2i T2
2

+ a3i T3
3

+ a4i T4
4

+ a5i T5
5

��Tref
Ts

i  

(97) 

The four enthalpy relationships define the right-hand side of the evaporation 

coefficient (equation (72)). In order to evaluate the left-hand side of the evaporation 

coefficient, additional information is needed. This includes the molecular weight of the 

fuel, calculated from the chemical composition, and the molecular weight of the ambient 

charge gas. This is determined based on a mole fraction weighted average of the 

individual species molecular weights, as defined in equation (98). 

 
MWmix = � Yi ∙ MWii  (98) 

Additional required properties are the compressibility of the ambient and the fuel 

at the saturation conditions, including temperature and respective partial pressures. These 

compressibility’s are determined by solving the Peng-Robinson equation of state at the 

saturation partial pressure and temperature, for the fuel and ambient charge-gas 

respectively. The chosen root is that of the vapor phase as at the liquid length, which 

corresponds to saturation, the existing state is that of the vapor phase. 

With all required values defined, the evaporation coefficient is determined based 

on iteration of the saturation temperature, until the left-hand side and right-hand side are 

equal. This requires re-evaluating the majority of the terms in the evaporation coefficient 

equation based on their dependence on the saturation temperature or pressure. When the 

saturation temperature, and therefore the evaporation coefficient is known, the liquid 

length is calculated. Required parameters in this evaluation include area contraction 

coefficient and orifice diameter (injector properties), along with the constants of a and b, 

and the defined ambient charge-gas density (core gas conditions), refer to equation (67). 

The two remaining parameters are the fuel density, and the spray angle. The spray angle 

is calculated based on equation (70), and therefore requires knowledge of the ambient 

charge-gas density (known based on experimental conditions), and the fuel density. The 

fuel density is evaluated at the fuel temperature, with a modified Rackett approach being 
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undertaken (Reid et al. 1987). This requires definition of the Rackett parameter, ZRa, 

which can be defined by equation (99), requiring knowledge of the acentric factor.  

 ZRa = 0.29056 − 0.08775 ∙ ω (99) 

This methodology, however, introduces significant error in the calculated value of 

the liquid density, as the calculated Rackett parameter using equation (99) is significantly 

different than the tabulated value. For example, the Rackett Parameter determined for 

cetane with an acentric factor of 0.742 is 0.225, however, the tabulated value is 0.239 

(Reid et al. 1987). If the Rackett parameter is available in tabulated literature (Reid et al. 

1987), this value is used, if not, equation (99) is used acknowledging that error will be 

introduced. Liquid density is then calculated via equation (100), using tabulated values of 

the Rackett parameter.  

 1ρf,s = vFuel,S =
RTc
Pc ∙ ZRa(1+(1−Trf)^(27)

 (100) 

For a reduced fuel temperature of 0.5, the saturated liquid density is 719.7 kg/m
3
 

using the tabulated Rackett value, being 799.1 kg/m
3
 using equation (99). The significant 

difference between determined density values based on the difference in Rackett 

parameter has led to the choice of using tabulated values for Rackett parameters, which 

are available in Reid et al. (1987).  

Applying the equation of state approach using the developed EES program for the 

baseline condition (1190 K ambient core charge-gas temperature, 32.8 kg/m
3
 core 

charge-gas density, and 363 K fuel temperature) results in a liquid length of 10.9 mm 

when using Cetane as the fuel. This is a small increase from the experimentally 

determined value of 10.8 mm. The complete program is provided in Appendix 0. Results 

for the equation of state methodology for predicting liquid length using cetane as the fuel 

are provided in Table 7.6 for all of the experimental test conditions.   

Table 7.6 

 Liquid length as determined from evaluation of Siebers (1999) model using cetane 

as a surrogate for diesel fuel, equation of state approach. 

Test 

# 

Bulk Gas 

Density 

(kg/m
3
) 

Core Gas 

Density 

(kg/m
3
) 

Bulk 

Gas 

Temp. 

(K) 

Core 

Gas 

Temp. 

(K) 

Inj 

Press 

(Bar) 

Fuel 

Temp. 

(K) 

Sat. 

Temp. 

(K) 

Model LL 

(mm) for 

Cetane 

Exp. 

LL 

(mm) 

1 17.3 16.3 1110 1170 2010 363 627.1 16.5 16.1 

2 34.6 32.1 1100 1190 1022 363 658.1 10.9 10.8 

3 34.6 32.5 950 1015 1378 363 635.9 13.8 13.7 

4 34.7 32.1 1100 1190 1376 363 658.1 10.9 10.7 

5 34.8 32.0 1200 1300 1373 363 669.5 9.7 9.0 

6 34.5 32.9 810 850 1990 363 608.7 19.0 17.8 

7 34.8 32.7 950 1010 2020 363 635.5 13.8 13.5 

8 34.7 32.2 1100 1190 1990 363 658.2 10.9 10.9 

9 34.8 32.0 1200 1300 2010 363 669.5 9.7 9.5 

10 34.6 31.7 1300 1430 2000 363 680.5 8.7 8.4 

11 34.7 32.2 1100 1190 1068 355 659.0 10.7 12.7 

12 34.5 32.2 1110 1190 1369 355 659.0 10.7 12.4 

13 34.5 32.0 1110 1190 1988 355 658.7 10.8 12.4 

The predicted liquid length closely matches the experimental liquid length values, over 

all test conditions. The largest deviation occurs at the reduced fuel temperature, as was 
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the case with the Schihl et al. (2006) methodology. Additional properties from the liquid 

length modeling with the equation of state approach are provided in Table 7.7.  

Table 7.7 

Additional properties determined from evaluation of Siebers (1999) model using 

cetane as a surrogate for diesel fuel, equation of state approach. 

Test 

# 

Saturation 

Pressure 

(kPa) 

Za at 

Liquid 

Length 

Zf,v at 

Liquid 

Length 

Change in Ambient 

Enthalpy 

(Numerator of RHS 

equation (72)) 

(kJ/kg) 

Change in 

Ambient Enthalpy 

(Denominator of 

RHS equation 

(72)) (kJ/kg) 

B 

(Evaporation 

Coefficient) 

1 365 1.01 0.81 648 928 0.698 

2 593 1.03 0.72 643 1009 0.637 

3 421 1.03 0.79 451 951 0.474 

4 593 1.03 0.72 643 1009 0.637 

5 701 1.03 0.68 766 1038 0.738 

6 266 1.02 0.85 283 879 0.322 

7 418 1.03 0.79 445 950 0.468 

8 594 1.03 0.72 643 1009 0.637 

9 701 1.03 0.68 766 1038 0.738 

10 819 1.04 0.64 907 1066 0.851 

11 601 1.03 0.72 642 1011 0.635 

12 601 1.03 0.72 642 1011 0.635 

13 599 1.03 0.72 642 1011 0.635 

Several key conclusions can be made: 

• Ambient compressibility at the liquid length is at most 1.04 and therefore the earlier 

assumption in section 7.3 that compressibility is 1 in the tabulated property 

methodology is valid.  

• B, the evaporation coefficient, increases with an increase in core gas temperature. 

This provides an indication of evaporation requirements. As core-gas temperature 

increases, it is easier (higher B) to evaporate the fuel, thereby resulting in a shorter 

liquid length. Injection pressure does not impact the evaporation coefficient. 

Evaporation coefficient is also slightly higher (0.002) for the evaluated fuel 

temperature, again showing that it is easier to evaporate the fuel at a higher initial 

temperature, less energy (entrained gas) is required to raise the temperature to 

saturation.  

• Fuel properties at saturation are clearly non-ideal as evidenced by the deviation in 

vapor fuel compressibility from 1. The deviation is largest at the highest ambient 

temperature conditions for a constant charge gas density, or at the highest charge gas 

density for a constant charge gas temperature.  

7.5. Methodology Comparison – 
Tabulated Properties versus Equation of 
State Approach 

Two methodologies have been detailed for determining the required property data 

for applying the Siebers (1999) liquid length model, that based on tabulated property 

values (section 7.3), and that based on an equation of state approach using critical 
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properties (section 7.4). Results from both approaches are similar, relative to the 

experimental results, with that of the tabulated property data yielding liquid lengths less 

than experimental, and that from the equation of state being close, and slightly larger than 

experimental data, with the exception of the reduced fuel temperature cases. This 

comparison is shown in Figure 7.5, with test numbers as referenced on the x-axis being 

defined in the earlier results tables (Table 7.4 and Table 7.6).  

 
Figure 7.5: LL model method comparison, with comparison to experimental results. 

Conditions corresponding to the test numbers are defined in Table 7.4 and Table 

7.6. 

For tests 1 through 10, at the elevated fuel temperature, the liquid length predicted from 

the model using the Peng-Robinson equation of state method for thermophysical property 

evaluation typically exceeds the experimental results, or closely matches them. For the 

reduced fuel temperature tests, tests 11 through 13, the equation of state methodology 

predicts liquid lengths less than experimental results, however, the deviations are smaller 

relative to that of the property modeling methodology, which consistently underpredicts 

liquid length. The equation of state approach is advantageous as it does not require 

temperature dependent property data to be readily available including for example 

enthalpies and saturation properties, and will be used throughout the remainder of the 

chapter.  

Differences between the two cases include an assumption of the ambient 

compressibility as 1 in the thermodynamic tabulated property modeling, with small 

deviations from this assumption seen in the equation of state approach, with the 

compressibility approaching 1.05. These differences however are small and will not 

influence the results. Additionally, the tabulated property modeling has a liquid fuel 

enthalpy which is a function of ambient pressure, which was not the case in the equation 

of state approach based on the neglecting of the pressure-dependent liquid enthalpy based 

on its small magnitude relative to other terms. These two differences are likely the main 

cause of the deviations between the results from the two methodologies.  
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7.6. Comparison of Model Results to 
Additional Experimental Data – Single 

Component Fuel 
Data is provided by Sandia National Laboratory on the Engine Combustion 

Network (ECN) site (Sandia ECN 2011) with cetane, a single-component fuel. This data 

is used to provide a direct comparison to the model results based on an equation of state 

approach, using cetane as the fuel. Injection pressure was constant at 140 MPa, for a 

0.246 nozzle diameter with 0.82 area contraction coefficient (Siebers 1999), and fuel 

temperature of 436 K. Core gas density and temperature were varied, with results shown 

in Figure 7.6 for both experimental and model results.  

 
Figure 7.6: Liquid length versus core gas density with Cetane as the fuel, comparing 

Sandia experimental data to liquid length predictions using the Siebers model with 

an equation of state approach. Core gas temperatures are defined in the legend.  

The model results agree with experimental results, with larger deviations occurring at 

lower density conditions, which is expected as the fuel will experience less charge-gas 

entrainment (reduced aerodynamic resistance) enabling it to be the more dominant 

medium, and therefore the mixing-limited assumption loses validity under these 

conditions, refer to discussion in section 7.2. The percent difference between 

experimental and model results approaches 25% at the low density conditions. As 

temperature increases, for 1000 K and above, the percent difference is 7% or less 

between experimental and model results. Overall the model and experimental results 

agree well for this single-component fuel comparison case, validating the developed 
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equation of state approach used for thermophysical property evaluation for 1-D liquid 

length model application. 

7.7. Single- and Multi-Component 
Surrogates 

This equation of state based thermophysical property method coupled with the 1-

D liquid length model is applied to various single and multi-component surrogate fuels 

for an understanding of the best conditions to match diesel spray characteristics, and also 

to validate model applicability.  

7.7.1. Single Component Surrogate 

Application 
The model is readily applied to single component surrogates for which critical 

temperature and pressure, acentric factor, Rackett parameter, and polynomial constants 

for ideal gas constant pressure specific heat capacity are known. Results are provided for 

some single-component surrogate fuels in Figure 7.7. Conditions chosen are to match the 

test condition with a core-gas charge temperature sweep (800 to 1300 K bulk gas 

conditions), 2000 bar injection pressure, 34.8 kg/m
3
 bulk gas density, and 363 K fuel 

temperature with a 0.145 mm orifice diameter and assumed area contraction coefficient 

of 0.8.  

 
Figure 7.7: Liquid length model results, using the equation of state approach, for 

various diesel single-component surrogates compared to experimental results. Bulk 

gas-density of 34.8 kg/m
3
, 2000 bar injection pressure, 363 K fuel temperature.  

As shown in Figure 7.7 the liquid length trends are similar for all of the fuels 

investigated, with the different magnitude of liquid length being attributed to the different 

fuel characteristics in regards to saturation and vaporization characteristics. At the 850 K 

core gas temperature, there are larger deviations, 7% difference, between the 

experimental data and those determined for heptadecane and cetane. This could be the 

result of experimental accuracy or attributed to modeling validity which reduces as 

temperature is decreased.  
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 Results can be further understood by comparison of the single component 

surrogate fuel properties relative to diesel, as provided in Table 7.8. 

Table 7.8 

Single-component surrogate fuel properties of boiling point (Schihl et al. 2006) and 

latent heat of vaporization from EES model evaluation.  

Single-Component Surrogate Fuel Boiling Point (K) 
Latent Heat of Vaporization  at 

289 K (kJ/kg) 

Dodecane 489 334 

Tetradecane 526 308 

Cetane 560 318 

Heptadecane 575 307 

As the fuel boiling point increases, the liquid length increases, until closely matching 

diesel fuel for cetane and heptadecane, due to their similarity to the 90% distillation point 

of diesel fuel, 580 K (Schihl et al. 2006). Dodecane matches the 5% distillation point of 

diesel fuel, with tetradecane matching the 50% distillation point of diesel (Schihl et al. 

2006). This signifies that choosing a single-component fuel with a boiling point similar to 

the 90% distillation point provides a better match for diesel spray evaporation 

characteristics, and that heptadecane and cetane are optimum single-component diesel 

fuel surrogates. Furthermore, considering the latent heats of vaporization, that of diesel at 

289 K is 233 kJ/kg (AFDC 2010a), which is substantially less than values calculated for 

all of the fuels listed in the table above. However, that of tetradecane, cetane, and 

heptadecane exhibit latent heats of vaporization which are closest to diesel, over the four 

single-component surrogates considered. Therefore although heptadecane and cetane may 

provide a good representation of diesel spray liquid length due to a similarity of boiling 

point to 90% distillation, the differences in latent heat of vaporization are significant, and 

merit investigation into multi-component surrogates to match both parameters.   

7.7.2. Multi-Component Surrogate Application 
To evaluate the liquid length of multi-component surrogate fuels, properties of the 

fuel mixture must be known. This can be undertaken using a few methods, as discussed 

in Chapter 2.7, based on either equation of state evaluation for mixture properties, or 

using a mean evaporation coefficient. The second methodology is used here. This 

requires solving for the evaporation coefficient of each single component fuel, and 

subsequently using a mass fraction weighted average to determine the mixture 

evaporation coefficient for the liquid length determination (Schihl et al. 2006), as defined 

in equation (101).  

 Bmix = � xiBin
i=1  

Tb,mix = � xiTbin
i=1  

1 = � xin
i=1  

(101) 
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Also included in the above equation is an estimation for the boiling point of the multi-

component fuel mixture, based on a mass-fraction weighting of individual species boiling 

points.  

Along with this mixture evaporation coefficient, the fuel density for the mixed 

surrogate fuel, in the liquid phase, must also be determined for evaluation of the liquid 

length model in equation (24). The previously discussed modified Rackett approach is 

still used, however, it is modified to enable application for a mixture, based on each fuel 

components critical properties and Rackett parameters, as defined in equations (102) and 

(103), for mixture Rackett parameter and mixture density, respectively.  

 
ZRa,mix = � Xi ∙ Zra,ii  (102) 

 

 1ρf,s,mix = vFuel,s,mix = R ∙ � XiTci
Pcii ∙ Zra,mix(1+(1−Trf)^(27)

 (103) 

With the determined evaporation coefficient for each of the species and mixture fuel 

density in the surrogate fuel mixture, the liquid length of the mixture can be modeled as 

all other required properties are known. This approach is first demonstrated for a mixture 

of n-decane and methylnaphthalene, a proposed diesel surrogate (Farrell et al. 2007).  

7.7.2.1. Diesel Surrogate: Mixture of n-Decane and 
Methylnapthalene 

A proposed diesel surrogate is a binary mixture which is 70% n-decane by 

volume and 30% methylnaphthalene by volume (Farrell et al. 2007). Tabulated properties 

for ideal gas constant pressure specific heat capacity constants, critical temperature and 

pressure, acentric factor and Rackett parameter are provided in Appendix 12.7.1.5. The 

Rackett parameter is not available for methylnaphthalene, and therefore is estimated 

using equation (99), acknowledging that error will be introduced in the determined 

density for this species. Mixture boiling point is calculated as 468 K using equation 

(101), with the boiling point of n-decane being 447 K and methylnaphthalene being 518 

K (Reid et al. 1987).  

The results using this multi-component proposed diesel surrogate, compared to 

the diesel fuel experimental results are provided in Figure 7.8. Conditions are a charge-

gas temperature sweep for 34.8 kg/m
3
 bulk gas density, 2000 bar injection pressure, and 

363 K fuel temperature. 
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Figure 7.8: Liquid length results for model application using a multi-component 

surrogate proposed by Farrell et al. 2007 (mixture of n-decane and 

methylnaphthalene). Conditions are a charge-gas temperature sweep for 34.8 kg/m
3
 

bulk gas density, 2000 bar injection pressure, and 363 K fuel temperature. 

The proposed surrogate was developed to match diesel boiling range, hydrogen to carbon 

ratio, and other combustion properties, but based on the above results, it clearly does not 

match vaporization characteristics. This is actually expected as this surrogate is known to 

underpredict liquid penetration, and therefore this surrogate is not ideal based on 

inconsistencies in liquid penetration, which translate to emission issues when using this 

in combustion models (Farrell et al. 2007). The surrogate fuel boiling point of 468 K is at 

the very low end of the diesel distillation curve (Schihl et al. 2006) which explains some 

of the difficult in matching vaporization characteristics. Despite these issues, the multi-

component surrogate methodology does yield results agreeing with trends in regards to 

reductions in liquid penetration with this surrogate, relative to diesel. 

7.7.2.2. Diesel Surrogate: Mixture of n-Tetradecane, 

n-Decane, Heptamethylnonane and 1-
Methylnapthalene 

Additional surrogates were modeled using the equation of state approach, using 

surrogates suggested by Liang et al. (2010). These are defined as surrogate 1, 2, and 3, 

with 1 and 2 being multi-component, and surrogate 3 being single component n-

tetradecane. These surrogates have been developed to match the properties of real diesel 

fuel, including cetane number, carbon to hydrogen ratio by weight, lower heating value, 

and 50% distillation point, which is achieved by surrogate 1 (Liang et al. 2010). 

Surrogate 2 is further modified to better match second stage combustion heat release in 

model simulations (Liang et al. 2010). Surrogate properties are defined in Table 7.9.  



 

243 

Table 7.9 

Multi-component surrogate fuels as proposed by Liang et al. 2010. Boiling point 

data from Reid et al. 1987.  

 Surrogate 1 Surrogate 2 Surrogate 3 Diesel 
Boiling Point 

(K) 

n-Tetradecane 0.27 0.51 100.00  527 

n-decane 0.22 0.34 0.00  447 

Heptamethylnonane 0.30 0.00 0.00  520 

1-Methylnaphthalene 0.21 0.16 0.00  518 

Cetane Number 46.2 72.0 95.0 46.0  

H/C Ratio (Weight) 6.6 6.4 5.6 6.5  

Lower Heating Value (MJ/kg) 43.2 43.5 45.3 43.0  

50% Distillation Temperature 

(K) 
513 509 526 517  

The mean evaporation coefficient method is applied for determination of the liquid length 

for these surrogate mixtures. Data is compared to that from Sandia (Sandia ECN 2011) 

for diesel fuel at a fuel temperature of 436 K, injector diameter of 0.246 mm (0.82 area 

contraction coefficient), injection pressure of 130 MPa. Charge-gas core temperature was 

constant at 700 K, core gas density was varied from 3.6 to 58.5 kg/m
3
 density. At the 

lower density / temperature combination, the model will begin to have reduced accuracy 

due to constraints on the mixing limited vaporization assumption. Results are provided in 

Figure 7.9.  

 
Figure 7.9: Liquid length versus core charge-gas density for Sandia experimental 

data and three proposed diesel fuel surrogates (Liang et al. 2010).  

Several key observations can be made from the above figure: 

• At the lowest density case (3.6 kg/m
3
), the predicted liquid length deviates from the 

experimental trend. This experimental trend is preserved with the model until this 

density condition. This is caused by the validity limit of the mixing limited 

vaporization hypothesis, which the liquid length model is based upon.  

• The model surrogate 3, the single component tetradecane fuel, provides liquid 

lengths which are closest to the experimental data, however, percent difference is 

still in excess of an average 26%. Although the boiling point of tetradecane closely 

matches that of the diesel fuel 50% distillation point (within 10 K), the difference in 

predicted liquid lengths are significant. This concludes that for single component 
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fuels, matching the 90% distillation point with the distillation point provides 

improved matching of diesel spray vaporization characteristics, as discussed in 

section 7.7.1.   

• As the 50% distillation temperature is reduced of the surrogate fuel relative to that 

of diesel, the deviation from the diesel experimental data is increased.  

7.8. Multi-component Diesel Surrogate 
for Vaporization 

Based on model results relative to diesel fuel for both single component (section 

7.7.1) and multi-component (7.7.2), key conclusions can be made: 

• Single component surrogates with boiling points near that of the 90% distillation 

point of diesel fuel, including n-heptadecane or cetane, provide a good match to 

diesel vaporization characteristics. Surrogates with boiling points near the 50% 

distillation point (tetradecane) yield a significant under prediction of diesel spray 

liquid length. 

• Multicomponent surrogates with boiling points near the 50% distillation point of 

diesel fuel, surrogate 1 and 2 presented in section 7.7.2.2, significantly underpredict 

the diesel spray liquid length. Furthermore, the multicomponent surrogate with the 

boiling point near the start of the diesel distillation curve, presented in section 

7.7.2.1, also underpredicts liquid length.  

It is hypothesized that matching the 90% distillation point to a multi-component surrogate 

fuel boiling point will provide a good representation of diesel spray liquid length and 

vaporization characteristics, under these conditions. If this is the case, it would also 

signify that vaporization is not preferential or controlled by different species components, 

rather, it is a batch process of mixture properties as a whole. 

 A surrogate is proposed as a mixture of cetane, heptadecane, and octadecane, 

whose boiling points are all near that of diesel fuel, 560 K, 575 K, and 590 K, 

respectively (Reid et al. 1987). In no way is this surrogate claimed to be optimal or match 

all diesel spray characteristics, focus currently is on a fuel mixture with a boiling point 

matching the 90% distillation point of diesel. The chosen carbon range of species (C16 to 

C18) is within the range representative of diesel (AFDC 2010a). The composition is 

defined by solution of equation (101), with known individual mixture boiling points and i 

being the three species. For closure, it is assumed that the fuel is 50% by mass n-

heptadecane, as heptadecane has the closest boiling point to the 90% distillation point of 

diesel fuel. This results in a surrogate with a mixture of 8.3% cetane, 50% heptadecane, 

and 41.7% of octadecane, by mass. This multicomponent surrogate is applied to match 

diesel spray conditions from the Michigan Technological University experimental tests 

under 0% oxygen conditions at 34.8 kg/m
3
 bulk charge-gas density, 2000 bar injection 

pressure, and 363 K fuel temperature, as shown in Figure 7.10.  
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Figure 7.10: Liquid length versus core charge-gas temperature for model surrogate 

to match boiling point to 90% distillation of diesel. 34.8 kg/m
3
 bulk charge-gas 

density, 2000 bar injection pressure, and 363 K fuel temperature. 

Matching the boiling point of the multicomponent surrogate to the 90% distillation point 

of diesel fuel provides a significantly improved match to experimental liquid length. As 

shown in the figure, the single-component surrogates of cetane and heptadecane still 

yield an improved match to experimental test results, however, the multicomponent 

surrogate mixture does provide a good match to diesel spray liquid length, with at most 

12% difference occurring at the 850 K temperature. It should be noted that even the 

single component surrogates of heptadecane and cetane show significant deviation at this 

850 K point, with up to 8% difference.  

 This multicomponent surrogate is also applied to diesel fuel experimental data 

from SNL ECN, as was used in section 7.7.2.2 to provide a comparison of results for a 

sweep of core charge-gas density. Results are shown in Figure 7.11. Conditions are a core 

gas temperature of 700 K, injection pressure of 130 MPa, fuel temperature of 436 K, and 

nozzle orifice diameter of 0.246 mm.  

 
Figure 7.11: Liquid length versus core charge-gas density for Sandia experimental 

data. Conditions are a core gas temperature of 700 K, injection pressure of 130 

MPa, fuel temperature of 436 K, and nozzle orifice diameter of 0.246 mm.  

Several key observations can be made from the above figure. First, a multi-component 

surrogate with a mixture boiling point matching the 90% distillation point of diesel fuel 

provides a better match to diesel liquid length experimental results, than a mixture 
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matching the 50% distillation point as presented in 7.7.2.2. The multicomponent 

surrogate proposed provides good representation of the experimental data, with at most 

4% difference over the 14.8 to 58.5 kg/m
3
 density range. Deviation is larger at the lower 

density conditions which is due to the mixing limited vaporization model assumption 

validity. The multi-component surrogate provides improved representation of the diesel 

spray trends over the full density range, compared the single-component surrogates which 

underpredict liquid length for the densities greater than 14.8 kg/m
3
, and overpredict the 

liquid length for densities less than 14.8 kg/m
3
. 

 Using the proposed multicomponent surrogate of heptadecane, cetane, and 

octadecane whose mixture boiling point matches the 90% distillation point of diesel fuel, 

results in modeled liquid lengths showing an improved match to diesel fuel, as compared 

to a multi-component surrogate fuel mixture matching the 50% distillation point of diesel 

fuel for both conditions of a charge gas temperature and density sweep. This signifies that 

to match vaporization characteristics, a surrogate must have a mixture boiling point close 

to that of the 90% distillation point of diesel fuel. Furthermore, this also signifies that 

evaporation is likely a batch process, not controlled by individual species boiling points 

but rather is controlled by the mixture boiling point characteristics as a whole. These 

model observations should be validated with additional experimental studies. 

7.9. Summary 
This chapter focused on applying a mixing-limited vaporization model for liquid 

length. First, the limits of application of the liquid length model were investigated by 

consideration of the transition time, where it was determined that the liquid length model 

is valid over the conditions currently considered and most conventional diesel engine 

conditions based on the significant variation between the liquid length and penetration at 

the transition time. The liquid length model was also evaluated using tabulated 

thermodynamic property values for the experimental test conditions, with cetane as a 

surrogate for diesel fuel to validate the model and understand its application. Cetane can 

predict diesel fuel liquid length, within 4.5% for the elevated fuel temperature cases, 

under-predicting the liquid length under all conditions, and a different surrogate would 

likely provide a better match to diesel experimental results, for example an improved 

matching of diesel 90% distillation point. Despite the variations between model and 

experimental results, the general trends are preserved in regards to parameter 

dependencies and nonlinearities between parameters and liquid length, showing that the 

model, and its mixing limited vaporization assumption are adequate for further use.  

An equation of state thermophysical property approach was developed using the 

Peng-Robinson equation of state, for application of single and multi-component surrogate 

fuels for integration with the mixing-limited vaporization liquid length model. This 

methodology is a tool that can be used to explore dependencies of a range of variables on 

liquid length, and in particular, fuel property influence. This required definition of 

various thermodynamic property relationships. Also, knowledge is needed of critical 

temperatures and pressures, species acentric and Rackett parameters, along with 

polynomial constants for species ideal gas constant pressure specific heat capacities. This 

approach provides results for cetane as a surrogate fuel which better match those of the 

diesel fuel experimental results, relative to the traditional tabulated property approach. 
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The model is applied to a range of surrogate fuels, both single and multi-component, 

providing indication that surrogate fuels must match diesel vaporization characteristics, 

with the 90% distillation point being an important parameter to match.  

 Surrogates were applied, both multicomponent and single-component, and model 

results compared to both Michigan Technological University experimental results, and 

results from Sandia National Laboratory, both for diesel fuel. It is determined that single 

and multicomponent surrogates which match have boiling points matching the 90% 

distillation point of diesel fuel provide the best match to diesel liquid length 

characteristics, for both a charge gas temperature and density sweep. This suggests that to 

most effectively match vaporization characteristics of a real fuel using a surrogate fuel 

under these conditions it is important to consider the boiling point of the mixture, and 

compose the surrogate such that it matches the 90% distillation point of the fuel. Other 

fuel properties, such as visocisty, surface tension, chemical composition, and others 

which influence spray characteristics should also be considered in surrogate fuel 

development and matching to real fuels.  

Model limitations have been discussed and will be reiterated: 

• Decreased validity of the mixing limited hypothesis at low temperature and density 

conditions.  

• The liquid length model, and equation of state evaluation, assume that the vapor 

fuel and ambient charge-gas are separate at the liquid length, with properties 

evaluated independently, when in reality the two species are intrinsically linked. 

• The fuel temperature is assumed to be the measured tip temperature of the injector. 

This will be close to the temperature of the fuel in the sac, however, there is likely 

heat transfer in the form of conduction that will cause some variation in actual 

liquid fuel temperature. As injected, the fuel enthalpy and kinetic energy will be 

transferred which will cause a change in actual liquid fuel temperature at the nozzle 

exit, which will influence the results of liquid length. This model does not include 

this fuel temperature effect as a result of the exchange of kinetic energy from 

injection with the fuel enthalpy.  

Despite these model limitations, the liquid length model, coupled with use of an equation 

of state approach for thermophysical property evaluation, is an effective tool for 

exploring liquid length parameter dependencies and surrogate fuel application and 

development. 

 

  



 

 

  



 

249 

8. Fluctuations in Quasi-Steady 

Liquid Length 
The liquid phase of the spray in a vaporizing (0% oxygen) environment showed 

fluctuations around the steady state or quasi-steady liquid length for each plume. 

Understanding these fluctuations and trends, including plume to plume trends and 

characteristic frequency content, is important as these fluctuations influence spray and air 

mixing behavior translating to impacts on combustion and emissions. The goal of this 

chapter is to understand liquid phase fluctuations in penetration under vaporizing 

conditions and provide hypotheses for the causes of this behavior via image analysis, 

plume characterization, and frequency analysis. Evaluation of these hypotheses will also 

be undertaken. The goal of this chapter will be achieved via the following objectives: 

• Characterize liquid length over a charge temperature sweep of 800 to 1300 K and 

injection pressure sweep (1034 to 2000 bar) at a constant charge density of 34.8 

kg/m
3
, along with a reduced density condition (17.4 kg/m

3
), reduced fuel 

temperature of 355 K (decreased from 363 K), and repeat tests.  

• Undertake frequency analysis of the fluctuations in comparison to fuel pressure 

fluctuations.  

• Propose hypotheses for the cause of these liquid length fluctuations.  

• Evaluate the hypotheses for liquid length fluctuations via parametric sweeps of 

injector properties (emulating cavitation) and temperature gradients inside the 

chamber, using the developed liquid length model with the equation of state 

approach for thermophysical property modeling, as discussed in Chapter 7. 

8.1. Motivation 
Liquid-length is an indication of fuel-air mixing efficiency with the success of 

fuel-air mixing being directly correlated to soot emissions. From experimental testing, 

appearances of fluctuations in liquid length about a mean value are observed. These 

fluctuations have implications in fuel-air mixing influencing soot formation, with it being 

proposed that the fluctuations were attributed to slugs of fuel detaching from the core of 

the fuel jet and these slugs favor soot agglomeration and inhibit soot oxidation due to the 

local depletion of oxygen (Crua 2002).  

Fluctuations in liquid length, of the magnitude seen here, could cause the liquid 

length to transition between being less than, to greater than, the lift-off length causing 

different combustion regimes leading which could lead to an increase in soot (as 

discussed in Chapter 1.2). Furthermore, if an engine cylinder was designed for the 

specified mean liquid length of the spray, liquid fuel spray impingement on the cool 

cylinder wall could result due to these fluctuations, which would be particularly true 

under low-temperature, part-load, combustion conditions where liquid length is large, 

which would lead to increases in un-burnt hydrocarbon emissions and reductions in fuel 

economy (Boot et al. 2010). Therefore, understanding the magnitude of these 

fluctuations, as well as providing hypotheses for the causes, is important based on the 

implications for fuel-air mixing and emissions.  
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8.2. Test Conditions 
The tests discussed in this chapter were previously discussed in Chapter 6.2, 

including repeat tests, a charge gas temperature sweep, an injection pressure sweep, a fuel 

temperature variation, and a density reduction, in a 0% oxygen environment. These 

images were acquired at 67,500 frames per second or 0.015 ms inter-frame time. With 

higher frame rates used, more information was available for understanding the 

fluctuations in liquid length during the quasi-steady portion. An additional test was 

undertaken to better characterizing the fluctuations at a higher frame rate of 216,000 

frames per second (0.0046 ms interframe time), for a baseline test condition (1100 K, 

34.8 kg/m
3
 density, 2000 bar injection pressure), with the chiller on (82°C fuel 

temperature).  Results from these tests were presented in Chapter 6.2 for median values 

of time-dependent liquid penetration. Of interest in this current chapter is the mean steady 

state liquid length, occurring during 1 to 2 ms ASOI, consisting of 68 data points for the 

67,500 framing rate and 217 data points for the 216,000 framing rate, and the fluctuations 

about this value. These fluctuations were evident on a plume-to-plume basis.  

8.3. Magnitude of Liquid Length 
Fluctuations 

During steady state, 1 to 2 ms ASOI, there were noticeable fluctuations in liquid 

length, both of a single plume, and between plumes for the multi-hole injector as will be 

quantified. The mean quasi-steady liquid length was determined during this time period 

with the magnitude of the fluctuations also characterized to understand the relative 

fluctuations. The magnitude of these fluctuations was determined using two 

methodologies. This included the maximum and minimum values during the quasi-steady 

liquid length period, relative to the mean values, along with the magnitude of the average 

positive and negative deviations relative to the mean value. The magnitude of the average 

deviations relative to the mean value are defined using equation (104), where S(t) is the 

time dependent liquid penetration. LLpositive defines the average positive fluctuation, and 

LLNegative defines the average negative fluctuation. 

 LLPositive = mean(S(t) > LL) 

LLNegative = mean(S(t) < LL) 
(104) 

8.3.1. Maximum Liquid Length Fluctuations 
Shown in Figure 8.1 is the mean steady state liquid length for each plume as well 

as the mean value over all eight plumes, with error bars denoting the minimum and 

maximum of the magnitude of the liquid length fluctuations relative to the mean value. 

This figure is for injection at 2000 bar into an 1100 K, 0% oxygen, 34.8 kg/m
3
 density 

environment, the baseline case (chiller off, fuel temperature 363 K). Figure results for the 

other test conditions discussed in Chapter 6.2 are provided in the Appendix 12.8.2.1.  
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Figure 8.1: Mean steady state liquid length with error bars showing the magnitude 

of the maximum fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 1100 K temperature, fuel temperature 363 K.  

The magnitude of the maximum fluctuations in liquid length was significant being larger 

in the positive direction relative to the negative direction, approaching 34 to 20% of the 

mean liquid length, respectively. Fluctuation magnitudes were similar over the varying 

test conditions as presented in Appendix 12.8.2.1, with results for the mean percent 

change relative to the steady state value over all 8 plumes presented for the different test 

conditions defined here in Table 8.1 as a summary. 

Table 8.1 

Maximum quasi-steady liquid length increase and decrease relative to the mean 

value, in % terms, for all vaporizing spray tests. High FPS indicates the higher 

frame rate of 216,000 frames per second, R indicates repeat tests. 

Ambient 

Density 

(kg/m
3
) 

Fuel Pressure 

(bar) 

Fuel 

Temperature 

(K) 

Temperature at 

Injection 

(K) 

Maximum LL 

Increase 

Relative to 

Mean (%) 

Maximum LL 

Decrease 

Relative to 

Mean (%) 

34.8 1034 355 1100 34 17 

34.8 1379 355 1100 32 18 

34.8 2000 355 1100 (R1) 32 16 

34.8 2000 355 1100 (R2) 33 18 

34.8 2000 355 1100 (R3) 34 16 

34.8 2000 355 1100 (High FPS) 46 23 

34.8 2000 363 800 27 14 

34.8 2000 363 950 30 17 

34.8 2000 363 1100 (R1) 34 20 

34.8 2000 363 1100 (R2) 31 18 

34.8 2000 363 1100 (R3) 25 11 

34.8 2000 363 1200 27 14 

34.8 2000 363 1300 28 19 

17.4 2000 363 1100 29 16 

34.8 1034 363 1100 35 21 

34.8 1379 363 950 28 14 

34.8 1379 363 1100 28 15 

34.8 1379 363 1300 32 21 

The magnitude of the maximum fluctuations were significant, yet consistent with a 

typical 30% maximum increase and 18% maximum decrease, implying that they were 

likely not correlated to conditional variation but a different inherent phenomenon, 

common to all conditions. For the one plume test at the higher frame rate, the magnitude 
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of the fluctuations was larger. This was attributed to several factors including the fact that 

only one plume was considered versus the  average over all eight plumes as shown in the 

table for other test conditions, which would work to minimize the extraneous 

fluctuations. Additionally, the higher frame rate data will capture more information on 

the fluctuations and therefore the extent of the fluctuations could in actuality be larger 

than those shown at the lower frame rate as there were 3 frames for the higher frame rate 

that fall in between those for the lower frame rate, attribute to the larger sample size. 

There are no consistent plume to plume trends in the magnitude of the maximum 

fluctuations. 

 It should be noted that the confidence interval for these fluctuation magnitude 

measurements are small and therefore a test to test comparison of the magnitude of the 

fluctuations is difficult due to the low sample size. This is evidenced by looking at a 

histogram of the liquid length distribution during steady state shown in Figure 8.2, which 

shows the nonsymmetrical, non-Gaussian distribution of liquid length.  

 
Figure 8.2: Histogram of steady state liquid length. Results are for Plume 8 of a 

diesel spray into 0% Oxygen at 34.8 kg/m
3
 bulk gas density and 1100 K bulk gas 

temperature, at 2000 bar injection pressure. 

The above figure shows the mean SS LL for this test, relative to the distribution of liquid 

lengths. The maximum and minimum fluctuations are shown at the two tails of the 

distribution. This distribution shows the asymmetry in liquid length fluctuations relative 

to the mean value.  

8.3.2. Average Liquid Length Fluctuations 
The average liquid length fluctuations are shown in Figure 8.3 for the baseline 

case of 34.8 kg/m
3
 density, 1100 K charge gas temperature, 2000 bar injection pressure, 

and 363 K fuel temperature. The results for the remainder of the vaporizing spray tests 

are provided in Appendix 12.8.2.2.  
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Figure 8.3: Mean steady state liquid length with error bars showing the magnitude 

of the average fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 2000 

bar injection pressure, 1100 K temperature, 363 K fuel temperature.  

The average magnitude of the liquid length fluctuations was significantly reduced 

because of the limited sample size, relative to the maximum fluctuations.  The magnitude 

of the fluctuations was an average increase in 10% relative to the mean value, and an 

average decrease of 5% relative to the mean value. The magnitude of these fluctuations 

are summarized in Table 8.2 for all of the vaporizing spray test conditions investigated 

representing the mean value over all 8 spray plumes of the multi-hole injector.  

Table 8.2 

Average quasi-steady liquid length increase and decrease relative to the mean value, 

in % terms, for all vaporizing spray tests.  

Ambient 

Density 

(kg/m
3
) 

Fuel Pressure 

(bar) 

Fuel 

Temperature 

(K) 

Temperature at 

Injection 

(K) 

Average LL 

Increase 

Relative to 

Mean (%) 

Average LL 

Decrease 

Relative to 

Mean (%) 

34.8 1034 355 1100 11.2 6.0 

34.8 1379 355 1100 10.7 5.4 

34.8 2000 355 1100 (R1) 10.3 5.3 

34.8 2000 355 1100 (R2) 10.6 5.5 

34.8 2000 355 1100 (R3) 11.5 5.6 

34.8 2000 355 1100 (High FPS) 13.6 6.7 

34.8 2000 363 800 9.4 4.7 

34.8 2000 363 950 10.1 5.3 

34.8 2000 363 1100 (R1) 9.8 5.3 

34.8 2000 363 1100 (R2) 9.9 5.3 

34.8 2000 363 1100 (R3) 9.5 4.8 

34.8 2000 363 1200 9.0 4.4 

34.8 2000 363 1300 9.4 4.8 

17.4 2000 363 1100 9.3 4.6 

34.8 1034 363 1100 10.7 5.6 

34.8 1379 363 950 10.7 5.5 

34.8 1379 363 1100 9.5 5.2 

34.8 1379 363 1300 10.1 5.3 

The magnitude of the average fluctuations was similar for all test conditions being around 

10% larger and 5% shorter, than the mean value. As was the case with the maximum 

liquid length fluctuations discussed in the prior section, the magnitude of the average 

fluctuations were larger for the single hole plume test at the higher frame rate, in 

comparison to the average over all 8 spray plumes at the lower frame rate. The 
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asymmetry in the magnitude of these fluctuations signifies that the fluctuations were not 

consistent about the mean liquid length and that there was a grouping with the number of 

points above the mean value and their magnitude, relative to those falling below the mean 

value. There are no consistent plume to plume trends in the magnitude of the average 

fluctuations.  

8.4. Frequency Analysis 

8.4.1. Fuel Pressure Frequency 
One potential explanation for the fluctuations in liquid length is due to 

fluctuations in the fuel pressure during injection. A pressure transducer was mounted via 

a ‘T’ into the fuel pressure supply line to provide a measurement of injection pressure as 

was shown in Chapter 3.4.2.1. The fuel pressure fluctuations were similar test to test, and 

are presented in Figure 8.4 for the baseline test (1100 K, 34.8 kg/m
3
 density, 2000 bar 

injection pressure, 363 K fuel temperature).  

 
Figure 8.4: Fuel pressure trace before, during, and after the fuel injection event, 

zoomed in on the injection region of interest in the right portion of the figure.  

The scaled trigger signal represents the electronic trigger to the driver with the fuel 

injection duration defining the actual time when liquid fuel was injected into the 

chamber, 2.8 ms in this case. The fluctuations in the fuel pressure were a result of the 

injection event. The relative timing of the injection pressure fluctuations relative to the 

fuel injection is important along with the frequencies of these pressure fluctuations, to 

understand if they correspond to the perturbations in liquid length. The fuel injection was 

delayed relative to the electronic trigger (by 0.245 ms). Fuel pressure experienced 

fluctuations starting 1 ms after the injection commenced. There were noticeable 

fluctuations in fuel pressure during the injection event and the frequency of these relative 

to that of the liquid length must be compared. Also, the time for the fluctuations in 

pressure to travel from the injector down to the pressure sensor, a distance of 11.5 inches, 

could cause a shift in timing and by characterizing the frequency content of the 

fluctuations, relative to the liquid length fluctuations, the correlations between the two, if 

any, will be better understood.  

The frequency of the fuel pressure fluctuations was determined by applying a 

Fast-Fourier Transform (FFT) to the fuel pressure trace region of interest which is shown 
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in Figure 8.5. A FFT enables transformation of the data from the time to the frequency 

domain or vice-versa, to provide information on the frequency content of a signal for 

further analysis where attributes may be highlighted in the alternative domain (Smith 

2003). The FFT was undertaken on the fuel pressure by isolating the region of interest of 

the injection event, from the start to the end of the fuel pressure fluctuations, with a 

Nyquist frequency of 50 kHz (sampling frequency of 100 kHz). The FFT results in the 

frequency domain will run from 0 Hz up to the Nyquist frequency and based on the 

mathematics of the FFT, the output of the FFT considered to half the sample size (based 

on the Nyquist frequency and underlying FFT mathematics), will be two times the actual 

output, normalized by the total number of data points (sample size, N, 4711 for this test). 

The result of the FFT on the region of interest is shown in Figure 8.5 with tabulated 

frequencies (and corresponding times) along with corresponding amplitude magnitudes, 

shown in Table 8.3. 

 
Figure 8.5: Fuel pressure region of interest for the FFT (left), along with FFT results 

(right), zoomed in to visualize the frequency peaks.  

Table 8.3 

Fuel pressure FFT results.  
FFT Peak Frequency (Hz) Time (ms) Amplitude 

1 0  1954 

2 127.4 7.85 135.3 

3 424.5 2.36 15.78 

4 2484 0.40 4.96 

5 785.4 1.27 3.978 

6 2781 0.36 3.886 

7 1146 0.87 3.021 

8 1486 0.67 2.22 

9 2208 0.45 1.993 

10 1826 0.55 1.426 

11 5137 0.19 1.238 

The injection duration was a 1.6 ms electronic trigger, corresponding to 2.8 ms fuel 

(hydraulic) injection duration, with the observed liquid length fluctuations occurring at a 

fraction of this injection duration with the frequency required to be significantly greater 

than 357 Hz. The largest frequency of measureable amplitude occurred at 5137 Hz or 

0.19 ms. As the liquid length fluctuations were visible frame to frame, which occurred 
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over a 0.015 ms time interval, this fuel pressure frequency content is not large enough to 

explain the fluctuations in liquid length. This mismatch in frequency, along with the 

phasing of the fuel pressure perturbations relative to the liquid length fluctuations, 

indicates that line pressure fluctuations were not the cause of fuel spray liquid length 

fluctuations observed in the high speed images.    

8.4.2. Frequency of Liquid Penetration 

Fluctuations 
The frequency content of the liquid penetration fluctuations was characterized 

using frequency analyses with a FFT, similar to the methodology used in quantifying the 

characteristic frequencies of the fuel pressure fluctuations. Before undertaking the FFT to 

provide the key frequency components of the fluctuations, the mean quasi-steady liquid 

length data must be appropriately pre-processed. This included taking the penetration 

data for each plume and offsetting it by the mean steady state liquid length for the given 

plume during the quasi-steady period to provide a DC offset removing the 0 Hz 

frequency component. This offset penetration data was then analyzed with a window 

being applied to the data first to ensure that the start and end of the data return to the 0. A 

Tukey window was used on the data which is a tapered cosine window that sets the data 

at the boundaries to zero without significantly reducing the gain of the windowed 

transform falling between a rectangular (no window) and Hanning window (Harris 1978). 

The Tukey tapering factor was set at 0.5, the default value, with the window used in this 

analysis shown in Figure 8.6.  

 
Figure 8.6: Tukey window with a tapering factor of 0.5, used in the current FFT 

analysis.  

The windowed data then underwent a Fourier transform with an energy correction 

factor (ECF) being applied to account for the window application which does not 

conserve energy relative to the original signal, with this ECF used based on the 

broadband nature of the data. The auto-power of the FFT was computed next which is the 

result of the FFT multiplied by its complex conjugate to provide a real valued function 

equaling the magnitude of the FFT, squared. Finally, this autopower was normalized by 

the unit frequency (bandwidth of the measurement) to provide the power spectral density 
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(PSD) which was used to determine frequency peaks of the liquid length fluctuations. 

This procedure is outlined in Figure 8.7 for plume 2 of the baseline case.  

 
Figure 8.7: FFT analysis of liquid length fluctuations, including liquid penetration 

offset, windowing of the data, and the resultant PSD.  

The magnitude, and corresponding frequency (and time scale) of the first five 

largest peaks was determined from the PSD as an indicator of the dominant frequencies 

in the liquid length fluctuations with these frequencies being compared for the eight 

plumes. Full penetration results during the quasi-steady state, along with the PSD results 

over all eight spray plumes, are presented for each test in Appendix 12.8.3, with figures 

presented here for the baseline case of 1100 K charge gas temperature, 34.8 kg/m
3
 

density, 2000 bar injection pressure at 363 K fuel temperature (Figure 8.8).  
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Figure 8.8: Quasi-steady penetration versus time ASOI (left) for all eight spray 

plumes, PSD versus frequency (right) for all eight sprays plumes. Test conditions of 

2000 bar, 363 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 Environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  

There were noticeable fluctuations in penetration as seen in the above figure around the 

nominal quasi-steady liquid length. Understanding the frequency of these fluctuations 

may provide insight into their causes. Information on the frequency of these fluctuations 

were provided in the above PSD highlighting the dominant frequencies in the figure. The 

dominant frequencies for the mean liquid length fluctuations are summarized in Table 

8.4, over all of the vaporizing spray test conditions.  
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Table 8.4 

Dominant frequency components resulting from PSD analysis, Mean Results.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Pressure 

(bar) 

Fuel 

Temp 

(K) 

Temp. at 

Injection 

(K) 

1
st
  

Freq 

(Hz) 

2
nd

  

Freq 

(Hz) 

3
rd

  

Freq 

(Hz) 

4
th

  

Freq 

(Hz) 

5
th

  

Freq 

(Hz) 

34.8 1034 355 1100 993 9926 25809 28787 12904 

34.8 1379 355 1100 5956 993 2978 8934 10919 

34.8 2000 355 
1100 

(R1) 
1985 3971 19853 10919 22831 

34.8 2000 355 
1100 

(R2) 
993 31765 26801 6949 23824 

34.8 2000 355 
1100 

(R3) 
4963 17868 993 8934 14890 

34.8 2000 355 

1100 

(High 

FPS) 

16922 18912 43797 49724 12490 

34.8 2000 363 800 33750 25809 3971 1985 27794 

34.8 2000 363 950 993 5956 17868 10919 24816 

34.8 2000 363 
1100 

(R1) 
16875 27794 8934 29779 2978 

34.8 2000 363 
1100 

(R2) 
17868 12904 29779 10919 33750 

34.8 2000 363 
1100 

(R3) 
5956 15882 993 3971 24816 

34.8 2000 363 1200 1985 3971 19853 8934 22831 

34.8 2000 363 1300 10919 993 12904 8934 32757 

17.4 2000 363 1100 5956 16875 3971 25809 9926 

34.8 1034 363 1100 993 5956 33750 3971 25809 

34.8 1379 363 950 993 2978 7941 4963 25809 

34.8 1379 363 1100 993 5956 31765 9926 26801 

34.8 1379 363 1200 18860 993 20846 22831 30772 

There do exist repeating frequencies, however, these are not consistent test to test. The 

majority of the fluctuations are of frequencies which exceeded those of the fuel pressure 

fluctuations signifying that the fuel pressure was not the dominant contributing factor in 

the liquid length fluctuations. Considering the higher framing rate images, there were 

some dominant frequencies similar to those seen in the lower frame rate tests, in the 10 

kHz range, with other frequencies being larger, in the 40 kHz range, which cannot be 

resolved based on the Nyquist frequency resolution limit of the low frame rate data being 

33.75 kHz. Although the magnitude of the fluctuations varied, it was evident that the 

frequency of the perturbations were not consistent test to test or over a range of test 

conditions. This signified that the fluctuations are largely the result of a random nature, 

such as turbulence. Hypothesis and implications of these liquid length fluctuations will be 

discussed in the next section.   

8.5. Hypotheses and Implications of 
Liquid Length Fluctuations 

There are various potential causes for the presence of these liquid length 

fluctuations. As discussed in Chapter 2.3.6, these fluctuations could be attributed to 

turbulence, fuel pressure fluctuations, needle oscillation, slugs of concentrated fuel 
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breaking away from the main spray core, large scale evolving structures at the spray tip, 

as examples. Another potential cause of the liquid length fluctuations is temperature 

gradients inside the combustion vessel, as temperature is a key factor governing liquid 

length behavior (Siebers 1998).  

As discussed in the prior section, fuel pressure has minimal influence on the 

liquid length fluctuations. Needle oscillation in regards to eccentric needle lift, was 

shown to be prevalent during the start of injection as discussed in Chapter 3.4.2.1. Needle 

oscillation, both axially and laterally, is known to occur during the entire injection event 

potentially caused by a cantilever motion of the needle with the axial fluctuations being 

pressure dependent, and for example at 1500 bar the frequency is 5556 Hz (Kastengren et 

al. 2011). Some of the liquid length fluctuations fall close to this frequency which may 

signify that needle lift oscillations were occurring during the quasi-steady injection 

period, translating to downstream spray characteristics. These oscillations would manifest 

themselves as differences in apparent injection pressure at the nozzle hole. However, 

injection pressure does not directly impact liquid length (Siebers 1999) but could result in 

differences in injector coefficients or spray angle which do influence liquid length. The 

fact that there were not dominant repeated frequencies indicates that this was not a likely 

cause as a structure factor such as this would have a natural frequency that would be 

consistent case to case.  

Fuel parcels or ‘slugs’ breaking away from the main fuel jet were observed in the 

images and during the image processing, with the liquid length values reported resulting 

from image processing of the continuous portion of the liquid fuel jet. This is a 

contributing factor in the liquid length fluctuations as the liquid length represents the full 

liquid core and did not account for this detached fuel slug which yielded a reduction in 

liquid length from the processing relative to the prior time instant. This phenomenon was 

not the sole cause of the fluctuations in liquid length as fluctuations occur on a frame to 

frame basis but detaching slugs do not occur frame to frame as evidenced during 

visualization of the acquired movies, i.e. fuel slugs detach from the leading edge of the 

spray less often than the fluctuations are observed, but is a contributing factor.  

Another phenomenon tied to downstream spray structure is cavitation within the 

injector nozzle hole with liquid length increasing as cavitation increased (Desantes et al. 

2005), however, this role of cavitation’s influence on atomization is not well established 

nor is it consistent with others finding a reduction in liquid length with cavitation (Payri 

et al 2006). Cavitation can be defined as a change in discharge coefficient with a 

reduction of the dimensionless cavitation parameter, with cavitation occurring under high 

injection pressure conditions (Schmidt 1997). Under cavitating conditions, there is a 

sharp decrease in discharge coefficient based on the chocking of mass flow through the 

nozzle (Payri et al. 2008). Cavitation can be understood as a reduction in discharge 

coefficient, a parameter that influences liquid length.  

8.6. Parametric Modeling Study – 
Liquid Length Fluctuations 

Hypotheses were made as to the cause of these fluctuations in Chapter 8.5 and are 

now reiterated: 
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 Fluctuations in injection pressure as a result of the injection event 

 Cavitation and injector internal flow variations being manifested through 

injector coefficients 

 Temperature gradients of the ambient charge gas.  

Siebers liquid length model is applied, using heptadecane as the representative fuel based 

on accurately representing diesel fuel evaporation characteristics (Siebers 1999).  A 

parametric study is undertaken in an effort to validate hypotheses as to the cause of the 

fluctuations. This is done using the baseline condition experimental results (1190 K core 

charge-gas temperature, 2000 bar injection pressure, 32.2 kg/m
3
 core gas density, and 363 

K fuel temperature). As presented in Chapter 8.3, the mean liquid length during the 

quasi-steady period, over all 8 plumes was 10.9 mm. During the quasi-steady period (1-2 

ms ASOI), the difference of the liquid length computed at each time ASOI is determined 

relative to the mean liquid length. This difference defines the liquid length fluctuation, at 

each time ASOI. The average of the positive fluctuations, those which have liquid lengths 

above the mean value, is determined, which is a liquid length of 11.4 mm (or an average 

increase of 0.5 mm relative to the mean value). The same procedure is applied to the 

negative fluctuations, those with liquid lengths less than the mean value, with the mean 

negative fluctuations being 10.3 mm, or an average decrease of 0.6 mm relative to the 

mean value. Also considered was the maximum and minimum extent of the fluctuations, 

which is defined as the longest and shortest achieved liquid length during the quasi-

steady period, being 12.4 mm for the maximum positive fluctuation and 8.7 mm for the 

maximum negative fluctuation. The liquid length model will be used, with parametric 

variation of different parameters in an effort to match and therefore provide evidence that 

the hypothesis is a possible cause of these fluctuations.  

8.6.1. Charge – Gas Temperature Gradients – 

Boundary Layers 
Boundary layers are known to exist in the combustion vessel based on the large 

temperature change from the cooler vessel walls (453 K) to the core region of the vessel 

at elevated temperature based on the preburn procedure (upwards of 800 K). These 

temperature gradients may be significant enough to cause variations in liquid length, as 

liquid length is known to decrease, nonlinearly, with increasing charge-gas temperature 

(Siebers 1998). The Siebers (1999) liquid length model is applied using the developed 

equation of state approach with n-heptadecane as the representative fuel, with charge gas 

temperature varied (along with core gas density based on the assumption of constant 

vessel pressure), to quantify this impact on penetration. Results are provided in Figure 

8.9.  
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Figure 8.9: Influence of core charge-gas temperature on liquid length results. 

As shown in the figure above the  average increase in liquid length of 0.5 mm could be 

explained by a 55 K  reduction in core charge-gas temperature, and the average decrease 

in liquid length of 0.6 mm could be explained by a 100 K increase in core charge-gas 

temperature, assuming all other parameters do not vary. Also, for the maximum increase 

of 1.5 mm over the mean steady state liquid length, this corresponds to a 150 K reduction 

in core charge-gas temperature. However, the temperature change representing the 

maximum decrease in liquid length cannot be determined from the model based on model 

limitations.  

This variation in core charge-gas temperature is reasonable near the edges of the 

vessel where there are larger gradients between the heated walls and windows to the 

internal core charge gases, however, it is not likely to be the only controlling factor in the 

liquid length fluctuations. Even larger variations in liquid length are seen (when 

considering the maximum and minimum liquid lengths during the quasi-steady period), 

which require larger changes in core gas temperature (150 K decrease in temperature for 

the maximum liquid length increase, exceeding model limitations for the maximum liquid 

length decrease). Therefore, gas temperature variations and the presence of boundary 

layers can explain some of the liquid length fluctuations, however, they are likely not the 

only contributing factor. Future work acquiring data on boundary layer temperature 

gradients would further validate this hypothesis.  

8.6.2. Injector Cavitation – Nozzle Discharge 

Coefficient 
Cavitation inside the injector nozzle is known to influence downstream spray 

characteristics (Siebers 1999), with cavitation being manifested by a sharp decrease in 

discharge coefficient. Although discharge coefficient does not appear directly in the 

liquid length model, it influences the area contraction coefficient which is a parameter 

used in model evaluation, as defined in equation (105) (Siebers 1999).  

 
Ca = 2AfCd2 Pf − Pa

Ṁf  (105) 

A reduction in discharge coefficient due to the presence of cavitation will result in a 

decrease in the area contraction coefficient. The initial discharge coefficient and area 

contraction coefficient were assumed to be 0.75 and 0.8, respectively. With cavitation, 

the discharge coefficient typically reduces down to 0.6 (Schmidt 1997), which would 
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yield an area contraction coefficient of 0.65 assuming all other conditions are identical. 

To analyze the impact of cavitation, the area contraction coefficient is swept from 0.1 to 

1.0, for the baseline condition, with results shown in Figure 8.10.  

 
Figure 8.10: Modeled liquid length as a result of the area contraction coefficient 

sweep.  

As shown in the figure, a reduction in the area contraction coefficient (reduction in 

discharge coefficient), results in a decrease in liquid length. A decrease in area coefficient 

by 0.08 from the starting value of 0.8 will decrease the liquid length to the magnitude of 

the average decrease fluctuation, and an increase of area contraction coefficient by 0.08 

will increase the liquid length magnitude to the average increase representative of the 

fluctuations. To reach the maximum increase fluctuation of liquid length an area 

contraction coefficient greater than 1 is required, and to reach the maximum decrease 

fluctuation an area contraction coefficient of 0.5 is required, as shown in the figure. This 

required decrease in area contraction coefficient is reasonable based on the expected 

reduction in discharge coefficient attributed to the presence of cavitation, however, it is 

difficult to explain the required increase in area contraction coefficient (discharge 

coefficient) to explain the positive magnitude of the liquid length fluctuations, unless 

there is some transition from cavitating to non-cavitating regimes during the injection 

event. Therefore, cavitation may be a phenomenon which is occurring and could explain 

liquid length fluctuations, requiring a transition from cavitating to non-cavitating 

conditions during a single injection event, meaning that cavitation is occurring 

dynamically in the injector, which is possible and could be linked to fuel pressure 

fluctuations or needle lift characteristics as examples, and merits further study.  

8.6.3. Internal Injector Flow and Injection 

Pressure – Orifice Coefficients 
Internal flow and injection pressure fluctuations could be another cause of the 

liquid length fluctuations. Injector behavior is governed by three coefficients, area 

contraction, discharge, and velocity, as have been previously discussed. These 

coefficients are all interrelated, and provide an indication of orifice properties and 



 

264 

processes which are known to influence spray characteristics (Siebers 1999). Although 

injection pressure does not influence the quasi-steady liquid length per earlier discussions 

(see section 7.3), it could influence the fluctuations about this quasi-steady value, due to 

the fluctuations in the fuel supply line. An increase in injection pressure could manifest 

itself as a change in an orifice coefficient, with there being a small nonlinear decrease in 

Ca with an increase in injection pressure, a 10% decrease (from 0.9 to 0.8) for a 110% 

increase in injection pressure (80 to 170 MPa) (Siebers 1999). This change in area 

contraction coefficient from 0.9 to 0.8 results in a 0.7 mm reduction in liquid length, 

which is not of large enough magnitude to explain the liquid length fluctuations, 

especially since the actual variation in actual discharge coefficient would be less as the 

maximum change in injection pressure during the fuel line fluctuations is 95 MPa, which 

is less than the 110 MPa change discussed here. Therefore, from this analysis and as was 

previously discussed in Chapter 8.4.1 based on frequency analysis, liquid length 

fluctuations are minimally influenced by fuel injection pressure fluctuations.  

Internal injector flow characteristics could potentially cause these liquid length 

fluctuations. Needle lift is likely not the case as this would manifest itself as differences 

in apparent injection pressure at the nozzle holes (Kastengren et al. 2011), which shows 

minimal influence as just discussed. If not manifested through injection pressure, these 

internal flow differences would be the result of differences in injector orifice coefficients 

(Ca, Cd, or Cv), which were considered in section 8.6.2. Liquid length, and this 

correlation, is for steady flow characteristics. This difference in internal flow would be 

unsteady momentum in regards to pulsating injection pressure, yielding different 

transport processes than can be predicted by this liquid length model. Liquid length 

fluctuations could partially be explained by differences in injector characteristics, 

however, the required magnitude of change of injector coefficients is significant (area 

contraction coefficient change of 0.5 to explain the 3.7 mm span in liquid length 

fluctuations).  

8.6.4. Summary of Liquid Length Fluctuation 

Model Results & Conclusions 
Various proposed hypotheses for the liquid length fluctuations are evaluated using 

the Siebers 1999 liquid length model coupled with an equation of state approach. 

Conclusions can be made from this model application to better understand the proposed 

causes of these fluctuations, as summarized in Table 8.5.  
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Table 8.5 

Liquid length fluctuation hypotheses, model results, and conclusions. 
Hypothesis Model Results Conclusion 

Temperature gradients Temperature span of 155 K 

required to explain 1.1 mm span 

in average fluctuations 

Potential cause due to boundary 

layers but not the sole cause 

Cavitation Ca increase and decrease by 0.08 

to explain 1.1 mm span in 

average fluctuations 

Potential cause; requires dynamic 

transition from cavitating to 

noncavitating flow 

Injection pressure 

oscillation 

110 Mpa injection pressure 

increase, Ca decrease 0.9 to 0.8   

-> 0.7 mm reduction in LL -> not 
significant enough 

Not cause of liquid length 

fluctuations 

Injector characteristics 0.5 change in Ca to explain 3.7 

mm span in LL fluctuations 

Not the sole source of 

fluctuations, but variations in 

internal flow characteristics have 

influence 

Detaching slugs of fuel  Not the sole source of 

fluctuations but are a contributing 

factor 

Turbulence  Potential cause as fluctuations are 

random in nature based on 

frequency analysis 

8.7. Summary and Conclusions 
Under vaporizing (0% oxygen conditions), there were noticeable fluctuations in 

diesel spray liquid length about a quasi-steady value. Quantifying and understanding the 

causes and implications of this behavior is important based on issues with wall-

impingement, increased fuel consumption, un-burnt hydrocarbon and soot emissions. The 

average magnitude of the fluctuations seen here are an increase of 10% relative to the 

mean value and a decrease of 5% relative to the mean value. The fluctuations did not 

correlate to fuel pressure fluctuations, although these may be an influencing factor, as 

determined from frequency analysis of the fuel pressure fluctuations and liquid length 

perturbations. Overall, the fluctuations were observed in all test conditions, but the 

frequencies were not consistent over repeats or a range of test conditions, signifying that 

these fluctuations appear to be random in nature and may be caused by turbulence. 

Hypotheses as to the cause of the liquid length fluctuations are a combination of 

cavitation (manifested in the discharge coefficient), fuel line pressure fluctuations, 

temperature gradients in the combustion vessel, and turbulence.  

The Siebers liquid length model in conjunction with the equation of state 

approach for thermophysical property modeling is applied, using n-heptadecane as a 

representative fuel based on its boiling point matching the 90% distillation point of diesel 

to validate proposed hypotheses on liquid length fluctuations for the baseline test 

condition.  

Several key conclusions are made.  

• The hypothesis that temperature gradients inside the combustion vessel can result in 

liquid length variations was evaluated. Average liquid length increase is 0.5 mm, 

requiring a 55 K  reduction in core charge-gas temperature, and the average liquid 
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length decrease is 0.6 mm necessitating a 100 K increase in core charge-gas 

temperature, assuming all other parameters do not vary. To account for the larger 

maximum variations in liquid length, even larger temperature gradients are 

required.  Variations in core charge-gas temperature are likely to exist and will 

influence liquid length fluctuations, however, based on the required magnitude 

change of temperature, it is concluded that this is not the only cause.  

• The onset of cavitation, which results in a decrease in discharge coefficient and 

hence a decrease in area contraction coefficient, could influence liquid length 

behavior and fluctuations. To achieve the average increase in liquid length, the area 

contraction coefficient would need to increase by 0.08, and decrease by 0.08 to 

reach the observed average decrease in liquid length. A wider spread in area 

contraction coefficient would be required to explain the maximum and minimum 

extent of the fluctuations. For cavitation to be the explaining parameter, the flow in 

the injector nozzle would need to dynamically transition from cavitating to non-

cavitating.  

• Injection pressure variations were hypothesized as a cause of liquid length 

fluctuations, which was evaluated using the liquid length model. Injection pressure 

perturbations were evidenced in the fuel pressure traces, spanning 95 MPa. 

Although injection pressure is not directly in the liquid length model, there is a 

small reduction in area contraction coefficient (Ca) for injection pressure increase, 

from 0.9 to 0.8 for a 110 MPa injection pressure increase. This reduction in Ca will 

yield a 0.7 mm reduction in liquid length, which is not of large enough magnitude 

to explain the fluctuations, agreeing with characteristic frequencies as discussed in 

chapter 7. Therefore injection pressure perturbations are not a cause of liquid length 

fluctuations.  

• Liquid length fluctuations could partially be explained by differences in injector 

characteristics, however, the required magnitude of change of injector coefficients 

is significant (area contraction coefficient change of 0.5 to explain the 3.7 mm span 

in liquid length fluctuations). Differences in injector coefficients as manifested 

through discharge coefficients are not the sole source of the fluctuations, but 

variations in internal flow characteristics could have a partial effect on liquid 

length.  

Based on model application, it is proposed that the two main physical causes of 

liquid length fluctuations are that of temperature gradients inside the vessel, and 

differences in internal injector flow characteristics (cavitation), causing variations in 

nozzle orifice coefficients.  
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9. Summary and Conclusions 
As the prime mover for transportation in society, internal combustion engines 

require technical advancements and improvements to continue to meet increasingly 

stringent emission standards while increasing performance and improving fuel efficiency. 

This requirement necessitates fundamental spray and combustion studies under engine-

relevant conditions. This work undertook a study to provide an improved understanding 

of diesel spray conditions using an optically accessible combustion vessel which was 

subsequently linked with a thermophysical property analysis liquid length model.  

The objectives of the current work are reiterated here, with key conclusions 

discussed. The first requirement was the development of a combustion vessel research 

facility for diesel spray studies which required thermodynamic state generation capability 

for producing internal combustion engine relevant conditions, along with other 

subsystems for operation. This facility has been successfully developed and subsystems 

integrated for initial tests in March 2009, with subsystems and diagnostics continuing to 

come online as dictated by research project needs based on work with industrial partners. 

Additional completed subsystems required for the current diesel spray testing include 

integration of a piezoelectric injector driver, along with the development of a low 

pressure return for the fuel system to provide the required back pressure for engine 

operation, with these upgrades being completed May 2010.  Diagnostics developed and 

applied include high speed Mie back scattering imaging for visualizing the liquid phase 

of the diesel fuel spray.  

To achieve the required conditions for study, replicating conventional diesel 

engine conditions, a preburn procedure is needed. This procedure is known to generate 

minor species that may influence the diesel spray and combustion process and therefore 

an understanding was required of the influence on mixture properties, both pre and post 

pre-burn, and on the resulting fuel autoignition. Using chemical kinetics modeling of the 

premixed burn, cool-down, and fuel autoignition, it was determined that the preburn 

procedure used is valid for these spray studies. Although minor species are produced, the 

most significant being NO, NO2 and OH, the levels are representative of those found in 

conventional diesel engines running with exhaust gas recirculation (EGR). The reactive 

minor species had insignificant effects on the auto-ignition of n-heptane as a diesel 

surrogate for ignition studies, reducing the ignition delay by 3% relative to dry air, 

increasing it by 6% relative to air plus residuals, with these changes being within the 

accuracy of the modeling and simulations (0.1 ms or 10%). It is concluded that the 

changes in ignition delay from the minor species are small relative to those from the 

major species (CO2, H2O and O2) which increase to 3.8% (CO2) and 3.5% (H2O) for a 21 

to 15% oxygen reduction, yielding a 170% increase in ignition delay. The influence of 

different mixture composition was also investigated, which shows no significant 

difference in specific heats of the charge gas mixture (1.13 to 1.21 kJ/kg-K) with the 

mixture specific heat also closely matching an engine running 38.3% EGR (1.16 kJ/kg-

K). Additionally, despite the differing cool-down histories of the vessels in the ECN due 

to a range of fan speeds and differences in minor species due to variations in pre-burn 

mixtures, there is no significant impact on the ignition delay between the vessels and the 

ignition delay is only 4% shorter than that of ideal EGR at 15% oxygen, which is within 

the modeling accuracy. The same observation is found when considering only major 
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species in regards to the insignificant effect of these differing mixtures on n-heptane 

autoignition. The preburn procedure therefore is an effective tool for state generation for 

these combustion vessel spray and combustion studies, and has minimal effect on 

autoignition. 

This preburn procedure is subsequently used in the experimental studies for 

generating both 0% and 21% oxygen environments, for vaporizing and combusting spray 

tests, respectively. To quantify the spray parameters of interest including penetration, lift-

off length, liquid length and cone angle, a robust optical setup and image processing 

methodology is required. A setup was developed which ensured uniform illumination of 

the chamber from the flashlamp by the use of a mirror reflector while providing a high 

signal to noise ratio (4.4) to ensure quality images. This methodology provides images 

which are minimally impacted by the choice of threshold used in edge detection for the 

image processing for the non-vaporizing, vaporizing, and combusting sprays. Also briefly 

discussed was a Gaussian based curve fitting methodology for non-vaporizing spray cone 

angle calculation which has application to CFD model development, being less subjective 

than standard methodologies. Although not applied in the current work, the methodology 

was reviewed as an alternative technique for cone angle definition.  

Diesel spray characteristics were studied for non-vaporizing, vaporizing and 

combusting conditions over a range of charge gas temperatures (373 – 1300 K bulk gas 

conditions) and densities (17.4 and 34.8 kg/m
3
 bulk gas conditions), fuel injection 

pressures (1034 to 2000 bar), and fuel temperature, using a mutli-hole injector.  For the 

non-vaporizing sprays penetration and cone angle were quantified. For vaporizing sprays 

the parameters of interest were liquid length and penetration. For combusting sprays key 

characteristics included flame length, lift-off length, and combusting cone angle.  

Under non-vaporizing conditions, a 7 K increase in fuel temperature has 

negligible influence on penetration or cone angle of the sprays. Injection pressure, 

however, shows a significant influence on penetration with it increasing 40% for an 

injection pressure increase from 1034 to 2000 bar, with a corresponding 6% increase in 

cone angle. A reduction in charge gas density, from 17.4 to 34.8 kg/m
3
, provided a 20% 

increase in penetration and 9% decrease in cone angle. Although plume to plume 

variations were evident under these non-vaporizing test conditions, trends could not be 

identified in regards to plume dependency without additional tests being conducted and 

an improved definition of start of injection relative to camera image acquisition.  

Vaporizing spray tests showed a non-linear reduction in liquid length with an 

increase in charge gas temperature, with a 49% decrease for an 800 to 1300 K change in 

temperature. An 8 K increase in fuel temperature reduced liquid length by 12%. 

Increasing charge gas density by a factor of 2 provided a 34% reduction in liquid length. 

Injection pressure showed minimal influence on liquid length for the conditions 

investigated. Fluctuations of the liquid length about a quasi-steady value were apparent 

under all investigated test conditions. Plume to plume variations were evident with trends 

existing. These included plumes 1, 4, 5, 6 and 7 exhibiting liquid lengths less than the 

mean by an average of 5%, and plumes 2, 3, and 8 possessing liquid lengths in excess of 

the mean by an average of 5%. This is hypothesized to be attributed to the internal flow 

geometry of the injector. Eccentric needle lift and motion is ruled out as a cause of these 

variations, even though it is apparent at the start of injection, this motion does not 
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translate to the steady state plume characteristics. Similarly, with scanning electron 

microscope images of the injector nozzle, differences in hole diameter are eliminated as a 

cause of these spray plume variations.  

For combusting tests in a 21% oxygen environment, an injection pressure increase 

from 1034 to 2000 bar results in an increase in flame lift off by 31%, decrease in cone 

angle by 8%, and increase in lift-off length by 40%. Charge gas-density also influences 

spray characteristics, showing a reduction in flame length by 11% and lift-off length by 

25% for a doubling of charge-gas density from 17.4 to 34.8 kg/m
3
 (bulk-gas conditions), 

with a 23% increase in cone angle. Charge gas temperature showed no significant impact 

on flame length (less than 2% for a 150 K change in temperature). 

A comparison of the combusting and vaporizing test results show that of the tests 

undertaken, three conditions exist (34.8 kg/m
3
 density at 1100 K 1034 bar injection 

pressure, and 950 and 1100 K 1379 bar injection pressure) where the liquid length 

exceeded the lift-off length, by up to 20%, which would likely yield increased soot 

production. These conditions should be avoided as it is ideal to ensure enhanced fuel-air 

mixing before reaching the combustion zone. Additionally, a comparison of combusting 

flame length and non-vaporizing penetration was undertaken (acknowledging that 

charge-gas temperature differences exist) and it was found that at full load (34.8 kg/m
3
 

conditions), the penetration became reduced relative to the flame length due to hot 

product expansion and increased propagation as a result of combustion. This trend 

however was not observed under the part-load (17.4 kg/m
3
) condition.  

The aforementioned liquid length fluctuations were further investigated in an 

effort to explain this behavior. Over the quasi-steady period, the magnitude of the 

fluctuation relative to the mean value varied. The average magnitude of these fluctuations 

was an increase of 10% and a decrease of 5% relative to the mean value, for all test 

conditions investigated. Fluctuations did not directly correlate to fuel pressure 

fluctuations in the high pressure fuel line as a result of injection based on frequency 

analysis, but, these may provide a small contribution to the behavior. Frequency analysis 

of the fluctuations were applied, however, there was no consistency in the determined 

frequencies signifying that they may in fact be random and non-systematic in nature. 

Hypotheses were presented as to the cause of these fluctuations including, cavitation, 

fuel-line pressure fluctuations, temperature gradients and turbulence (attributed to 

changes in mixing from steady state conditions), which were further investigated using a 

1-D liquid length model.  

The applied 1-D liquid length model is based on a mixing-limited vaporization 

assumption. Limitations of this model were investigated to ensure the conditions of the 

current work fall into the realm of applicability, which is confirmed. Under low 

temperature or density conditions the model applicability in regards to the mixing-limited 

vaporization, begins to come under question. The model was first evaluated using 

tabulated properties for cetane as a representative surrogate for diesel fuel. This 

application validated the model in regards to trends compared to experimental results, 

yielding liquid lengths at most 1.6 mm shorter from the experimental tests at the elevated 

fuel temperature condition, being 3 mm shorter for the reduced fuel temperature 

condition. An equation of state approach for thermophysical property determination was 

developed using the Peng Robinson equation of state to enable model application using 
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fuels whose thermodynamic properties are not readily available, and to evaluate fuel 

mixtures. This required the development of vapor-liquid equilibrium using fugacity 

functions for defining the saturation pressure–temperature relationship, along with 

various enthalpy and compressibility terms representing both conditions at injection, and 

those at saturation, where the liquid length is defined. Using cetane as the representative 

fuel, the equation of state approach for thermophysical property modeling provides 

results which match well with experimental results. This methodology was also applied 

to a range of fuels, both single and multi-component, providing indication that for fuels to 

match liquid length vaporization characteristics, its boiling point should closely match the 

90% distillation point of diesel fuel.  

This analysis and model was also used to provide a parametric evaluation of the 

proposed hypotheses for liquid length fluctuations, including charge-gas temperature 

gradients, cavitation, injection pressure fluctuations or nozzle orifice characteristics.  

• To match the average magnitude of the liquid length fluctuations, of 0.5 mm 

increase and 0.6 mm decrease from the quasi-steady value, a 55 K reduction and 

100 K increase in charge-gas temperature, respectively, is required. These charge-

gas temperature gradients most likely exist due to the combustion vessel boundary 

layers and are a possible phenomenon influencing the liquid length fluctuations, 

however, they are not the only impact since even larger gradients in temperature 

would be required to explain the maximum extent of the fluctuations.  

• The remaining hypotheses are manifested as a change in orifice coefficients, 

including discharge coefficient for cavitation and area contraction coefficient for 

injection pressure. To achieve the average increase in liquid length, the area 

contraction coefficient would need to increase by 0.08, and decrease by 0.08 to 

reach the observed average decrease in liquid length. This required decrease in area 

contraction coefficient is reasonable based on the expected reduction in discharge 

coefficient attributed to cavitation, however, it is difficult to explain the increase in 

the coefficient unless there is transition between conditions of cavitating to non-

cavitating regimes in the flow.  

• Injection pressure perturbations were evidenced in the fuel pressure traces, spanning 

95 MPa, which could be manifested as a small reduction in area contraction 

coefficient. This reduction in Ca from 0.9 to 0.8 would yield a 0.7 mm reduction in 

liquid length, which is not of large enough magnitude to explain the fluctuations, 

agreeing with characteristic frequencies of the fuel pressure fluctuations as 

discussed in Chapter 7 signifying that fuel pressure fluctuations are not a governing 

factor in these liquid length fluctuations.  

• Liquid length fluctuations could partially be explained by differences in injector 

orifice characteristics caused by internal flow and geometry, however, the required 

magnitude of change of injector coefficients is significant (area contraction 

coefficient change of 0.5 to explain the 3.7 mm span in liquid length fluctuations) 

and therefore is not the only phenomenon.  

Based upon this analysis, the cause of the liquid length fluctuations is likely attributed to 

one, or a combination of factors including temperature gradients, internal injector flow 

geometry manifested in nozzle coefficients, and slugs of fuel detaching from the tip of 

the spray. These slugs of fuels detaching from the spray are observed in the images, and 
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are not evaluated in the image processing as discussed in Chapter 5.4.2 based on the 

spray being defined as the continuous portion of fuel from the injector. 

The current work has made significant contributions to the diesel spray and 

combustion community through several means. This work has validated the use of a 

preburn procedure for thermodynamic state generation by application of the first detailed 

chemical kinetics modeling study. This procedure was applied for diesel spray and 

combustion studies from a multi-hole injector in an optically accessible constant volume 

combustion vessel over a range of engine-relevant conditions. This was achieved through 

robust optical diagnostic development and image processing methodologies. Results were 

quantified, including plume to plume variations and liquid length fluctuations, which 

have implications on emissions and fuel-air mixing. This multi-hole injector study with 

focus on plume to plume variations and liquid length fluctatuions is the most extensive 

multi-hole injector study currently published. These fluctuations were characterized both 

using frequency analysis and a developed equation of state approach for thermophysical 

property modeling with an application to a 1D mixing limited vaporization model for 

liquid length. This equation of state approach provides a simple, but effective, method for 

evaluating liquid length characteristics of a wide range of surrogates over varying 

conditions. The thermophysical property analysis using the equation of state approach 

provides an advancement over past studies which focus solely on surrogate fuels and 

chemical kinetics. Additionally, this method is an improvement as it relies on readily 

available fuel property data for hydrocarbons and their mixtures, as opposed to requiring 

less accessible tabulated data for enthalpy and other properties. This knowledge is 

imperative based on the importance of liquid length in emissions, relative to lift-off 

length, and the avoidance of wall impingement for unburnt hydrocarbon emissions. The 

validated combustion vessel apparatus and equation of state 1-D liquid length model 

provide the necessary tools for understanding diesel spray characteristics, and the impacts 

of fuel, for improvements in engine design for emissions and efficiency.  
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10. Future Work 
Numerous opportunities exist for additional experimental work and modeling to 

expand on the current research. One area which is a necessity for future work is 

temperature measurements inside the combustion vessel. This includes measurements of 

the ambient charge-gas temperature at various locations which could be accomplished by 

using a thermocouple window probe, based off that used at Sandia (Pickett et al. 2010). 

This would provide information on boundary layers and temperature gradients and 

fluctuations which do exist enabling the development of relationships for conversion of 

bulk gas conditions to core gas conditions for the Michigan Technological University 

combustion vessel, as opposed to the use of correlations developed for Sandia National 

Laboratories combustion vessel, as were used here. This information is imperative for a 

more thorough characterization of ambient composition and is essential as Michigan 

Technological University becomes increasingly involved with the international 

collaboration initiative of the Sandia National Laboratory ECN.  

Also required are improved fuel temperature measurements along with improved 

fuel injector cooling. Several institutions use a dummy injector setup for measuring fuel 

temperature which could be replicated at Michigan Technological University with a 

moveable thermocouple included in the injector to measure temperature variations 

throughout the injector (Pickett et al. 2010; Bazyn and Martin 2011; Meijer et al. 2011). 

This would provide a more accurate understanding of the injected fuel temperature and 

gradients in fuel temperature at varying locations in the injector. Fuel temperature 

reduction capability should also be improved which could be achieved by a higher 

capacity chiller and the use of heat transfer grease during injection installation to 

facilitate more efficient heat removal.  

In chapter 4 significant discussion was provided on minor species produced 

during the premixed burn based on modeling. Experimental testing should be undertaken 

to validate the reported levels of minor species, in particular NOx, as a function of pre-

mixture and test conditions. Diagnostic development would be required for in-situ 

sampling, which could include the use of a sampling probe coupled with a multi-

component gas-analyzer. Care must be taken to minimize the effects of crevice volumes 

on the sampled gas results as these volumes cause elevated levels of un-burnt 

hydrocarbons. In addition to minor species levels, an understanding of major species 

produced is also beneficial, which can be achieved by verifying mixtures through exhaust 

gas sampling. Recommended is the installation of an oxygen (lambda) sensor with 

feedback into the iTest control system to provide close to real-time verification of 

mixture properties and an indication of pre-burn combustion efficiencies by providing a 

reading of oxygen levels in the products. Undertaking parametric studies applying 

differing mixture compositions for a consistent oxygen level would be advantageous to 

understand minor and major species produced, coupled with fuel spray and ignition 

studies in these differing environments with identical experimental setup to compare the 

influence on spray and combustion characteristics, including ignition delay. This would 

enable quantification of the influence these varying mixtures have on spray 

characteristics. Studies should be performed to better understand the influence of fan 

speed on the pre-combustion event and diesel injection to determine if there is an optimal 

setting for pre-burn combustion efficiency and generated composition levels. The results 
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from this future work component will provide application and information for the 

advancement of the Sandia ECN by better understanding parameter influence on pre-

combustion events to facilitate vessel comparison and collaboration. Exhaust gas 

sampling is also required to follow-up on the modified 0% oxygen mixture to verify that 

combustion efficiency is improved and oxygen levels provide a better representation of 

actual zero percent oxygen conditions.  

Additional diagnostic development is required to advance the impact of the 

combustion vessel research efforts. This includes the development of an upgraded 

shadowgraph system to provide enhanced image signal to noise ratio, in particular, under 

conditions using the pre-burn procedure for thermodynamic state generation. This can be 

undertaken using a camera with increased low-light sensitivity, along with a higher 

intensity light source. Novel image processing techniques would also be required 

including for example, those used at Sandia which considers the texture of the temporal 

derivative for defining spray regions (Sandia ECN 2011) as opposed to standard edge 

detection methodologies. This shadowgraph imaging is important as it provides an 

understanding of vaporization characteristics which, when directly coupled with Mie 

scatter (liquid phase) imaging, provides an understanding of fuel-air mixing and 

vaporization. This may best be accomplished by development of the technique proposed 

by Parrish and Zink (2011) as discussed in Chapter 2 which has been successfully applied 

to gasoline sprays. The validity of this method for higher pressure diesel sprays is 

unknown, but future work should include development and integration of this imaging 

methodology to determine if the benefits can be realized in the Michigan Technological 

University combustion vessel laboratory.  

In addition to imaging enhancement, it is essential to continue laser diagnostic 

development to enable studies on soot formation. This includes both Laser Induced 

Incandescence (LII) diagnostics which provide qualitative information on spatial soot 

distribution, which, when coupled with laser extinction, yield quantitative soot 

measurements in a combusting fuel jet (Musculus and Pickett 2005). This information is 

imperative to link the fundamentals of soot formation with spray characteristics, and 

better understand the influence of plume to plume variations, and liquid length 

fluctuations, on the levels of soot formed from production multi-hole injectors.  

Although not currently used, one diagnostic that would be advantageous to 

increase the understanding of fuel injection profiles is a rate of injection system which 

provides an indication of mass fuel flowing rate (refer to Johnson 2009 for details). The 

existing system in the combustion vessel laboratory is only capable of measurements 

from an on-axis single hole nozzle under room temperature and pressure conditions. 

Modification to this system would enable mass fuel flow rate measurements for each 

plume, independently, from a multi-hole nozzle, also under pressurized and high 

temperature conditions, representative of the actual spray tests. Extensive updates would 

be required to the existing system, however, the information on fuel mass flow rate 

provided for the various conditions and differing fuel types would generate additional 

data to help understand the injection process, including any perturbations in the injected 

flow rate, which could tie into the observations of the spray characteristics.  

Supplementary testing is proposed to compare the flame length of the combusting 

spray to diesel spray penetration, under varying levels of EGR (different percent oxygen 
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conditions). This would provide additional information on spray and combustion trends at 

charge-gas conditions more representative of current technology diesel engines, which 

consistently run EGR.  

Additional experimental imaging of diesel spray liquid length, under a broader 

range of experimental conditions, and at enhanced frame rates, would provide additional 

comprehension of diesel spray fluctuations in liquid length and plume to plume 

variations. These behaviors have implications in emissions formation; therefore, it is 

essential to provide a better understanding of this minimally documented phenomenon. 

This could be accomplished by taking higher frame rate images which would likely 

require conditions of reduced liquid length to enable decreased region of interest for 

image acquisition to permit elevated frame rates, based on camera limitations. 

Furthermore, further testing is required to validate the hypotheses for liquid length 

fluctuations, which should include consideration of surface roughness of the nozzle holes 

(as indicated in the SEM images presented in Chapter 3.4.2.1 and 12.2) and this influence 

on downstream spray characteristics.  

It is important to understand the role of fuel impact in this behavior so  various 

single-component fuels must be tested, including hexadecane, n-dodecane, and n-

heptadecane, where property and kinetics information is well known, so that 

experimental results could be coupled with simplified 1-D and more detailed CFD 

modeling to provide a better understanding of these behaviors. This model with the 

equation of state method for property determination should also be used in surrogate fuel 

development to determine optimum fuel characteristics for matching diesel spray 

vaporization. It was concluded that a fuel boiling point which matches the 90% 

distillation point of diesel fuel is appropriate as a single-component surrogate for diesel 

spray characteristics, whereas matching the 50% distillation point does not provide a 

good representation. A similar approach should be undertaken for multicomponent 

surrogates in regards to determining a multi-component surrogate which has a distillation 

curve which closely resembles that of diesel fuel to determine if this full-matching of 

distillation provides an improved representation of diesel spray liquid length 

characteristics, or if matching the mixture boiling point to the 90% distillation of diesel is 

sufficient as discussed here. Future work will also include development of a 

dimensionless parameter for this penetration at the transition time to the liquid length 

ratio, to fully understand parameter dependency on the validity of this mixing limited 

hypothesis to ensure successful model application for surrogate fuels. 

Improvements can also be made in the 1-D liquid length model as used here. 

These include an improved method of defining conditions at saturation, which couple the 

fuel and ambient and treat them as a mixture, as opposed to treating them as two separate 

mediums as done here based on Siebers (1999) model approach. An approach of this 

nature, in regards to treating the fuel and ambient at saturation as a mixture, is proposed 

in Luijten and Kurvers (2010) through the use of an enhancement factor, which could be 

incorporate in the liquid length model used here, while still using the equation of state 

method, with some modifications, for thermophysical property modeling. Additionally it 

has been assumed that the pressure term for the fuel liquid enthalpy (refer to discussion in 

chapter 7.4) is negligible. Correlations should be developed to evaluate this term and 
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include it in the model to further include all non-ideal effects to enhance model 

applicability.  

In addition to improvements on the 1-D liquid length model, this model can be 

coupled with a similar model for lift-off length. This application will provide a better 

understanding of conditions which are required to achieve the maximum separation 

between lift-off length and liquid length to assist with soot emission reductions without 

the use of aftertreatment. By using the model to determine parameters which have the 

largest impact on liquid length, and by determining the corresponding impact on lift-off 

length, a better understanding of the competing parameters and resulting trends will be 

seen. This has application for a wide range of advanced combustion strategies including 

low-temperature combustion to better understand the limits of the operating regime, in 

particular from an emissions standpoint, to determine the path-forward for low-

temperature combustion and other advanced strategies.  

The final key aspect of future work is the integration and testing of alternative 

diesel fuels. This could include green diesel, biodiesel and dimethyl ether which have 

been proposed as potential alternative fuels but require additional study on spray, 

combustion, and emission formation characteristics to ensure efficient and successful 

integration. Using the methodologies developed and integrated in the current work, these 

fuels could be tested experimentally with results compared to proposed surrogates or 

single component fuels that could provide a good representation of their behavior to 

provide an improved understanding of parameter influence. The alternative fuels will also 

be included in the equation of state model with the thermophysical property analysis to 

model the liquid length characteristics of these alternative fuels. 

Options for future work span various sections including both experimental and 

modeling, as required to not only advance the research capabilities of the Michigan 

Technological University combustion vessel, but also to provide enhanced applicability 

of the tools developed currently.  
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12.1.3. Figure 3.5 Copyright Permission – Sam 

Johnson 

 

12.1.4. Figure 3.33 Copyright Permission – Eric 

Kurtz 
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12.1.5. Figure 3.34 Copyright Permission – 

Chris Green 

 

12.2. Supplements to Chapter 3 – Nozzle 
Hole Measurements 

Scanning electron microscope (SEM) images were acquired of the eight holes in the 

injector nozzle to characterize variations in hole diameter as a potential explanation for 

plume-to-plume variations. SEM images were acquired at the Michigan Tech Applied 

Chemical and Morphological Analysis Laboratory (ACMAL, 

http://mcff.mtu.edu/acmal/), under the direction of Owen P. Mills. The SEM used was the 

JEOL JSM-6400. The procedure is as follows: 

 Clean injector nozzle by sonication in acetone, run 5 cycles of cleaning.  

 Sonicate for 5 minutes in isopropyl alcohol to remove the acetone residue left on 

the nozzle holes.  

 Place nozzle (sample) on a sample holder, oriented such that one hole will be 

perpendicular to the electron beam. Apply conductive tape to the sample (to 

account for the lack of electricity conduction of the nozzle). Insert sample holder 

into the scanning electron microscope chamber.  

 Align sample stage to the beam.  

 Apply SEM beam at 20 kV.  

 Acquire images: 

o 1000 pixels / line 

o IMS-1 -- Fast scan (50 Samples / second), save first image 

o 400X Resolution 

o 400 kHz Sample Rate 

 Post process images in Matlab 

These images of the nozzle hole were acquired twice to verify hole diameter 

measurements.  

http://mcff.mtu.edu/acmal/
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12.2.1. SEM Images – Test Set 1 
Images from test set 1 are provided below, referenced to a hole number which 

corresponds to the referenced spray plumes discussed in the dissertation.  

 
Figure 12.1: Hole number 1, test set 1. 

 
Figure 12.2: Hole number 2, test set 1. 

 
Figure 12.3: Hole number 3, test set 1. 
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Figure 12.4: Hole number 4, test set 1. 

 
Figure 12.5: Hole number 5, test set 1. 

 
Figure 12.6: Hole number 6, test set 1. 
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Figure 12.7: Hole number 7, test set 1. 

 
Figure 12.8: Hole number 8, test set 1. 

For these SEM images, one obvious difference is hole number 2 being 

substantially smaller than the other 7 holes. This hole, however, does not yield a reduced 

liquid length as was discussed in Chapter 6.2.  This led to the repeating of the SEM 

images to see if this significant difference in hole diameter was an artifact of setup or 

acquisition settings (i.e. magnification), or if it is a real observed phenomenon. Also of 

interest is differences in hole smoothness. Holes are not perfectly circular which is 

partially attributed to the non-normal nature of the scanning electron beam based on 

sample stage constraints in the SEM chamber, but is also a physical result of the nozzle, 

which can influence smoothness and hence fuel flow through the nozzle, which can 

translate to spray characteristics.  

12.2.2. SEM Images – Test Set 2 
In this second round of SEM tests, the same procedure and settings as Test Set 1 

were used. SEM images for each hole of the 8-hole nozzle are shown in the figures 

below.   
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Figure 12.9: Hole number 1, test set 2. 

 
Figure 12.10: Hole number 2, test set 2. 

 
Figure 12.11: Hole number 3, test set 2. 
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Figure 12.12: Hole number 4, test set 2. 

 
Figure 12.13: Hole number 5, test set 2. 

 
Figure 12.14: Hole number 6, test set 2. 
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Figure 12.15: Hole number 7, test set 2. 

 
Figure 12.16: Hole number 8, test set 2. 

The same scaling is used in all the images, and a direct comparison of the images 

by eye does not show any significant differences in hole diameter, as was seen in Hole 2 

Test Set 1. Therefore, this reduced hole diameter was likely an artifact of scaling issue 

and is not a physical phenomenon. This is further confirmed since the expected small 

hole would have been hole 5 based on smallest liquid length, which was not the case here 

and hence it is not expected that hole two should be smallest, in fact, it should be one of 

the largest diameter holes based on liquid length trends. 

12.3. Supplements to Chapter 4 -
Chemical Kinetics Modeling 

12.3.1. EES Extent of Reaction Initial Condition 

Determination 
The Cantera chemical kinetics modeling steps for the preburn procedure are 

outlined below in Figure 12.17.  
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Figure 12.17: Preburn chemical kinetics modeling procedure. 

This is a two-step process consisting of first computing the model initial conditions, and 

second modeling the chemical kinetics of the preburn and cool down procedure.  

The first stage of the preburn modeling is discussed in detail below. An extent of 

reaction method was undertaken to determine the preburn modeling initial conditions 

which are input into the Cantera chemical kinetics model. These conditions include an 

elevated temperature, pressure, and partially reacted mole fractions, which are used to 

facilitate autoignition of the preburn mixture in the modeling. The extent of reaction 

method was undertaken using Engineering Equation Solver (EES)
© 

software, with the 

procedure shown schematically in Figure 12.18.  

 
Figure 12.18: EES extent of reaction methodology.  

This method requires EES inputs of initial temperature and pressure, which are defined 

based on the required ‘Spray A’ density and heated combustion vessel temperature, along 

with preburn mixture species mole fractions. An initial guess elevated temperature, T2, 

was also defined. This temperature will be iterated on until the Cantera model peak 

temperature matched the experimentally obtained peak temperature in the combustion 

vessel ‘Spray A’ experimental testing. With these inputs, combustion reaction 

stoichiometry was defined based on an arbitrary extent of reaction alpha (α) such that the 

reaction was only partially completed (alpha is less than 1). This included ideal 

combustion product species of CO2, H2O, O2, and N2. Conservation of energy was then 
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applied to determine this extent of reaction, alpha, such that the internal energy of the 

reactants at the starting temperature was equal to the internal energy of the products for a 

given extent of reaction at the elevated temperature T2. Internal energy of the products is 

the sum of the internal energy of all species in the products with the internal energy of a 

given species defined as the molar based internal energy of the species multiplied by the 

number of moles of that species in the products. The same definition was used for the 

internal energy of the reactants. This alpha value was  then used to calculate the mole 

fractions of the Cantera input species at the elevated temperature and pressure conditions 

including reductions in mixture concentrations (due to partial combustion reactions) and 

the addition of CO2 and H2O due to a partial reaction from combustion products.  

Finally, elevated pressure and temperature conditions must be defined for inputs 

to the Cantera modeling. The peak combustion temperature was calculated in EES based 

on an alpha of one, meaning 100% reaction completion as determined by equating the 

elevated reaction internal energy to the ideal product internal energy. The reaction at 

completion assumed ideal adiabatic combustion resulting in calculated peak temperature 

from combustion exceeding that achieved in the experimental preburn. The difference 

between the ideal peak combustion temperature and the actual experimentally achieved 

combustion temperature was determined and this temperature shift was applied to lower 

T2 and defined as the input temperature to the Cantera modeling. Input pressure was 

calculated via the ideal gas law using the reactant mixture molecular weight. Therefore, 

the results of the EES extent of reaction method provided inputs of temperature, pressure 

and major species (N2, O2, CO2, H2O, Ar, C2H2 and C2H4, depending on initial gases in 

the preburn mixture) for the Cantera preburn modeling.  

12.3.2. n-Heptane Autoignition Model 
The n-heptane autoignition model is discussed here, including calculating the 

stoirhicometric fuel – charge-gas mixture mole fractions, required as model inputs, along 

with full model implmenetration in Matlab interfaced with Cantera.  

The following set of equations is used to calculate the stoichiometric fuel-charge 

gas mixture mole fractions. First, the total number of moles was calculated with the major 

species (minor species were not included), with one mole of fuel added into this mixture 

as defined in equation (106).  

 NTotal = 1 +
λ ∗ x ∗ (1 + R/4)

XO2,o  (106) 

The air-fuel mixture defines λ, which is 1 in this case for stoichiometric conditions, x is a 

property of the fuel representing the number of carbon atoms which is 7 for n-heptane, 

and R, which is defined as y/x is also a fuel property representing the ratio of hydrogen to 

carbon atoms in the fuel, which is 16/7 or 2.29 in this case. Finally XO2,o is the mole 

fraction of oxygen atoms in the original mixture (before fuel addition).  

With the total number of moles known, the individual species mole fractions for 

the n-heptane autoignition modeling was calculated using equation (107).  

 
XSpecies =

XSpecies,o
XO2,o ∗ λ ∗ x ∗ (1 + R/4)

NTotal  
(107) 
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Where XSpecies,o is the initial mole fraction of each species before any fuel addition 

(designated by the ‘o’ (initial) in the subscript), where the species are CO2, H2O, N2, O2, 

and Argon, and XO2,o is the initial oxygen mole fraction of the mixture before fuel 

addition. Mole fractions were calculated for each component in the mixture, with the fuel 

mole fraction calculated in equation (108).  

 Xn−heptane =
1

Ntotal (108) 

The equation is valid since 1 mole of fuel was assumed in the mixture stoichiometry. The 

inputs computed here are used in the modeling, as will be discussed.  

Modeling was undertaken using a constant pressure perfectly stirred reactor under 

constant pressure and enthalpy conditions using Cantera interfaced with Mathworks
TM

 

Matlab. A flow diagram of the modeling is shown in Figure 12.19.  

 
Figure 12.19: n-Heptane ignition delay modeling flow chart.  

Constant pressure conditions are used since diesel mixing is typically a fast process and 

therefore there are minimal changes in pressure during this mixing process. Using the 

mole fraction of the ambient gas composition mixed with n-heptane at the initial pressure 

and temperature conditions as previously specified, the ignition delay of n-heptane was 

calculated along with the peak combustion temperature, compared amongst all ambient 

environments. The ignition delay is defined as the time at which the gradient in 

temperature reaches a maximum, as shown in Figure 12.20.  



 

309 

 
Figure 12.20: Ignition delay definition used in modeling.  

12.3.3. Processing Files 
There are several processing files used in the chemical kinetics modeling, however, 

not all are provided here. Rather, the files for the 21% oxygen analysis are included as 

being representative for all percent oxygen conditions investigated. Similar procedures 

are run for the differing oxygen levels, and also for the different institutions which are 

part of the ECN as was discussed in Chapter 4.  

 

12.3.3.1. Extent of Reaction Calculation Using 

Engineering Equation Solver (EES) 
 

Program inputs include initial temperature (T1), pressure (P1), guess elevated 

temperature (T2), density (rho), expected temperature (Texpected), and volume fraction 

of the initial reactants Outputs are input temperature (Tinput), input pressure (Pinput), 

and partially reacted mole fractions of species, CO2, H2O, N2, O2, C2H2, and H2, for input 

into the Cantera chemical kinetics model.  

 

Cantera Starting Conditions 21.EES 

 
//Run this program using a given volume fraction of initial reactants 
(from Sandia's website), starting T1, P1 and a T2 which will be shifter 
to determine the starting temperature of the kinetics. inputs to the 
kinetics from the results of this program are YC2H2input,  YH2input,  
YN2input,  YO2input, YH2Oinput and YCO2 input, as well as Tinput and 
Pinput 
 
"ASSUMING NO MINOR SPECIES" 
 
"Initial Conditions - State 1" 
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T1=458; "K" 
P1=2*10^3; "kPa" 
T2=1150 
 
//Volume fraction of initial reactants 
 
C2H2_r=3.0 
H2_r=0.5 
N2_r=68.12 
O2_r=28.38 
 
//Convert to mole fractions 
 
C2H2_reactant=C2H2_r/100; 
H2_reactant=H2_r/100; 
O2_reactant=O2_r/100; 
N2_reactant=N2_r/100; 
 
// Determine moles for stoichiometry 
 
C2H2_reactant=a/(a+b+c+d) 
H2_reactant=b/(a+b+c+d) 
O2_reactant=c/(a+b+c+d) 
N2_reactant=d/(a+b+c+d) 
 
N_reactant=a+b+c+d 
 
"Balance Reaction Assuming 100% Completion" 
 
CO2_product=2*a 
H2O_product=a+b 
O2_product=(2*c-H2O_product-2*CO2_product)/2;  
N2_product=d; 
 
"Additional Concentrations Assuming Not Go to Completion" 
 
O2_product_extent=c; 
H2_product_extent=b 
C2H2_product_extent=a; 
 
//Considering the extent of reaction, alpha 
 
N_product=alpha*(CO2_product+H2O_product+O2_product)+N2_product+(1-
alpha)*(O2_product_extent+C2H2_product_extent+H2_product_extent); 
N_CO2_product=CO2_product*alpha; 
N_H2O_product=H2O_product*alpha; 
N_O2_product=O2_product*alpha; 
N_N2_product=N2_product; 
 
N_O2_product_extent=O2_product_extent*(1-alpha); 
N_H2_product_extent=H2_product_extent*(1-alpha); 
N_C2H2_product_extent=C2H2_product_extent*(1-alpha); 
 
 
"Conservation of Energy" 
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U_Product=N_CO2_product*IntEnergy('CO2',T=T2)+N_H2O_product*IntEnergy('
H2O',T=T2)+N_O2_product*IntEnergy('O2',T=T2)+N_N2_product*IntEnergy('N2
',T=T2)+N_O2_product_extent*IntEnergy('O2',T=T2)+N_H2_product_extent*In
tEnergy('H2',T=T2)+N_C2H2_product_extent*IntEnergy('C2H2',T=T2); 
U_Reactant=a*IntEnergy('C2H2',T=T1)+b*IntEnergy('H2',T=T1)+c*IntEnergy(
'O2',T=T1)+d*IntEnergy('N2',T=T1); 
 
U_Reactant=U_Product; 
 
//Mole fraction of initial reactants as inputs to the Cantera code 
 
YC2H2input=N_C2H2_product_extent/N_product 
YH2input=N_h2_product_extent/N_product 
YO2input=(N_O2_product_extent+N_O2_product)/N_product 
YN2input=N_N2_product/N_product 
YH2Oinput=N_H2O_product/N_product 
YCO2input=N_CO2_product/N_product 
 
"Conservation of Mass to determine P2 for a given T2" 
 
P2=P1*(N_product*T2)/(N_reactant*T1) 
 
"Equilibrium Calculations - alpha =1 to determine peak pressure and 
temperature" 
 
N_C2H2=N_C2H2_product_extent 
N_N2=N_N2_product 
N_O2=N_O2_product_extent+N_O2_product 
N_H2=N_H2_product_extent 
N_CO2=N_CO2_product 
N_H2O=N_H2O_product 
N_reactant2=N_C2H2+N_N2+N_O2+N_H2+N_CO2+N_H2O 
 
"Balance Reaction Assuming 100% Completion" 
 
CO2_product2=2*N_C2H2+N_CO2; 
H2O_product2=N_C2H2+N_H2+N_H2O; 
O2_product2=(2*N_O2+2*N_CO2+N_H2O-H2O_product-2*CO2_product)/2; 
N2_product2=N_N2; 
N_product2=CO2_product+H2O_product+O2_product+N2_product 
 
"Conservation of Energy" 
 
U_Product2=CO2_product2*IntEnergy('CO2',T=TFinal)+H2O_product2*IntEnerg
y('H2O',T=TFinal)+O2_product2*IntEnergy('O2',T=TFinal)+N2_product2*IntE
nergy('N2',T=TFinal) 
U_Reactant2=N_C2H2*IntEnergy('C2H2',T=T2)+N_H2*IntEnergy('H2',T=T2)+N_O
2*IntEnergy('O2',T=T2)+N_N2*IntEnergy('N2',T=T2)+N_CO2*IntEnergy('CO2',
T=T2)+N_H2O*IntEnergy('H2O',T=T2); 
 
U_Reactant2=U_Product2; 
 
"Conservation of Mass" 
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PFinal=P2*(N_product2*TFinal)/(N_reactant2*T2) 
rho=14.8; 
R=8.314; 
MWCO2=MolarMass(CO2) 
MWN2=MolarMass(N2) 
MWH2O=MolarMass(H2O) 
MWO2=MolarMass(O2) 
MWC2H2=MolarMass(C2H2) 
MWH2=MolarMass(H2) 
 
MW=(N_CO2_product*MWCO2+N_H2O_product*MWH2O+N_N2_product*MWN2+(N_O2_pro
duct+N_O2_product_extent)*MWO2+N_H2_product_extent*MWH2+N_C2H2_product_
extent*MWC2H2)/N_product 
 
//Expected from Sandia Data 
 
Texpected=1752.154; 
Pexpected=Texpected*(rho*R)/MW 
 
//Apply temperature shift to account for heat transfer to match 
Sandia's peak pressure and temperature in Cantera Kinetics 
 
deltaT=TFinal-Texpected+16 
Tinput=T2-deltaT; 
Pinput=(rho*R*Tinput)/(MW) 
 

12.3.3.2. Premixed Burn Phase Chemical Kinetics 

Model Using Cantera Interfaced with Matlab 
This Matlab program takes the output from the EES program, and runs a 1-D 

chemical kinetics modeling to simulate the premixed burn phase including the preburn 

and cool-down stages. Output results are written into excel files to provide results for 

plotting and further analysis, and also provide the required inputs for the next modeling 

stage.  

 

Reactor_Ignition_UV_GRI21.m 
 

function Reactor_Ignition_UV_GRI21 
clear all 
close all 
 
%% USE THIS FOR 21% O2 Preburn Process GRI Mechanism 
 
%Input YC2H2, YCO2, YH2O, YH2, YO2, YN2, T & P from EES Program 
(Cantera 
%Starting Conditions 21.EES 
 
%Input Heat flux from Sandia P T Trace 21 perc O2.xls 
 
%Verify that the heat flux tuning is correct, as well as indecies for 
%maximum temperature. Also check that the time that the heat flux 
starts is 
%equivalent to the ignition delay time of the simulation.  
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%    Zero-dimensional kinetics: adiabatic, constant volume. 
%    GRI 3.0 Reaction Mechanism - 53 species and 342 mechanisms 
%     
% H2      H       O       O2      OH      H2O     HO2     H2O2     
% C       CH      CH2     CH2(S)  CH3     CH4     CO      CO2      
% HCO     CH2O    CH2OH   CH3O    CH3OH   C2H     C2H2    C2H3     
% C2H4    C2H5    C2H6    HCCO    CH2CO   HCCOH   N       NH       
% NH2     NH3     NNH     NO      NO2     N2O     HNO     CN       
% HCN     H2CN    HCNN    HCNO    HOCN    HNCO    NCO     N2       
% AR      C3H7    C3H8    CH2CHO  CH3CHO 
% 
%   Inputs: Starting Pressure, Temperature and Mole Fractions 
%   Heat Flux for given Pressure - Time Sandia Data 
%   Make sure to define the heat flux function.  
 
%Specify the GRI Mechanisms 
gas = GRI30; 
nsp = nSpecies(gas);  % number of species 
 
%Initial Conditions for Baseline conditions to match Sandia P, T data 
for 21% O2 
 To = 963; % temperature 
 Po = 4061*1000; % pressure and oneatm is defined as 101325 N/m^2 
 
%initial fuel-oxidizer mixture 
ic2h2 = speciesIndex(gas,'C2H2'); 
ih2 = speciesIndex(gas,'H2'); 
io2 = speciesIndex(gas,'O2'); 
in2 = speciesIndex(gas,'N2'); 
ico2 = speciesIndex(gas,'CO2'); 
ih2o = speciesIndex(gas,'H2O'); 
xo = zeros(nsp,1);  % mole fraction 
 
% 21% O2 after preburn - Specify Mole Fractions of Reactants 
 
xo(ic2h2) = 0.01697; 
xo(ih2) = 0.002828; 
xo(io2) = 0.2517; 
xo(in2) = 0.6865; 
xo(ih2o) = 0.01548; 
xo(ico2) = 0.02653; 
 
%Set the GRI Mechanism Starting Pressure, Temperature and Mole 
Fractions.  
 
set(gas,'T',To,'P',Po,'X',xo);   
 
y0 = (intEnergy_mass(gas)       % Specific internal energy (J/kg) 
      1.0/density(gas)          % Mass density (kg/m^3)  
      massFractions(gas));      % Mass fractions 
 
options = odeset('RelTol',1.e-16,'AbsTol',1.e-16,'Stats','on'); 
 
t0 = cputime; 
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dt=1*10^-7; 
t_max = 1.5; % maximum calculation time (sec)  
time_interval=(0:dt:t_max); 
 
%Solve the ODES 
out = 
ode15s(@reactor_ode,time_interval,y0,options,gas,@vdot,@area,@heatflux)
; 
 
disp(('CPU time = ' num2str(cputime - t0))); 
 
plotdata = output(out,gas,To,Po, xo); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% the functions below may be defined arbitrarily to set the reactor 
% boundary conditions - the rate of change of volume, the heat 
% flux, and the area. 
 
 
% Rate of change of volume. Any arbitrary function may be implemented. 
% Input arguments:  
%   t      time 
%   vol    volume 
%   gas    ideal gas object 
 
function v = vdot(t, vol, gas) 
v=0.0;  % Constant Volume 
 
function q = heatflux(t, gas) 
 
%Heat Flux (w/m^2) 
 
q=0;   %adiabatic before ignite premixed burn 
 
%Include heat transfer after the premixed burn is completed.  
 
if t>0.049237 
 
% normalized heat flux     
q=-1.0737*t^5+3.1999*t^4-3.2814*t^3+0.8166*t^2+1.1223*t-1.1717; 
 
%Tuning the heat flux  
q=2.6*10^7*q; 
 
end 
 
% surface area. Used only to compute heat transfer, in m^2 
 
function a = area(t,vol) 
 
a=0.048911614; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Since the solution variables used by the 'reactor' function are 
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% not necessarily those desired for output, this function is called 
% after the integration is complete to generate the desired 
% outputs.  
 
function pv = output(s, gas, To, Po, xo) 
times = s.x; 
soln = s.y; 
(m n) = size(times); 
pv = zeros(nSpecies(gas) + 4, n); 
 
for j = 1:n 
  ss = soln(:,j); 
  y = ss(3:end);         %ss(3:end): mass fraction 
  mass = sum(y); 
  u_mass = ss(1)/mass;   % ss(1); internal energy 
  v_mass = ss(2)/mass;   % ss(2): volume 
  setMassFractions(gas, y);  
  setState_UV(gas, (u_mass v_mass)); 
   
  pv(1,j) = times(j); % second 
  pv(2,j) = temperature(gas); 
  tt(j) = times(j); 
  tt0(j) = temperature(gas); 
  pv(3,j) = density(gas); 
  pv(4,j) = pressure(gas)/10^6; 
  pv(5:end,j) = moleFractions(gas);  % mole fraction 
end 
 
 
% calculate the ignition delay time 
crit(1) = 0; 
for j = 2:n 
    crit(j) = (pv(2,j)-pv(2,j-1))/(pv(1,j)-pv(1,j-1)); 
end 
 
(xmax,kig) = max(crit); 
t_ign = pv(1,kig); 
disp('Ignition Delay Time = '); 
disp(t_ign); 
 
% Read in Sandia experimental data to compare to the modeled pressure-
temperature 
% time data 
SandiaTemperature=xlsread('Sandia P T Trace 21Perc O2.xlsx', 'Sheet1', 
'C1388:C9305'); 
SandiaIndex=length(SandiaTemperature); 
SandiaPlotIndex=(1:SandiaIndex)*1*10^-4; 
 
index = min(find(pv(1,:)>t_ign+1*10^-4)) 
 
% Plot experimental and modeled temperature - time data  during the 
cool down phase 
 
figure 
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plot(pv(1,index:end)-t_ign, pv(2,index:end), SandiaPlotIndex, 
SandiaTemperature) 
legend('Simulation Results', 'Experimental Data') 
title('21% O2') 
xlabel('Time (Seconds)') 
ylabel('Temperature (K)') 
 
% define each species 
ih = speciesIndex(gas,'H'); 
ih2 = speciesIndex(gas,'H2'); 
ioh = speciesIndex(gas,'OH'); 
ih2o2 = speciesIndex(gas,'H2O2'); 
ic=speciesIndex(gas,'C'); 
ich2=speciesIndex(gas,'CH2'); 
ich2s=speciesIndex(gas,'CH2(S)'); 
ich3 = speciesIndex(gas,'CH3'); 
ih2o = speciesIndex(gas,'H2O'); 
iho2 = speciesIndex(gas,'HO2'); 
ich = speciesIndex(gas,'CH'); 
ich4=speciesIndex(gas,'CH4'); 
ich2oh=speciesIndex(gas,'CH2OH'); 
ich2oh=speciesIndex(gas,'CH2O'); 
ich3oh=speciesIndex(gas,'CH3OH'); 
ich3o=speciesIndex(gas,'CH3O'); 
ic2h=speciesIndex(gas,'C2H'); 
ico = speciesIndex(gas,'CO'); 
ico2 = speciesIndex(gas,'CO2'); 
ihco = speciesIndex(gas,'HCO'); 
ic2h2 = speciesIndex(gas,'C2H2'); 
ino = speciesIndex(gas,'NO'); 
ino2 = speciesIndex(gas,'NO2'); 
io2=speciesIndex(gas,'O2'); 
in2=speciesIndex(gas,'N2'); 
ic2h3=speciesIndex(gas,'C2H3'); 
ic2h4=speciesIndex(gas,'C2H4'); 
ic2h5=speciesIndex(gas,'C2H5'); 
ic2h6=speciesIndex(gas,'C2H6'); 
ihcco=speciesIndex(gas,'HCCO'); 
ich2o=speciesIndex(gas,'CH2O'); 
ich2co=speciesIndex(gas,'CH2CO'); 
ihccoh=speciesIndex(gas,'HCCOH'); 
in=speciesIndex(gas,'N'); 
inh=speciesIndex(gas,'NH'); 
inh2=speciesIndex(gas,'NH2'); 
inh3=speciesIndex(gas,'NH3'); 
innh=speciesIndex(gas,'NNH'); 
in2o=speciesIndex(gas,'N2O'); 
ihno=speciesIndex(gas,'HNO'); 
icn=speciesIndex(gas,'CN'); 
ihcn=speciesIndex(gas,'HCN'); 
ih2cn=speciesIndex(gas,'H2CN'); 
ihcnn=speciesIndex(gas,'HCNN'); 
ihcno=speciesIndex(gas,'HCNO'); 
ihocn=speciesIndex(gas,'HOCN'); 
ihnco=speciesIndex(gas,'HNCO'); 
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inco=speciesIndex(gas,'NCO'); 
iar=speciesIndex(gas,'AR'); 
ic3h7=speciesIndex(gas,'C3H7'); 
ic3h8=speciesIndex(gas,'C3H8'); 
ich2cho=speciesIndex(gas,'CH2CHO'); 
ich3cho=speciesIndex(gas,'CH3CHO'); 
io=speciesIndex(gas,'O'); 
 
  
% plot the temperature, pressure and species mole fractions. 
 
%plot Temperature as function of time 
figure; 
subplot(2,1,1); 
plot(pv(1,:),pv(2,:)); 
xlabel('time (s)'); 
ylabel('Temperature'); 
title(('Final T = ' num2str(pv(2,end)) 'K;  ','Max T = ' 
num2str(max(pv(2,:))) 'K;  ', ' Ign Time = ',num2str(t_ign),'s')); 
 
%Plot pressure as a function of time 
 
subplot(2,1,2); 
plot(pv(1,:),pv(4,:)); 
xlabel('time (s)'); 
ylabel('Pressure (MPa)'); 
title(('Final P = ' num2str(pv(4,end)) ' MPa;  ','Max P = ' 
num2str(max(pv(4,:))) 'MPa',)); 
 
%Plot Species mole fractions as a function of time.  
 
figure 
semilogy(pv(1,:),pv(4+ioh,:),pv(1,:),pv(4+ino2,:),pv(1,:),pv(4+ino,:), 
pv(1,:), pv(4+ic2h2,:),pv(1,:),pv(4+ih2,:)); 
xlabel('time (s)'); 
ylabel('Mole Fraction'); 
legend('OH', 'NO2', 'NO', 'C2H2','H2'); 
ylim((10^-9 1)) 
 
%Plot NO and NO2 only 
 
figure 
semilogy(pv(1,:),pv(4+ino,:), pv(1,:),pv(4+ino2,:)) 
legend('NO','NO2') 
ylabel('Mole Fraction') 
xlabel('Time (seconds)') 
ylim((10^-9, 10^-3)) 
 
% find when temperature during cool-down reaches 1000 K 
 
temperatureindex=min(find(pv(2,index:end)<1000))+index 
temperaturenhep=pv(2,temperatureindex) 
 
% save data - 53 species, temperature, and pressure at temperature of 
interest (1000 K) for fuel injection 
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 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(2,temperatureindex),'sheet1', 'B1'); %Temperature 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4,temperatureindex),'sheet1', 'B2'); % Pressure 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ih2,temperatureindex),'sheet1', 'B3'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ih,temperatureindex),'sheet1', 'B4'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+io,temperatureindex),'sheet1', 'B5'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+io2,temperatureindex),'sheet1', 'B6'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ioh,temperatureindex),'sheet1', 'B53'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ih2o,temperatureindex),'sheet1', 'B7'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+iho2,temperatureindex),'sheet1', 'B8'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ih2o2,temperatureindex),'sheet1', 'B9'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic,temperatureindex),'sheet1', 'B10'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich,temperatureindex),'sheet1', 'B11'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich2,temperatureindex),'sheet1', 'B12'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich2s,temperatureindex),'sheet1', 'B13'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich3,temperatureindex),'sheet1', 'B14'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich4,temperatureindex),'sheet1', 'B15'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ico,temperatureindex),'sheet1', 'B16'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ico2,temperatureindex),'sheet1', 'B17'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihco,temperatureindex),'sheet1', 'B18'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich2o,temperatureindex),'sheet1', 'B19'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich2oh,temperatureindex),'sheet1', 'B20'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich3o,temperatureindex),'sheet1', 'B21'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich3oh,temperatureindex),'sheet1', 'B22'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic2h,temperatureindex),'sheet1', 'B23'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic2h2,temperatureindex),'sheet1', 'B24'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic2h3,temperatureindex),'sheet1', 'B25'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic2h4,temperatureindex),'sheet1', 'B26'); 
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 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic2h5,temperatureindex),'sheet1', 'B27'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic2h6,temperatureindex),'sheet1', 'B28'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihcco,temperatureindex),'sheet1', 'B29'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich2co,temperatureindex),'sheet1', 'B30'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihccoh,temperatureindex),'sheet1', 'B31'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+in,temperatureindex),'sheet1', 'B32'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+inh2,temperatureindex),'sheet1', 'B33'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+inh3,temperatureindex),'sheet1', 'B34'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+innh,temperatureindex),'sheet1', 'B35'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ino,temperatureindex),'sheet1', 'B36'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ino2,temperatureindex),'sheet1', 'B37'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+in2o,temperatureindex),'sheet1', 'B38'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihno,temperatureindex),'sheet1', 'B39'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+icn,temperatureindex),'sheet1', 'B40'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihcn,temperatureindex),'sheet1', 'B41'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ih2cn,temperatureindex),'sheet1', 'B42'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihcnn,temperatureindex),'sheet1', 'B43'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihcno,temperatureindex),'sheet1', 'B44'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihocn,temperatureindex),'sheet1', 'B45'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ihnco,temperatureindex),'sheet1', 'B46'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+inco,temperatureindex),'sheet1', 'B47'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+iar,temperatureindex),'sheet1', 'B48'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich2cho,temperatureindex),'sheet1', 'B51'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic3h7,temperatureindex),'sheet1', 'B49'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ic3h8,temperatureindex),'sheet1', 'B50'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+ich3cho,temperatureindex),'sheet1', 'B52'); 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',pv(4+in2,temperatureindex),'sheet1','B54'); 
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 xlswrite('NHeptane Input Conditions 21% 
O2.xls',temperatureindex,'sheet1','B56'); 
  
% Save time-dependent data during the entire modeling event - 
temperature, time, pressure, no, no2 and oh 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',transpose(pv(2,:)),'sheet2', 'B2'); %Temperature 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',transpose(pv(1,:)),'sheet2', 'A2'); %Time 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',transpose(pv(4,:)),'sheet2', 'C2'); %Pressure 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',transpose(pv(4+ino,:)),'sheet2', 'D2'); %NO 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',transpose(pv(4+ino2,:)),'sheet2', 'E2'); %NO2 
 xlswrite('NHeptane Input Conditions 21% 
O2.xls',transpose(pv(4+ioh,:)),'sheet2', 'F2'); %OH 
 

12.3.3.3. Cantera n-Heptane Ignition Delay Chemical 

Kinetics Model Using Matlab 
This chemical kinetics model program takes outputs from the premixed burn 

phase of the program, mixing them stoichiometrically with n-heptane. Initial pressure and 

temperature are defined from the premixed burn program. The program outputs the 

ignition delay, along with peak temperature from combustion. Results are stored in an 

excel spreadsheet.  

 

Reactor_Ignition_UV_Heptane21.m 

 
function Reactor_Ignition_UV_Heptane21 (gas) 
 
% close all 
% clear all 
 
%% Use this program to combust the N_Heptane fuel in 21% O2 (from 
premixed 
%% combustion products). Determine the ignition delay of n-heptane.  
 
% Take inputs from the results of the Reactor_Ignition_UV_GRI21.m file.  
 
% This program uses the reduced n-heptane mechanism to determine the 
% ignition delay.  
 
%Generate N-heptane mechanism in cantera format.  
 
f = 
ck2cti('UC_hep_mod_chem.inp','UC_hep_mod_therm.dat','UC_hep_mod_trans.d
at');  
g = importPhase('UC_hep_mod_chem.cti','UC_hep_mod_chem');   
nsp=nSpecies(g) 
 
% set the initial conditions 
To = 840; %K 
Po = xlsread('NHeptane 21% O2.xls','sheet2','G2'); % pressure  
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Po=Po*10^6;  %Convert to Pascal 
 
%initial fuel-oxidizer mixture - mole fractions - Without Fuel 
ihep = speciesIndex(g,'NC7H16') 
ih = speciesIndex(g,'H'); 
ih2 = speciesIndex(g,'H2'); 
ioh = speciesIndex(g,'OH'); 
ih2o2 = speciesIndex(g,'H2O2'); 
ic=speciesIndex(g,'C'); 
ich2=speciesIndex(g,'CH2'); 
ich2s=speciesIndex(g,'CH2(S)'); 
ich3 = speciesIndex(g,'CH3'); 
ih2o = speciesIndex(g,'H2O'); 
iho2 = speciesIndex(g,'HO2'); 
ich = speciesIndex(g,'CH'); 
ich4=speciesIndex(g,'CH4'); 
ich2oh=speciesIndex(g,'CH2OH'); 
ich2oh=speciesIndex(g,'CH2O'); 
ich3oh=speciesIndex(g,'CH3OH'); 
ich3o=speciesIndex(g,'CH3O'); 
ic2h=speciesIndex(g,'C2H'); 
ico = speciesIndex(g,'CO'); 
ico2 = speciesIndex(g,'CO2'); 
ihco = speciesIndex(g,'HCO'); 
ic2h2 = speciesIndex(g,'C2H2'); 
ino = speciesIndex(g,'NO'); 
ino2 = speciesIndex(g,'NO2'); 
io2=speciesIndex(g,'O2'); 
in2=speciesIndex(g,'N2'); 
ic2h3=speciesIndex(g,'C2H3'); 
ic2h4=speciesIndex(g,'C2H4'); 
ic2h5=speciesIndex(g,'C2H5'); 
ic2h6=speciesIndex(g,'C2H6'); 
ihcco=speciesIndex(g,'HCCO'); 
ich2o=speciesIndex(g,'CH2O'); 
ich2co=speciesIndex(g,'CH2CO'); 
ihccoh=speciesIndex(g,'HCCOH'); 
in=speciesIndex(g,'N'); 
inh=speciesIndex(g,'NH'); 
inh2=speciesIndex(g,'NH2'); 
inh3=speciesIndex(g,'NH3'); 
innh=speciesIndex(g,'NNH'); 
in2o=speciesIndex(g,'N2O'); 
ihno=speciesIndex(g,'HNO'); 
icn=speciesIndex(g,'CN'); 
ihcn=speciesIndex(g,'HCN'); 
ih2cn=speciesIndex(g,'H2CN'); 
ihcnn=speciesIndex(g,'HCNN'); 
ihcno=speciesIndex(g,'HCNO'); 
ihocn=speciesIndex(g,'HOCN'); 
ihnco=speciesIndex(g,'HNCO'); 
inco=speciesIndex(g,'NCO'); 
iar=speciesIndex(g,'AR'); 
ic3h7=speciesIndex(g,'NC3H7'); 
ic3h8=speciesIndex(g,'C3H8'); 
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ich2cho=speciesIndex(g,'CH2CHO'); 
ich3cho=speciesIndex(g,'CH3CHO'); 
io=speciesIndex(g,'O'); 
 
xo = zeros(nsp,1);  % mole fraction 
 
% Conversion from mole fraction without fuel to mole fraction 
% with Fuel. The Fuel is n-heptane C7H16, the lambda is 1 for this 
case,  
% conversion only considers major species, O2, N2, CO2, H2O.  
 
xo(io2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G6'); 
yO2=xo(io2); 
 
lambda=1; 
y=16; 
x=7; 
R=y/x; 
Ntotal=1+(lambda*x*(1+R/4))/yO2; 
 
xo(ih2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G3'); 
xo(ih)=xlsread('NHeptane 21% O2.xls','sheet2', 'G4'); 
xo(io)=xlsread('NHeptane 21% O2.xls','sheet2', 'G5'); 
xo(io2)=(xlsread('NHeptane 21% O2.xls','sheet2', 
'G6')/yO2*lambda*x*(1+R/4))/Ntotal 
xo(ioh)=xlsread('NHeptane 21% O2.xls','sheet2', 'G53'); 
xo(ih2o)= (xlsread('NHeptane 21% O2.xls','sheet2', 
'G7')/yO2*lambda*x*(1+R/4))/Ntotal 
xo(iho2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G8'); 
xo(ih2o2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G9'); 
xo(ic)=xlsread('NHeptane 21% O2.xls','sheet2', 'G10'); 
xo(ich)=xlsread('NHeptane 21% O2.xls','sheet2', 'G11'); 
xo(ich2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G12'); 
xo(ich2s)=xlsread('NHeptane 21% O2.xls','sheet2', 'G13'); 
xo(ich3)=xlsread('NHeptane 21% O2.xls','sheet2', 'G14'); 
xo(ich4)=xlsread('NHeptane 21% O2.xls','sheet2', 'G15'); 
xo(ico)=xlsread('NHeptane 21% O2.xls','sheet2', 'G16'); 
xo(ico2)=(xlsread('NHeptane 21% O2.xls','sheet2', 
'G17')/yO2*lambda*x*(1+R/4))/Ntotal 
xo(ihco)=xlsread('NHeptane 21% O2.xls','sheet2', 'G18'); 
xo(ich2o)=xlsread('NHeptane 21% O2.xls','sheet2', 'G19'); 
xo(ich2oh)=xlsread('NHeptane 21% O2.xls','sheet2', 'G20'); 
xo(ich3o)= xlsread('NHeptane 21% O2.xls','sheet2', 'G21'); 
xo(ich3oh)=xlsread('NHeptane 21% O2.xls','sheet2', 'G22'); 
xo(ic2h)=xlsread('NHeptane 21% O2.xls','sheet2', 'G23'); 
xo(ic2h2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G24'); 
xo(ic2h3)=xlsread('NHeptane 21% O2.xls','sheet2', 'G25'); 
xo(ic2h4)=xlsread('NHeptane 21% O2.xls','sheet2', 'G26'); 
xo(ic2h5)=xlsread('NHeptane 21% O2.xls','sheet2', 'G27'); 
xo(ic2h6)=xlsread('NHeptane 21% O2.xls','sheet2', 'G28'); 
xo(ihcco)=xlsread('NHeptane 21% O2.xls','sheet2', 'G29'); 
xo(ich2co)=xlsread('NHeptane 21% O2.xls','sheet2', 'G30'); 
%xo(ihccoh)=xlsread('NHeptane 21% O2.xls','sheet2', 'G31'); 
xo(in)=xlsread('NHeptane 21% O2.xls','sheet2', 'G32'); 
xo(inh2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G33'); 
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xo(inh3)=xlsread('NHeptane 21% O2.xls','sheet2', 'G34'); 
xo(innh)=xlsread('NHeptane 21% O2.xls','sheet2', 'G35'); 
xo(ino)=xlsread('NHeptane 21% O2.xls','sheet2', 'G36'); 
xo(ino2)=xlsread('NHeptane 21% O2.xls','sheet2', 'G37'); 
xo(in2o)=xlsread('NHeptane 21% O2.xls','sheet2', 'G38'); 
xo(ihno)=xlsread('NHeptane 21% O2.xls','sheet2', 'G39'); 
xo(icn)=xlsread('NHeptane 21% O2.xls','sheet2', 'G40'); 
xo(ihcn)=xlsread('NHeptane 21% O2.xls','sheet2', 'G41'); 
xo(ih2cn)=xlsread('NHeptane 21% O2.xls','sheet2', 'G42'); 
xo(ihcnn)=xlsread('NHeptane 21% O2.xls','sheet2', 'G43'); 
xo(ihcno)=xlsread('NHeptane 21% O2.xls','sheet2', 'G44'); 
xo(ihocn)=xlsread('NHeptane 21% O2.xls','sheet2', 'G45'); 
xo(ihnco)=xlsread('NHeptane 21% O2.xls','sheet2', 'G46'); 
xo(inco)=xlsread('NHeptane 21% O2.xls','sheet2', 'G47'); 
xo(ic3h7)=xlsread('NHeptane 21% O2.xls','sheet2', 'G49'); 
xo(ic3h8)=xlsread('NHeptane 21% O2.xls','sheet2', 'G50'); 
xo(ich2cho)=xlsread('NHeptane 21% O2.xls','sheet2', 'G51'); 
xo(ich3cho)=xlsread('NHeptane 21% O2.xls','sheet2', 'G52'); 
xo(in2)=(xlsread('NHeptane 21% 
O2.xls','sheet2','G54')/yO2*lambda*x*(1+R/4))/Ntotal 
xo(ihep)=1/Ntotal %Mole Fraction of Fuel 
 
% Write results for the initial composition (major species) to an excel 
file.  
xlswrite('NHeptane Results 21% O2.xls',Ntotal,'sheet3', 'I2'); %Mole 
Total Input 
xlswrite('NHeptane Results 21% O2.xls',yO2,'sheet3', 'I3'); %Mole 
Fraction O2 Input 
xlswrite('NHeptane Results 21% O2.xls',To,'sheet3', 'I4'); %Temperature 
Input 
xlswrite('NHeptane Results 21% O2.xls',Po,'sheet3', 'I5'); %Pressure 
Input 
xlswrite('NHeptane Results 21% O2.xls',xo(ihep),'sheet3', 'I6'); %Mole 
Fraction Nhep 
xlswrite('NHeptane Results 21% O2.xls',xo(in2),'sheet3', 'I7'); %Mole 
Fraction N2 
xlswrite('NHeptane Results 21% O2.xls',xo(ico2),'sheet3', 'I8'); %Mole 
Fraction CO2 
xlswrite('NHeptane Results 21% O2.xls',xo(ih2o),'sheet3', 'I9'); %Mole 
Fraction H2O 
 
%Set up the n-heptane mechnaism.  
set(g,'T',To,'P',Po,'X',xo);   
 
y0 = (enthalpy_mass(g)       % Specific internal energy (J/kg) 
      1.0/density(g)          % Mass density (kg/m^3)  
      massFractions(g));      % Mass fractions 
 
options = odeset('RelTol',1.e-8,'AbsTol',1.e-8,'Stats','on'); 
 
t0 = cputime; 
 
dt=1*10^-4; 
t_max=.005; 
time_interval=(0:dt:t_max); 
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out = 
ode15s(@reactor_ode,time_interval,y0,options,g,@vdot,@area,@heatflux); 
 
disp(('CPU time = ' num2str(cputime - t0))); 
 
plotdata = output(out,g,To,Po, xo); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% the functions below may be defined arbitrarily to set the reactor 
% boundary conditions - the rate of change of volume, the heat 
% flux, and the area. 
 
 
% Rate of change of volume. Any arbitrary function may be implemented. 
% Input arguments:  
%   t      time 
%   vol    volume 
%   gas    ideal gas object 
 
function v = vdot(t, vol, g) 
 
% Constant pressure reactor                           
                                      
v=1e5*(pressure(g)-4.175025*10^6);   % holds pressure close to Po 
                             
% heat flux (W/m^2).  
 
function q = heatflux(t, g) 
                            
q=0;   %  adiabatic 
 
% surface area. Used only to compute heat transfer. 
 
function a = area(t,vol) 
 
a=0.048911614; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Since the solution variables used by the 'reactor' function are 
% not necessarily those desired for output, this function is called 
% after the integration is complete to generate the desired 
% outputs.  
 
function pv = output(s, g, To, Po, xo) 
times = s.x; 
soln = s.y; 
(m n) = size(times); 
pv = zeros(nSpecies(g) + 4, n); 
 
set(g,'T',To,'P',Po); 
 
for j = 1:n 
  ss = soln(:,j); 
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  y = ss(3:end);         %ss(3:end): mass fraction 
  mass = sum(y); 
  u_mass = ss(1)/mass;   % ss(1); internal energy 
  v_mass = ss(2)/mass;   % ss(2): volume 
  setMassFractions(g, y);  
  setState_UV(g, (u_mass v_mass)); 
   
  pv(1,j) = times(j); % second 
  pv(2,j) = temperature(g); 
  tt(j) = times(j); 
  tt0(j) = temperature(g); 
  pv(3,j) = density(g); 
  pv(4,j) = pressure(g)/10^6; 
 
  pv(5:end,j) = moleFractions(g);  % mole fraction 
end 
tt1=transpose(tt); 
tt2=transpose(tt0); 
 
% calculate the ignition delay time 
crit(1) = 0; 
for j = 2:n 
    crit(j) = (pv(2,j)-pv(2,j-1))/(pv(1,j)-pv(1,j-1)); 
end 
crit 
(xmax,kig) = max(crit); 
t_ign = pv(1,kig); 
disp('Ignition Delay Time = '); 
disp(t_ign); 
 
% define species 
ih = speciesIndex(g,'H'); 
ih2 = speciesIndex(g,'H2'); 
ioh = speciesIndex(g,'OH'); 
io2=speciesIndex(g,'O2'); 
ih2o = speciesIndex(g,'H2O'); 
iho2 = speciesIndex(g,'HO2'); 
ich = speciesIndex(g,'CH'); 
ich3 = speciesIndex(g,'CH3'); 
ico = speciesIndex(g,'CO'); 
ico2 = speciesIndex(g,'CO2'); 
ihco = speciesIndex(g,'HCO'); 
ic2H2 = speciesIndex(g,'C2H2'); 
ino = speciesIndex(g,'NO'); 
ino2 = speciesIndex(g,'NO2'); 
in2=speciesIndex(g,'N2'); 
ihep=speciesIndex(g,'NC7H16'); 
  
% plot the temperature, pressure and species mole fractions 
 
figure(3); 
subplot(2,1,1); 
plot(pv(1,:),pv(2,:)); 
xlabel('time (s)'); 
ylabel('Temperature (K)'); 
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title(('Final T = ' num2str(pv(2,end)) 'K ',' Ign Time = 
',num2str(t_ign*1000),'ms')); 
subplot(2,1,2); 
plot(pv(1,:),pv(4,:)); 
xlabel('time (s)'); 
ylabel('Pressure (MPa)'); 
title(('Final P = ' num2str(pv(4,end)) ' MPa')); 
 
% subplot(2,2,3); 
 
figure 
semilogy(pv(1,:),pv(4+ioh,:), pv(1,:),pv(4+ino,:), pv(1,:), 
pv(4+ino2,:), pv(1,:), pv(4+io2,:), pv(1,:), pv(4+ihep,:),pv(1,:), 
pv(4+ico2,:), pv(1,:), pv(4+ih2o,:)); 
xlabel('time (s)'); 
ylabel('Mole Fraction'); 
title('Constituent Concentrations for 21% O2 in Premixed Combustion 
Products - From Stoichiometric N-Heptane Combustion') 
legend('OH', 'NO', 'NO2', 'Heptane', 'O2', 'CO2', 'H2O') 
ylim((10^-9, 1)) 
 
% Plot no and no2 results 
figure 
semilogy(pv(1,:), pv(4+ino,:), pv(1,:), pv(4+ino2,:)) 
xlabel('time (s)'); 
ylabel('Mole Fraction'); 
legend('NO', 'NO2') 
title('NO and NO2 Concentrations for 21% O2 in Premixed Combustion 
Products - From Stoichiometric N-Heptane Combustion') 
ylim((10^-9, 1)) 
 
% Write output results for temperature, time, pressure, NO, NO2, OH, 
CO2, H2O, and Ignition Delay.  
 
xlswrite('NHeptane Results 21% O2.xls',transpose(pv(2,:)),'sheet3', 
'B2'); %Temperature 
xlswrite('NHeptane Results 21% O2.xls',transpose(pv(1,:)),'sheet3', 
'A2'); %Time 
xlswrite('NHeptane Results 21% O2.xls',transpose(pv(4,:)),'sheet3', 
'C2'); %Pressure 
xlswrite('NHeptane Results 21% O2.xls',transpose(pv(4+ino,:)),'sheet3', 
'D2'); %NO 
xlswrite('NHeptane Results 21% 
O2.xls',transpose(pv(4+ino2,:)),'sheet3', 'E2'); %NO2 
xlswrite('NHeptane Results 21% O2.xls',transpose(pv(4+ioh,:)),'sheet3', 
'F2'); %OH 
xlswrite('NHeptane Results 21% 
O2.xls',transpose(pv(4+ico2,:)),'sheet3', 'G2'); %CO2 
xlswrite('NHeptane Results 21% 
O2.xls',transpose(pv(4+ih2o,:)),'sheet3', 'H2'); %h2o 
xlswrite('NHeptane Results 21% O2.xls',t_ign,'sheet3', 'J2'); %Ignition 
Delay 
 
% Plot nitrogen results.  
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figure 
plot(pv(1,:), pv(4+in2,:)) 
xlabel('Time (Seconds)') 
ylabel('Mole Fraction N2') 

12.3.3.4. ECN Modeling – Stoichiometric n-Heptane 
Mixtures with Major Species 

This program determines the stoichiometric n-heptane ignition delay for various 

compositions (considering solely major species from the preburn). The mixtures from the 

differing institutions are all provided in the program, and must be uncommented to run 

for the different test conditions.  

 

StoichNHeptane_ECN.m 

 
function Reactor_Ignition_UV_Heptane (gas) 
 
close all 
clear all 
 
%% Use this program to combust the N_Heptane fuel in 15% O2 - ECN 
Modeling 
 
% This program uses the reduced n-heptane mechanism to determine the 
% ignition delay.  
 
%Generate N-heptane mechanism in cantera format.  
% f = ck2cti 
 
('UC_hep_mod_chem.inp','UC_hep_mod_therm.dat','UC_hep_mod_trans.dat');  
g = importPhase('UC_hep_mod_chem.cti','UC_hep_mod_chem');   
nsp=nSpecies(g) 
 
% set the initial conditions 
 
%To = 1000 K 
% To=840; 
% Po = 4.175025; % pressure  
% Po=Po*10^6;  %Convert to Pascal 
 
%To=900 K 
% To=735; 
% Po=6*10^6; 
 
%Based on Preburn 
To = 740;  
Po = 5.875*10^6;  
 
%initial fuel-oxidizer mixture - mole fractions - Without Fuel 
ihep = speciesIndex(g,'NC7H16') 
io2=speciesIndex(g,'O2') 
in2=speciesIndex(g,'N2') 
ico2=speciesIndex(g,'CO2') 
ih2o=speciesIndex(g,'H2O') 
ino=speciesIndex(g,'NO') 
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ino2=speciesIndex(g,'NO2') 
ioh=speciesIndex(g,'OH') 
iar=speciesIndex(g,'AR') 
xo = zeros(nsp,1);  % mole fraction 
 
%Conversion from mole fraction without fuel to mole fraction 
%with Fuel. The Fuel is n-heptane C7H16, the lambda is 1 for this  
%conversion only considers major species, O2, N2, CO2, H2O.  
 
%% Standard 15% O2 Mixture - 38.3% EGR to match HC Ratio Diesel 
%  
% xo(io2) = 0.147982;  
% xo(in2) = 0.766547;  
% xo(ico2) = 0.037489;  
% xo(ih2o) = 0.034529;  
% xo(ihep) = 0.013452915;  
 
%% Sandia 15% O2 Mixture 
%  
% xo(io2) = 0.147982;  
% xo(in2) = 0.740897;  
% xo(ico2) = 0.061166; 
% xo(ih2o) = 0.035516;  
% xo(ihep)= 0.013452915;  
 
%% IFP 15% O2 mixture 
%  
% xo(io2) = 0.147982;  
% xo(in2) = 0.70765;  
% xo(ico2) = 0.01687;  
% xo(ih2o) = 0.114045;  
% xo(ihep) = 0.013452915;  
 
%% Caterpillar 15% O2 Mixture 
 
% xo(in2) = 0.838565; 
% xo(io2) = 0.147982;  
% xo(ihep) = 0.013452915;  
 
%% Modified HCR - Diesel - 15% O2 (Kones) 
 
% xo(in2) = 0.780063;  
% xo(io2) = 0.147982;  
% xo(ih2o) = 0.022691;  
% xo(ico2) = 0.024466;  
% xo(ihep) = 0.013452915;  
 
%% Siebers SAE 96 15% O2 Mixture 
% %  
% xo(in2) = 0.743166;  
% xo(ico2) = 0.060278;  
% xo(ih2o) = 0.035121;  
% xo(io2) = 0.147982;  
% xo(ihep) = 0.013452915;  
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%% Eindhoven Mixture 15% O2 
 
% xo(io2) = 0.147982;  
% xo(ih2o) = 0.03157; 
% xo(ihep) = 0.013452915; 
% xo(ico2) = 0.063139;  
% xo(iar) = 0.035811659;  
% xo(in2) = 0.702422;  
 
%% AIR 
 
lambda=1; 
y=16; 
x=7; 
R=y/x; 
NFuel=1; 
NRO2=lambda*(1+R/4); 
NRN2=3.773*NRO2; 
Ntotal=x*NRO2+x*NRN2+NFuel; 
xo(io2)=x*NRO2/Ntotal; 
xo(in2)=x*NRN2/Ntotal; 
xo(ihep)=NFuel/Ntotal; 
 
% 19.1 % o2 - partial EGR 
% xo(io2)=.1912; 
% xo(in2)=0.7727; 
% xo(ih2o)=0.00986; 
% xo(ico2)=.008628; 
% xo(ihep)=0.01739; 
 
%Set up the n-heptane mechnaism.  
set(g,'T',To,'P',Po,'X',xo);   
 
y0 = (enthalpy_mass(g)       % Specific internal energy (J/kg) 
      1.0/density(g)          % Mass density (kg/m^3)  
      massFractions(g));      % Mass fractions 
 
options = odeset('RelTol',1.e-8,'AbsTol',1.e-8,'Stats','on'); 
 
t0 = cputime; 
 
dt=1*10^-3; 
t_max=.01; 
time_interval=(0:dt:t_max); 
 
out = 
ode15s(@reactor_ode,time_interval,y0,options,g,@vdot,@area,@heatflux); 
 
disp(('CPU time = ' num2str(cputime - t0))); 
 
plotdata = output(out,g,To,Po, xo); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% the functions below may be defined arbitrarily to set the reactor 
% boundary conditions - the rate of change of volume, the heat 
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% flux, and the area. 
 
 
% Rate of change of volume. Any arbirtrary function may be implemented. 
% Input arguments:  
%   t      time 
%   vol    volume 
%   gas    ideal gas object 
 
function v = vdot(t, vol, g) 
 
% Choose constant volume or constant pressure                      
                                         
%constant pressure 
%To=1000 
%  v=1e5*(pressure(g)-4.175025*10^6);   % holds pressure close to Po 
  
%To = 900 
 v=1e5*(pressure(g)-5.875*10^6);   % holds pressure close to Po 
 
% heat flux (W/m^2).  
 
function q = heatflux(t, g) 
                            
q=0;   %  adiabatic 
 
% surface area. Used only to compute heat transfer. 
function a = area(t,vol) 
 
a=0.048911614; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Since the solution variables used by the 'reactor' function are 
% not necessarily those desired for output, this function is called 
% after the integration is complete to generate the desired 
% outputs.  
 
function pv = output(s, g, To, Po, xo) 
times = s.x; 
soln = s.y; 
(m n) = size(times); 
pv = zeros(nSpecies(g) + 4, n); 
 
set(g,'T',To,'P',Po); 
 
for j = 1:n 
  ss = soln(:,j); 
  y = ss(3:end);         %ss(3:end): mass fraction 
  mass = sum(y); 
  u_mass = ss(1)/mass;   % ss(1); internal energy 
  v_mass = ss(2)/mass;   % ss(2): volume 
  setMassFractions(g, y);  
  setState_UV(g, (u_mass v_mass)); 
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  pv(1,j) = times(j); % second 
  pv(2,j) = temperature(g); 
  tt(j) = times(j); 
  tt0(j) = temperature(g); 
  pv(3,j) = density(g); 
  pv(4,j) = pressure(g)/10^6; 
 
  pv(5:end,j) = moleFractions(g);  % mole fraction 
end 
 
tt1=transpose(tt); 
tt2=transpose(tt0); 
 
% calculate the ignition delay time 
crit(1) = 0; 
for j = 2:n 
    crit(j) = (pv(2,j)-pv(2,j-1))/(pv(1,j)-pv(1,j-1)); 
end 
crit 
(xmax,kig) = max(crit); 
t_ign = pv(1,kig); 
%Displays ignition delay time in seconds 
disp('Ignition Delay Time = '); 
disp(t_ign); 
 
% define each species 
ih = speciesIndex(g,'H'); 
ih2 = speciesIndex(g,'H2'); 
ioh = speciesIndex(g,'OH'); 
io2=speciesIndex(g,'O2'); 
ih2o = speciesIndex(g,'H2O'); 
iho2 = speciesIndex(g,'HO2'); 
ich = speciesIndex(g,'CH'); 
ich3 = speciesIndex(g,'CH3'); 
ico = speciesIndex(g,'CO'); 
ico2 = speciesIndex(g,'CO2'); 
ihco = speciesIndex(g,'HCO'); 
ic2H2 = speciesIndex(g,'C2H2'); 
ino = speciesIndex(g,'NO'); 
ino2 = speciesIndex(g,'NO2'); 
in2=speciesIndex(g,'N2'); 
ihep=speciesIndex(g,'NC7H16'); 
  
% plot the temperature, pressure and species mole fractions 
figure(3); 
subplot(2,1,1); 
plot(pv(1,:),pv(2,:)); 
xlabel('time (s)'); 
ylabel('Temperature (K)'); 
title(('Final T = ' num2str(pv(2,end)) 'K ',' Ign Time = ',num2str 
 
(t_ign*1000),'ms')); 
subplot(2,1,2); 
plot(pv(1,:),pv(4,:)); 
xlabel('time (s)'); 
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ylabel('Pressure (MPa)'); 
title(('Final P = ' num2str(pv(4,end)) ' MPa')); 
 
% Should match desired starting temperature (K) 
Tmin=min(pv(2,:)) 

12.4. Image Processing & Data Analysis 
Programs 

 

This appendix includes all processing used in the analysis of the experimental 

tests, including image processing programs along with data analysis programs. All 

programs are m-files which are run in Matlab to provide the necessary output results. 

These programs are commented to understand the steps taken.  

12.4.1. Nonvaporizing (Nitrogen) Spray Image 

Processing Program 
The nonvaporizing nitrogen sprays are processed using the following program to 

determine penetration and cone angle at both 60% penetration distance and 45 nozzle 

diameters, using a curve fit procedure.  

 

N2ImageProcessing_CH6.m 

 
%% N2 Back Scattering (Liquid Phase) Image Processing Program 
% Jaclyn Nesbitt 
% January 17, 2011 
 
% Use this program to determine penetration and cone angle of the 
liquid  
% phase sprays.  
% Spray chararacteristics are calculated relative to the spray hole, 
which 
% is offset 1.5 mm from the injector tip.  
 
%% Setup workspace 
 
clear all; 
close all; 
clc; 
 
%% Get information about test to process, change to correct directory.  
 
DIRparent = ('\\mtucifs\dfshome\jenesbit\Desktop\\DieselSprayTesting - 
Additional August 2010\'); 
Date = input('Enter Date in YYYYMMDD Format:', 's'); 
Time = input('Enter Test Time in HHMM Format:','s'); 
NumPlumes = '8'; 
StartFrame = input('Enter First Frame to Process:', 's');  
EndFrame = input('Enter Last Frame to Process:', 's');  
Factor =1; 
FolderName = strcat(Time, '_C001H001S0001'); 
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dir_name = ((DIRparent Date '\' FolderName)); 
 
filename = strcat(Time, '_C001H001S0001.avi'); 
 
cd (dir_name) 
 
%% Read in Movie 
 
mov = aviread(filename); 
 
% Store Normalized Movie in NMOV 
N = size(mov,2); 
for i=1 : N; 
    nmov(  i).cdata = single( mov(  i).cdata); 
end 
 
% Put orginial movie into single variable. 
clear mov 
mov = nmov; 
 
%% Background Subtraction for Image Processing Preparation 
 
Background = mov(1,1).cdata; 
 
for i = 1:N-1; 
     
Frame(i).cdata = imsubtract(Background, mov(1,i+1).cdata); 
 
end 
 
%% Find Injector Tip using Background Image 
 
% Uncomment the below set of code to display background image.  
% figure;  
% imagesc(Background);  
% colormap(gray);  
% daspect((1 1 1)) 
 
% Scaled and adjust the background image to improve contrast.  
BackgroundScaled = Background/max(max(Background)); 
BackgroundAdjusted = imadjust(BackgroundScaled); 
 
% Apply multiplier to account for variations in SNR / contrast ratio 
for  
% different tests (due to not calibrating camera).  
 
Multiplier = 1.75; 
 
if strcmp(Date, '20100830') == 1 
    Multiplier = 2;  
end 
 
% Convert the background image to Black and White, Apply Blob 
Processing 
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BWBackground = im2bw(BackgroundAdjusted, 
Multiplier*graythresh(BackgroundAdjusted));  
 
BackgroundBlob = bwlabel(BWBackground,8); 
 
ColoredBlobs = label2rgb(BackgroundBlob, 'hsv', 'k', 'shuffle');  
 
%Uncomment to plot blobs from background resulting from blob analysis.  
% figure 
% imagesc(ColoredBlobs);  
% daspect((1 1 1)) 
 
Stats1 = regionprops(BackgroundBlob, 'centroid', 'area', 'extrema'); 
 
Area1 = (Stats1.Area); 
Centroid1 = (Stats1.Centroid); 
 
% Use results of blob analysis to define injector tip location.  
 
LargeAreas = find(Area1 > 100);  
gg=LargeAreas(1); 
for gg = 1: size(LargeAreas,2) 
    LocX(gg) = Centroid1(LargeAreas(gg)*2-1)-size(Background,2)/2; 
    LocY(gg) = Centroid1(LargeAreas(gg)*2)-size(Background,1)/2; 
    DiffLoc(gg) = sqrt(LocX(gg)^2+LocY(gg)^2);  
end 
AreaIndex1 = LargeAreas(find(DiffLoc == min(DiffLoc))); 
Extrema1 = (Stats1.Extrema);  
 
CentroidIndexX = Centroid1(AreaIndex1*2-1);  
CentroidIndexY = Centroid1(AreaIndex1*2); 
 
DiffXX = abs(size(Background,2)/2-CentroidIndexX); 
DiffYY = abs(size(Background,1)/2-CentroidIndexY); 
 
AbsDiff = sqrt(DiffXX.^2+DiffYY.^2); 
 
Index = find(AbsDiff == min(AbsDiff)); 
 
YTop = (Extrema1(1, AreaIndex1(Index)*2)+Extrema1(2, 
AreaIndex1(Index)*2))/2;  
YBottom = 
(Extrema1(5,AreaIndex1(Index)*2)+Extrema1(6,AreaIndex1(Index)*2))/2; 
TipIndexY = round((YTop+YBottom)/2); 
XTop = (Extrema1(1,AreaIndex1(Index)*2-
1)+Extrema1(2,AreaIndex1(Index)*2-1))/2; 
XBottom = (Extrema1(5,AreaIndex1(Index)*2-
1)+Extrema1(6,AreaIndex1(Index)*2-1))/2; 
TipIndexX = round((XTop+XBottom)/2);  
 
clear XBottom YBottom XTop YTop AbsDiff Index 
clear DiffXX DiffYY CentroidIndexY Centroid1 AreaIndex1 CentroidIndexX  
clear Extrema1 Stats1 AreaIndex1 LocX LocY gg DiffLoc LargeAreas Area1  
clear BackgroundBlobs ColoredBlobs 



 

335 

clear Multiplier BackgroundScaled 
 
%% Process Spray Images - frame by frame 
% Determine penetration and cone angle (plume to plume and average 
values) 
 
xx = str2num(StartFrame)-1; 
 
Total = size(mov,2); 
PenetrationTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1);  
AngleTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1); 
DiffX(Total-1).Location = ''; 
DiffY(Total-1).Location = ''; 
 
for xx = str2num(StartFrame)-1:str2num(EndFrame) 
Image = -Frame(xx).cdata;  
 
    % Prepare Image for Rotation, Center Injector Tip 
    ImageLarge = zeros(floor(1.3*size(Image,1)), 
floor(1.3*size(Image,2)));  
    IXCenter = floor(size(ImageLarge,2)/2); 
    IYCenter = floor(size(ImageLarge,1)/2); 
    DiffX(xx).Location = floor(TipIndexX - IXCenter); 
    DiffY(xx).Location = floor(TipIndexY - IYCenter); 
    
    
ImageLarge(abs(DiffY(xx).Location)+1:abs(DiffY(xx).Location)+size(Image
,1), abs(DiffX(xx).Location)+1:abs(DiffX(xx).Location)+1+size(Image,2)-
1) = Image; 
 
    % Rotate image such that plumes travel left to right,  
    % exiting horizontally from the injector. 
     
    AngleRotate = 360/str2num(NumPlumes); 
    if strcmp(NumPlumes, '8') == 1 
        % Apply an offset to account for slight offset in injctor 
        % horizontal location even before rotation 
        StartAngle = -3;  
    end 
     
    % Create a structure of data .... for the total number of plumes.  
     
    Plume(str2num(NumPlumes)).Intensity = ''; 
    Plume(str2num(NumPlumes)).Shifted = ''; 
    Plume(str2num(NumPlumes)).Scaled  = ''; 
    Plume(str2num(NumPlumes)).BW = ''; 
    Plume(str2num(NumPlumes)).Blob = ''; 
    Plume(str2num(NumPlumes)).Spray = ''; 
    Plume(str2num(NumPlumes)).Boundary = ''; 
    Plume(str2num(NumPlumes)).Penetration = ''; 
    Plume(str2num(NumPlumes)).Theta = ''; 
    Plume(str2num(NumPlumes)).AngleX = '';  
    Plume(str2num(NumPlumes)).AngleNegY = '';   
    Plume(str2num(NumPlumes)).AnglePosY = '';   
    Plume(str2num(NumPlumes)).EvaluationPositive = '';   
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    Plume(str2num(NumPlumes)).EvaluationNegative ='';   
    Plume(str2num(NumPlumes)).AY = '';   
    Plume(str2num(NumPlumes)).AX = '';  
 
    % Process each spray plume of the given set of frames 
    ii = 1; 
        for ii = 1:str2num(NumPlumes); 
             
            Plume(ii).Intensity = 
imrotate(ImageLarge,StartAngle+AngleRotate*(ii-1)); 
            Offset = 40; 
 
            Plume(ii).AX = round(size(Plume(ii).Intensity,2)/2); 
            Plume(ii).AY = round(size(Plume(ii).Intensity,1)/2); 
 
            Plume(ii).Shifted = Plume(ii).Intensity(Plume(ii).AY-
Offset:Plume(ii).AY+Offset, Plume(ii).AX:end); 
             
            % Apply Mask to Isolate Adjacent Spray plumes 
            VX = ceil((1 size(Plume(ii).Shifted,1)/(2*tand(AngleRotate 
- 25)) size(Plume(ii).Shifted,2) size(Plume(ii).Shifted,2) 
size(Plume(ii).Shifted,1)/(2*tand(AngleRotate - 25)))); 
            VY = ceil((size(Plume(ii).Shifted,1)/2 
size(Plume(ii).Shifted,1) size(Plume(ii).Shifted,1) 1 1)); 
 
            BW = roipoly(Plume(ii).Shifted,VX,VY); 
            (I, J) = find(BW ==0);  
            kk =1; 
             
            for kk = 1:size(I,1) 
                Plume(ii).Shifted(I(kk),J(kk)) = 0; 
            end 
             
            Plume(ii).Scaled = Plume(ii).Shifted / 
max(max(Plume(ii).Shifted)); 
             
            % Threshold Image to Black and White and Apply Blob 
Analysis.  
            Threshold = 0.5*graythresh(Plume(ii).Scaled); 
            Plume(ii).BW = im2bw(Plume(ii).Scaled, Factor*Threshold); 
            Plume(ii).Blob = bwlabel(Plume(ii).BW,8); 
             
            Stats = regionprops(Plume(ii).Blob, 'area', 'extrema', 
'centroid'); 
            Area = (Stats.Area); 
            Extrema= (Stats.Extrema); 
            Centroid = (Stats.Centroid);  
            AreaIndex = find(Area == max(Area)); 
             
            if size(AreaIndex,2) > 1 
                CenterY = Centroid(AreaIndex*2);  
                Differences = CenterY-size(Plume(ii).Spray,1)/2;  
                CorrectIndex = find(abs(Differences) == 
min(abs(Differences)));  
                AreaIndex = AreaIndex(1);  
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            end 
             
            % Define the spray in black and white, removing noise and 
all 
            % adjacent spray plumes.  
             
            Plume(ii).Spray = ismember(Plume(ii).Blob, AreaIndex); 
 
            Centerline(ii) = floor(Centroid(AreaIndex*2)); 
            Lead = max(find(Plume(ii).Spray(Centerline(ii),:)==1)); 
            TFLead = isempty(Lead); 
             
            % Determine spray boundary, use this to determine 
penetration  
            % and cone angle.  
             
            if TFLead == 0 
            Plume(ii).Boundary = bwtraceboundary(Plume(ii).Spray, 
(Centerline(ii), Lead),'S'); 
 
%            Uncomment this set of code to plot the spray boundary 
overlaid 
%            on the original spray image 
%            figure;  
%            imagesc(Plume(ii).Shifted) 
%            colormap(gray) 
%            daspect((1 1 1)) 
%            hold on 
%            plot(Plume(ii).Boundary(:,2), Plume(ii).Boundary(:,1), 'y-
') 
                 
%           Define Image Scaling - based on image size resolution and 
scale 
%           by cosine of 15 degress to account for off-axis injector 
spray 
%           plume orientation  
 
            Scaling = 0.18/cosd(15); % mm/pixel 
                        
            % Calculation penetration  
            OffsetHole = 1.5/(Scaling*cosd(15)); % Pixels - Distance 
from injector tip center to inj hole.   
            Penetration = arrayfun(@(x) max(x.Boundary), Plume, 
'UniformOutput', false); % 
            Plume(ii).Penetration = Penetration{:,ii}(2)*Scaling - 1.5; 
%  Subtract off difference in penetration based on inj tip definition 
             
             
%% Calculate Cone Angle 
 
% First find spray width in xx*Do increments 
Do = 0.14; % mm 
 
% Determine spray edges based on spray boundary over the region of 
interest 
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% for the cone angle processing (to maximum boundary location).  
 
MaxKK = max(Plume(ii).Boundary(:,2)); 
MinKK = min(Plume(ii).Boundary(:,2)); 
kk = MinKK;  
for kk = MinKK : MaxKK 
    EdgeW = Plume(ii).Boundary(find(Plume(ii).Boundary(:,2) == kk),1); 
    TopEdgeW(kk,ii) = max(EdgeW); 
    BotEdgeW(kk,ii)  = min(EdgeW); 
    Widths(kk,ii) = abs(TopEdgeW(kk,ii) -BotEdgeW(kk,ii) );  
end 
 
MaxWidth(ii) = max(Widths(:,ii));  
CorrespondMaxXDist(ii) = round(max(find(Widths(:,ii) == MaxWidth(ii)))-
OffsetHole); % Applied Offset to account for off center holes.  
CorrespondMaxXDistReference(ii)=max(find(Widths(:,ii) == 
MaxWidth(ii)));  
TopMaxWidth(ii) = TopEdgeW(max(find(Widths(:,ii) == MaxWidth(ii))),ii);  
BotMaxWidth(ii) = BotEdgeW(max(find(Widths(:,ii) == MaxWidth(ii))),ii);  
%% DEFINE CONE ANGLE METHODS 
 
% Method 1 -- Calculate Cone Angle at 60% Pen, CF Method 
DistanceCalcAtSixty(ii) = 
round(0.6*Plume(ii).Penetration/(Scaling*cosd(15))); % Pixels 
PenReferenceSixty(ii) = round(DistanceCalcAtSixty(ii)+ 
1.5/(Scaling*cosd(15)));  
 
if PenReferenceSixty(ii) > MaxKK 
    Plume(ii).ThetaM1Star = NaN;  
else 
    Plume(ii).AngleX1S = (MinKK:1:PenReferenceSixty(ii));  
    Plume(ii).AngleY1STop = 
(TopEdgeW(MinKK:1:PenReferenceSixty(ii),ii)');  
    Plume(ii).AngleY1SBot = 
(BotEdgeW(MinKK:1:PenReferenceSixty(ii),ii)');  
 
    AngleXSixty = Plume(ii).AngleX1S(:); 
    AngleNegYSixty = Plume(ii).AngleY1SBot(:); 
    AnglePosYSixty = Plume(ii).AngleY1STop(:); 
 
% Linear Curve Fit Spray Edge - Top and Bottom 
% Force curve fit through Injector Origin 
     
if size(AngleXSixty,1) >= 2 
ok6_ = isfinite(AngleXSixty) & isfinite(AngleNegYSixty); 
st6_ = (0.9746908242292236 ); 
ft6_ = fittype('m*(x-8.333)+41',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf6_ = 
fit(AngleXSixty(ok6_),AngleNegYSixty(ok6_),ft6_,'Startpoint',st6_); 
 
EvaluationNegativeSixty = feval(cf6_, (OffsetHole AngleXSixty'));  
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ok16_ = isfinite(AngleXSixty) & isfinite(AnglePosYSixty); 
 
st16_ = (0.9746908242292236 ); 
ft16_ = fittype('m*(x-8.333)+41',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf16_ = 
fit(AngleXSixty(ok16_),AnglePosYSixty(ok16_),ft16_,'Startpoint',st16_); 
EvaluationPositiveSixty = feval(cf16_,(OffsetHole AngleXSixty'));  
 
 
 
YNegPenSixty = feval(cf16_, round(PenReferenceSixty(ii))); 
YPosPenSixty = feval(cf6_, round(PenReferenceSixty(ii)));  
 
PositiveThetaSixty = atan((YPosPenSixty-
(Offset+1))/(DistanceCalcAtSixty(ii)))*180/pi;  
NegativeThetaSixty = atan((YNegPenSixty-
(Offset+1))/(DistanceCalcAtSixty(ii)))*180/pi; 
 
Plume(ii).ThetaM1Star = 
abs(PositiveThetaSixty)+abs(NegativeThetaSixty);  
else 
    Plume(ii).ThetaM1Star = NaN; 
 
end 
end 
%%  Method 2 -- Calculate Cone Angle at 45*Do, CF Method 
DistanceCalcAtFortyFive(ii) = round(45*Do/(Scaling*cosd(15))); % Pixels 
PenReferenceFortyFive(ii) = round(DistanceCalcAtFortyFive(ii)+ 
1.5/(Scaling*cosd(15)));  
 
if PenReferenceFortyFive(ii) > MaxKK 
    Plume(ii).ThetaM2Star = NaN;  
else 
    Plume(ii).AngleX6S = (MinKK:1:PenReferenceFortyFive(ii));  
    Plume(ii).AngleY6STop = 
(TopEdgeW(MinKK:1:PenReferenceFortyFive(ii),ii)');  
    Plume(ii).AngleY6SBot = 
(BotEdgeW(MinKK:1:PenReferenceFortyFive(ii),ii)');  
 
    AngleXFortyFive = Plume(ii).AngleX6S(:); 
    AngleNegYFortyFive = Plume(ii).AngleY6SBot(:); 
    AnglePosYFortyFive = Plume(ii).AngleY6STop(:); 
 
% Linear Curve Fit Spray Edge - Top and Bottom 
% Force curve fit through Injector Origin 
     
if size(AngleXFortyFive,1) >= 2 
ok_ = isfinite(AngleXFortyFive) & isfinite(AngleNegYFortyFive); 
st_ = (0.9746908242292236 ); 
ft_ = fittype('m*(x-8.333)+41',... 
    'dependent',{'y'},'independent',{'x'},... 
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    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf_ = 
fit(AngleXFortyFive(ok_),AngleNegYFortyFive(ok_),ft_,'Startpoint',st_); 
 
EvaluationNegativeFortyFive = feval(cf_, (OffsetHole 
AngleXFortyFive'));  
ok1_ = isfinite(AngleXFortyFive) & isfinite(AnglePosYFortyFive); 
 
st1_ = (0.9746908242292236 ); 
ft1_ = fittype('m*(x-8.333)+41',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf1_ = 
fit(AngleXFortyFive(ok1_),AnglePosYFortyFive(ok1_),ft1_,'Startpoint',st
1_); 
EvaluationPositiveFortyFive = feval(cf1_,(OffsetHole 
AngleXFortyFive'));  
YNegPenFortyFive = feval(cf1_, round(PenReferenceFortyFive(ii))); 
YPosPenFortyFive = feval(cf_, round(PenReferenceFortyFive(ii)));  
 
PositiveThetaFortyFive = atan((YPosPenFortyFive-
(Offset+1))/(DistanceCalcAtFortyFive(ii)))*180/pi;  
NegativeThetaFortyFive = atan((YNegPenFortyFive-
(Offset+1))/(DistanceCalcAtFortyFive(ii)))*180/pi; 
 
Plume(ii).ThetaM2Star = 
abs(PositiveThetaFortyFive)+abs(NegativeThetaFortyFive);  
else 
    Plume(ii).ThetaM2Star = NaN; 
 
end 
 
end 
 
    subplot(4,2,ii);  
    drawnow 
    imagesc(Plume(ii).Shifted) 
    colormap(gray) 
    daspect((1 1 1)) 
    hold on 
    plot((Plume(ii).Penetration+1.5)/Scaling, Offset+1, 'mo', 
'MarkerFaceColor', 'm') 
    hold on 
        if isnan(Plume(ii).ThetaM1Star) == 0 
    plot(AngleXSixty, AnglePosYSixty, 'ro', (OffsetHole AngleXSixty'), 
EvaluationPositiveSixty, 'r-') 
    hold on 
    plot(AngleXSixty, AngleNegYSixty, 'ro',  (OffsetHole AngleXSixty'), 
EvaluationNegativeSixty, 'r-') 
     hold on 
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    plot((PenReferenceSixty(ii) PenReferenceSixty(ii)), (1 
size(Plume(ii).Shifted,1)), 'r-');  
    end 
            if isnan(Plume(ii).ThetaM2Star) == 0 
            hold on 
        plot(AngleXFortyFive, AnglePosYFortyFive, 'go', (OffsetHole 
AngleXFortyFive'), EvaluationPositiveFortyFive, 'g-') 
        hold on 
        plot(AngleXFortyFive, AngleNegYFortyFive, 'go', (OffsetHole 
AngleXFortyFive'), EvaluationNegativeFortyFive, 'g-') 
     hold on 
    plot((PenReferenceFortyFive(ii) PenReferenceFortyFive(ii)), (1 
size(Plume(ii).Shifted,1)), 'g-');  
end 
          title({'Original Spray Image with Curve-Fitted Cone Angle 
Edges Determined Via XX*Sigma'; 'Green - FiftyPercPen, Red - 45Do, Pink 
Dot - Spray Penetration'}) 
  
% Calculate Cone Angles from the Curve Fit Results 
 
end 
            end 
        
    %% Collect Results, Put into Single Array 
 
PenetrationPlume = arrayfun(@(x) mean(x.Penetration),Plume); 
AvgPenetration = mean(PenetrationPlume); 
PenetrationSpray(:,xx) = (PenetrationPlume AvgPenetration); 
 
% CA at 60% Pen 
ThetaPlumeM1Star = arrayfun(@(x) mean(x.ThetaM1Star), Plume); 
AvgThetaM1Star = mean(ThetaPlumeM1Star);  
ThetaSprayM1Star(:,xx) = (ThetaPlumeM1Star AvgThetaM1Star); 
 
% CA at 45 Do 
ThetaPlumeM2Star = arrayfun(@(x) mean(x.ThetaM2Star), Plume); 
AvgThetaM2Star = mean(ThetaPlumeM2Star);  
ThetaSprayM2Star(:,xx) = (ThetaPlumeM2Star AvgThetaM2Star); 
 
xx = xx+1; 
 
clear ConeT ConeB SixtyPercPen  
clear Plume 
end 

12.4.2. Vaporizing (0% Oxygen) Spray Image 

Processing Program 
The vaporizing (0% oxygen) spray images are processed to determine liquid 

length, and cone angle at both 60% of the liquid length and 45 nozzle diameters. The 

cone angle results are not included in discussions here based on reduced resolution and 

small spray width, therefore limited accuracy in these measurements based on the current 

optical setup.  
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ZeroPercO2ImageProcessing_CH6.m 
 

%% 0% O2 Back Scattering (Liquid Phase) Image Processing Program 
% Jaclyn Nesbitt 
% January 14, 2011 
 
% Use this program to determine penetration and cone angle of the 
liquid  
% phase sprays.  
% Injector spray characteristics referrenced relative to injector 
nozzle 
% hole, offset 1.5 mm from injector tip.  
% CA method - at 60% Pen, CF and at 45Do - CF (constant location) 
 
 
%% Setup workspace 
 
clear all; 
close all; 
clc; 
 
%% Get information about test, change to correct directory.  
 
DIRparent = ('\\mtucifs\dfshome\jenesbit\Desktop\\DieselSprayTesting - 
Additional August 2010\'); 
 
Date = input('Enter Date in YYYYMMDD Format:', 's'); 
Time = input('Enter Test Time in HHMM Format:','s'); 
NumPlumes = '8'; 
StartFrame = input('Enter First Frame to Process:', 's');  
EndFrame = input('Enter Last Frame to Process:', 's');  
 
Factor = 1; 
 
FolderName = strcat(Time, '_C001H001S0001'); 
 
dir_name = ((DIRparent Date '\' FolderName)); 
 
filename = strcat(Time, '_C001H001S0001.avi'); 
 
cd (dir_name) 
 
%% Read in Movie 
 
mov = aviread(filename); 
 
% Store Normalized Movie in NMOV 
N = size(mov,2); 
for i=1 : N; 
    nmov(  i).cdata = single( mov(  i).cdata); 
end 
 
% Put orginial movie into single variable. 
clear mov 
mov = nmov; 
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%% Background Subtraction; 
 
Background = mov(1,1).cdata; 
 
for i = 1:N-1; 
     
Frame(i).cdata = imsubtract(Background, mov(1,i+1).cdata); 
 
end 
 
%% Find Injector Tip using Background Image 
 
% Uncomment the set of code below to display background image.  
% figure;  
% imagesc(Background);  
% colormap(gray);  
% daspect((1 1 1)) 
 
% Scale and adjust background image.  
BackgroundScaled = Background/max(max(Background)); 
BackgroundAdjusted = imadjust(BackgroundScaled); 
 
% Apply multiplier to account for variations in SNR / contrast ratio  
% for different tests (due to not calibrating camera).  
Multiplier = 1.75; 
 
if strcmp(Time, '1657') == 1 
    Multiplier = 2;  
end 
 
if strcmp(Time, '1741') == 1 
   Background = mov(1,2).cdata; 
   BackgroundScaled = Background/max(max(Background)); 
   BackgroundAdjusted = imadjust(BackgroundScaled); 
   Multiplier = 1.55; 
end 
 
% Convert image to black and white, process with blob analysis 
BWBackground = im2bw(BackgroundAdjusted, 
Multiplier*graythresh(BackgroundAdjusted));  
BackgroundBlob = bwlabel(BWBackground,8); 
ColoredBlobs = label2rgb(BackgroundBlob, 'hsv', 'k', 'shuffle');  
 
%Uncomment to plot blobs from background resulting from blob analysis.  
% figure 
% imagesc(ColoredBlobs);  
% daspect((1 1 1)) 
 
Stats1 = regionprops(BackgroundBlob, 'centroid', 'area', 'extrema'); 
 
Area1 = (Stats1.Area); 
Centroid1 = (Stats1.Centroid); 
 
% Isolate spray ROI from background noise 



 

344 

LargeAreas = find(Area1 > 100);  
gg=LargeAreas(1); 
for gg = 1: size(LargeAreas,2) 
    LocX(gg) = Centroid1(LargeAreas(gg)*2-1)-size(Background,2)/2; 
    LocY(gg) = Centroid1(LargeAreas(gg)*2)-size(Background,1)/2; 
    DiffLoc(gg) = sqrt(LocX(gg)^2+LocY(gg)^2);  
end 
AreaIndex1 = LargeAreas(find(DiffLoc == min(DiffLoc))); 
Extrema1 = (Stats1.Extrema);  
 
CentroidIndexX = Centroid1(AreaIndex1*2-1);  
CentroidIndexY = Centroid1(AreaIndex1*2); 
 
DiffXX = abs(size(Background,2)/2-CentroidIndexX); 
DiffYY = abs(size(Background,1)/2-CentroidIndexY); 
 
AbsDiff = sqrt(DiffXX.^2+DiffYY.^2); 
 
Index = find(AbsDiff == min(AbsDiff)); 
 
% Define the injector tip location.  
YTop = (Extrema1(1, AreaIndex1(Index)*2)+Extrema1(2, 
AreaIndex1(Index)*2))/2;  
YBottom = 
(Extrema1(5,AreaIndex1(Index)*2)+Extrema1(6,AreaIndex1(Index)*2))/2; 
TipIndexY = round((YTop+YBottom)/2); 
XTop = (Extrema1(1,AreaIndex1(Index)*2-
1)+Extrema1(2,AreaIndex1(Index)*2-1))/2; 
XBottom = (Extrema1(5,AreaIndex1(Index)*2-
1)+Extrema1(6,AreaIndex1(Index)*2-1))/2; 
TipIndexX = round((XTop+XBottom)/2);  
 
clear XBottom YBottom XTop YTop AbsDiff Index 
clear DiffXX DiffYY CentroidIndexY Centroid1 AreaIndex1 CentroidIndexX  
clear Extrema1 Stats1 AreaIndex1 LocX LocY gg DiffLoc LargeAreas Area1  
clear BackgroundBlobs ColoredBlobs 
clear Multiplier BackgroundScaled 
 
%% Process Spray Images - frame by frame  
% Determine penetration and cone angle (plume to plume and average 
values) 
 
xx = str2num(StartFrame)-1; 
 
Total = size(mov,2); 
PenetrationTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1);  
AngleTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1); 
DiffX(Total-1).Location = ''; 
DiffY(Total-1).Location = ''; 
 
for xx = str2num(StartFrame)-1:str2num(EndFrame) 
 
    % Prepare image frames for processing.  
    Image = -Frame(xx).cdata;  
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    ImageLarge = zeros(floor(1.3*size(Image,1)), 
floor(1.3*size(Image,2)));  
    IXCenter = floor(size(ImageLarge,2)/2); 
    IYCenter = floor(size(ImageLarge,1)/2); 
    DiffX(xx).Location = floor(TipIndexX - IXCenter); 
    DiffY(xx).Location = floor(TipIndexY - IYCenter); 
    
    
ImageLarge(abs(DiffY(xx).Location)+1:abs(DiffY(xx).Location)+size(Image
,1), abs(DiffX(xx).Location)+1:abs(DiffX(xx).Location)+1+size(Image,2)-
1) = Image; 
 
    % Rotate image such that plumes travel left to right,  
    % exiting horizontally from the injector. 
    AngleRotate = 360/str2num(NumPlumes); 
    if strcmp(NumPlumes, '8') == 1 
        StartAngle = -3;  
    end 
     
    % Create a structure for data analysis.... for the total number of 
plumes.  
     
    Plume(str2num(NumPlumes)).Intensity = ''; 
    Plume(str2num(NumPlumes)).Shifted = ''; 
    Plume(str2num(NumPlumes)).Scaled  = ''; 
    Plume(str2num(NumPlumes)).BW = ''; 
    Plume(str2num(NumPlumes)).Blob = ''; 
    Plume(str2num(NumPlumes)).Spray = ''; 
    Plume(str2num(NumPlumes)).Boundary = ''; 
    Plume(str2num(NumPlumes)).Penetration = ''; 
    Plume(str2num(NumPlumes)).Theta = ''; 
    Plume(str2num(NumPlumes)).AngleX = '';  
    Plume(str2num(NumPlumes)).AngleNegY = '';   
    Plume(str2num(NumPlumes)).AnglePosY = '';   
    Plume(str2num(NumPlumes)).EvaluationPositive = '';   
    Plume(str2num(NumPlumes)).EvaluationNegative ='';   
   Plume(str2num(NumPlumes)).AX = '';   
   Plume(str2num(NumPlumes)).AY = '';  
 
    ii = 1; 
        for ii = 1:str2num(NumPlumes); 
             
            % Rotate image 
            Plume(ii).Intensity = 
imrotate(ImageLarge,StartAngle+AngleRotate*(ii-1)); 
            Offset = 20; 
 
            Plume(ii).AX = round(size(Plume(ii).Intensity,2)/2); 
            Plume(ii).AY = round(size(Plume(ii).Intensity,1)/2); 
 
            % Isolate spray plume of interest 
            Plume(ii).Shifted = Plume(ii).Intensity(Plume(ii).AY-
Offset:Plume(ii).AY+Offset, Plume(ii).AX:end); 
             
            % Apply mask to remove adjacent plumes.  
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            VX = ceil((1 size(Plume(ii).Shifted,1)/(2*tand(AngleRotate 
- 25)) size(Plume(ii).Shifted,2) size(Plume(ii).Shifted,2) 
size(Plume(ii).Shifted,1)/(2*tand(AngleRotate - 25)))); 
            VY = ceil((size(Plume(ii).Shifted,1)/2 
size(Plume(ii).Shifted,1) size(Plume(ii).Shifted,1) 1 1)); 
 
            BW = roipoly(Plume(ii).Shifted,VX,VY); 
            (I, J) = find(BW ==0);  
            kk =1; 
             
            for kk = 1:size(I,1) 
                Plume(ii).Shifted(I(kk),J(kk)) = 0; 
            end 
             
             
            % Convert Image to Black and White, Apply blob analysis on 
the 
            % image 
             
            Plume(ii).IntensitySum = Plume(ii).Shifted; 
            Plume(ii).Scaled = Plume(ii).Shifted / 
max(max(Plume(ii).Shifted)); 
            Threshold = 0.5*graythresh(Plume(ii).Scaled); 
            Plume(ii).BW = im2bw(Plume(ii).Scaled, Factor*Threshold); 
            Plume(ii).Blob = bwlabel(Plume(ii).BW,4); 
             
            Stats = regionprops(Plume(ii).Blob, 'area', 'extrema', 
'centroid'); 
            Area = (Stats.Area); 
            Extrema= (Stats.Extrema); 
            Centroid = (Stats.Centroid);  
            AreaIndex = find(Area == max(Area)); 
             
            if size(AreaIndex,2) > 1 
                CenterY = Centroid(AreaIndex*2);  
                Differences = CenterY-size(Plume(ii).Spray,1)/2;  
                CorrectIndex = find(abs(Differences) == 
min(abs(Differences)));  
                AreaIndex = AreaIndex(1);  
            end 
             
            % Prepare image with all background noise removed.  
            Plume(ii).Spray = ismember(Plume(ii).Blob, AreaIndex); 
            
            % Define scaling in mm/pixel, scaled by cosine of 15 
degrees to 
            % account for off-axis spray plume orientation 
            Scaling = 0.18/cosd(15); 
 
            OffsetHole = 1.5/(Scaling*cosd(15)); % Pixels - Distance 
from injector tip center to inj hole.   
            
            Centerline(ii) = round(Centroid(AreaIndex*2)); 
            Lead = max(find(Plume(ii).Spray(Centerline(ii),:)==1)); 
            TFLead = isempty(Lead); 
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     % Determine spray boundary, use this to determine penetration 
and  
        % cone angle.  
            if TFLead == 0 
             
            Plume(ii).Boundary = bwtraceboundary(Plume(ii).Spray, 
(Centerline(ii), Lead),'S');                     
 
            Penetration = arrayfun(@(x) max(x.Boundary), Plume, 
'UniformOutput', false); 
            Plume(ii).Penetration = Penetration{:,ii}(2)*Scaling - 
1.5;%  Subtract off difference in penetration based on inj tip 
definition 
             
%% Calculate Cone Angle 
 
% First find spray width in xx*Do increments 
Do = 0.14; % mm 
 
MaxKK = max(Plume(ii).Boundary(:,2)); 
MinKK = 30; % Define starting region for considering spray cone angle -
>  
% don't consider the region before the ceramic based on high noise.  
if min(Plume(ii).Boundary(:,2)) > MinKK 
   MinKK = min(Plume(ii).Boundary(:,2)); 
end 
kk = MinKK;  
 
if MinKK < MaxKK 
% Define spray widths over ROI 
for kk = MinKK : MaxKK 
 
    EdgeW = Plume(ii).Boundary(find(Plume(ii).Boundary(:,2) == kk),1); 
    TopEdgeW(kk,ii) = max(EdgeW); 
    BotEdgeW(kk,ii)  = min(EdgeW); 
    Widths(kk,ii) = abs(TopEdgeW(kk,ii) -BotEdgeW(kk,ii) );  
end 
 
%% DEFINE CONE ANGLE METHODS 
 
% Method 1 -- Calculate Cone Angle at 60% Pen, CF Method 
DistanceCalcAtSixty(ii) = 
round(0.6*Plume(ii).Penetration/(Scaling*cosd(15))); % Pixels 
PenReferenceSixty(ii) = round(DistanceCalcAtSixty(ii)+ 
1.5/(Scaling*cosd(15)));  
 
if PenReferenceSixty(ii) > MaxKK 
    Plume(ii).ThetaM1Star = NaN;  
else 
    Plume(ii).AngleX1S = (MinKK:1:PenReferenceSixty(ii));  
    Plume(ii).AngleY1STop = 
(TopEdgeW(MinKK:1:PenReferenceSixty(ii),ii)');  
    Plume(ii).AngleY1SBot = 
(BotEdgeW(MinKK:1:PenReferenceSixty(ii),ii)');  
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    AngleXSixty = Plume(ii).AngleX1S(:); 
    AngleNegYSixty = Plume(ii).AngleY1SBot(:); 
    AnglePosYSixty = Plume(ii).AngleY1STop(:); 
 
% Linear Curve Fit Spray Edge - Top and Bottom 
% Force curve fit through Injector Origin 
     
if size(AngleXSixty,1) >= 2 
ok6_ = isfinite(AngleXSixty) & isfinite(AngleNegYSixty); 
st6_ = (0.9746908242292236 ); 
ft6_ = fittype('m*(x-8.333)+21',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf6_ = 
fit(AngleXSixty(ok6_),AngleNegYSixty(ok6_),ft6_,'Startpoint',st6_); 
 
EvaluationNegativeSixty = feval(cf6_, (OffsetHole AngleXSixty'));  
ok16_ = isfinite(AngleXSixty) & isfinite(AnglePosYSixty); 
 
st16_ = (0.9746908242292236 ); 
ft16_ = fittype('m*(x-8.333)+21',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf16_ = 
fit(AngleXSixty(ok16_),AnglePosYSixty(ok16_),ft16_,'Startpoint',st16_); 
EvaluationPositiveSixty = feval(cf16_,(OffsetHole AngleXSixty'));  
 
YNegPenSixty = feval(cf16_, round(PenReferenceSixty(ii))); 
YPosPenSixty = feval(cf6_, round(PenReferenceSixty(ii)));  
 
PositiveThetaSixty = atan((YPosPenSixty-
(Offset+1))/(DistanceCalcAtSixty(ii)))*180/pi;  
NegativeThetaSixty = atan((YNegPenSixty-
(Offset+1))/(DistanceCalcAtSixty(ii)))*180/pi; 
 
Plume(ii).ThetaM1Star = 
abs(PositiveThetaSixty)+abs(NegativeThetaSixty);  
else 
    Plume(ii).ThetaM1Star = NaN; 
end 
end 
 
% Method 2 -- Calculate Cone Angle at 45*Do, CF Method 
DistanceCalcAtFortyFive(ii) = round(45*Do/(Scaling*cosd(15))); % Pixels 
PenReferenceFortyFive(ii) = round(DistanceCalcAtFortyFive(ii)+ 
1.5/(Scaling*cosd(15)));  
 
if PenReferenceFortyFive(ii) > MaxKK 
    Plume(ii).ThetaM2Star = NaN;  
else 
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    Plume(ii).AngleX6S = (MinKK:1:PenReferenceFortyFive(ii));  
    Plume(ii).AngleY6STop = 
(TopEdgeW(MinKK:1:PenReferenceFortyFive(ii),ii)');  
    Plume(ii).AngleY6SBot = 
(BotEdgeW(MinKK:1:PenReferenceFortyFive(ii),ii)');  
 
    AngleXFortyFive = Plume(ii).AngleX6S(:); 
    AngleNegYFortyFive = Plume(ii).AngleY6SBot(:); 
    AnglePosYFortyFive = Plume(ii).AngleY6STop(:); 
 
% Linear Curve Fit Spray Edge - Top and Bottom 
% Force curve fit through Injector Origin 
     
if size(AngleXFortyFive,1) >= 2 
ok_ = isfinite(AngleXFortyFive) & isfinite(AngleNegYFortyFive); 
st_ = (0.9746908242292236 ); 
ft_ = fittype('m*(x-8.333)+21',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf_ = 
fit(AngleXFortyFive(ok_),AngleNegYFortyFive(ok_),ft_,'Startpoint',st_); 
 
EvaluationNegativeFortyFive = feval(cf_, (OffsetHole 
AngleXFortyFive'));  
ok1_ = isfinite(AngleXFortyFive) & isfinite(AnglePosYFortyFive); 
 
st1_ = (0.9746908242292236 ); 
ft1_ = fittype('m*(x-8.333)+21',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf1_ = 
fit(AngleXFortyFive(ok1_),AnglePosYFortyFive(ok1_),ft1_,'Startpoint',st
1_); 
EvaluationPositiveFortyFive = feval(cf1_,(OffsetHole 
AngleXFortyFive'));  
YNegPenFortyFive = feval(cf1_, round(PenReferenceFortyFive(ii))); 
YPosPenFortyFive = feval(cf_, round(PenReferenceFortyFive(ii)));  
 
PositiveThetaFortyFive = atan((YPosPenFortyFive-
(Offset+1))/(DistanceCalcAtFortyFive(ii)))*180/pi;  
NegativeThetaFortyFive = atan((YNegPenFortyFive-
(Offset+1))/(DistanceCalcAtFortyFive(ii)))*180/pi; 
 
Plume(ii).ThetaM2Star = 
abs(PositiveThetaFortyFive)+abs(NegativeThetaFortyFive);  
else 
    Plume(ii).ThetaM2Star = NaN; 
end 
 
end 
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    drawnow 
    subplot(4,2,ii) 
    imagesc(Plume(ii).Shifted) 
    colormap(gray) 
    daspect((1 1 1)) 
    hold on 
    plot((Plume(ii).Penetration+1.5)/Scaling, Offset+1, 'mo', 
'MarkerFaceColor', 'm') 
    if isnan(Plume(ii).ThetaM1Star) == 0 
        hold on 
        plot(AngleXSixty, AnglePosYSixty, 'ro', (OffsetHole 
AngleXSixty'), EvaluationPositiveSixty, 'r-') 
        hold on 
        plot(AngleXSixty, AngleNegYSixty, 'ro',  (OffsetHole 
AngleXSixty'), EvaluationNegativeSixty, 'r-') 
    end 
    if isnan(Plume(ii).ThetaM2Star) == 0 
        hold on 
        plot(AngleXFortyFive, AnglePosYFortyFive, 'go', (OffsetHole 
AngleXFortyFive'), EvaluationPositiveFortyFive, 'g-') 
        hold on 
        plot(AngleXFortyFive, AngleNegYFortyFive, 'go', (OffsetHole 
AngleXFortyFive'), EvaluationNegativeFortyFive, 'g-') 
    end 
     hold on 
    plot((round(PenReferenceSixty(ii)) round(PenReferenceSixty(ii))), 
(1 size(Plume(ii).Shifted,1)), 'r-');  
    hold on 
    plot((PenReferenceFortyFive(ii) PenReferenceFortyFive(ii)), (1 
size(Plume(ii).Shifted,1)), 'g-');  
    title({'Original Spray Image with Curve-Fitted Cone Angle Edges 
Determined Via XX*Sigma'; 'Green - FiftyPercPen, Red - 45Do, Pink Dot - 
Spray Penetration'}) 
else 
   Plume(ii).ThetaM1Star = NaN; 
   Plume(ii).ThetaM2Star = NaN; 
end 
 
            end 
clear AngleXFortyFive AngleXSixty AnglePosYFortyFive AnglePosYSixty 
clear AngleNegYFortyFive AngleNegYSixty 
clear EvaluationPositiveFortyFive EvaluationNegativeFortyFive  
clear EvaluationPositiveSixty EvaluationNegativeSixty 
clear PositiveThetaSixty NegativeThetaSixty PositiveThetaFortyFive 
NegativeThetaFortyFive 
clear st1_ cf1_ ok1_ ft1_ 
clear st16_ cf16_ ok16_ ft16_ 
clear st_ cf_ ok_ ft_ 
clear st6_ cf6_ ok6_ ft6_ 
clear YPosPenFortyFive YNegPenFortyFive YPosPenSixty YNegPenSixty 
 
        end 
         
% Put Data into Arrays that are Organized for Future Post-Processing 
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PenetrationPlume = arrayfun(@(x) mean(x.Penetration),Plume); 
AvgPenetration = mean(PenetrationPlume); 
PenetrationSpray(:,xx) = (PenetrationPlume AvgPenetration); 
 
% Cone angle at 60% Penetration 
ThetaPlumeM1Star = arrayfun(@(x) mean(x.ThetaM1Star), Plume); 
AvgThetaM1Star = mean(ThetaPlumeM1Star);  
ThetaSprayM1Star(:,xx) = (ThetaPlumeM1Star AvgThetaM1Star); 
 
% Cone angle at 45Do 
ThetaPlumeM2Star = arrayfun(@(x) mean(x.ThetaM2Star), Plume); 
AvgThetaM2Star = mean(ThetaPlumeM2Star);  
ThetaSprayM2Star(:,xx) = (ThetaPlumeM2Star AvgThetaM2Star); 
 
xx = xx+1; 
 
end 
 
% Save data for penetration in an m-file 
cd (strcat(DIRparent, 'Dissertation - ILASS Extension')) 
SaveName=strcat(Time, 'ReducedCFData.mat'); 
Plume1P = PenetrationSpray(1,:)'; 
Plume2P = PenetrationSpray(2,:)'; 
Plume3P = PenetrationSpray(3,:)'; 
Plume4P = PenetrationSpray(4,:)'; 
Plume5P = PenetrationSpray(5,:)'; 
Plume6P = PenetrationSpray(6,:)'; 
Plume7P = PenetrationSpray(7,:)'; 
Plume8P = PenetrationSpray(8,:)'; 
 
save(SaveName, 'Plume1P', 'Plume2P', 'Plume3P', 'Plume4P', 'Plume5P', 
'Plume6P', 'Plume7P', 'Plume8P') 

12.4.3. Combusting (21% Oxygen) Spray 

Image Processing Program 
The combusting oxygen images are processed to determine flame length, lift-off 

length, cone angle at 60% flame length, and total combusting spray plume intensity.  

 

IP21PercO2_CH6.m 
 
%% Use this program to process Back Scattering 21% O2 Spray Images.  
% Calculate penetration, lift off length and cone angle of the  
% combusting spray.  
% Cone angle calculated at 60% of Flame Length. Cannot calculate at 
45Do 
% because 45Do is less than the lift off length location.  
% Also calculate total intensity inside spray plume.  
 
% Jaclyn Nesbitt 
% January 25, 2011 
 
%% Set up workspace.  
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clear all; 
close all; 
clc; 
 
%% Get information about test, change to correct directory.  
DIRparent = ('\\mtucifs\dfshome\jenesbit\Desktop\\DieselSprayTesting - 
Additional August 2010\'); 
Date = input('Enter Date in YYYYMMDD Format:', 's'); 
Time = input('Enter Test Time in HHMM Format:','s'); 
NumPlumes = '8'; 
StartFrame = input('Enter First Frame to Process:', 's');  
EndFrame = input('Enter Last Frame to Process:', 's');  
 
% Plume Display - plume number of results to show in figures 
PlumeDisplay =  1; 
 
Factor = 1; 
 
FolderName = strcat(Time, '_C001H001S0001'); 
 
dir_name = ((DIRparent Date '\' FolderName)); 
 
filename = strcat(Time, '_C001H001S0001.avi'); 
 
cd (dir_name) 
 
% Define Image Scaling 
Scaling = 0.18/cosd(15); % mm/pixel, scaled by cosine 15 degrees to 
account 
% for spray plume orientation relative to plane of the injector.  
OffsetHole = 1.5/(Scaling*cosd(15)); % Pixels - Distance from injector 
tip center to inj hole.   
 
%% Read in Movie 
 
mov = aviread(filename); 
 
% Store Normalized Movie in NMOV 
N = size(mov,2); 
for i=1 : N; 
    nmov(  i).cdata = single( mov(  i).cdata);   
end 
 
% Put orginial movie into single variable. 
 
clear mov 
mov = nmov; 
 
%% Determine injector tip location.  
% Find crossing point of the 8 plumes in the center -- look at a given 
% frame in the image.  
 
% Look at frame 14, convert to black and white, blob analysis.  
% Injector tip is the crossing point of all 8 spray plume centroids.  
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Frame = mov(14).cdata; 
 
BW = im2bw(Frame/max(max(Frame)), 
0.25*graythresh(Frame/max(max(Frame))));  
 
figure; imagesc(BW) 
 
StatsComb = regionprops(BW, 'area', 'extrema', 'centroid', 
'orientation'); 
 
            AreaComb = (StatsComb.Area); 
            ExtremaComb= (StatsComb.Extrema); 
            CentroidComb = (StatsComb.Centroid);  
            OrientationComb= (StatsComb.Orientation);  
            AreaIndexComb = find(AreaComb > 1000); %Should give 8 spray 
plumes 
             
            % For each plume, find centroid 
            OrientationPlumes = OrientationComb(AreaIndexComb);  
            CentroidX = (CentroidComb(AreaIndexComb*2-1));  
            CentroidY = (CentroidComb(AreaIndexComb*2));  
            
IndexA = find(OrientationPlumes <= 55 & OrientationPlumes >= 35);  
Index8 = IndexA(find(CentroidY(IndexA) < size(BW,1)/2)); 
Index4 = IndexA(find(CentroidY(IndexA) > size(BW,1)/2)); 
 
PlumeX(8) = CentroidX(Index8);  
PlumeY(8) = CentroidY(Index8);  
PlumeX(4) = CentroidX(Index4);  
PlumeY(4) = CentroidY(Index4);  
 
IndexB = find(OrientationPlumes <= -35 & OrientationPlumes >=-55);  
Index6 = IndexB(find(CentroidY(IndexB) < size(BW,1)/2)); 
Index2 = IndexB(find(CentroidY(IndexB) > size(BW,1)/2)); 
 
PlumeX(6) = CentroidX(Index6);  
PlumeY(6) = CentroidY(Index6);  
PlumeX(2) = CentroidX(Index2);  
PlumeY(2) = CentroidY(Index2);  
 
IndexC = find(OrientationPlumes <=10 & OrientationPlumes >=-10);  
Index1 = IndexC(find(CentroidX(IndexC) > size(BW,2)/2));  
Index5 = IndexC(find(CentroidX(IndexC) < size(BW,2)/2));  
 
PlumeX(1) = CentroidX(Index1);  
PlumeY(1) = CentroidY(Index1);  
PlumeX(5) = CentroidX(Index5);  
PlumeY(5) = CentroidY(Index5);  
 
IndexD = find(abs(OrientationPlumes) <=100 & abs(OrientationPlumes) 
>=80);  
Index7 = IndexD(find(CentroidY(IndexD) < size(BW,1)/2)); 
Index3 = IndexD(find(CentroidY(IndexD) > size(BW,1)/2)); 
PlumeX(3) = CentroidX(Index3);  
PlumeY(3) = CentroidY(Index3);  
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PlumeX(7) = CentroidX(Index7);  
PlumeY(7) = CentroidY(Index7);  
 
LineAX = (PlumeX(5) PlumeX(1));  
LineAY = (PlumeY(5) PlumeY(1));  
 
LineBX = (PlumeX(6) PlumeX(2));  
LineBY = (PlumeY(6) PlumeY(2));  
 
LineCX = (PlumeX(7) PlumeX(3));  
LineCY = (PlumeY(7) PlumeY(3));  
 
LineDX = (PlumeX(4) PlumeX(8));  
LineDY = (PlumeY(4) PlumeY(8));  
 
MidpointAX = mean((LineAX(1), LineAX(2)));  
MidpointAY = mean((LineAY(1), LineAY(2)));  
MidpointBX = mean((LineBX(1), LineBX(2)));  
MidpointBY = mean((LineBY(1), LineBY(2)));  
MidpointCX = mean((LineCX(1), LineCX(2)));  
MidpointCY = mean((LineCY(1), LineCY(2)));  
MidpointDX = mean((LineDX(1), LineDX(2)));  
MidpointDY = mean((LineDY(1), LineDY(2)));  
 
% X, Y coordinates of Injector Tip 
TipIndexX = mean((MidpointAX MidpointBX MidpointCX MidpointDX)); 
TipIndexY = mean((MidpointAY MidpointBY MidpointCY MidpointDY)); 
 
% Plot results 
figure; imagesc(Frame) 
hold on;  
plot(TipIndexX, TipIndexY, 'yo', 'MarkerFaceColor', 'y') 
hold on 
plot(LineAX, LineAY, 'b-') 
hold on 
plot(LineBX, LineBY, 'g-') 
hold on 
plot(LineCX, LineCY, 'r-') 
hold on 
plot(LineDX, LineDY, 'm-') 
hold on 
plot(MidpointAX, MidpointAY, 'bo') 
hold on 
plot(MidpointBX, MidpointBY, 'gs') 
hold on 
plot(MidpointCX, MidpointCY, 'rx') 
hold on 
plot(MidpointDX, MidpointDY, 'md') 
 
%% PROCESS IMAGES - frame by frame 
 
xx = str2num(StartFrame);  
 
Total = size(mov,2); 
PenetrationTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1);  
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AngleTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1); 
DiffX(Total-1).Location = ''; 
DiffY(Total-1).Location = ''; 
 
for xx = str2num(StartFrame):str2num(EndFrame) 
    
    % Prepare image for rotation.  
     
    Image = mov(xx).cdata;  
 
    ImageLarge = zeros(floor(1.3*size(Image,1)), 
floor(1.3*size(Image,2)));  
    IXCenter = floor(size(ImageLarge,2)/2); 
    IYCenter = floor(size(ImageLarge,1)/2); 
    DiffX(xx).Location = abs(floor(TipIndexX - IXCenter)); 
    DiffY(xx).Location = abs(floor(TipIndexY - IYCenter)); 
    
    
ImageLarge(abs(DiffY(xx).Location):abs(DiffY(xx).Location)+size(Image,1
)-1, abs(DiffX(xx).Location):abs(DiffX(xx).Location)+size(Image,2)-1) = 
Image; 
     
    AngleRotate = 360/str2num(NumPlumes); 
 
    StartAngle = -3;  
         
    % Create a structure for data processing.... for the total number 
of plumes.  
     
    Plume(str2num(NumPlumes)).Intensity = ''; 
    Plume(str2num(NumPlumes)).Shifted = ''; 
    Plume(str2num(NumPlumes)).Scaled  = ''; 
    Plume(str2num(NumPlumes)).BW = ''; 
    Plume(str2num(NumPlumes)).Blob = ''; 
    Plume(str2num(NumPlumes)).Spray = ''; 
    Plume(str2num(NumPlumes)).Boundary = ''; 
    Plume(str2num(NumPlumes)).Penetration = ''; 
    Plume(str2num(NumPlumes)).Theta = ''; 
    ii = 1; 
        for ii = 1:str2num(NumPlumes); 
             
            % Rotate images 
            Plume(ii).Intensity = 
imrotate(ImageLarge,StartAngle+AngleRotate*(ii-1)); 
            Offset = 50; 
 
            Plume(ii).AX = floor(size(Plume(ii).Intensity,2)/2); 
            Plume(ii).AY = floor(size(Plume(ii).Intensity,1)/2); 
 
            % Isolate ROI of image 
            Plume(ii).Shifted = Plume(ii).Intensity(Plume(ii).AY-
Offset:Plume(ii).AY+Offset, Plume(ii).AX:end); 
            Plume(ii).IntensitySum = Plume(ii).Shifted;  
            figure; imagesc(Plume(ii).Shifted); colormap(gray); 
daspect((1 1 1)); axis off 
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            % Apply mask to remove adjacent spray plumes.  
            VX = ceil((1 size(Plume(ii).Shifted,1)/(2*tand(AngleRotate 
- 25)) size(Plume(ii).Shifted,2) size(Plume(ii).Shifted,2) 
size(Plume(ii).Shifted,1)/(2*tand(AngleRotate - 25)))); 
            VY = ceil((size(Plume(ii).Shifted,1)/2 
size(Plume(ii).Shifted,1) size(Plume(ii).Shifted,1) 1 1)); 
 
            BW = roipoly(Plume(ii).Shifted,VX,VY); 
            (I, J) = find(BW ==0);  
            kk =1; 
             
            for kk = 1:size(I,1) 
                Plume(ii).Shifted(I(kk),J(kk)) = 0; 
            end 
 
            Plume(ii).Scaled = Plume(ii).Shifted / 
max(max(Plume(ii).Shifted)); 
 
            % Threshold image and convert to black and white for blob 
            % analysis.  
             
            Threshold =0.15*graythresh(Plume(ii).Scaled); 
             
            Plume(ii).BW = im2bw(Plume(ii).Scaled, Factor*Threshold); 
            Plume(ii).Blob = bwlabel(Plume(ii).BW,8); 
 
            StatsComb = regionprops(Plume(ii).Blob, 'area', 'extrema', 
'centroid'); 
            AreaComb = (StatsComb.Area); 
            ExtremaComb= (StatsComb.Extrema); 
            CentroidComb = (StatsComb.Centroid);  
            AreaIndexComb = find(AreaComb == max(AreaComb)); 
             
            % AreaComb will be empty - if there is no combusting plume 
due  
            % uneven start of combustion, so we won't process those 
regions 
             
            if isempty(AreaComb) == 0 
                     
                % Isolate combusting spray plume from the rest of the 
                % image.  
                Plume(ii).SprayComb = ismember(Plume(ii).Blob, 
AreaIndexComb); 
  
                CenterlineComb(ii) = 
round(CentroidComb(AreaIndexComb*2)); 
                LeadComb(ii) = 
max(find(Plume(ii).SprayComb(CenterlineComb(ii),:)==1));          
                 
                % Find boundary of combusting spray plume.  
                Plume(ii).BoundaryComb = 
bwtraceboundary(Plume(ii).SprayComb, (CenterlineComb(ii), 
LeadComb(ii)),'S'); 
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                X1=1; 
 
                % Determine flame length (penetration) 
                FlameLength = arrayfun(@(x) max(x.BoundaryComb), Plume, 
'UniformOutput', false); 
                Plume(ii).FlameLength = FlameLength{:,ii}(2)*Scaling-
1.5; %  Subtract off difference in penetration based on inj tip 
definition 
 
                % Look at intensity distribution in the image - use to 
                % define an approximation for our liquid length.  
                 
                (I1, J1) = find(Plume(ii).SprayComb ==0);  
                kk1 =1; 
             
                for kk1 = 1:size(I1,1) 
                    Plume(ii).IntensitySum(I1(kk1),J1(kk1)) = 0; 
                end 
             
                % Look at the intensity radially across the spray in 1  
                % pixel increments progressing downstream of the spray.  
                 
                for X1 = 1 : 
(Plume(ii).FlameLength/(Scaling*cosd(15))+1.5)+10; 
 
                    VertIntensity(X1) = 
sum(improfile(Plume(ii).IntensitySum, (X1,X1), 
(1,size(Plume(ii).IntensitySum,1)))); 
 
                end 
                 
                % Define a threshold for liquid length 10% of the 
maximum 
                % radial intensity.  
                 
                    MaxSumInt = max(VertIntensity);  
                    ThresholdInt = 0.1*max(VertIntensity);  
% Uncomment the below section of code to plot the vertical (radial) 
% intensity distribution and show the threshold location, relative to 
the 
% combusting flame image.  
 
% figure;  
% subplot(2,1,1) 
% plot(VertIntensity) 
% hold on 
% plot((1:size(VertIntensity,2)), 
(ThresholdInt+zeros(size(VertIntensity,2),1)), 'r-') 
% xlim((1  (Plume(ii).FlameLength/(Scaling*cosd(15))+1.5)+10)) 
% subplot(2,1,2);  
% imagesc(Plume(ii).IntensitySum);  
% xlim((1  (Plume(ii).FlameLength/(Scaling*cosd(15))+1.5)+10)) 
% hold on 
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% plot((min(find(VertIntensity >=ThresholdInt)) min(find(VertIntensity 
>=ThresholdInt))), (1, size(Plume(ii).IntensitySum,1)), 'y-') 
% axis off 
% keyboard 
% close all 
 
% Determine LOL for plume.  
Plume(ii).LOL = min(find(VertIntensity >= ThresholdInt));  
 
%% Determine total intensity within combusting plume.  
(I1, J1) = find(Plume(ii).SprayComb ==0);  
            kk1 =1; 
             
            for kk1 = 1:size(I1,1) 
                Plume(ii).IntensitySum(I1(kk1),J1(kk1)) = 0; 
            end 
             
           Plume(ii).TotalPlumeIntensity 
=sum(sum(Plume(ii).IntensitySum));  
 
%% Calculate Cone Angle 
 
clear VertIntensity 
 
% First find spray width in xx*Do increments 
Do = 0.14; % mm 
 
% Determine spray width - based on combusting boundaries.  
MaxKK = max(Plume(ii).BoundaryComb(:,2)); 
MinKK = min(Plume(ii).BoundaryComb(:,2)); 
kk = MinKK;  
for kk = MinKK : MaxKK 
    EdgeW = Plume(ii).BoundaryComb(find(Plume(ii).BoundaryComb(:,2) == 
kk),1); 
    TopEdgeW(kk,ii) = max(EdgeW); 
    BotEdgeW(kk,ii)  = min(EdgeW); 
    Widths(kk,ii) = abs(TopEdgeW(kk,ii) -BotEdgeW(kk,ii) );  
end 
 
% Calculate Cone angle at 60% Of Combusting Flame Length 
SixtyPercPen(ii) = round(0.6*Plume(ii).FlameLength/(Scaling*cosd(15))); 
% Pixels 
SixtyPercPenReference(ii) = round(SixtyPercPen(ii)+ 
1.5/(Scaling*cosd(15)));  
 
if SixtyPercPenReference(ii) > MaxKK 
    Plume(ii).ThetaM1Star = NaN;  
else 
    Plume(ii).AngleX1S = (MinKK:1:SixtyPercPenReference(ii));  
    Plume(ii).AngleY1STop = 
(TopEdgeW(MinKK:1:SixtyPercPenReference(ii),ii)');  
    Plume(ii).AngleY1SBot = 
(BotEdgeW(MinKK:1:SixtyPercPenReference(ii),ii)');  
 
    AngleXSixtyPerc = Plume(ii).AngleX1S(:); 
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    AngleNegYSixtyPerc = Plume(ii).AngleY1SBot(:); 
    AnglePosYSixtyPerc = Plume(ii).AngleY1STop(:); 
 
if size(AngleXSixtyPerc,1) >= 2 
ok_ = isfinite(AngleXSixtyPerc) & isfinite(AngleNegYSixtyPerc); 
st_ = (0.9746908242292236 ); 
ft_ = fittype('m*(x-8.333)+51',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf_ = 
fit(AngleXSixtyPerc(ok_),AngleNegYSixtyPerc(ok_),ft_,'Startpoint',st_); 
 
EvaluationNegativeSixtyPerc = feval(cf_, (OffsetHole 
AngleXSixtyPerc'));  
ok1_ = isfinite(AngleXSixtyPerc) & isfinite(AnglePosYSixtyPerc); 
 
st1_ = (0.9746908242292236 ); 
ft1_ = fittype('m*(x-8.333)+51',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf1_ = 
fit(AngleXSixtyPerc(ok1_),AnglePosYSixtyPerc(ok1_),ft_,'Startpoint',st1
_); 
EvaluationPositiveSixtyPerc = feval(cf1_,(OffsetHole 
AngleXSixtyPerc'));  
 
    YNegPenSixtyPerc = feval(cf1_, round(SixtyPercPenReference(ii))); 
YPosPenSixtyPerc = feval(cf_, round(SixtyPercPenReference(ii)));  
 
 PositiveThetaSixtyPerc = atan((YPosPenSixtyPerc-
(Offset+1))/(SixtyPercPen(ii)))*180/pi;  
NegativeThetaSixtyPerc = atan((YNegPenSixtyPerc-
(Offset+1))/(SixtyPercPen(ii)))*180/pi; 
 
Plume(ii).ThetaM1Star = 
abs(PositiveThetaSixtyPerc)+abs(NegativeThetaSixtyPerc);  
 
else  
        Plume(ii).ThetaM1Star = NaN;  
end 
end 
 
% Plot Results - combusting image + boundary + cone angle + lift off 
length 
subplot(4,2,ii) 
drawnow 
imagesc(Plume(ii).Scaled(:, :)) 
colormap(gray) 
daspect((1 1 1)) 
hold on 
T = isempty(Plume(ii).BoundaryComb); 
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if T == 0 
plot(Plume(ii).BoundaryComb(:,2), Plume(ii).BoundaryComb(:,1), 'y', 
'LineWidth', 2); 
end 
% Plot Method 1 
TestEmptyS =  isnan(Plume(ii).ThetaM1Star); 
if TestEmptyS == 0;  
    hold on 
plot((OffsetHole Plume(ii).AngleX1S), EvaluationPositiveSixtyPerc, 'w-
', 'LineWidth', 2) 
hold on 
plot((OffsetHole Plume(ii).AngleX1S), EvaluationNegativeSixtyPerc, 'w-
', 'LineWidth', 2) 
end 
hold on 
plot((SixtyPercPenReference(ii) SixtyPercPenReference(ii)), (1 
size(Plume(ii).Scaled,1)), 'w-', 'LineWidth', 2);  
hold on 
plot(OffsetHole, Offset+1, 'ro', 'MarkerFaceColor', 'r') 
hold on 
plot((Plume(ii).LOL Plume(ii).LOL), (1 size(Plume(ii).Scaled,1)), 'm-') 
axis off 
hold off 
title({'Yellow-Boundary, White - 0.6S CF, White - 0.6S Line'; 'Red 
Circle - Nozzle Hole Tip, Magenta - LOL'}) 
 
            end 
        end 
         
% Organize results into arrays         
FlameLengthPlume = arrayfun(@(x) mean(x.FlameLength),Plume); 
AvgFlameLength = mean(FlameLengthPlume); 
FlameLengthSpray(:,xx) = (FlameLengthPlume AvgFlameLength); 
 
LOLPlume = arrayfun(@(x) mean(x.LOL), Plume);  
AvgLiftOff = mean(LOLPlume); 
LiftOffLength(:,xx) = (LOLPlume AvgLiftOff).*Scaling-1.5; % Shift by 
actual tip nozzle location 
 
ThetaPlumeM1Star = arrayfun(@(x) mean(x.ThetaM1Star), Plume); 
AvgThetaM1Star = mean(ThetaPlumeM1Star);  
ThetaSprayM1Star(:,xx) = (ThetaPlumeM1Star AvgThetaM1Star); 
 
PlumeIntensityAll = arrayfun(@(x) mean(x.TotalPlumeIntensity),Plume);  
AvgPlumeIntensity = mean(PlumeIntensityAll);  
PlumeIntensitySpray(:,xx) = (PlumeIntensityAll AvgPlumeIntensity);  
 
xx = xx+1; 
 
clear ConeTComb ConeBComb SixtyPercPenComb 
clear Plume 
 
end 
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12.4.4. Gaussian Curve Fit Image Processing 

for Nonvaporizing Sprays 
The m-file for processing the nitrogen sprays using a Gaussian curve fitting 

intensity distribution methodology is provided below, used to determine cone angle at 45 

nozzle diameters. Penetration is also determined in this processing program.  

 

IPN2_GaussianCAMethod.m 
 
%% N2 Back Scattering (Liquid Phase) Image Processing Program 
% Gaussian Curve Fitting Method 
 
% Jaclyn Nesbitt 
% Febraury 28, 2011 -- Updated CF method.  
% Using modified Gaussian CF Method.  
 
% Use this program to determine penetration and cone angle of the 
liquid  
% phase sprays. Redefine injector tip location for each plume 
individually  
% - 1.5 mm offset (based on Ford information / drawing) - distance from 
nozzle tip 
% center to nozzle hole. Use 45 Do CF CA Methods, with Gaussian curve 
fitting.  
 
%% Setup workspace 
 
clear all; 
close all; 
clc; 
 
%% Get information about test, change to correct directory.  
DIRparent = ('\\mtucifs\dfshome\jenesbit\Desktop\\DieselSprayTesting - 
Additional August 2010\'); 
 
Date = input('Enter Date in YYYYMMDD Format:', 's'); 
Time = input('Enter Test Time in HHMM Format:','s'); 
 
NumPlumes = '8'; 
StartFrame = input('Enter First Frame to Process:', 's');  
EndFrame = input('Enter Last Frame to Process:', 's');  
 
%Define which plume will be shown in the figures 
PlumeDisplay = 1;  
 
% Factor = 1; 
 
FolderName = strcat(Time, '_C001H001S0001'); 
 
dir_name = ((DIRparent Date '\' FolderName)); 
 
filename = strcat(Time, '_C001H001S0001.avi'); 
 
cd (dir_name) 
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% Define scaling and injector tip offset.  
 
Scaling = 0.18/cosd(15); 
OffsetHole = 1.5/(Scaling*cosd(15)); % Pixels - Distance from injector 
tip center to inj hole.   
 
%% Read in Movie 
 
mov = aviread(filename); 
 
% Store Normalized Movie in NMOV 
N = size(mov,2); 
for i=1 : N; 
    nmov(  i).cdata = single( mov(  i).cdata); 
end 
 
% Put orginial movie into single variable. 
clear mov 
mov = nmov; 
 
cd (DIRparent) 
 
%% Background Subtraction; 
 
Background = mov(1,1).cdata; 
 
for i = 1:N-1; 
     
Frame(i).cdata = imsubtract(Background, mov(1,i+1).cdata); 
 
end 
 
%% Find Injector Tip using Background Image 
 
% Display background image - uncomment below.  
% figure; imagesc(Background); colormap(gray); daspect((1 1 1)) 
 
BackgroundScaled = Background/max(max(Background)); 
BackgroundAdjusted = imadjust(BackgroundScaled); 
 
% Apply multiplier to account for variations in SNR / contrast ratio 
for different tests (due to not calibrating camera).  
Multiplier = 1.75; 
 
if strcmp(Date, '20100830') == 1 
    Multiplier = 2;  
end 
 
BWBackground = im2bw(BackgroundAdjusted, 
Multiplier*graythresh(BackgroundAdjusted));  
 
BackgroundBlob = bwlabel(BWBackground,8); 
 
ColoredBlobs = label2rgb(BackgroundBlob, 'hsv', 'k', 'shuffle');  
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%Uncomment to plot blobs from background resulting from blob analysis.  
% figure 
% imagesc(ColoredBlobs);  
% daspect((1 1 1)) 
 
Stats1 = regionprops(BackgroundBlob, 'centroid', 'area', 'extrema'); 
 
Area1 = (Stats1.Area); 
Centroid1 = (Stats1.Centroid); 
 
LargeAreas = find(Area1 > 100);  
gg=LargeAreas(1); 
for gg = 1: size(LargeAreas,2) 
    LocX(gg) = Centroid1(LargeAreas(gg)*2-1)-size(Background,2)/2; 
    LocY(gg) = Centroid1(LargeAreas(gg)*2)-size(Background,1)/2; 
    DiffLoc(gg) = sqrt(LocX(gg)^2+LocY(gg)^2);  
end 
AreaIndex1 = LargeAreas(find(DiffLoc == min(DiffLoc))); 
Extrema1 = (Stats1.Extrema);  
 
CentroidIndexX = Centroid1(AreaIndex1*2-1);  
CentroidIndexY = Centroid1(AreaIndex1*2); 
 
DiffXX = abs(size(Background,2)/2-CentroidIndexX); 
DiffYY = abs(size(Background,1)/2-CentroidIndexY); 
 
AbsDiff = sqrt(DiffXX.^2+DiffYY.^2); 
 
Index = find(AbsDiff == min(AbsDiff)); 
 
YTop = (Extrema1(1, AreaIndex1(Index)*2)+Extrema1(2, 
AreaIndex1(Index)*2))/2;  
YBottom = 
(Extrema1(5,AreaIndex1(Index)*2)+Extrema1(6,AreaIndex1(Index)*2))/2; 
TipIndexY = round((YTop+YBottom)/2); 
XTop = (Extrema1(1,AreaIndex1(Index)*2-
1)+Extrema1(2,AreaIndex1(Index)*2-1))/2; 
XBottom = (Extrema1(5,AreaIndex1(Index)*2-
1)+Extrema1(6,AreaIndex1(Index)*2-1))/2; 
TipIndexX = round((XTop+XBottom)/2);  
 
clear MagDiff IndexTip DiffXX DiffYY ii HalfY HalfX Centroid1 
clear Stats1 BackgroundBlob ColoredBlobs BWBackground 
BackgroundAdjusted  
clear Multiplier BackgroundScaled 
 
%% Process Spray Images - frame by frame - to determine penetration and 
cone angle (plume to plume and average values) 
 
xx = str2num(StartFrame)-1; 
 
Total = size(mov,2); 
PenetrationTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1);  
AngleTotal = zeros(str2num(NumPlumes)+1, size(mov,2)-1); 
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DiffX(Total-1).Location = ''; 
DiffY(Total-1).Location = ''; 
 
for xx = str2num(StartFrame)-1:str2num(EndFrame) 
     
    Image = -Frame(xx).cdata;  
    ImageLarge = zeros(floor(1.3*size(Image,1)), 
floor(1.3*size(Image,2)));  
    IXCenter = floor(size(ImageLarge,2)/2); 
    IYCenter = floor(size(ImageLarge,1)/2); 
    DiffX(xx).Location = floor(TipIndexX - IXCenter); 
    DiffY(xx).Location = floor(TipIndexY - IYCenter); 
    
 
    
ImageLarge(abs(DiffY(xx).Location)+1:abs(DiffY(xx).Location)+size(Image
,1), abs(DiffX(xx).Location)+1:abs(DiffX 
 
(xx).Location)+1+size(Image,2)-1) = Image; 
 
    % Rotate image such that plumes travel left to right, exiting 
horizontal from the injector. 
    AngleRotate = 360/str2num(NumPlumes); 
    if strcmp(NumPlumes, '8') == 1 
        StartAngle = -3;  
    end 
     
    % Create a structure.... for the total number of plumes.  
     
    Plume(str2num(NumPlumes)).Intensity = ''; 
    Plume(str2num(NumPlumes)).Shifted = ''; 
    Plume(str2num(NumPlumes)).Scaled  = ''; 
    Plume(str2num(NumPlumes)).BW = ''; 
    Plume(str2num(NumPlumes)).Blob = ''; 
    Plume(str2num(NumPlumes)).Spray = ''; 
    Plume(str2num(NumPlumes)).Boundary = ''; 
    Plume(str2num(NumPlumes)).Penetration = ''; 
    Plume(str2num(NumPlumes)).Theta = ''; 
    Plume(str2num(NumPlumes)).AngleX = '';  
    Plume(str2num(NumPlumes)).AngleNegY = '';   
    Plume(str2num(NumPlumes)).AnglePosY = '';   
    Plume(str2num(NumPlumes)).EvaluationPositive = '';   
    Plume(str2num(NumPlumes)).EvaluationNegative ='';   
    Plume(str2num(NumPlumes)).LinearFitPositive = '';   
    Plume(str2num(NumPlumes)).LinearFitNegative = '';  
    SaveSigmaCF = zeros(27,8); 
    SaveSigmaFactor = zeros(27,8); 
    SavePointsUsed = zeros(27,8); 
    SaveMeanCFUsed = zeros(27,8); 
 
    ii = 1; 
 
 % Process each spray plume of the 8 hole nozzle separately 
 
        for ii = 1:str2num(NumPlumes); 
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     % Rotate the images, chose the desired ROI, ensure correct 
horizontal plume orienation.  
     Plume(ii).Intensity = 
imrotate(ImageLarge,StartAngle+AngleRotate*(ii-1)); 
            Offset = 40; 
 
            Plume(ii).AX = round(size(Plume(ii).Intensity,2)/2); 
            Plume(ii).AY = round(size(Plume(ii).Intensity,1)/2); 
 
            Plume(ii).Shifted = Plume(ii).Intensity(Plume(ii).AY-
Offset:Plume(ii).AY+Offset, Plume(ii).AX:end); 
             
            VX = ceil((1 size(Plume(ii).Shifted,1)/(2*tand(AngleRotate 
- 25)) size(Plume(ii).Shifted,2) size(Plume 
 
(ii).Shifted,2) size(Plume(ii).Shifted,1)/(2*tand(AngleRotate - 25)))); 
            VY = ceil((size(Plume(ii).Shifted,1)/2 
size(Plume(ii).Shifted,1) size(Plume(ii).Shifted,1) 1 1)); 
 
            BW = roipoly(Plume(ii).Shifted,VX,VY); 
            (I, J) = find(BW ==0);  
            kk =1; 
             
            for kk = 1:size(I,1) 
                Plume(ii).Shifted(I(kk),J(kk)) = 0; 
            end 
             
            Plume(ii).Scaled = Plume(ii).Shifted / 
max(max(Plume(ii).Shifted)); 
             
     % Find the intensity profile along the spray centerline, use 
this to define the tip of the spray (penetration) 
            XX1 = 1;  
            XX2 = size(Plume(ii).Scaled, 2);  
            YAxis = Offset+1;  
            CCL = improfile(Plume(ii).Scaled,(XX1 XX2), (YAxis YAxis));  
            Plume(ii).SprayTip = min(find(CCL(ceil(3*OffsetHole):end) 
<= 0.1))+ceil(3*OffsetHole)-1; 
             
            Plume(ii).Penetration = Plume(ii).SprayTip*Scaling-1.5; % 
Account for 1.5 mm shift in injector tip location 
            
 % Plot results of spray tip overlaid on origianl spray image 
              
    if ii == PlumeDisplay 
            figure;  
            drawnow;  
            subplot(2,1,1) 
            imagesc(Plume(ii).Shifted) 
            daspect((1 1 1)) 
            colormap(gray) 
            hold on 
            plot(Plume(ii).SprayTip,YAxis, 'go', 'MarkerFaceColor', 
'g');  
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            title('Original Spray Image, Green Dot Shows Penetration 
Tip') 
            subplot(2,1,2) 
            plot((1:1:size(CCL,1)), CCL);  
            hold on 
            plot(Plume(ii).SprayTip, CCL(Plume(ii).SprayTip), 'go', 
'MarkerFaceColor', 'g');  
            xlabel('Intensity Distribution') 
            ylabel('Distance Along Profile') 
            title('Penetration') 
    end 
             
%% Cone Angle Determination 
             
% Define considered regions for CA calculation 
 
Do = 0.14; % mm 
FortyFiveDiameters = round(Do*45/(Scaling*cosd(15))); % Pixels 
MaxKK = (FortyFiveDiameters);  
 
% Add exception to max - if the forty five diameters is larger than the 
% spray tip - then max KK is less -- and 0.5*Penetration because that 
is the only  
% CA we can determine.  
 
if FortyFiveDiameters > 
round(1*Plume(ii).Penetration/(Scaling*cosd(15))) 
    ProcessDo45 = 0;  
else 
    ProcessDo45 = 1;  
end 
 
MinKK = round(2*OffsetHole) ; %% Starting point of considering spray 
widths in cone angle 
MaxKK = round(MaxKK + OffsetHole); % Reference to Injector Tip 
Increments = MaxKK - MinKK+1;  
 
% Create a profile structure 
 
C(Increments).Profile = '';  
C(Increments).Offset = ''; 
C(Increments).OffsetProfile = '';  
C(Increments).XVector = '';  
C(Increments).MeanFit = '';  
C(Increments).Sigma = '';  
C(Increments).A = '';  
C(Increments).YY1 = '';  
C(Increments).YY2 = '';  
 
kk = 1;  
kkstar = MinKK; 
Stepping=1; 
Skips = ();  
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% Take intensity profiles across the spray in 1 pixel increments moving 
downstream the spray.  
% Find the data of interest - only decreasing data points are 
considered.  
for kk =1 : Increments 
    C(kk).YY1 = 1;  
    C(kk).YY2 = size(Plume(ii).Shifted,1);  
    C(kk).Profile = improfile(Plume(ii).Shifted, (kkstar kkstar), 
(C(kk).YY1 C(kk).YY2));  
    C(kk).XVector = (1:1:size(C(kk).Profile,1))'+C(kk).YY1-1;  
     
    global X Y 
     
    MidPoint = round(max(C(kk).XVector)/2);  
 
% Find decreasing data 
IndexL = max(find(C(kk).Profile(1:MidPoint) <= 0));  
IndexR = min(find(C(kk).Profile(MidPoint:end) <= 0))+MidPoint-1;  
 
gg = MidPoint+2;  
Difference = -1; 
while Difference < 0 
    Difference = C(kk).Profile(gg+1)-C(kk).Profile(gg);  
   if gg >= IndexR 
    gg = gg+1; 
        break 
    end 
    gg = gg + 1;    
end 
 
RightEdge = gg - 2;  
 
while C(kk).Profile(RightEdge) > 0.2*max(C(kk).Profile) 
    % We Haven't identified the correct end point 
     gg = RightEdge +2; 
     Difference = -1; 
     if gg >= IndexR 
        gg = gg-2;  
        break 
    end 
if Difference < 0 
    Difference = C(kk).Profile(ii+1)-C(kk).Profile(ii);  
    if ii >= IndexR 
    gg = gg+1; 
        break 
    end 
    gg = gg + 1;    
end 
 
RightEdge = gg - 2;  
end 
 
% Conside from midpoint to x = 0 -- need to reverse data.  
 
jj = MidPoint-2;  
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Difference = -1;  
while Difference < 0 
    Difference = C(kk).Profile(jj) - C(kk).Profile(jj+1);  
    if jj <= IndexL 
        jj = jj-1;  
        break 
    end 
    jj = jj - 1;  
end 
 
LeftEdge = jj + 2;  
 
while C(kk).Profile(LeftEdge) > 0.2*max(C(kk).Profile) 
    % We Haven't identified the correct end point 
    jj = LeftEdge-2; 
    Difference = -1;  
    if jj <= IndexL 
        jj = jj-1;  
        break 
    end 
        while Difference < 0 
            Difference = C(kk).Profile(jj) - C(kk).Profile(jj+1);  
            if jj <= IndexL 
                jj = jj-1;  
                break 
            end 
            jj = jj - 1;  
        end 
        LeftEdge = jj + 2;  
end 
 
% Apply a gaussian curve fit to the intensity region of interest. 
Output curve fit parameters.  
 
C(kk).Y = C(kk).Profile(LeftEdge:1:RightEdge);  
C(kk).X = C(kk).XVector(LeftEdge:1:RightEdge);  
 
X = C(kk).X;  
Y = C(kk).Y; 
    
    start = (max(Y) mean(X) size(Y(find(Y>0.5*max(Y))),1)/2.355 
min(C(kk).Profile));  
 
    bestcoeffs = fminsearch(@OffsetGauss, start);  
 
     C(kk).A = bestcoeffs(1);  
     C(kk).MeanFit = bestcoeffs(2); 
     C(kk).Sigma = bestcoeffs(3); 
     C(kk).Offset = bestcoeffs(4); 
 
     C(kk).FittedData =  C(kk).A*exp(-(C(kk).XVector- 
C(kk).MeanFit).^2/(2* C(kk).Sigma^2))+C(kk).Offset; 
    
 
% Define parameters using the curve fit values.  
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     a = 1;  
     b = -2*(C(kk).MeanFit);  
     c = C(kk).MeanFit^2+2*C(kk).Sigma^2*log((-C(kk).Offset)/C(kk).A);  
 
     IntersectionL = (-b - sqrt(b^2-4*a*c))/(2*a);  
     IntersectionR = (-b + sqrt(b^2-4*a*c))/(2*a); 
 
     C(kk).SigmaL = (IntersectionR-IntersectionL)/C(kk).Sigma; 
     SigmaL(kk) = C(kk).SigmaL;  
 
     Imag = ~isreal(SigmaL(kk));  
 
if Imag == 1 
    Skips(Stepping) = kk;  
    Stepping = Stepping+1;  
end 
 
FitOffset(kk) = C(kk).Offset;  
      
     C(kk).FittedShort = C(kk).A*exp(-(C(kk).X- C(kk).MeanFit).^2/(2* 
C(kk).Sigma^2))+C(kk).Offset; 
   
    if kkstar == round(FortyFiveDiameters+OffsetHole) 
        FortyFiveDiametersIndex = kk;  
    end 
 
% Define results of curve fit - i.e. measures of goodness of fit (RMSE, 
NRMSE, R2 etc...) 
     
    kkstar = kkstar+1; 
    Deviations  = C(kk).Y - mean(C(kk).Y); %Measure of Spread 
    % Total sum of squares - proportional to sample variance 
    SST = sum(Deviations.^2); % Total Variation to be accounted for  
    Residuals = C(kk).Y - C(kk).FittedShort; %Measure of mismatch 
    SSE = sum(Residuals.^2); %Variation not accounted for 
    RSq(kk) = 1 - SSE/SST; %Percent of error explained - R^2 should be 
close to 1 
    RMSE(kk) = (sum(Residuals.^2)/size(Residuals,1))^(1/2);  
    NRMSE(kk) = (RMSE(kk)/(max(C(kk).Y)-min(C(kk).Y)))*100;  
 
    % Plot results - gaussian curve fitting overlaid on intensity 
distribution.  
    if ii == PlumeDisplay 
        if kk == 1 
            figure;  
        end 
        drawnow 
        plot(C(kk).XVector, C(kk).FittedData);  
        hold on 
        plot(C(kk).XVector, C(kk).Profile, 'r');  
        hold on 
        plot(C(kk).X, C(kk).Y, 'kx') 
        xlabel('Distance Along Profile') 
        ylabel('Intensity (Counts)') 
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        legend('Gaussian Curve Fit', 'Profile Data', 'Data Used in 
Curve Fit');  
        title({strcat('Gaussian Fit:  Intensity = ', num2str(C(kk).A), 
'*exp(-(Distance-', num2str(C(kk).MeanFit), ')^2/ 
 
(2*', num2str(C(kk).Sigma), '^2))', '+', num2str(C(kk).Offset));,...  
            strcat('Rsq:', num2str(RSq(kk)), '; NRMSE:', 
num2str(NRMSE(kk)))});  
        xlim((0 Offset*2)) 
        ylim((-20 160)) 
 
    end 
 
end 
 
 
% Plot results of NRMSE and threshold value of NRMSE to understand okay 
(used CF's) and errors in CF's 
if ii == PlumeDisplay 
 
figure;  
 
plot((MinKK:1:Increments+MinKK-1),zeros(Increments,1)'+5, 'k-') 
hold on 
plot((MinKK:1:Increments+MinKK-1), NRMSE, 'bo', 'MarkerFaceColor', 'b') 
legend('Threshold NRMSE', 'NRMSE') 
xlabel('Index - Corresponds to Radial Profile') 
ylabel('NRMSE (%) of Gaussian Curve Fit') 
 
end 
 
% Define the indeces of curve fits which are not included in defining 
the spray edge to calculate cone angle.  
Skipping = find(NRMSE >5| isnan(RSq) | isinf(SigmaL)); 
 
if isempty(Skips) 
    SkipFits = Skipping;  
else 
 
SkipFits = unique((Skipping Skips));  
end 
 
aa =1; 
bb =1;  
Indexing = (1:1:Increments); 
DistProfile = (MinKK:1:Increments+MinKK-1);  
for aa = 1:size(Indexing,2) 
Left = ismember(Indexing(aa), SkipFits);  
if Left == 0;  
    PointsUsed(bb) = DistProfile(Indexing(aa)); 
    SigmaCFUsed(bb) = C(aa).Sigma;  
    SigmaFactorUsed(bb) = C(aa).SigmaL/2;  
    MeanCFUsed(bb) = C(aa).MeanFit;  
    bb = bb + 1;  
end 
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end 
 
%% Use gaussian curve fit to determine cone angle edges.  
  
 % Define edges as +- x* Sigma, relative to mean value (center 
 % point), x is some factor of sigma.  
 
Index = 1;  
IndexMoving = 1;  
 for Index = 1:Increments 
     if ismember(Index,SkipFits) 
     else 
Factor = sqrt(log(1)/log(C(Index).A)+1);  
EdgePos(IndexMoving) = 
C(Index).MeanFit+C(Index).Sigma*C(Index).SigmaL/2*Factor; 
EdgeNeg(IndexMoving) = C(Index).MeanFit-
C(Index).Sigma*C(Index).SigmaL/2*Factor; 
 
clear Factor 
if ProcessDo45 == 1 
    if Index+MinKK-1 <= FortyFiveDiameters+OffsetHole 
        AngleXFortyFive(IndexMoving) = Index+MinKK-1;  
    end 
end 
 
IndexMoving = IndexMoving+1; 
 
     end 
 end 
  
 SkipAngles = isequal(Increments,SkipFits);  
 SkipAngles2 = (size(SkipFits, 2) == Increments);  
 if SkipAngles == 0  
     if SkipAngles2 == 0 
    
  if ProcessDo45 == 1 
AngleXFortyFive = (AngleXFortyFive);  
AnglePosYFortyFive = (EdgePos(1:size(AngleXFortyFive,2)));  
AngleNegYFortyFive = (EdgeNeg(1:size(AngleXFortyFive,2)));  
 
AngleXFortyFive = AngleXFortyFive(:); 
AngleNegYFortyFive = AngleNegYFortyFive(:); 
AnglePosYFortyFive = AnglePosYFortyFive(:); 
 
if size(AngleXFortyFive,1) >= 2 
ok_ = isfinite(AngleXFortyFive) & isfinite(AngleNegYFortyFive); 
st_ = (0.9746908242292236 ); 
ft_ = fittype('m*(x-8.333)+41',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf_ = 
fit(AngleXFortyFive(ok_),AngleNegYFortyFive(ok_),ft_,'Startpoint',st_); 
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EvaluationNegativeFortyFive = feval(cf_, (OffsetHole 
AngleXFortyFive'));  
ok_ = isfinite(AngleXFortyFive) & isfinite(AnglePosYFortyFive); 
 
st1_ = (0.9746908242292236 ); 
ft1_ = fittype('m*(x-8.333)+41',... 
    'dependent',{'y'},'independent',{'x'},... 
    'coefficients',{'m'}); 
 
% Fit this model using new data 
cf1_ = 
fit(AngleXFortyFive(ok_),AnglePosYFortyFive(ok_),ft_,'Startpoint',st_); 
EvaluationPositiveFortyFive = feval(cf1_,(OffsetHole 
AngleXFortyFive'));  
 
% Display linear fits, overlaid on original image pictures.  
if ii == PlumeDisplay 
    figure;  
    drawnow 
    imagesc(Plume(ii).Shifted) 
    colormap(gray) 
    daspect((1 1 1)) 
    hold on 
    plot(Plume(ii).SprayTip, Offset+1, 'mo', 'MarkerFaceColor', 'm') 
 
    if ProcessDo45 == 1 
        hold on 
        plot(AngleXFortyFive, AnglePosYFortyFive, 'go', (OffsetHole 
AngleXFortyFive'), EvaluationPositiveFortyFive, 'g-') 
        hold on 
        plot(AngleXFortyFive, AngleNegYFortyFive, 'go', (OffsetHole 
AngleXFortyFive'), EvaluationNegativeFortyFive, 'g-') 
    end 
 
    hold on 
    plot((round(FortyFiveDiameters+OffsetHole) 
round(FortyFiveDiameters+OffsetHole)), (1 size(Plume(ii).Shifted,1)), 
'r-');  
    title({'Original Spray Image with Curve-Fitted Cone Angle Edges 
Determined Via XX*Sigma'; 'Green - FiftyPercPen, Red -  
 
45Do, Pink Dot - Spray Penetration'}) 
end 
 
YNegPenFortyFive = feval(cf1_, round(FortyFiveDiameters+OffsetHole)); 
YPosPenFortyFive = feval(cf_, round(FortyFiveDiameters+OffsetHole));  
 
PositiveThetaFortyFive = atan((YPosPenFortyFive-
(Offset+1))/(FortyFiveDiameters))*180/pi;  
NegativeThetaFortyFive = atan((YNegPenFortyFive-
(Offset+1))/(FortyFiveDiameters))*180/pi; 
 
Plume(ii).ThetaTotalFortyFive = 
abs(PositiveThetaFortyFive)+abs(NegativeThetaFortyFive);  
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else 
    Plume(ii).ThetaTotalFortyFive = NaN;  
end 
 else 
     Plume(ii).ThetaTotalFortyFive = NaN;  
 end 
 else 
    Plume(ii).ThetaTotalFortyFive = NaN;  
 end 
 else 
     Plume(ii).ThetaTotalFortyFive = NaN;  
 end 
 
clear AngleXFifty AnglePosYFifty AngleNegYFifty 
clear AngleXFortyFive AnglePosYFortyFive AngleNegYFortyFive 
clear PositiveThetaFifty NegativeThetaFifty YNegPenFifty YPosPenFifty 
clear LinearFitPositiveFifty LinearFitNegativeFifty 
EvaluationPositiveFifty EvaluationNegativeFifty   
clear PositiveThetaFortyFive NegativeThetaFortyFive YNegPenFortyFive 
YPosPenFortyFive 
clear LinearFitPositiveFortyFive LinearFitNegativeFortyFive 
EvaluationPositiveFortyFive EvaluationNegativeFortyFive 
clear Index IndexMoving Increments 
clear Deviations EdgeNeg EdgePos 
clear FiftyPercPen MinKK MaxKK SkipFits kk kkstar 
clear RSq Residuals SSE SST 
clear C SkipAngles 
clear SigmaCFUsed aa bb SigmaFactorUsed MeanCFUsed PointsUsed 
clear Left Indexing DistProfile 
clear MaxKK MinKK Increments Stepping X Y MidPoint 
clear IndeL IndexR gg Difference 
clear RightEdge jj LeftEdge start bestcoeffs a b c 
clear IntersectionL IntersectionR Imag SigmaL Skips FitOffset 
clear FortyFiveDiametersIndex Deviations RMSE NRMSE Skipping SkipFits 
clear ProcessDo45 
clear ok_ cf1_ cf_ st_ ft_ st1_ ft1_  
         
        end 
         
      
PenetrationPlume = arrayfun(@(x) mean(x.Penetration),Plume); 
AvgPenetration = mean(PenetrationPlume); 
 
PenetrationSpray(:,xx) = (PenetrationPlume AvgPenetration); 
 
ThetaPlumeM45Do = arrayfun(@(x) mean(x.ThetaTotalFortyFive), Plume); 
AvgThetaM45Do = mean(ThetaPlumeM45Do);  
 
ThetaSprayM45Do(:,xx) = (ThetaPlumeM45Do AvgThetaM45Do); 
 
xx = xx+1; 
 
clear Plume 
clear Penetrationplume AvgPenetration  
clear ThetaPlumeM50Perc AvgThetaM50Perc 
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clear ThetaPlumeM45Do AvgThetaM45Do 
 
close all 
end 

12.4.5. Data Analysis Program 

Data analysis consists of reading in the BDF data file from the ADX into Matlab, 

and appropriately configuring the data. Based on the system design and data storage, 

every 5 ms, there is 0.2 ms of repeated data. Therefore, this data must be removed from 

the results to ensure the final results represent the actual test data. After the data is 

removed, the empty data channels are removed, and the desired data is stored in variables 

of interest, as defined using a text file, provided by the user, TextFileDefinitions.txt. The 

results (data in the channel variable names of interest) are written to a .mat file for easier 

retrieval in the future (TestFileData.mat), and the appropriate program is run to determine 

condition data, either vaporizing, non-vaporizing or combusting sprays. Required inputs 

for this processing program are the total number of analog data channels (8), sampling 

frequency (100 kHz), tests date (YYYYMMDD format), test time (HHMM), and the test 

type (combusting, vaporizing, or non-vaporizing). To run the program, run 

BDFConversion_RUN_ME.m. This program calls the sub-routines, of 

BDFConversion_TextReadIn_8CH_100kHz.m, and TEXTFILEREADIN.m. Finally, the 

data processing sub-routine is run for the specified test type, either non-vaporizing 

(DataAnalysisN2.m), vaporizing (DataAnalysisZeroPercO2.m), or combusting 

(DataAnalysis21PercO2.m). These files are provided in this, and the subsequent sections.  

 

BDFConversion_RUN_ME.m 

 
%% BDF Conversion 
% Run this program to convert the BDF data from the ADX into data 
accessible 
% in Matlab. This program calls subprograms that actually run the 
% conversion routines.  
 
% Jaclyn Nesbitt 
% May 2009 
 
%% Setup Workspace 
 
clear all 
close all 
clc 
 
%%%%%%%%%%%%%%   User Inputs   %%%%%%%%%%%%%%%%%%% 
 
% Channel Number 
NumAnalogChannels = input ('Enter Number of Analog Channels (8 or 
16):'); 
if NumAnalogChannels ~= 8 && NumAnalogChannels~=16 
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    error ('Invalid Entry for Number of Analog Channels, must be 8 or 
16'); 
end 
 
% Sampling Frequency 
SampleFrequencykHz = input ('Enter Sampling Frequency in kHz (5 or 
100):'); 
if SampleFrequencykHz ~= 5 && SampleFrequencykHz~=100 
    error ('Invalid Entry for Sampling Frequency in kHz, must be 5 or 
100'); 
end 
 
YYYYMMDD = input('Enter Test Date in format YYYYMMDD:', 's'); 
HHMM = input('Enter Test Time in format HHMM:', 's'); 
TestType = input('Enter Test Type (N2, 0PercO2, 21PercO2):', 's'); 
% Directory Pathname Designation 
 
DIRparent=('\\mtucifs\dfshome\jenesbit\Desktop\DieselSprayTesting - 
Additional August 2010\');  
home_dir = DIRparent;  
dir_name = ((DIRparent YYYYMMDD '\' HHMM)); 
processing_file = 
('\\mtucifs\dfshome\jenesbit\Desktop\Dissertation\MFILES'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if SampleFrequencykHz == 100 && NumAnalogChannels == 8 
    run BDFConversion_TextReadIN_8CH_100kHz 
end 
 
if SampleFrequencykHz == 100 && NumAnalogChannels == 16 
    run BDFConversion_TextReadIN_16CH_100kHz 
end 
 
if SampleFrequencykHz == 5 && NumAnalogChannels == 16 
    run BDonversion_TextReadIN_16CH_5kHz 
end 
 
if SampleFrequencykHz == 5 && NumAnalogChannels == 8 
    run BDFConversion_TextReadIN_8CH_5kHz 
end 
 
date = date; 
 

BDFConversion_TextReadIN_8CH_100kHz.m 

 
%%  BDF File Read Into Matlab - 8 Channels, 100 kHz.  
 
% Jaclyn Nesbitt 
% May 3, 2009 
 
% Revised further by Sam Johnson for user inputs and automated pathname 
% designations 
% May 5, 2009 
 
% Revised Further July 27 2009 by Jaclyn Nesbitt 
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% Incorporating necessary fix for bug in ADX: 
% every 5 ms it repeats 0.2 ms of data.  
 
% This file reads in the high speed data from the ADX in two analog 
data 
% files (two for the 16 channel solution, 1 for the 8 channel 
solution).  
% The analog data files also contain all necessary PWM data. The 
% PWM data is interpolated to match the sampling frequency of the 
% analog data. The user must change the filename of the data file to 
match 
% the desired file. This file can be modified if desired to write the 
data 
% to a CSV file.  
 
%  The format of the binary file is as follows:  
%  First 4 bytes is the number of channels saved as long  
%  Second 4 bytes is the number of saved data per channel  
%  After that the data is saved in 4 bytes floating point real numbers  
% (IEEE standard format)  
%  We can ignore the first 8 bytes and then start reading the data as 4  
%  byte floating point numbers.  
 
% User must specify the number of channels which were sampled and 
stored on 
% the Analog card - 8 or 16, along with the sampling frequency in kHz 
(5 or 100).  
 
%% Set up Matlab for Data Read 
 
clc; 
cd (dir_name) 
 
%% Read ADX binary Data -- in BDF Format (Directly from ADX). 
 
% If number of analog channels is 8 - there is only one analog data 
file. 
 
    fid = fopen ((dir_name '\AnalogData1.bdf'), 'r'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% N_CHN and N_DATA - based on data storage - this first 8 bytes can be 
% ignored. This corresponds to data in the first Analog card.  
 
N_CHN  = fread (fid, 1, 'integer*4'); 
N_DATA = fread (fid, 1, 'integer*4'); 
 
% READ IN ACTUAL DATA - from both analog cards and PWM 
% Reading data from card 1  
numelem=N_CHN*N_DATA; 
EndIndex = floor(numelem/5200); 
X  = fread (fid, 'float32'); 
X2 = reshape (X, N_CHN, N_DATA); 
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X3(:,1:25) = X2(:,1:25); % Read in first 25 sets - each set has 20 data 
points  
                           % sampled at 100 kHz - this represents the 
first 
                           % 500 good data points 
j = 25; 
 
% Sort through data, deleting 20 sample (0.2ms) of data every 5 ms (500 
% samples) 
for i =1:EndIndex-1; 
X3(:,25*i+1:(i+1)*25) = X2(:,j+2:j+26); 
j = 26+j; 
i = i + 1; 
end 
 
% Get the last bit of data. 
 
if size(X2,2) > j(end) 
    Difference = size(X2,2)-j(end); 
    X3(:, 25*i(end)+1:25*i(end)+1+Difference-2) = 
X2(:,j(end)+2:j(end)+Difference); 
end 
 
 
% Format all data channels with the corrected data.  
Dimension = size(X3,1)*size(X3,2)/10; 
PWMDimension = size(X3,2); 
Channel1 = reshape (X3 ((1:20),:), Dimension, 1);   % CV Dynamic 
pressure 
Channel2 = reshape (X3 ((21:40),:), Dimension, 1);  
Channel3 = reshape (X3 ((41:60),:), Dimension, 1);    
Channel4 = reshape (X3 ((61:80),:), Dimension, 1); 
Channel5 = reshape (X3 ((81:100),:), Dimension, 1); 
Channel6 = reshape (X3 ((101:120),:), Dimension, 1); 
Channel7 = reshape (X3 ((121:140),:), Dimension, 1); 
Channel8 = reshape (X3 ((141:160),:), Dimension, 1); 
Time = reshape(X3 ((181:200),:), Dimension, 1); % Relative to ADX Clock 
 
% PWM Data -- correctly allign the data from the PWM card into 
individual 
% channels.  
Channel9  = reshape (X3 ((161:161),:), PWMDimension, 1); 
Channel10 = reshape (X3 ((162:162),:), PWMDimension, 1); 
Channel11 = reshape (X3 ((163:163),:), PWMDimension, 1); 
Channel12 = reshape (X3 ((164:164),:), PWMDimension, 1); 
Channel13 = reshape (X3 ((165:165),:), PWMDimension, 1); 
Channel14 = reshape (X3 ((166:166),:), PWMDimension, 1); 
Channel15 = reshape (X3 ((167:167),:), PWMDimension, 1); 
Channel16 = reshape (X3 ((168:168),:), PWMDimension, 1); 
Channel17 = reshape (X3 ((169:169),:), PWMDimension, 1); 
Channel18 = reshape (X3 ((170:170),:), PWMDimension, 1); 
Channel19 = reshape (X3 ((171:171),:), PWMDimension, 1); 
Channel20 = reshape (X3 ((172:172),:), PWMDimension, 1); 
Channel21 = reshape (X3 ((173:173),:), PWMDimension, 1); 
Channel22 = reshape (X3 ((174:174),:), PWMDimension, 1); 
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Channel23 = reshape (X3 ((175:175),:), PWMDimension, 1); 
Channel24 = reshape (X3 ((176:176),:), PWMDimension, 1); 
Channel25 = reshape (X3 ((177:177),:), PWMDimension, 1); 
Channel26 = reshape (X3 ((178:178),:), PWMDimension, 1); 
Channel27 = reshape (X3 ((179:179),:), PWMDimension, 1); % Injection 
trigger 
Channel28 = reshape (X3 ((180:180),:), PWMDimension, 1); % Ignition 
trigger 
 
% Interpolate PWM Data to Match Data Sampling Rate of Analog Cards.  
 
% Scale represents the frequency ratio of the increased frequency 
% requirement to the current frequency of the PWM data 
scale=20; 
   
Channel9  = interp (Channel9, scale, 1, 0.008);  
Channel10 = interp (Channel10, scale, 1, 0.008);  
Channel11 = interp (Channel11, scale, 1, 0.008);  
Channel12 = interp (Channel12, scale, 1, 0.008);  
Channel13 = interp (Channel13, scale, 1, 0.008);  
Channel14 = interp (Channel14, scale, 1, 0.008);  
Channel15 = interp (Channel15, scale, 1, 0.008);  
Channel16 = interp (Channel16, scale, 1, 0.008);  
Channel17 = interp (Channel17, scale, 1, 0.008);  
Channel18 = interp (Channel18, scale, 1, 0.008);  
Channel19 = interp (Channel19, scale, 1, 0.008);  
Channel20 = interp (Channel20, scale, 1, 0.008);  
Channel21 = interp (Channel21, scale, 1, 0.008);  
Channel22 = interp (Channel22, scale, 1, 0.008);  
Channel23 = interp (Channel23, scale, 1, 0.008); 
Channel24 = interp (Channel24, scale, 1, 0.008);  
Channel25 = interp (Channel25, scale, 1, 0.008);  
Channel26 = interp (Channel26, scale, 1, 0.008);  
Channel27 = interp (Channel27, scale, 1, 0.008);  
Channel28 = interp (Channel28, scale, 1, 0.008);  
 
% Close Files 
fclose (fid); 
 
 
%% Clear up workspace 
 
clear scale 
clear numelem2 
clear numelem 
clear fid2 
clear fid 
clear X_2 
clear X3_2 
clear X3 
clear X 
clear N_DATA2 
clear N_DATA 
clear N_CHN2 
clear N_CHN 
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%% Run Subsequent Processing Routines 
 
cd (processing_file) 
 
run TEXTFILEREADIN; 
 
cd (processing_file) 
 
if strcmp(TestType, 'N2') == 1 
    run DataAnalysisN2; 
end 
 
if strcmp(TestType, '0PercO2') == 1 
    run DataAnalysisZeroPercO2; 
end 
 
if strcmp(TestType, '21PercO2') == 1 
    run DataAnalysis21PercO2; 
end 
 

TEXTFILEREADIN.m 

 
%% Text File Read-In and Data Variable Updates 
 
% Jaclyn Nesbitt 
% June 1 2009 
 
% This file reads in a text file of definitions - including variable 
names 
% - to convert the BDF generic file names into those used for the given 
% test.  
 
%% Read in Text File with Variable Names corresponding to hardware 
channels 
 
(card, channel, BDFFilename, Signal, Units) = textread((dir_name 
'\TextFileDefinitions.txt')', '%s %s %s %s %s', 'headerlines', 1); 
 
% Determine which Channels are not used, and delete this data from the 
BDF 
% conversion file.  
 
TF = strcmp('n/a', Signal); 
 
indices = find(TF==1); 
 
NoData=BDFFilename(indices); 
 
trial(:,1)=strcmp('Channel1', NoData); 
trial(:,2)=strcmp('Channel2', NoData); 
trial(:,3)=strcmp('Channel3', NoData); 
trial(:,4)=strcmp('Channel4', NoData); 
trial(:,5)=strcmp('Channel5', NoData); 
trial(:,6)=strcmp('Channel6', NoData); 
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trial(:,7)=strcmp('Channel7', NoData); 
trial(:,8)=strcmp('Channel8', NoData); 
 
if NumAnalogChannels == 16 
     
trial(:,9)=strcmp('Channel1_2', NoData); 
trial(:,10)=strcmp('Channel2_2', NoData); 
trial(:,11)=strcmp('Channel3_2', NoData); 
trial(:,12)=strcmp('Channel4_2', NoData); 
trial(:,13)=strcmp('Channel5_2', NoData); 
trial(:,14)=strcmp('Channel6_2', NoData); 
trial(:,15)=strcmp('Channel7_2', NoData); 
trial(:,16)=strcmp('Channel8_2', NoData); 
 
end 
 
trial(:,17)=strcmp('Channel27', NoData); 
trial(:,18)=strcmp('Channel28', NoData); 
trial(:,19)=strcmp('Channel15', NoData); 
trial(:,20)=strcmp('Channel16', NoData); 
trial(:,21)=strcmp('Channel17', NoData); 
trial(:,22)=strcmp('Channel18', NoData); 
trial(:,23)=strcmp('Channel19', NoData); 
trial(:,24)=strcmp('Channel20', NoData); 
trial(:,25)=strcmp('Channel21', NoData); 
trial(:,26)=strcmp('Channel22', NoData); 
trial(:,27)=strcmp('Channel23', NoData); 
trial(:,28)=strcmp('Channel24', NoData); 
trial(:,29)=strcmp('Channel25', NoData); 
trial(:,30)=strcmp('Channel26', NoData); 
trial(:,31)=strcmp('Channel9', NoData); 
trial(:,32)=strcmp('Channel10', NoData); 
trial(:,33)=strcmp('Channel11', NoData); 
trial(:,34)=strcmp('Channel12', NoData); 
trial(:,35)=strcmp('Channel13', NoData); 
trial(:,36)=strcmp('Channel14', NoData); 
 
i=1; 
 
for i=1:36 
    IndexOfInterest = find(trial(:,i)==1); 
     
    if IndexOfInterest ~= NaN; 
        if i==1 
            clear Channel1 
        elseif i==2 
            clear Channel2 
        elseif i==3 
            clear Channel3 
        elseif i==4 
            clear Channel4 
        elseif i==5 
            clear Channel5 
        elseif i==6 
            clear Channel6 
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        elseif i==7 
            clear Channel7 
        elseif i==8 
            clear Channel8 
        elseif i==9 
            clear Channel1_2 
        elseif i==10 
            clear Channel2_2 
        elseif i==11 
            clear Channel3_2 
        elseif i==12 
            clear Channel4_2 
        elseif i==13 
            clear Channel5_2 
        elseif i==14 
            clear Channel6_2 
        elseif i==15 
            clear Channel7_2 
        elseif i==16 
            clear Channel8_2 
        elseif i==17 
            clear Channel27 
        elseif i==18 
            clear Channel28 
        elseif i==19 
            clear Channel15 
        elseif i==20 
            clear Channel16 
        elseif i==21 
            clear Channel17 
        elseif i==22 
            clear Channel18 
        elseif i==23 
            clear Channel19 
        elseif i==24 
            clear Channel20 
        elseif i==25 
            clear Channel21 
        elseif i==26 
            clear Channel22 
        elseif i==27 
            clear Channel23 
        elseif i==28 
            clear Channel24 
        elseif i==29 
            clear Channel25 
        elseif i==30 
            clear Channel26 
        elseif i==31 
            clear Channel9 
        elseif i==32 
            clear Channel10 
        elseif i==33 
            clear Channel11 
        elseif i==34 
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            clear Channel12 
        elseif i==35  
            clear Channel13 
        elseif i==36 
            clear Channel14            
        end 
    end 
     
    i=i+1; 
     
end 
 
% Redefine variable names to correspond to those defined in the text 
file  
% to use in the plotting routines.  
 
dataindices = find(TF==0); 
 
j=1; 
 
for j=1:36 
 
    DataIndexOfInterest = find(dataindices==j); 
     
    if DataIndexOfInterest ~= NaN 
     
        if j==1 
            assignin('base', char(Signal(j)), Channel1); 
            clear Channel1 
        elseif j==2   
            assignin('base', char(Signal(j)), Channel2); 
            clear Channel2 
        elseif j==3 
            assignin('base', char(Signal(j)), Channel3); 
            clear Channel3 
        elseif j==4 
            assignin('base', char(Signal(j)), Channel4); 
            clear Channel4 
        elseif j==5 
            assignin('base', char(Signal(j)), Channel5); 
            clear Channel5 
        elseif j==6 
            assignin('base', char(Signal(j)), Channel6); 
            clear Channel6 
        elseif j==7 
            assignin('base', char(Signal(j)), Channel7); 
            clear Channel7 
        elseif j==8 
            assignin('base', char(Signal(j)), Channel8); 
            clear Channel8 
        elseif j==17  
            assignin('base', char(Signal(j)), Channel27); 
            clear Channel27 
        elseif j==18 
            assignin('base', char(Signal(j)), Channel28); 
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            clear Channel28 
        elseif j==19 
            assignin('base', char(Signal(j)), Channel15); 
            clear Channel15 
        elseif j==20 
            assignin('base', char(Signal(j)), Channel16); 
            clear Channel16 
        elseif j==21 
            assignin('base', char(Signal(j)), Channel17); 
            clear Channel17 
        elseif j==22  
            assignin('base', char(Signal(j)), Channel18); 
            clear Channel18 
        elseif j==23 
            assignin('base', char(Signal(j)), Channel19); 
            clear Channel19 
        elseif j==24 
            assignin('base', char(Signal(j)), Channel20); 
            clear Channel20 
        elseif j==25 
            assignin('base', char(Signal(j)), Channel21); 
            clear Channel21 
        elseif j==26 
            assignin('base', char(Signal(j)), Channel22); 
            clear Channel22 
        elseif j==27   
            assignin('base', char(Signal(j)), Channel23); 
            clear Channel23 
        elseif j==28           
            assignin('base', char(Signal(j)), Channel24); 
            clear Channel24 
        elseif j==29 
            assignin('base', char(Signal(j)), Channel25); 
            clear Channel25 
        elseif j==30 
            assignin('base', char(Signal(j)), Channel26); 
            clear Channel26 
        elseif j==31 
            assignin('base', char(Signal(j)), Channel9); 
            clear Channel9 
        elseif j==32   
            assignin('base', char(Signal(j)), Channel10); 
            clear Channel10 
        elseif j==33 
            assignin('base', char(Signal(j)), Channel11); 
            clear Channel11 
        elseif j==34 
            assignin('base', char(Signal(j)), Channel12); 
            clear Channel12 
        elseif j==35 
            assignin('base', char(Signal(j)), Channel13); 
            clear Channel13 
        elseif j==36 
            assignin('base', char(Signal(j)), Channel14); 
            clear Channel14 
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        end 
        if NumAnalogChannels == 16 
        if j==9 
            assignin('base', char(Signal(j)), Channel1_2); 
            clear Channel1_2 
        elseif j==10 
            assignin('base', char(Signal(j)), Channel2_2); 
            clear Channel2_2 
        elseif j==11 
            assignin('base', char(Signal(j)), Channel3_2); 
            clear Channel3_2 
        elseif j==12   
            assignin('base', char(Signal(j)), Channel4_2); 
            clear Channel4_2 
        elseif j==13 
            assignin('base', char(Signal(j)), Channel5_2); 
            clear Channel5_2 
        elseif j==14 
            assignin('base', char(Signal(j)), Channel6_2); 
            clear Channel6_2 
        elseif j==15 
            assignin('base', char(Signal(j)), Channel7_2); 
            clear Channel7_2 
        elseif j==16 
            assignin('base', char(Signal(j)), Channel8_2); 
            clear Channel8_2 
        end 
        end 
    end 
end 
 
% Create Time Vector 
% The length of this vector must match the length of the log duration 
as 
% taken by the ADx where "time" equals the log duration in seconds 
Fs = 100000;                    % Set sample rate of ADx (Samples/sec) 
                                % Note: When sampling frequency of ADx 
is set 
                                % at 5 kHz, data is interpolated to 100 
kHz 
                                % so timevector will still match 
                                 
N = size(Pressure,1);           % Create data point vector 
t = (1:N)/Fs*1000;              % milliseconds 
t = t';                         % Convert t into a column vector 
logdur = max(t)/1000;           % Data log time duration (seconds) 
endtime = max(t);               % End timestamp in ms 
 
%% Clear up workspace 
 
clear DataIndexOfInterest 
clear IndexOfInterest 
clear NoData 
clear TF 
clear dataindices 
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clear i 
clear j 
clear trial 
clear indices 
clear N 
clear logdur 
clear Fs 
 
%% Save Data into a Matfile for further post processing 
cd (dir_name) 
 
save TestFileData; 

 

TextFileDefinitions.txt  

 
Card  Channel  BDFFilename  Signal  Units 
Analog1  1  Channel1  Pressure  psia  
Analog1  2  Channel2  n/a   n/a 
Analog1  3  Channel3  n/a   n/a 
Analog1  4  Channel4  FuelPressure Bar 
Analog1  5  Channel5  SparkCurrent A 
Analog1  6  Channel6  n/a   n/a 
Analog1  7  Channel7  PulseGenerator V 
Analog1  8  Channel8  Inhibit  V 
Analog2  1  Channel1_2  n/a   n/a 
Analog2  2  Channel2_2  n/a   n/a 
Analog2  3  Channel3_2  n/a   n/a 
Analog2  4  Channel4_2  n/a   n/a 
Analog2  5  Channel5_2  n/a   n/a 
Analog2  6  Channel6_2  n/a   n/a 
Analog2  7  Channel7_2  n/a   n/a 
Analog2  8  Channel8_2  n/a   n/a 
PWMOutput  2  Channel27  Ignition  V 
PWMOutput  1  Channel28  Injection  V 
PWMOutput  3  Channel15  n/a   n/a 
PWMOutput  4  Channel16  n/a   n/a 
PWMOutput  5  Channel17  n/a   n/a 
PWMOutput  6  Channel18  n/a   n/a 
PWMOutput  7  Channel19  n/a   n/a 
PWMOutput  8  Channel20  n/a   n/a 
PWMOutput  9  Channel21  n/a   n/a 
PWMOutput  10  Channel22  n/a   n/a 
PWMOutput  11  Channel23  n/a   n/a 
PWMOutput  12  Channel24  n/a   n/a 
PWMOutput  13  Channel25  n/a   n/a 
PWMOutput  14  Channel26  n/a   n/a 
None   9  Channel9  n/a   n/a 
None   10  Channel10  n/a   n/a 
None   11  Channel11  n/a   n/a 
None   12  Channel12  n/a   n/a 
None   13  Channel13  n/a   n/a  
None   14  Channel14  n/a   n/a 
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12.4.5.1. Nonvaporizing (Nitrogen) Tests 
This program determines the relevant nitrogen test parameters, including fuel 

injection pressure at injection, and the actual density condition, calculated using the ideal 

gas law using fill pressure measured with the dynamic pressure transducer.  

 

DataAnalysisN2.m 
 
%% Analyze Nitrogen Data 
% Analyze Data to Determine Fuel Pressure, Density, and Pressure at 
% Injection 
 
% Jaclyn Nesbitt 
 
cd (dir_name) 
 
FuelPressureBar = (FuelPressure*7500-15000)*0.06895; 
 
% Determine relative Timings 
InjectionPWM = min(find(Injection > 0)); 
PGStart = min(find(PulseGenerator > 0.5))-1; 
 
%  Record Important parameters including pressure at fuel injection and 
%  injection pressure 
 
    PressureInjectionkPa = Pressure(PGStart)*6.89475729;  
     
    % Output fuel pressure at Injection 
    FuelPInjection = FuelPressureBar(PGStart) %Bar 
     
    R = 8.314; % m3*Pa / (K*mol) 
    T = 100+273.15; % K -- CV Heated to 100 C for Tests 
         
    MW_Mix = 2*14; %N2 
     
    % Output Density (Based on P and T), and Pressure at Injection 
    Density = (PressureInjectionkPa*1000*MW_Mix)/(R*T)*1/1000 %kg/m3   
    PressureInjectionBar = PressureInjectionkPa*0.01 

         

12.4.5.2. Vaporizing (0% Oxygen) Tests 
The vaporizing oxygen test processing file computes both bulk and core gas 

temperature and density at injection using the measurements from the dynamic pressure 

transducer and fuel injection pressure at injection.  

 

DataAnalysisZeroPercO2.m 
 

%% Analyze 0% O2 Data 
 
% Jaclyn Nesbitt 
 
% Analyze Data to Determine Fuel Pressure, Core Temperature and 
Density, 
% and Bulk Density and Temperature 
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cd (dir_name) 
 
FuelPressureBar = (FuelPressure*7500-15000)*0.06895; 
 
% Define Relative Timings 
 
InjectionPWM = min(find(Injection > 0)); 
PGStart = min(find(PulseGenerator > 0.5))-1; 
 
%  Record Important parameters 
% Parameters include pressure at injection, Fuel pressure at injection, 
and 
% CV Fill pressure 
 
    PressureInjectionkPa = Pressure(PGStart)*6.89475729;  
    FuelPInjection = FuelPressureBar(PGStart) %Bar 
    FillPressurekPa = Pressure(100*1000)*6.89475729; 
     
    R = 8.314; % m3*Pa / (K*mol) 
    T = 180+273.15; % K - CV Heated to 180 C 
     
    % Calculate Mixture Molecular Weight 
    P_C2H2 = 24.527;  
    P_H2 = 12.299;  
    P_N2Bal = 574.212;  
    P_O2N2 = 179.148;  
     
    P_Total = P_C2H2+P_H2 + P_N2Bal + P_O2N2; % Psi 
     
    PercO2N2 = 40; % O2/N2 Mixture, 40% O2, 60% N2  
     
    MW_C2H2 = 2*12+2*1;  
    MW_H2 = 2*1;  
    MW_O2 = 2*16;  
    MW_N2 = 2*14;  
    MW_O2N2 = PercO2N2/100*MW_O2 + (100-PercO2N2)/100*MW_N2;  
    
    MW_Mix = 
P_C2H2/P_Total*MW_C2H2+P_H2/P_Total*MW_H2+P_N2Bal/P_Total*MW_N2 + 
P_O2N2/P_Total*MW_O2N2;  
     
    %Calculate Bulk Gas Conditions (based on measured values) 
     
    BulkDensity = (FillPressurekPa*1000*MW_Mix)/(R*T)*1/1000 %kg/m3   
     
    BulkTempInjection = 
(PressureInjectionkPa*1000*MW_Mix)/(BulkDensity*1000*R)  
     
    % Calculate core gas conditions - based on Sandia ECN - Lyle 
Pickett 
    a = 0.0406*BulkDensity/20.28;  
    b = 0.026;  
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    CoreTempInjection = BulkTempInjection*(1+a*(1-
T/BulkTempInjection)+b*(BulkTempInjection/T - 1))  
    CoreDensity = 
(MW_Mix*PressureInjectionkPa*1000)/(R*CoreTempInjection)*1/1000 % kg/m3 
 

12.4.5.3. Combusting (21% Oxygen) Tests 
The combusting tests are processed using the following m-file, and parameters of 

bulk and core density and temperature based on dynamic pressure transducer 

measurements and fuel injection pressure. Additionally, ignition delay and heat release 

are calculated from the pressure data.  

 

DataAnalysis21PercO2.m 
 
%% Analyze 21% O2 Data 
 
% Jaclyn Nesbitt 
 
% Analyze Data to Determine Fuel Pressure, Core Temperature and 
Density, 
% and Bulk Density and Temperature 
 
cd (dir_name) 
 
FuelPressureBar = (FuelPressure*7500-15000)*0.06895; 
 
% Define Relative Timings 
 
InjectionPWM = min(find(Injection > 0)); 
PGStart = min(find(PulseGenerator > 0.5))-1; 
 
 
%  Record Important parameters - pressure at injection, fuel pressure, 
and 
%  fill pressure of the CV 
  
    PressureInjectionkPa = Pressure(PGStart)*6.89475729;  
    FuelPInjection = FuelPressureBar(PGStart) %Bar 
    FillPressurekPa = Pressure(50*1000)*6.89475729; 
     
    R = 8.314; % m3*Pa / (K*mol) 
    T = 180+273.15; % K - 180 C heated CV 
     
    % Compute the bulk and core gas conditions 
    MW_Mix = 28.83;  
     
    % Bulk gas conditions from pressure trace 
    BulkDensity = (FillPressurekPa*1000*MW_Mix)/(R*T)*1/1000 %kg/m3   
     
    BulkTempInjection = 
(PressureInjectionkPa*1000*MW_Mix)/(BulkDensity*1000*R)  
     
    % Core gas relationship - Lyle Pickett 
    a = 0.0406*BulkDensity/20.28;  
    b = 0.026;  
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    CoreTempInjection = BulkTempInjection*(1+a*(1-
T/BulkTempInjection)+b*(BulkTempInjection/T - 1))  
     
    CoreDensity = 
(MW_Mix*PressureInjectionkPa*1000)/(R*CoreTempInjection)*1/1000 % kg/m3 
 
%%  Ignition Delay Determination 
     
% Isolate pressure region of interest - relative to injection trigger 
 
InjectionTrig = min(find(Injection > 0)); 
 
% Read in oscilloscope data -> from injector driver 
    Filename = strcat(HHMM, '.csv'); 
    Vector = csvread(Filename,16,1); 
    Trigger = Vector(:,1); 
    Voltage = Vector(:,2)*20; 
    Current = Vector(:,3)*2; 
    TimeOscope = (0:2/2500:2-2/2500); 
     
%Reference Oscope and ADX Data to Same Timings 
 
PGStartOscope = min(find(Trigger > 0.5))-1; 
PGStart = min(find(PulseGenerator > 0.5))-1; 
VoltageStart = min(find(Voltage>12))-1;  
 
Delay = (VoltageStart - PGStartOscope)*2/2500; %ms 
 
PGTrig = min(find(PulseGenerator > 0.05))-1;  
 
PressureInterest = Pressure(PGTrig:PGTrig+2000);  
 
TimeInterest = t(PGTrig:PGTrig+2000)-t(PGTrig);  
 
%Filter Data 
Fs = 100*1000;  
Fn = Fs/2;  
 
% Low pass filter at 2000 Hz  
(d,c) = butter(2, 2000/Fn, 'low'); 
fmfp = filtfilt(d, c, PressureInterest); 
figure;  
plot(TimeInterest, PressureInterest, TimeInterest, fmfp, 'r');  
xlabel('Time (ms)') 
ylabel('Pressure (psia)') 
legend('Pressure Trace', 'Filtered Pressure Trace') 
 
 
% Look at cool-down ROI 
Index = max(find(Pressure == max(Pressure)));  
 
% Filter Cool Down Pressure Data with 2000 Hz LP Filter 
PressureCD = Pressure(Index:PGTrig);  
TimeCD = t(Index:PGTrig);  
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figure; plot(PressureCD) 
 
(dd,cd2) = butter(2, 2000/Fn, 'low'); 
fmfpCD = filtfilt(dd, cd2, PressureCD); 
figure;  
plot(TimeCD, PressureCD, TimeCD, fmfpCD, 'r');  
xlabel('Time (ms)') 
ylabel('Pressure (psia)') 
legend('Pressure Trace', 'Filtered Pressure Trace') 
 
PDecay = fmfpCD - Pressure(end);  
TDecay = TimeCD; 
 
%% Fit an exponential function as linear using curve fit by applying 
the 
%% logarirthm to the Decay 
 
fit1=polyfit(TDecay, log(PDecay), 1); 
 
%Plot original data and the curve fitted results.  
figure 
plot(TDecay, PDecay, TDecay, exp(fit1(2)).*exp(fit1(1)*TDecay)) 
xlabel('Time (milliseconds)') 
ylabel('Pressure (psia)') 
legend('Data', 'MTU Polyfit Curve Fit') 
 
% Output Cool Down Time Constant 
 
Tau = -fit1(1);  %ms 
 
Fitted = exp(fit1(2)).*exp(fit1(1)*t(Index:end))+Pressure(end);  
 
(dda,cda) = butter(2, 2000/Fn, 'low'); 
T2 = t(Index:end)-t(PGTrig); 
 
PFiltered = filtfilt(dda, cda, Pressure(Index:end)); 
figure;  
plot(T2, Pressure(Index:end), T2, PFiltered, 'r');  
xlabel('Time (ms)') 
ylabel('Pressure (psia)') 
legend('Pressure Trace', 'Filtered Pressure Trace') 
SubP = PFiltered - Fitted;  
 
figure; plot(t(Index:end)-t(PGTrig), SubP) 
xlabel('Time (ms)') 
ylabel('Filtered and Subtracted Data for Ign Delay Determination') 
grid on 
 
IndexA = min(find(T2>0));  
IgnDelay_2 = T2(min(find(SubP(IndexA:end) > 0))+IndexA-1)-Delay-.245; 
 
% Plot Ignition Delay with Pressure Trace 
figure;  
plot(TimeInterest, fmfp); 
hold on 
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plot(IgnDelay_2+0.245, fmfp(min(find(TimeInterest > IgnDelay_2+0.245))-
1), 'ro', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r') 
xlabel('Time (ms) - Relative to Start of Trigger') 
ylabel('Pressure (psia)') 
grid on 
title(strcat('Ign Delay = ', num2str(IgnDelay_2), ' ms Relative to 
Start of Fuel')) 
 
 
%% HRR Analysis 
Index_Injection = PGStart;  
t_injection = t(Index_Injection);  
p_injection = Pressure(Index_Injection);  
 
figure;  
subplot(2,1,1) 
plot(t,Pressure) 
xlabel('Time (ms)') 
ylabel('Pressure (psia)') 
hold on 
plot(t,PulseGenerator*450, 'r-') 
subplot(2,1,2) 
plot(t,Pressure) 
xlabel('Time (ms)') 
ylabel('Pressure (psia) or Scaled Signal (V)') 
hold on 
plot(t,PulseGenerator*450, 'r-') 
xlim((t_injection-50 t_injection+100)) 
ylim((p_injection-50 p_injection+250)) 
legend('Pressure', 'Injection Trigger from PG') 
 
%% Consider region of 2nd stage HR 
 
% First we have to smooth the pressure data 
% HR analysis - relative to SOFUEL 
 
PSecond = Pressure(Index_Injection+25:end);  
TSecond = t(Index_Injection+25:end);  
PGSecond = PulseGenerator(Index_Injection+25:end);  
 
PeakPressureSecondInd = max(find(PSecond == max(PSecond)))-10;  
PeakPressureSecond = PSecond(PeakPressureSecondInd);  
PSecondCropped = PSecond(1:PeakPressureSecondInd);  
TSecondCropped = TSecond(1:PeakPressureSecondInd); 
PGSecondCropped = PGSecond(1:PeakPressureSecondInd);  
IndexSecond = max(find(PSecondCropped == min(PSecondCropped)));  
MinPressure = PSecondCropped(IndexSecond);  
 
PSecondCroppedSmoothed = smooth(PSecondCropped, 100);  
 
dt = TSecondCropped(2)-TSecondCropped(1);  
 
kk = 1; 
 
for i = 1 : size(PSecondCropped,1)-1 
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dPdt(kk) = (PSecondCroppedSmoothed(i+1)-PSecondCroppedSmoothed(i))/dt; 
% psi/ms  
kk = kk + 1; 
end 
 
gamma = 1.35; 
V = 1.1; % L 
dqdt = 1/(gamma-1)*V/1000*dPdt*6894.75729*1000/1000; %kW  
 
 
tASOI = TSecondCropped(1:end-1) - min(TSecondCropped);  
PASOI = PSecondCropped(1:end-1);  
PGASOI = PGSecondCropped(1:end-1);  
figure;  
subplot(2,1,1) 
plot(tASOI, dqdt) 
xlabel('Time ASOI (ms), Injection Trigger at 0 ms') 
grid on 
ylabel('Heat Release Rate, kJ/s (kW)') 
ylim((-100 350)) 
% ylim((-100 max(dqdt)+50)) 
subplot(2,1,2) 
plot(tASOI, PASOI*101.325/14.7);  
hold on; 
plot(tASOI, PSecondCroppedSmoothed(1:end-1)*101.325/14.7, 'r-') 
legend('Pressure Trace', 'Smoothed Trace', 'Location', 'SouthEast') 
xlabel('Time ASOI (ms), Injection Trigger at 0 ms') 
ylabel('Pressure (kPa)') 
 
%% OSCOPE DATA 
 
Filename = strcat(HHMM, '.csv'); 
 
    Vector = csvread(Filename,16,1); 
    Trigger = Vector(:,1); 
    Voltage = Vector(:,2)*20; 
    Current = Vector(:,3)*2; 
    TimeOscope = (0:2/2500:2-2/2500); 
 
OScopeIndex = min(find(Trigger > 0.5))-1;  
 
SOC = min(find(Current > 1))-1;  
 
tOscope = TimeOscope(SOC-100:end)-TimeOscope(SOC);  
CurrentInt = Current(SOC-100:end);  
VoltageInt = Voltage(SOC-100:end);  
 
figure 
(AX, H1, H2) = plotyy(tOscope, CurrentInt, tOscope, VoltageInt); 
set(AX(1),'XColor','k', 'YColor', 'k', 'FontSize', 10, 'YTick', (-
20:5:20), 'XTick', -0.20:.2:2); 
set(AX(2),'XColor','k', 'YColor', 'k', 'FontSize', 10, 'YTick', (-
30:25:170), 'XTick',-0.20:.2:2); 
set(get(AX(1),'Ylabel'),'String', 'Current (A)', 'Color', 'k', 
'FontSize', 10); 
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set(get(AX(2),'Ylabel'), 'String', 'Voltage (V)', 'Color', 'k', 
'FontSize', 10); 
set(H1, 'LineStyle', '-', 'LineWidth', 1); 
set(H2, 'LineStyle', '-', 'LineWidth', 1); 
set(H1, 'Color', 'b'); 
set(H2, 'Color', 'r'); 
xlabel('Time (ms)') 
    grid on 
axis(AX(1), (-0.20 2 -20 20)); 
axis(AX(2), (-0.20 2 -30 170)); 
legend((H1; H2), 'Current', 'Voltage', 'Location', 'South'); 
 
tt = (-0.2 0 0.244 0.245 0.5 1 1.0625 1.0635 10);  
INJ = (0 0 0 100 100 100 100 0 0);  
 
figure 
subplot(2,1,1) 
(AX, H1, H2) = plotyy(tOscope, CurrentInt, tOscope, VoltageInt); 
set(AX(1),'XColor','k', 'YColor', 'k', 'FontSize', 10, 'YTick', (-
20:5:20), 'XTick', -0.20:.2:2); 
set(AX(2),'XColor','k', 'YColor', 'k', 'FontSize', 10, 'YTick', (-
30:25:170), 'XTick',-0.20:.2:2); 
set(get(AX(1),'Ylabel'),'String', 'Current (A)', 'Color', 'k', 
'FontSize', 10); 
set(get(AX(2),'Ylabel'), 'String', 'Voltage (V)', 'Color', 'k', 
'FontSize', 10); 
set(H1, 'LineStyle', '-', 'LineWidth', 1); 
set(H2, 'LineStyle', '-', 'LineWidth', 1); 
set(H1, 'Color', 'b'); 
set(H2, 'Color', 'r'); 
xlabel('Time After Start of Current (ms)') 
    grid on 
axis(AX(1), (-0.20 2 -20 20)); 
axis(AX(2), (-0.20 2 -30 170)); 
legend((H1; H2), 'Current', 'Voltage', 'Location', 'South'); 
subplot(2,1,2) 
(BX, I1, I2)= plotyy(tASOI+0.245, dqdt, tASOI+0.245, 
PASOI*101.325/14.7); 
set(BX(1),'XColor','k', 'YColor', 'k', 'FontSize', 10, 'YTick', (-
100:75:350), 'XTick', -0.20:2:10); 
set(BX(2),'XColor','k', 'YColor', 'k', 'FontSize', 10, 'YTick', 
(11000:250:12500), 'XTick',-0.20:2:10); 
set(get(BX(1),'Ylabel'),'String', 'Heat Release Rate kJ/s (kW)', 
'Color', 'k', 'FontSize', 10); 
set(get(BX(2),'Ylabel'), 'String', 'Pressure (kPa)', 'Color', 'k', 
'FontSize', 10); 
set(I1, 'LineStyle', '-', 'LineWidth', 1); 
set(I2, 'LineStyle', '-', 'LineWidth', 1); 
set(I1, 'Color', 'b'); 
set(I2, 'Color', 'r'); 
xlabel('Time After Start of Current (ms)') 
    grid on 
axis(BX(1), (-0.20 10 -100 350)); 
axis(BX(2), (-0.20 10 11000 12500)); 
hold on;  
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I3 = plot(tASOI-0.006, PGASOI*5, 'g-');  
hold on;  
I4 = plot(tt, INJ, 'k-');  
legend((I1; I2; I3; I4), 'dQ/dt', 'Pressure', 'PG Trigger to Driver', 
'Fuel Injection', 'Location', 'SouthEast'); 
 
dqdtROI = dqdt(1:end-10); 
 
QTotal = sum(dqdtROI)*dt/1000; %kJ 
 
QLHVDiesel = 44; %MJ/kg 
 
MdotFuel = 49; %mg 
 
QTotalEnergy = MdotFuel/1000/1000*43*1000; %Kj 
 
cd ((DIRparent, 'Data Processing Results')) 
 
Name = strcat(HHMM, 'TestData21PercO2.txt');  
fid = fopen(Name, 'w'); 
fprintf(fid, '%g \r\n', FillPressurekPa);  
fprintf(fid, '%g \r\n', FuelPInjection);  
fprintf(fid, '%g \r\n', BulkDensity);  
fprintf(fid, '%g \r\n', BulkTempInjection); 
fprintf(fid, '%g \r\n', CoreDensity);  
fprintf(fid, '%g \r\n', CoreTempInjection); 
fprintf(fid, '%g \r\n', PressureInjectionkPa); 
fprintf(fid, '%g \r\n', IgnDelay_2);  
fprintf(fid, '%g \r\n', QTotal);  
fprintf(fid, '%g \r\n', QTotalEnergy);  
fprintf(fid, '%g \r\n', Tau);  
fclose(fid); 

12.5. Supplements to Chapter 5 – Optical 
Setup and Processing Method Influence 

Additional results from the investigation into the effect of image setup and 

processing methodology on the spray results, as discussed in Chapter 5.3, are presented 

here.  

12.5.1. Case B: 34.8 kg/m3 Ambient Density, 

1700 Bar Injection Pressure.  
For the 34.8 kg/m

3
 ambient density case the CV is heated to 373 K and 

pressurized with nitrogen to 39 bar. The average experimental fill pressure for the 

Baseline A case was 39.3 bar with a fuel injection pressure of 1786 bar, with that of the 

Baseline B case having a fill pressure of 39.2 bar and injection pressure of 1682 bar. 

Back scattering images for this test condition, under the two setups, are shown in Figure 

12.21. Scaling and intensity are not preserved in the images. 
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Figure 12.21: Back scattering images for Baseline A setup (Top) and Baseline B 

setup (bottom) for the 34.8 kg/m
3
 density case, 1700 bar injection pressure.  

The results for penetration and cone angle are presented in Figure 12.22 for the three 

image processing methods and two imaging setups. These results are presented using the 

optimum threshold factors including a 40% increase in threshold for Baseline A Image 

Processing 1 Method (Gaussian Filter, 0.5 Threshold Black and White), 20% decrease in 

threshold for Baseline A Image Processing 2 Method (Gaussian Filter, Graythresh 

Threshold Black and White), and the baseline, 1.0, threshold factor for Baseline B (No 

Filter, Graythresh Threshold Black and White).   

 
Figure 12.22: Image processing results for penetration (left) and cone angle (right) 

as a function of time ASOI for the three result sets, for 34.8 kg/m
3 

ambient density, 

1700 bar injection pressure. Penetration correlation of the Naber and Siebers (1996) 

is also included in the figure.  

Penetration increased as a function of time ASOI with that for the Baseline B case 

exceeding that of the other two cases slightly.  Cone angle started at a large value and 

decreased as a function of time ASOI for the Baseline B case with more fluctuations seen 

under the Baseline A cases. The correlation over-predicted penetration in the short times 

ASOI agreeing best with the trend from the Baseline B results from 0.4 ms ASOI on. In 

the short time scales, the correlation is not valid as the dominant trend is injected liquid 

behavior, not entrained gas, which was the theory used to develop the correlation and 

may explain this over-prediction trend. However, relative to the lower injection pressure / 

charge-gas density case, agreement in early times ASOI for the correlation relative to the 

experimental results improved, which is attributed to the decreased break-up or transition 

time from linear to square-root time dependence for the elevated injection pressure and 

charge gas density (refer to equation (5)).  
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12.5.1.1. Baseline A – IP 1 
First, the threshold for the BL A IP 1 case was increased and decreased by 0 to 

50% in increments of 10% to understand changes in penetration and cone angle. This 

threshold was applied in defining the Gaussian filter that was applied to the image before 

the image was converted to black and white using a 0.5 threshold. Plots were developed 

to understand the influence of threshold on penetration and cone angle to quantify the 

optimal choice in threshold, as shown in Figure 12.23.  

 
Figure 12.23: Penetration (left) and cone angle (right) as a function of threshold 

factor for Baseline A image processing method 1 results. 

The influence of threshold factor on penetration levels off as threshold factor was 

increased above 1.1. For cone angle, the results did not level off until even larger 

threshold factors between 1.4 to 1.5. The optimum choice of threshold factor for these 

conditions is defined as 1.4 or a 40% increase to provide results which were minimally 

influenced by choice of threshold. This optimum choice of threshold is further confirmed 

by the images (Figure 12.24) showing spray boundary and cone angle edge points for the 

case of 0.6 ms ASOI.  

      
Figure 12.24: Spray images showing threshold influence on penetration (left) and 

cone angle (right) results for BL A IP 1. 

The images confirmed that threshold factors less than 1 miss portions of the spray edge 

and were not effective processing methods, rather, the threshold factors from 1.3 and up 

captured the entire spray region providing more accurate results. This setup and 

processing method combination is clearly not optimum as threshold factor largely 

governs the results for cone angle.  

12.5.1.2. Baseline A – IP 2 
BL A IP 2 involved a similar method as IP 1, with the exception of thresholding 

to black and white which used Matlab’s graythresh function to define the threshold for 
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converting the image to black and white as opposed to a constant, with results shown in 

Figure 12.25.  

 
Figure 12.25: Penetration (left) and cone angle (right) as a function of threshold 

factor for BL A IP 2 results. 

In this instance the optimum threshold factor occurred in the range from 0.8 to 1.2, as 

evidenced by penetration being flat as a function of threshold. Images marked with 

geometric spray characteristics were a final confirmation of the optimum threshold value, 

as shown in Figure 12.26.  

      
Figure 12.26: Spray images showing threshold influence on penetration (Top) and 

cone angle (Bottom) results for baseline A IP 2.  

As seen from the threshold factor plots, threshold factors in the range of 0.8 to 1.0 

provide optimum values for thresholding without missing any of the spray edge. Even 

under these optimum conditions, some of the spray edge was overlooked as evident in the 

above images, attributed to the low SNR produced from this imaging setup. This leads to 

the choice of a 20% decrease in threshold factor.  

12.5.1.3. Baseline B 
The influence of threshold factor on the image setup and processing method used 

for Baseline B is characterized in Figure 12.27. The threshold factor was applied to the 

Matlab function graythresh which was used to determine the threshold value of intensity 

relative to the image intensity distribution for converting to black and white.  
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Figure 12.27: Penetration (left) and cone angle (right) as a function of threshold 

factor for Baseline B image setup & processing method. 

Penetration was only influenced by threshold factor minimally for the 1.0 ms time 

ASOI case with larger threshold factors in excess of 1.0. For all other conditions, 

penetration was constant as a function of threshold factor showing the minimal influence 

of threshold factor on penetration for this image setup and processing method. Cone 

angle has slightly more variation, but, less spread between the data then under other 

conditions. On average, cone angle decreased as a function of threshold value, however, 

looking closely the change in cone angle as a function of threshold factor was minimal 

for the middle threshold factors (0.9 – 1.1). For times 0.4 ms ASOI and larger, cone angle 

was on average constant at each threshold factor which was expected since cone angle 

goes through a development period (less than 0.4 ms ASOI in this case, refer to Figure 

12.22) before reaching steady state. The observations of optimal threshold factor in the 

images further confirm the above conclusions, as shown in Figure 12.28.  

      
Figure 12.28: Spray images showing threshold influence on penetration (top) and 

cone angle (bottom) results for Baseline B. 

There are insignificant changes in the penetration boundary, with significant trends seen 

for cone angle with there being no noticeable under- or over- estimation of the spray in 

the images. Therefore, the baseline 1.0 threshold factor was chosen to provide robust 

results.  
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12.6. Supplements to Chapter 6 – 
Experimental Results 

12.6.1. Non-Vaporizing Results 
12.6.1.1.  Repeat Tests - Chiller Off – Fuel 
Temperature 328 K 

Test conditions for the first set of repeat tests are summarized in Table 12.1, with 

the fuel-injection chiller off (Refer to Chapter 3.4.2.3 for chiller details). Injection was at 

0.8 ms trigger duration (1.4 ms fuel injection duration).  

Table 12.1 

Repeatability test conditions, chiller off.   

 Injection Pressure (Bar) 
Density  

(kg/m
3
) 

Ambient Pressure (Bar) 

Test 1 1975 34.8 38.6 

Test 2 1970 34.7 38.5 

Test 3 1990 34.9 38.7 

Test conditions show small variations which will not impact macroscopic spray 

characteristics. Images are shown for the three repeat tests in Figure 12.29.  

 
Figure 12.29: Spray images from repeat tests, 34.8 kg/m

3
 Nitrogen, 2000 bar 

injection pressure, chiller off.  

The images show no significant variations in macroscopic spray characteristics in regards 

to penetration or spray spreading (cone angle) which was further confirmed by image 

processing results. Shown in Figure 12.30 are the Median penetration over eight spray 

plumes is characterized as a function of time ASOI.  
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Figure 12.30: Median penetration as a function of time ASOI for the three 

repeatability tests with the chiller off, 34.8 kg/m
3
 density, 2000 bar injection 

pressure.  

As time after start of injection increased, the fuel continued to penetrate across the 

combustion vessel. Test 1 and Test 3 had similar median penetrations, with Test 2 being 

slightly less. This is attributed to the delay in start of injection of the fuel as shown in 

Figure 12.29. There could be jitter in the camera timing and applying a 0.05 ms time shift 

to Test 2 would align Test 1 and Test 3 within expected repeatability and also have the 

expected linear trend through the origin at SOI (Naber and Siebers 1996). Overall, the 

median penetration exhibited the expected spray trend, with penetration being linear with 

time after start of injection during the start of injection before transitioning to square root 

time dependence during the remainder of the injection period (Naber and Siebers 1996). 

The difference in time dependent penetration is the result of a transition from injected 

fuel dependent spray behavior to entrained gas dependent behavior in longer times ASOI 

(Naber and Siebers 1996).  

Results are shown in Figure 12.31 to repeatability in the median cone angle for 

these test conditions calculated at 60% penetration using the linear curve fit methodology 

as discussed in Chapter 5.4.1. As time ASOI increased, cone angle started large, and 

subsequently reduced to a steady state value around 18 degrees.  

 
Figure 12.31: Median cone angle as a function of time ASOI for repeat tests, chiller 

off.  

Individual plume behavior was compared during the injection event for tests 1, 2 

and 3, in Figure 12.32, Figure 12.33, and Figure 12.34, respectively including both 

penetration and cone angle at 60% penetration.  
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Figure 12.32: Repeat tests, chiller off, nitrogen spray penetration (left) and cone 

angle at 60% penetration (right) as a function of time ASOI for all 8 spray plumes, 

Test 1.  

 

     
Figure 12.33: Repeat tests, chiller off, nitrogen spray penetration (left) and cone 

angle at 60% penetration (right) as a function of time ASOI for all 8 spray plumes, 

Test 2.  

 
Figure 12.34: Repeat tests, chiller off, nitrogen spray penetration (left) and cone 

angle at 60% penetration (right) as a function of time ASOI for all 8 spray plumes, 

Test 3.  

All plots show more variations at the start of injection, 0.1 ms ASOI, for both 

cone angle and penetration. This was attributed to eccentric needle lift as seen in the 
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images for 0.05 ms ASOI. Cone angle reached a median steady state value by 0.5 ms 

ASOI, but there was a degree span in cone angle even at this steady state when 

comparing the plumes.  

Plume trends were compared to the mean penetration value over all 8 spray 

plumes at two different times, 0.1 ms ASOI and 0.5 ms ASOI, in Figure 12.35, to 

understand trends in plume behavior, along with repeatability. The mean value used for 

comparison was that over all 8 spray plumes, just considering tests 1 and 3 as will be 

discussed.  

 
Figure 12.35: Repeat tests, chiller off, diesel spray penetration compared to the 

average value over all eight plumes for tests 1 and 3, 0.1 ms ASOI left figure; 0.5 ms 

ASOI right figure. 

The first key observation in both figures was that test 2 typically had reduced penetration 

values relative to the other tests as expected based on the trends in Figure 12.30. 

Secondly, the test to test variations are amplified during the 0.1 ms ASOI case due to 

transient needle lift behavior and characteristics. Taking into consideration only Tests 1 

and 3 to understand plume trends at 0.5 ms ASOI (after the transient opening stage of 

injection is complete), the following conclusions could be made. Trends were different 

for both Test 1 and Test 3 in regards to plume behavior. For plumes 2, 3, 4, and 5, Test 1 

liquid penetration matched the mean value, whereas for plumes 1 and 3 and 6 the liquid 

penetration matched the mean value. For test 1 plumes 1 and 7 were greater than the 

mean, and plumes 6 and 8 less than the mean. For test 3, plumes 2, 4, and 7 were less 

than the mean, and plumes 5, 6, and 8 greater than the mean value. There were no 

consistent plume trends over the three repeat tests.  

 

12.6.1.2. Repeat Tests - Chiller On – Fuel Temperature 

321 K 
Test conditions for the repeatability tests with the chiller on (reduced fuel 

temperature) are summarized in Table 12.2. Injection was at 0.8 ms trigger duration (1.4 

ms fuel injection duration).  
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Table 12.2 

Repeatability test conditions, chiller on.  

 Injection Pressure (Bar) 
Density  

(kg/m
3
) 

Ambient Pressure (Bar) 

Test 1 1990 34.9 38.6 

Test 2 1985 34.9 38.6 

Test 3 1980 35.2 39.0 

Variation in test conditions of ambient pressure, injection pressure, and density were 

minimal and the images and results showed differences as a result of system repeatability 

and shot-to-shot injection variability. Images are shown for the three repeat tests in 

Figure 12.36.  

 
Figure 12.36: Diesel spray images from repeatability tests, 34.8 kg/m

3
 nitrogen, 2000 

bar injection pressure, chiller on (reduced fuel temperature). 

There are no noticeable differences in macroscopic spray images showing high system 

repeatability and minimal test to test variation. The magnitude of test repeatability was 

quantified via image processing with results for median penetration shown in Figure 

12.37.    

 
Figure 12.37: Median penetration as a function of time ASOI for the three repeat 

tests, chiller on.  

Results for all three tests for median penetration were similar. A few deviations of Test 1 

relative to Tests 2 and 3 existed, however, these were not significant, which shows the 
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test to test repeatability. Also compared was median cone angle calculated at 60% 

penetration, shown in Figure 12.38.  

 
Figure 12.38: Median cone angle as a function of time ASOI for three repeat tests, 

chiller on.  

Cone angle was similar over the three tests with the most variation occurring during the 

transient spray development phase before reaching steady state. Cone angle at steady 

state for test 2 was slightly narrower than test 1 and test 3.  

Plume to plume variations were compared for each repeat test with the chiller on at 

different times after start of injection for both penetration and cone angle as shown in 

Figure 12.39, Figure 12.40, and Figure 12.41 for tests 1, 2, and 3 respectively.  

    
Figure 12.39: Repeat tests, chiller on, nitrogen spray penetration (left) and cone 

angle at 60% penetration (right) as a function of time ASOI for all 8 spray plumes, 

Test 1. 
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Figure 12.40: Repeat tests, chiller on, nitrogen spray penetration (left) and cone 

angle at 60% penetration (right) as a function of time ASOI for all 8 spray plumes, 

Test 2.  

     
Figure 12.41: Repeat tests, chiller on, nitrogen spray penetration (left) and cone 

angle at 60% penetration (right) as a function of time ASOI for all 8 spray plumes, 

Test 3.  

As a consistent trend, there were the largest variations 0.1 ms ASOI during the 

transient spray development with reduced variations in longer times ASOI. However, 

plume-to-plume variations did not yield consistent trends as a function of time ASOI.  

A comparison of the plume to plume trends relative to the mean value over all 8 

plumes for all three tests at both 0.1 ms ASOI and 0.5 ms ASOI in Figure 12.42. 
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Figure 12.42: Repeat tests, chiller off, diesel spray penetration compared to the 

average value over all eight plumes for tests 1 through 3, 0.1 ms ASOI in left figure; 

0.5 ms ASOI in right figure.  

The 0.1 ms ASOI figure shows the transient start of injection behavior with the eccentric 

needle lift showing plumes 1, 7 and 8 having reduced liquid penetration at the start of 

injection relative to the other plumes. For the case of 0.5 ms ASOI, some consistent 

trends in regards to plume behavior were noted. There was good agreement for plumes 3, 

6, 7 and 8 in regards to consistency between tests. Plume 6, 7, and 8 were consistently 

penetrating larger than the mean value, with plumes 1, 2, 4 and 5 having inconsistent 

trends meaning some plumes penetrated further than the mean, whereas others penetrated 

shorter. Plume 3 was without fail penetrating shorter than the mean liquid phase 

penetration. This could be attributed to various factors. There could be small time 

variations, and since penetration is proportional to the square root of time (Naber and 

Siebesr 1996), a jitter of 0.05 ms in time could cause a change of ±2.5% in penetration 

values which would minimize observation of these trends. This time jitter will be 

removed from the vaporizing spray images, as will be discussed, since comparison was of 

the mean liquid length which was considered over a 1 ms steady state time period 

resulting in more pronounced plume-to-plume trends.  

To remove the time-dependent nature of the comparison, the 0.5 ms ASOI case 

was considered, with each test being compared to the mean value for the given test over 

the eight plumes, as opposed to the one common mean value shown in Figure 12.43. 

 
Figure 12.43: Test 1, 2, and 3 at 0.5 ms ASOI comparing the individual plume values 

to the mean value over all eight plumes for the given test, chiller on repeat tests.  

Although the time jitter had been removed by comparing the test data to the mean for that 

test, the trends were still not consistent test to test. More specifically, in test 1, plumes 4 

and 5 were less than the mean, plumes 1, 2, and 3 approximated the mean value, and 

plumes 6, 7 and 8 larger were than the mean. Conversely in test 2, plumes 2 and 3 were 
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less than the mean, plumes 6 and 8 approximated the mean value, and plumes 1, 4, 6 and 

7 were larger than the mean. Finally, test 3 had even different trends with plume 1 and 3 

being less than the mean, plumes 4, 5 and 8 being approximately the mean value, and 

plumes 2, 6 and 7 being larger than the mean. These observations show the transient 

nature of the plume trends.  

As discussed (section 6.2), there were consistent plume to plume trends under the 

vaporizing sprays, however, the plume to plume trends during these non-vaporizing 

repeat tests have not been consistent. This could be attributed to the vaporizing spray test 

results being averaged during the steady state period with 67 data points for each plume 

value for the mean liquid length compared to the one value shown here for the non-

vaporizing test conditions. Averaging over a set of data points helps to minimize the 

transient spray behavior during an injection event to provide more representative data. 

12.6.1.3. Combined Repeat Results 
A comparison of the repeat results at the two different fuel temperatures is shown 

in Figure 12.44 for median penetration and median cone angle.  

 
Figure 12.44: Repeat tests, chiller on and chiller off median penetration comparison 

on left, median cone angle comparison on right. 

Based on the results in the above figure for both median penetration and median cone 

angle, fuel temperature had no significant impact on the penetration or cone angle at 

these conditions for the non-vaporizing spray tests. Penetration increased about 4% for 

the fuel temperature increase from 321 to 328 K, which is negligible relative to the 4% 

spread in the penetration results for the repeat tests. There is a 5% spread in cone angle 

over the repeat test conditions, with a negligible 3% decrease in cone angle for the fuel 

temperature increase.  

12.6.1.4. Injection Pressure Sweep – Chiller Off – 328 

K Fuel Temperature 
These tests are for an injection pressure sweep with the chiller off, at 373 K 

ambient nitrogen gas temperature, and 34.8 kg/m
3
 charge-gas density. Polar plots 

showing penetration and cone angle for each plume as a function of time ASOI is shown 

in Figure 12.45, Figure 12.46, and Figure 12.47 for 1034, 1379 and 2000 bar injection 

pressure cases.  
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Figure 12.45: Chiller off, nitrogen spray penetration(left) and cone angle at 60% 

penetration (right)  as a function of time ASOI for all 8 spray plumes, 1034 bar. 

 

  
Figure 12.46: Chiller off, nitrogen spray penetration (left) and cone angle at 60% 

penetration (right) as a function of time ASOI for all 8 spray plumes, 1379 bar. 

 
Figure 12.47: Chiller off, nitrogen spray penetration(left) and cone angle at 60% 

penetration (right)  as a function of time ASOI for all 8 spray plumes, 2000 bar.  

Shown in the above polar plots is the radial expansion of the penetration circles as 

time ASOI increased, and also as injection pressure increased at a set time ASOI. 

Repeatability in regards to minimization of plume to plume variations improved for all 

test cases as time ASOI increased due to the reduction of transient spray effects. Cone 
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angle showed significant variation at 0.1 and 0.2 ms ASOI with this variation reducing as 

the spray continued to penetrate.  

12.6.1.5. Injection Pressure Sweep – Chiller On – 321 

K Fuel Temperature 
Test conditions for the injection pressure sweep tests with the chiller on (reduced 

fuel temperature) are summarized in Table 12.3. Injection was for a 0.8 ms trigger 

duration (1.4 ms fuel injection duration).  

Table 12.3 

Injection pressure sweep test conditions – chiller on, 373 K Nitrogen charge-gas 

conditions.  

 Injection Pressure (Bar) 
Density  

(kg/m
3
) 

Ambient Pressure (Bar) 

1034 Bar 1045 34.6 38.3 

1379 Bar 1399 35.0 38.7 

2000 Bar 1991 34.9 38.6 

Variation in test conditions of ambient pressure and density are minimal, and 

hence the images and results will show differences as a result of injection pressure. 

Images are shown for the three repeat tests in Figure 12.48.  

 
Figure 12.48: Diesel spray images from injection pressure sweep tests, 34.8 kg/m

3
 

and 373 K Nitrogen, 1034, 1379 and 2000 bar injection pressures, chiller on 

(reduced fuel temperature).  

As injection pressure increased, spray penetration increased, with trends in cone angle 

being difficult to discern from the images. The magnitude of the influence of injection 

pressure on penetration and cone angle (Figure 12.49) was quantified by image 

processing of the spray images.  
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Figure 12.49: Median penetration in left figure, cone angle in right figure, as a 

function of time ASOI for three different injection pressures, chiller on.  

An increase in injection pressure at the fuel temperature of 321 K resulted in similar 

increases in penetration of 40% for injection pressure increasing from 1034 to 2000 bar, 

however, for the smaller increase in injection pressure from 1034 to 1379 bar, penetration 

increased an average of 25%. Cone angle showed a 4% increase from 1034 to 1379 bar 

and a 7% increase from 1034 to 2000 bar, which is seen at the SOI, with levels after 

development showing no relative change between injection pressures.  

The plume to plume variations are compared for both penetration and cone angle 

as a function of time ASOI as shown in Figure 12.50, Figure 12.51, and Figure 12.52.  

 
Figure 12.50: Chiller on, nitrogen spray penetration (left) and cone angle at 60% 

penetration (right) as a function of time ASOI for all 8 spray plumes, 1034 bar. 
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Figure 12.51: Chiller on, nitrogen spray penetration (left) and cone angle at 60% 

penetration (right) as a function of time ASOI for all 8 spray plumes, 1379 bar. 

 
Figure 12.52: Chiller on, nitrogen spray penetration (left) and cone angle at 60% 

penetration (right) as a function of time ASOI for all 8 spray plumes, 2000 bar.  

As a function of time ASOI, penetration increased and cone angle decreased. Both 

penetration and cone angle showed significant variation during the transient SOI for 

example at 0.1 ms ASOI. 

Plume-to-plume variations can be best understood by the plots shown in Figure 

12.53 which consider 0.1 and 0.5 ms ASOI penetration relative to the mean value over 

the 8 spray plumes.  

 
Figure 12.53: Penetration at 0.1 ms ASOI (left) and 0.5 ms ASOI (right) for the 

injection pressure sweep with the chiller on.  
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At 0.1 ms ASOI, the actual penetration was shorter than the mean for plumes 1, 7, and 8, 

showing the eccentric nature of the initial injection event. In the case of 0.5 ms ASOI, 

trends for plume variations were not consistent over the three injection pressures 

investigated. For the 1034 bar injection pressure, the penetration was equal to the mean 

for plumes 1, 4, and 5, less than the mean for plumes 3, 6, and 8, and greater than the 

mean for plumes 2 & 7. For 1379 bar injection pressure, plumes 1, 4, and 7 were less than 

the mean, plumes 3, 5, 6, and 8 greater than the mean, and plume 2 is equal to the mean. 

For the 2000 bar injection pressure case plumes 1, 2, and 3 were equal to the mean, 

plumes 4 and 5 less than the mean, and plumes 6, 7, and 8 greater than the mean. Trends 

with injection pressure vary for the different spray plumes. It has been hypothesized that 

the plume to plume variations could be attributed to differences in internal flow 

geometries. This geometry could be impacted by injection pressure variations as flow 

characteristics will be altered by different injection pressures and therefore injection 

velocities.  

12.6.1.6. Combined Injection Pressure Sweep Results 
A comparison of the influence of fuel temperature (for the two chiller settings) is 

provided in Figure 12.54 for median penetration and for median cone angle.  

 
Figure 12.54: Median penetration as a function of time ASOI for the injection 

pressure sweeps, with chiller on and chiller off.  

As injection pressure increased, the spray penetration increased as expected. Also, as fuel 

temperature increased (i.e. chiller off), the penetration increased slightly with the 

exception of the 1379 bar case which could be attributed to jitter in the camera timing. 

For a fuel temperature increase of 321 to 328 K, penetration increased 9% for the 1034 

bar case and 5% for the 2000 bar case. For the 1379 bar case, however, penetration 

decreased by 5% for this fuel temperature increase, which is unexpected and likely due to 

camera jitter. Overall, the magnitude of the influence of fuel temperature on penetration 

was minimal for the small change in fuel temperature considered here. Cone angle 

showed no variation as fuel pressure was changed, at a constant fuel temperature. As fuel 

temperature increased from 321 to 328 K, there was a 4% decrease in cone angle at 1034 

bar, no change at 1379 bar, and a 10% decrease in cone angle at 2000 bar.  

12.6.1.7. Density Variation 
These tests are for a charge-gas density variation with the chiller off, at 373 K 

ambient nitrogen gas temperature, and 2000 bar injection pressure. Polar plots showing 

penetration and cone angle for each plume as a function of time ASOI are shown in 
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Figure 12.55 and Figure 12.56, for 17.4 and 34.8 kg/m
3
 density, respectively, to 

understand the plume to plume trends.  

       
Figure 12.55: Chiller off, nitrogen spray penetration as a function of time ASOI for 

all 8 spray plumes, 17.4 kg/m
3
, 2000 bar injection pressure. 

      
Figure 12.56: Chiller off, nitrogen spray penetration as a function of time ASOI for 

all 8 spray plumes, 34.8 kg/m
3
, 2000 bar injection pressure.  

Consistent with prior tests were the large variations in both penetration and cone angle 

during the transient start of injection. Plume to plume variations were larger for cone 

angle during the transient portion of the injection event, however, once the cone angle 

was approaching a steady state value, these plume to plume variations were reduced.  

12.6.2. Vaporizing Results  
Plume to plume variation results are provided in these sections as polar plots for 

all vaporizing (0% Oxygen) spray tests.  

12.6.2.1. Repeat Tests – Chiller On – 355 K Fuel 

Temperature 
Three repeat tests were undertaken with the chiller on to enable study of a reduced 

fuel temperature, from 90°C with the chiller off reduced to 355 K with the chiller on. 

These tests were undertaken at a charge gas temperature of 1100 K, 34.8 kg/m
3
 ambient 

density 0% O2 environment, 2000 bar fuel injection pressure, and 1.6 ms injection trigger 

duration. Test conditions are provided in Table 12.4, as determined from the acquired 

data.  
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Table 12.4 

Ambient conditions at injection. 

Test Set 
ρBulk 

(kg/m
3
) 

ρCore  

(kg/m
3
) 

TBulk at Inj. (K) TCore at Inj. (K) 
PInj.  

(Bar) 

Repeat 1 34.5 32.0 1110 1190 2000 

Repeat 2 34.9 32.4 1100 1180 2010 

Repeat 3 34.8 32.3 1100 1180 2000 

There were minimal variations in conditions for each test of the repeat sets, and these 

variations are small enough in magnitude so they will not have any significant impact on 

overall spray parameters.  

Looking at background subtracted images during steady state, variations between 

liquid penetration were not apparent as shown in Figure 12.57.  

 
Figure 12.57: Background subtracted spray images. Repeat tests: 34.8 kg/m

3
 

density, 0% O2, 1100 K, 2000 bar injection pressure, chiller on. Scaling is preserved 

between images.  

Looking at the background subtracted spray images there are no large variations between 

test runs during steady state. There were shot to shot variations which were a result of 

system repeatability and are also attributed to fluctuations about the mean steady state 

liquid length.  

Median liquid penetration for all three tests was calculated from the back 

scattered images with results shown in Figure 12.58.  
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Figure 12.58: Median liquid penetration versus time ASOI for the three repeat tests 

at reduced fuel temperature, chiller on. 34.8 kg/m
3
, 0% O2, 1100 K temperature, 

2000 bar injection pressure.  

For the repeat tests, there was test-to-test consistency in median liquid phase fuel 

penetration with minimal variation even in the transient SOI. Liquid penetration reached 

a steady state around 0.75 ms ASOI, falling off after 2.2 ms ASOI due to the transient 

end of injection. The mean steady state liquid length (from 1 to 2 ms ASOI) varies by at 

most 0.3 mm over the three repeat tests. Although median penetration was shown to be 

consistent, of interest is any consistency in the plume to plume variations evident in the 

repeat tests with the chiller off.  

Shown in Figure 12.59, Figure 12.60, and Figure 12.61 are individual polar plots 

for results from the repeat tests, 1, 2 and 3 respectively. These plots include a time during 

the transient SOI, along with several results during the steady state time interval. 

 
Figure 12.59: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
, 0% O2, 2000 bar injection pressure, 1100 K, Test 1. 
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Figure 12.60: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
, 0% O2, 2000 bar injection pressure, 1100 K, Test 2. 

 
Figure 12.61: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
, 0% O2, 2000 bar injection pressure, 1100 K, Test 3. 

With identical conditions it was expected that all plumes would exhibit the same 

spray behavior. However, as seen in the above polar plots, there was extensive variation. 

During the transient SOI (0.2 ms ASOI), this variation between plumes and between tests 

was quite large due to the developing nature of the spray. Even during the steady state 

portion there was extensive fluctuations not only at different times ASOI, but also for 

each plume. This was likely attributed to the fluctuation of a spray plume about a mean 

liquid length evidenced in images and high speed movies which could be attributed to 

various factors, as discussed in Chapter 2.3.5 and Chapter 3.4.2.1. Additionally, gradients 

or non-uniformities in temperature may exist within the CV influencing vaporization and 

liquid length trends.  

Considering the steady state liquid length from 1 to 2 ms ASOI for each plume 

from each test relative to the mean value over all three tests (mean SS LL) trends in the 

plume variation became more evident as shown in Figure 12.62.  
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Figure 12.62: Polar plot of normalized liquid length during steady state (1 to 2 ms 

ASOI), 34.8 kg/m
3
, 0% O2, 1100 K, Repeat Tests, Chiller On. 

Plumes 5, 6, and 7 have liquid lengths shorter than the mean by an average of 0.5 mm, 

whereas plumes 1 and 4 typically have a LL the same as the mean, within 0.1 mm, with 

some exceptions. Plumes 2, 3 and 8 had liquid lengths longer than the mean value by an 

average of 0.5 mm. These repeat trends were consistent with the plume-to-plume 

variations seen under other conditions discussed earlier with these variations being likely 

attributed to physical injector phenomenon based on their consistent appearance over a 

wide range of conditions.  

12.6.2.2. Combined Repeat Results 
Combined results from the repeat tests with both the chiller on and chiller off for 

median liquid length over all eight plumes are shown in Figure 12.63.  

 
Figure 12.63: Combined vaporizing spray repeat results, chiller on (355 K injector 

temeprature) and chiller off (363 K injector temperature).  

With the chiller on, fuel temperature is reduced, and the median liquid length increased 

14% relative to the elevated fuel temperature case. This trend was expected as additional 

energy was required (air entrained) to fully vaporize all fuel at the lower temperature 

resulting in a liquid length increase.  

12.6.2.3. Injection Pressure Sweep – Chiller Off – 363 
K Fuel Temperature 

These tests are an injection pressure sweep with the chiller off, at 1100 K ambient 

zero percent oxygen gas temperature and 34.8 kg/m
3
 charge-gas density. Polar plots were 

prepared to understand the plume to plume variations under these conditions, as shown in 
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Figure 12.64, Figure 12.65, and Figure 12.66 for injection pressures of 1034, 1379, and 

2000 bar respectively.  

 
Figure 12.64: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1034 bar injection pressure, 1100 K, chiller off. 

 
Figure 12.65: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1379 bar injection pressure, 1100 K, chiller off. 

 

 
Figure 12.66: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 2000 bar injection pressure, 1100 K, chiller off. 

 



 

419 

As expected there was the most variation during the transient start of injection 

(0.2 ms), before the liquid phase penetration reached steady state. At steady state, the 

variation was smaller between plumes and also as a function of time.  

12.6.2.4. Injection Pressure Sweep – Chiller On – 355 

K Fuel Temperature 
An injection pressure sweep was also undertaken at a reduced fuel temperature of 

82°C, with actual test conditions summarized in Table 12.5.  

Table 12.5 

Ambient conditions at injection – injection pressure sweep – chiller on.   

Test Set 
ρBulk 

(kg/m
3
) 

ρCore  

(kg/m
3
) 

TBulk at Inj. (K) TCore at Inj. (K) 
PInj.  

(Bar) 

1034 Bar 34.7 32.2 1100 1190 1070 

1379 Bar 34.8 32.2 1100 1190 1370 

2000 Bar 34.5 32.0 1100 1190 2000 

With the chiller on, injection pressure sweep ambient conditions were similar with no 

significant variations. Again, all figures and discussion refer to the desired injection 

pressure. Background subtracted spray images are shown in Figure 12.67.  

 
Figure 12.67: Background subtracted spray images. Injection pressure sweep test: 

34.8 kg/m
3
 density, 0% O2, 1100 K, chiller on. 

 Injection pressure had a negligible influence on spray characteristics. This was 

further confirmed from the image processing results, with results for median liquid 

penetration as a function of time ASOI shown in Figure 12.68.  
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Figure 12.68: Median penetration (liquid) as a function of time ASOI for the 

injection pressure sweep at 34.8 kg/m
3
 density, 1100 K, 0% O2, fuel chiller on.  

During start of injection the 2000 bar fuel pressure injection case reached steady state 

earlier, but again liquid length was not influenced by injection pressure with less than a 

1% change in mean steady state liquid length over these conditions.   

The plume trends as a function of these three injection pressures with the fuel 

chiller on is of interest, as shown in Figure 12.69, Figure 12.70, and Figure 12.71 for the 

injection pressures of 1034, 1379, and 2000 bar.  

 
Figure 12.69: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1034 bar injection pressure, 1100 K, chiller on. 

 
Figure 12.70: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1379 bar injection pressure, 1100 K, chiller on. 
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Figure 12.71: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 2000 bar injection pressure, 1100 K, chiller on. 

Consistent with previous tests, there was the most variation during the transient 

start of injection phase at 0.2 ms. There was also plume to plume variation as a function 

of time ASOI and for each injection pressure which were difficult to compare in the 

above polar plots. 

Looking at the steady state (1 to 2 ms ASOI) liquid length of each plume 

normalized by the mean steady state liquid length over all eight plumes, enabled an easier 

comparison of the plume to plume variations by removing the injection pressure 

influence, as shown in Figure 12.72.  

 
Figure 12.72: Polar plot of normalized liquid length during steady state (1 to 2 ms 

ASOI), 34.8 kg/m
3
 0% O2, 1100 K, chiller on. 

Plumes 1, 5, 6, and 7 consistently had normalized liquid lengths less than one, or less 

than the mean value by above 4%, agreeing with past trends. Plumes 2 and 3 also had 

liquid lengths consistently larger than one, or greater than the mean by at least 4%, over 

the injection pressure sweep, again, agreeing with past trends. Under these conditions, 

plume 8 had a normalized liquid length less than one for all conditions except for 2000 

bar, which was opposite to what was previously observed, however, this deviation is less 

than 1%. Plume 4 had a mean liquid length approximately the same as the mean value.  

12.6.2.5. Combined Results – Fuel Pressure Sweep 
There were consistencies in plume trends in regards to plumes 1, 5, 6, and 7 being 

constantly less than the mean, and plumes 2 and 3 being larger than the mean for these 

injection pressure sweeps at high and low fuel temperatures. Also of interest was a 
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general comparison of the influence of fuel temperature on the liquid length, for the three 

injection pressures investigated, as shown in Figure 12.73. 

 
Figure 12.73: Median liquid penetration as a function of time ASOI for the injection 

pressure sweep with both the chiller off and chiller on. 0% O2, 1100 K, 34.8 kg/m3 

density 

With the chiller off the fuel temperature increased with the liquid penetration reduced 

relative to that of the chiller being on by 12%. Based on literature, liquid length increases 

linearly with a reduction in fuel temperature (Siebers 1998). At the higher fuel 

temperature (chiller off) it takes less energy to heat up and vaporize the fuel which 

reduces the required spray length to entrain sufficient energy to vaporize the fuel, thereby 

reducing the liquid length 

12.6.2.6. Charge Gas Density Variation 
These tests are are for a charge-gas density variation with the chiller off at 1100 K 

ambient zero percent oxygen gas temperature and 2000 bar injection pressure. It is of 

interest to understand the plume to plume variations of mean steady state liquid length 

under these conditions, as shown in Figure 12.74 and Figure 12.75, for the 17.4 and 34.8 

kg/m
3
 density cases, respectively.  

 
Figure 12.74: Polar plot of liquid penetration as a function of various times ASOI, 

17.4 kg/m
3 

0% O2, 2000 bar injection pressure, 1100 K, chiller off. 
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Figure 12.75: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 2000 bar injection pressure, 1100 K, chiller off. 

In agreement with prior results, there was the most variation between plumes 

during the transient SOI as evidenced by the 0.2 ms ASOI condition. There were still 

plume to plume variations in the longer times ASOI during steady state. These variations 

become more evident in the lower density case which could potentially be attributed to 

temperature gradients existing across the chamber. These gradients would have a larger 

influence on the spray characteristics as the spray penetrates further across the chamber.  

12.6.2.7. Charge Gas Temperature Sweep at 1379 Bar 
A charge temperature sweep was previously discussed at 2000 bar injection 

pressure; however, a restricted charge temperature sweep was undertaken at a reduced 

injection pressure of 1379 bar to further understand the influence with test conditions 

summarized in Table 12.6.  

Table 12.6 

Ambient conditions at injection – charge temperature sweep at 1379 Bar. 

Test Set 
ρBulk 

(kg/m
3
) 

ρCore  

(kg/m
3
) 

TBulk at Inj. (K) TCore at Inj. (K) 
PInj.  

(Bar) 

950 K 34.6 32.5 950 1015 1380 

1100 K 34.7 32.1 1100 1190 1380 

1200 K 34.8 32.0 1200 1300 1370 

Injection pressure and density were consistent, with a variation in bulk gas temperature as 

desired. Background subtracted spray images for these test conditions are provided in 

Figure 12.76.  



 

424 

 
Figure 12.76: Background subtracted spray images. Charge temperature sweep, 0% 

O2, 1379 bar injection pressure, 34.8 kg/m
3
 density.  

As charge gas temperature increased liquid phase penetration reduced due to increased 

vaporization. This was quantified by image processing with results for median 

penetration as a function of time ASOI shown in Figure 12.77.  

 
Figure 12.77: Median liquid penetration as a function of time ASOI for the 

temperature sweep, 950 to 1200 K, 0% O
2
, 34.8 kg/m3, 1379 bar injection pressure.  

When temperature increased, liquid length decreased nonlinearly with temperature which 

was also evidenced in the increased injection pressure case. The reduction in liquid length 

is 30% for a 250 K charge gas temperature increase (from 950 to 1200 K). Steady state 

liquid length was reached by 1.0 ms ASOI for all cases.  

Of interest are the plume to plume variations over this charge temperature sweep, 

defined by polar plot comparisons shown in Figure 12.78, Figure 12.79, and Figure 12.80 

for charge temperatures of 950, 1100 and 1200 K, respectively.  
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Figure 12.78: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1379 bar injection pressure, 950 K, chiller off. 

 
Figure 12.79: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1379 bar injection pressure, 1100 K, chiller off. 

 
Figure 12.80: Polar plot of liquid penetration as a function of various times ASOI, 

34.8 kg/m
3
 0% O2, 1379 bar injection pressure, 1200 K, chiller off. 

At the 1200 K charge gas temperature, there were no results for Plume 1 due to 

background interference. In all cases there existed plume to plume variation and 

fluctuations in liquid length about the mean value evidenced in the spray movies. 

Plume trends can be better understood looking at the normalized mean liquid 

length for the three charge temperatures as shown in Figure 12.81. 
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Figure 12.81: Polar plot of normalized liquid length during steady state (1 to 2 ms 

ASOI), 34.8 kg/m
3
 charge-gas density, 0% O2, charge gas temperature sweep, chiller 

off, 1379 bar injection pressure. 

The normalized mean liquid length was determined for each plume by taking the mean 

liquid length of the spray plume, from 1 to 2 ms ASOI, and normalizing it by the mean 

steady state liquid length over all eight plumes. Plumes 1, 5, and 7 had normalized mean 

liquid lengths less than the mean by 3 to 5%. Plume 6 was also less than the mean with 

the exception of the 1100 K case. Plumes 2, 3, and 8 had mean liquid lengths which 

exceeded the normalized mean value by 2 to 6%, agreeing with trends over different 

ambient conditions. Plume 4 has a liquid length very close to the mean, within 1%.  

12.6.3. Combusting Results – Plume to Plume 

Variations 
Plume to plume variation results are provided in these sections as polar plots for 

all combusting (21% Oxygen) spray tests.  

12.6.3.1. Repeat Tests – Chiller Off 
Test conditions for the two repeat tests with the chiller off are summarized in 

Table 12.7.  Injection was at 0.6 ms trigger duration which corresponds to 1.1 ms fuel 

duration. Tests were conducted at 34.8 kg/m
3
 charge gas density, 1100 K bulk gas 

temperature, and 2000 bar injection pressure.  

Table 12.7 

Combusting repeat tests.  

 

Injection 

Pressure 

(Bar) 

Bulk 

Gas 

Density  

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core Gas 

Density 

(kg/m3) 

Core Gas 

Temperature 

(K) 

Ignition 

Delay 

(ms) 

Net 

Heat 

Release 

(kJ) 

Test 1 2000 33.9 1100 31.5 1190 0.52 1.52 

Test 2 2030 33.9 1100 31.5 1190 0.50 1.52 

Images are shown for these repeat tests in Figure 12.82.  
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Figure 12.82: Combusting spray images from repeat tests, 2000 bar injection 

pressures, 1100 K bulk gas temperature, 34.8 kg/m
3
 density.  

Similarities exist between the two repeat tests in regards to ignition delay and flame 

growth. Lift off length was also similar between the two sets of tests as shown in the 

images. Quantified median spray parameters of flame length, cone angle at 60% flame 

length, lift-off length, and total combusting plume intensity are provided in, Figure 12.83, 

Figure 12.84, Figure 12.85, and Figure 12.86, respectively.  

 
Figure 12.83: Median flame length versus time ASOI for combusting spray repeat 

tests, 2000 bar injection pressure, 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

Computed ignition delay from pressure was an average 0.51 ms.  

As time ASOI increased, the flame length increased. The initial gap between 0 ms 

to the first location of flame length was due to the ignition delay and the minimal 

combustion luminosity during the start of combustion and because of this flame length 

does not exist. Test 1 and Test 2 exhibit very similar flame lengths, within 5%, with small 

differences likely attributed to camera timing jitter.  
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Figure 12.84: Median cone angle versus time ASOI for combusting spray repeat 

tests, 2000 bar injection pressure, 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

Cone angle was relatively constant during combustion with small fluctuations 

around a nominal value of 22 degrees. The test to test variations were not significant at 

1%.  

 
Figure 12.85: Median lift-off length versus time ASOI for combusting spray repeat 

tests, 2000 bar injection pressure, 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

Lift-off length slowly increased as a function of time ASOI, being very similar 

between the two tests eventually reaching 12 mm, with less than 6% average variation.  

 
Figure 12.86: Median combusting plume intensity versus time ASOI for combusting 

spray repeat tests, 2000 bar injection pressure, 1100 K bulk gas temperature, 34.8 

kg/m
3
 density. 

Total combusting plume intensity was similar between the two test conditions 

exponentially increasing as the flame propagates across the chamber. Variation can reach 
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24% between the two tests, but this could be attributed to comparing the median value 

and hence different spray combusting plumes. Overall, repeat tests confirmed agreement 

in all parameters analyzed.   

 A comparison of individual plume characteristics is undertaken to understand any 

additional variations, shown in Figure 12.87 and Figure 12.88 for Test 1 and Test 2 

respectively.  

   

             
Figure 12.87: Polar plots for Test 1 of the repeats considering plume to plume 

variations in flame length, cone angle, lift-off length, and total combusting intensity 

for 2000 bar injection pressure, 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 
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Figure 12.88: Polar plots for Test 2 of the repeats considering plume to plume 

variations in flame length, cone angle, lift-off length, and total combusting intensity 

for 2000 bar injection pressure, 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

Plume to plume variations in flame length were not well pronounced for test 1 or test 2, 

although, they were evident at certain conditions for example test 2, plume 1 at 0.6 ms 

ASOI had a noticeably reduced flame length. Plume-to-plume variations in cone angle 

were apparent for all times ASOI, with cone angle being widest for plumes 1, 2, 3 and 8, 

more noticeably in the long times ASOI. Trends in lift-off length were also prevalent, 

with plumes 3, 4, 5 and 6 showing noticeably longer lift-off lengths relative to the other 

plumes. There were also plume to plume variations in combusting intensity, however, 

these were not consistent test to test.  

12.6.3.2. Injection Pressure Variation at 950 K 
The 950 K bulk gas temperature injection pressure variation was undertaken at 

both 1379 and 2000 bar, for an ambient charge gas density of 34.8 kg/m
3
, with actual test 

conditions defined in Table 12.8.  
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Table 12.8 

Combusting test conditions for injection pressure variation at 950 K bulk gas 

temperature. 

 

Injection 

Pressure 

(Bar) 

Bulk Gas 

Density 

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core 

Gas 

Density 

(kg/m3) 

Core Gas 

Temperature 

(K) 

Ignition 

Delay 

(ms) 

Net 

Heat 

Release 

(kJ) 

1379 Bar 1380 33.9 950 31.8 1010 0.93 1.12 

2000 Bar 2030 33.7 960 31.7 1020 0.81 1.61 

There were small variations in gas density and temperatures, but these were negligible 

relative to the change in injection pressure which is currently of interest. Ignition delay 

was reduced by about 14% with the increase in injection pressure as the spray penetrated 

across the chamber faster and at higher velocity enhancing fuel-air mixing and the 

resulting combustion, agreeing with literature (Kobori et al. 2000). Heat release was also 

larger by over 40% for the higher injection pressure case which was expected since the 

injection duration was kept constant so at the higher injection pressure, more fuel will be 

injected providing more energy for heat release. Images of the combusting spray from 

these tests are shown in Figure 12.89.  

 
Figure 12.89: Combusting spray images from injection pressure variation, 950 K 

bulk gas temperature, 34.8 kg/m
3
 density. Computed ignition delay from pressure 

was 0.93 ms at 1379 bar, and 0.81 ms at 2000 bar.  

Some notable differences were apparent in the images in the above figure. Intensity of the 

1379 bar test case was higher than that of the higher injection pressure condition. The 

2000 bar injection pressure condition showed a shorter ignition delay and faster flame 

development. These differences were quantified in the following set of figures for flame 

length (Figure 12.90), cone angle (Figure 12.91), lift-off length (Figure 12.92) and 

combusting plume intensity (Figure 12.93). 
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Figure 12.90: Median flame length versus time ASOI for combusting spray tests, 

950 K bulk gas temperature, 34.8 kg/m
3
 density. 

As injection pressure increased spray momentum increased enabling it to travel farther 

under the same conditions relative to that of a lower injection pressure spray, as shown by 

the increased flame length of the higher density spray. The magnitude of this increase is 

close to 17%.  

 
Figure 12.91: Median cone angle versus time ASOI for combusting spray tests, 950 

K bulk gas temperature, 34.8 kg/m
3
 density. 

Cone angle, a measure of the combusting spray flames spreading and air 

entrainment, was a quasi-steady value and larger for the 1379 bar injection pressure case 

by an average of 3 degrees. Therefore cone angle decreases by about 13% over this 

injection pressure increase. This could be attributed to the cone angle definition, with 

cone angle being calculated at 60% flame length and therefore cone angle was calculated 

at different distances for the two injection pressures based on the differences in flame 

length, however, the relative location in the spray would be consistent.  
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Figure 12.92: Median lift-off length versus time ASOI for combusting spray tests, 

950 K bulk gas temperature, 34.8 kg/m
3
 density. 

Lift-off length was larger by close to 40% for the 2000 bar injection pressure case. As 

injection pressure increased, the spray had a faster injection velocity and could then travel 

further in a given amount of time. The spray would have traveled further across the 

chamber before sufficient mixing occurred for the correct stoichiometry for the onset of 

combustion, as denoted by the increase in liquid length, agreeing with literature (Siebers 

and Higgins 2001).  

 
Figure 12.93: Median combusting plume intensity versus time ASOI for combusting 

spray tests, 950 K bulk gas temperature, 34.8 kg/m
3
 density. 

Agreeing with the images, there was higher total combusting spray luminosity for 

the 1379 bar case relative to the 2000 bar case by close to 50%. This higher total 

luminosity indicates that higher soot will be formed in the lower injection pressure 

condition. This was expected as increased injection pressures provide improved 

atomization and fuel-air mixing reducing levels of emissions, especially under this low-

temperature combustion conditions.  

A comparison of the plume-to-plume trends as a function of various times ASOI 

is shown in Figure 12.94 for the 1379 bar case, and Figure 12.95 for the 2000 bar case.  
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Figure 12.94: Polar plots for 1379 bar injection pressure considering plume to 

plume variations in flame length, cone angle, lift-off length, and total combusting 

intensity for 950 K bulk gas temperature, 34.8 kg/m
3
 density. 
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Figure 12.95: Polar plots for 2000 bar injection pressure considering plume to 

plume variations in flame length, cone angle, lift-off length, and total combusting 

intensity for 950 K bulk gas temperature, 34.8 kg/m
3
 density. 

Plume to plume variations in flame length were most apparent early times ASOI 

after which the plume variations were reduced. There were similar trends for cone angle, 

with the exception of plume 6, which had consistently larger cone angle than other 

plumes. Variations in lift-off length were much more pronounced, being largest for 

plumes 2, 3, and 4. Intensity was not consistent for the different spray plumes, especially 

as the time after start of injection increased. 

12.6.3.3. Injection Pressure Variation at 1100 K 
These tests are for an injection pressure variation at 1100 K ambient 21 percent 

oxygen gas temperature, 34.8 kg/m
3
 charge-gas density, and chiller off. A comparison of 

the plume-to-plume trends as a function of various times ASOI is shown in Figure 12.96 

for the 1034 bar case, Figure 12.97 for the 1379 bar case, and were presented in Figure 

12.87 for the 2000 bar case.  
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Figure 12.96: Polar plots for 1034 bar injection pressure considering plume to 

plume variations in flame length, cone angle, lift-off length, and total combusting 

intensity for 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 
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Figure 12.97: Polar plots for 1379 bar injection pressure considering plume to 

plume variations in flame length, cone angle, lift-off length, and total combusting 

intensity for 1100 K bulk gas temperature, 34.8 kg/m
3
 density. 

During the early phase ASOI flame length was largely asymmetric, with this 

asymmetry reducing as time ASOI increased. Cone angle showed large asymmetries, 

however, these asymmetries were inconsistent between test conditions. Lift-off length 

was largely asymmetric in early times ASOI, and still exhibited noticeable fluctuations at 

longer times ASOI. Plume total intensity was also largely asymmetric when comparing 

different plumes; however, again as was the case with other parameters, variations were 

not consistent over the differing injection pressures considered.  

12.6.3.4. Charge Gas Density Variation 
These tests are for charge-gas density variation at 1100 K ambient 21 percent 

oxygen gas temperature, and chiller off . Of interest is a comparison of the plume-to-

plume trends as a function of various times ASOI shown in Figure 12.98 for the 17.4 

kg/m
3
 density case, and were presented in Figure 12.87 for the 34.8 kg/m

3
 density case.  
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Figure 12.98: Polar plots for 2000 bar injection pressure considering plume to 

plume variations in flame length, cone angle, lift-off length, and total combusting 

intensity for 1100 K bulk gas temperature, 17.4 kg/m
3
 density. 

As the time ASOI increased, there were reductions in the plume to plume 

variations for the differing spray parameters. Although the magnitude of these plume to 

plume variations were significant, they were not consistent for the two different density 

cases. 

12.6.3.5. Charge Gas Temperature Variation – 1379 

Bar Injection Pressure 
The influence of charge gas temperature on combusting spray flame 

characteristics is also of interest. First, tests at the reduced, 1379 bar, injection pressure 

were considered. These were undertaken at 34.8 kg/m
3
 charge-gas density with actual test 

conditions provided in Table 12.9.  

Table 12.9 

Combusting test conditions for charge gas temperature variation at 1379 bar 

injection pressure and 34.8 kg/m
3
 charge gas bulk density.  

 

Injection 

Pressure 

(Bar) 

Bulk 

Gas 

Density  

(kg/m
3
) 

Bulk Gas 

Temperature 

(K) 

Core 

Gas 

Density 

(kg/m
3
) 

Core Gas 

Temperature 

(K) 

Ignition 

Delay 

(ms) 

Net Heat 

Release  

(kJ) 

950 K 1380 33.9 950 31.8 1010 0.93 1.12 

1100 K 1370 33.9 1100 31.4 1190 0.59 1.09 

Test conditions relative to the set-points were comparable and therefore the results will 

be influenced only by the bulk gas temperature. Ignition delay was reduced by close to 
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40% for the higher temperature as expected (Kobori et al. 2000). Heat release was similar 

for the two tests (less than 3% variation) as the injection pressure was the same with 

comparable amounts of fuel being injected. Images from these tests are shown in Figure 

12.99.   

 
Figure 12.99: Combusting spray images from tests at 1379 bar injection pressure, 

34.8 kg/m
3
 Density, Charge gas temperature variation. 

 The total combusting plume intensity was reduced and ignition delay decreased 

as charge gas temperature increased. Parameter comparison is best understood from the 

image processing results as shown in Figure 12.100, Figure 12.101, Figure 12.102, and 

Figure 12.103 for flame length, cone angle, lift-off length, and total combusting spray 

plume intensity, respectively.  

 
Figure 12.100: Median flame length versus time ASOI for combusting spray tests, 

34.8 kg/m
3
 density, 1379 bar injection pressure. Computed ignition delay from 

pressure measurements of 0.93 ms and 0.59 ms for 950 and 1100 K charge-gas 

temperatures, respectively. 

As charge-gas temperature increased, there were negligible variations in median 

flame length, less than 2%. This indicates that charge-gas temperature is not the 

governing factor in flame length; rather, injection pressure was more influential and the 

governing parameter as it controls the momentum of the spray.  
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Figure 12.101: Median cone angle versus time ASOI for combusting spray tests, 34.8 

kg/m
3
 density, 1379 bar injection pressure. 

Cone angle was similar for both charge-gas temperatures, until later into the 

injection event at which the 950 K charge gas temperature had a larger cone angle by 

about 3 degrees relative to 1100 K.  

 
Figure 12.102: Median lift-off length versus time ASOI for combusting spray tests, 

34.8 kg/m
3
 density, 1379 bar injection pressure. 

Lift-off length was similar for both charge gas temperatures at the 1379 bar 

injection pressure, being about 1 mm longer for the 950 K temperature condition. It was 

expected that as temperature decreased, lift-off length would increase (Higgins and 

Siebers 2001, Siebers and Higgins 2001), these trends were not significant here.   

 
Figure 12.103: Median combusting plume intensity versus time ASOI for 

combusting spray tests, 34.8 kg/m
3
 density, 1379 bar injection pressure. 
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At the 1379 bar injection pressure, as charge-gas temperature increased, the combusting 

spray flame intensity decreased.  

Polar plots comparing the plume to plume variations were presented in Figure 

12.94 and Figure 12.97 for the 950 and 1100 K charge gas temperatures, respectively. 

Both conditions showed significant plume-to-plume variations without any consistentcy 

in trends for these variations.  

12.6.3.6. Charge Gas Temperature Variation – 2000 

Bar Injection Pressure 
These tests are for a charge-gas temperature variation in an ambient 21 percent 

oxygen environment, 34.8 kg/m
3
 charge-gas density, 2000 bar injection pressure, and 

chiller off.  Polar plots comparing the plume to plume variations were presented in Figure 

12.95 and Figure 12.87 for the 950 and 1100 K charge gas temperatures, respectively. 

Again, no consistent trends in plume variations were evidenced.  

12.7. Supplements to Chapter 7 

12.7.1. Liquid Length Modeling Programs & 

Property Constants 
This appendix includes processing programs used in EES for liquid length 

determination, including both tabulated thermodynamic property relations, and the 

programs for the developed equation of state methodology.  

12.7.1.1. Tabulated Thermodynamic Property 

Relationships 
Tabulated thermodynamic property relationships were obtained from Schihl et al. 

2006. Units for enthalpies are in kJ/kg, temperature in °R, saturation pressure in Psia, and 

saturation density in lbm/ft
3
. Conversions are applied to reach SI units. Equations are 

provided for the needed thermophysical properties for liquid length application, and 

constants are provided for cetane as the single-component surrogate, for application in 

chapter 7.2 (Schihl et al. 2006).  

 

Saturated Fuel Enthalpy (Ts, Ps) 

 𝑃𝑟,𝑠 < 0.2       ℎ𝑓(𝑇𝑠) = 𝐴𝑇𝑟,𝑠 − 𝐵 𝑃𝑟,𝑠 ≥ 0.2       ℎ𝑓(𝑇𝑠) = −𝐶𝑇𝑟𝑠2 + 𝐷𝑇𝑟,𝑠 − 𝐸 

 
Constants Cetane 

A 1869.7 

B 550.15 

C 929.51 

D 3520.3 

E 1283.4 
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Fuel Saturation Pressure (Ts) 

 ln(𝑃𝑠) = 𝐶1 − 𝐶2𝑇𝑠 − 𝐶3 ∙ ln(𝑇𝑠) + 𝐶4𝑇𝑠2 +
𝐶5𝑇𝑠2 

 
Constants Cetane 

C1 174.2 

C2 28534 

C3 21.09 

C4 2.5228E-6 

C5 88111 

 

Fuel Enthalpy (Tf, Pa) 

 ℎ𝑓�𝑇𝑓 , 𝑃𝑎� = 1.0429 ∙ 𝑃𝑎,𝑟 + 320.95 

 

Fuel Compressibility (Ts) 

 𝑍𝑓(𝑇𝑠, 𝑃𝑠) = −𝑎𝑇𝑟,𝑠3 + 𝑏𝑇𝑟,𝑠2 − 𝑐𝑇𝑟,𝑠 + 𝑑 

 
Constants Cetane 

a 16.587 

b 34.594 

c 24.531 

d 6.689 

 

Saturated Liquid Rho Fuel (Tf) -> Rackett Equation 

 
1𝜌𝑠 = �𝑅𝑇𝑐𝑃𝑐 � ∙ 𝑍𝑟𝑎(1+(1−𝑇𝑓,𝑟)2/7)

 

 

Zra = 0.2386 

 

12.7.1.2. Liquid Length Modeling Program Using 

Tabulated Thermodynamic Property Relations 
The liquid length is calculated using tabulated thermodynamic property 

relationships in EES, provided in the file below. This requires inputs of ambient 

temperature and density (core conditions). The program below is for the chiller off case 

and fuel temperature is defined as 363 K, for the chiller on case the program is identical 

but fuel temperature is defined as 355 K. The EES program is solved using a parametric 

table approach, which includes definition of ambient core gas temperature and pressure 

for solution of the liquid length.  

 

LL Correlation – CetaneAmbient0PercO2_ChillerOff.EES 
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"Run this program to calculate LL using Siebers Model with Tabulated 
Thermodynamic Property Relationships, Using Cetane as the 
Representative Fuel" 
 
"Input conditions are temperature and density (ambient, core 
conditions), and fuel temperature" 
 
"Functions for Calculating Thermodynamic Properties" 
"Schihl et al. 2006" 
 
"Function to calculate Saturated Fuel Enthalpy as  function of reduced 
saturation pressure and temperature" 
 
function SaturatedFuelEnthalpy(Prs, Trs) 
 
"Saturated Fuel Enthalpy Constants" 
Ahfs:= 1869.7 
Bhfs:= 550.15 
Chfs:= 929.51 
Dhfs:= 3520.3 
Ehfs:= 1283.4 
 
if (Prs < 0.2) Then SaturatedFuelEnthalpy:= Ahfs*Trs-Bhfs else 
SaturatedFuelEnthalpy:=-Chfs*Trs^2+Dhfs*Trs-Ehfs 
 
end 
 
"Function to calculate the fuel saturation pressure as a function of 
the saturation temperature" 
function FuelSaturationPressure(Ts) 
 
"Fuel Saturation Pressure Constants" 
C1 := 174.2;  
C2 := 28534;  
C3 := 21.09;  
C4 := 2.5228e-6;  
C5 := 88111;  
 
Ts_Rankine = ConvertTemp('K', 'R', Ts);  
 
FuelSaturationPressure := exp(C1-C2/(Ts_Rankine)-
C3*ln(Ts_Rankine)+C4*(Ts_Rankine)^2+C5/(Ts_Rankine)^2)*0.0689475749;  
 
end 
 
"Function to calculate the Liquid Fuel Enthalpy as a function of the 
fuel temperature and reduced ambient pressure" 
function FuelEnthalpy(Tf, Par) 
 
CetaneC1 = 1.0429;  
CetaneC2 = 320.95;  
 
FuelEnthalpy := CetaneC1*Par + CetaneC2;  
 
end 
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"Function to calculate the fuel compressibility as a function of the 
reduced saturation temperature" 
function FuelCompressibility(Trs) 
 
AZf = 16.587 
BZf = 34.594 
CZf = 24.531 
DZf = 6.869 
 
FuelCompressibility := -AZf*Trs^3 + BZf*Trs^2-CZf*Trs+DZf 
 
end 
 
"Function to calculate the ambient enthalpy -- for 0%O2 Post Preburn" 
function N2Enthalpy(Ta, R) 
 
if (Ta < 1000) then  
 
a1N2 = 0.02926640E+02 
a2N2  = 0.14879768E-02 
a3N2  = -0.05684760E-05  
a4N2  = 0.10097038E-09 
a5N2  = -0.06753351E-13     
a6N2  = -0.09227977E+04  
 
N2Enthalpy = 
R*Ta*(a1N2+a2N2*Ta/2+a3N2*Ta^2/3+a4N2*Ta^3/4+a5N2*Ta^4/5+a6N2/Ta) 
 
endif  
 
if (Ta >=1000) then 
 
a1N2 =0.03298677E+02  
a2N2 =0.14082404E-02 
a3N2 = -0.03963222E-04 
a4N2 =0.05641515E-07 
a5N2 =-0.02444854E-10 
a6N2 =-0.10208999E+04  
 
N2Enthalpy = 
R*Ta*(a1N2+a2N2*Ta/2+a3N2*Ta^2/3+a4N2*Ta^3/4+a5N2*Ta^4/5+a6N2/Ta) 
 
endif 
end 
 
function H2OEnthalpy(Ta, R) 
 
if (Ta < 1000) then  
 
a1H2O = 3.03399249E+00  
a2H2O  = 2.17691804E-03 
a3H2O  = -1.64072518E-07 
a4H2O  = -9.70419870E-11 
a5H2O =  1.68200992E-14 
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a6H2O  =  -3.00042971E+04  
 
H2OEnthalpy = 
R*Ta*(a1H2O+a2H2O*Ta/2+a3H2O*Ta^2/3+a4H2O*Ta^3/4+a5H2O*Ta^4/5+a6H2O/Ta) 
 
endif  
 
if (Ta >=1000) then 
 
a1H2O = 4.19864056E+00 
a2H2O =-2.03643410E-03  
a3H2O = 6.52040211E-06 
a4H2O =-5.48797062E-09  
a5H2O =1.77197817E-12 
a6H2O =-3.02937267E+04 
 
H2OEnthalpy = 
R*Ta*(a1H2O+a2H2O*Ta/2+a3H2O*Ta^2/3+a4H2O*Ta^3/4+a5H2O*Ta^4/5+a6H2O/Ta) 
 
endif 
end 
 
function CO2Enthalpy(Ta, R) 
 
if (Ta < 1000) then  
 
a1CO2 =  3.85746029E+00  
a2CO2  =4.41437026E-03 
a3CO2 = -2.21481404E-06  
a4CO2  = 5.23490188E-10 
a5CO2 =  -4.72084164E-14 
a6CO2  =   -4.87591660E+04  
 
CO2Enthalpy = 
R*Ta*(a1CO2+a2CO2*Ta/2+a3CO2*Ta^2/3+a4CO2*Ta^3/4+a5CO2*Ta^4/5+a6CO2/Ta) 
 
endif  
 
if (Ta >=1000) then 
 
a1CO2 =  2.35677352E+00  
a2CO2  =8.98459677E-03 
a3CO2 = -7.12356269E-06 
a4CO2  =  2.45919022E-09 
a5CO2 =  -1.43699548E-13 
a6CO2  =  -4.83719697E+04  
 
CO2Enthalpy = 
R*Ta*(a1CO2+a2CO2*Ta/2+a3CO2*Ta^2/3+a4CO2*Ta^3/4+a5CO2*Ta^4/5+a6CO2/Ta) 
 
endif 
end 
 
"Define Cetane Parameters" 
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"Tcr = Critical Temperature - Cetane as Diesel Surrogate" 
Tcr = 722; "K"  
 
"Pcr = Critical Pressure - Cetane as Diesel Surrogate" 
Pcr = 14.1; "Bar" 
PcrkPa = Pcr*convert(bar, kPa) 
 
"Molecular Weight - Cetane" 
Mf = 226.44; "kg/kmol" 
 
"Rackett Parameter - Cetane" 
ZraCetane = 0.2386;  
 
"Define Experimental Conditions" 
 
"Ideal Gas Constant" 
R = 8.314; "kJ/kmol-K" 
 
"Liquid Fuel Temperature" 
Tf = 363; "K" 
 
"Ta = Ambient Temperature - Defined for Test Conditions in 0% O2 
Environment, Core Gas" 
 
"Nozzle Orifice Diameter" 
d = 0.145; "mm" 
 
"Tfr = Reduced Fuel Temperature - Definition" 
Tfr = Tf/Tcr; "Unitless" 
 
"Define Ambient Parameters -- 0% O2 Mixture" 
 
"Ambient Compressibility -- Assume 1 based on pressures and 
temperatures used in this study" 
Za = 1;  
 
"Pcra = Critical Ambient Pressure - Use Modified Prausnitz and Gunn 
Rule" 
$Constant YCO2# = 0.0632 
$Constant YN2# = 0.8852 
$Constant YH2O# = 0.0475 
 
$Constant MWCO2# = 44 (kg/kmol) 
$Constant MWH2O# = 18 (kg/kmol) 
$Constant MWN2# = 28 (kg/kmol) 
 
$Constant Tc_CO2# = 304.1 (K) 
$Constant Tc_N2# = 126.2 (K) 
$Constant Tc_H2O# = 647.3 (K) 
 
$Constant Vc_CO2# = 93.9E-3 (m^3/kmol) 
$Constant Vc_N2# = 89.8E-3 (m^3/kmol) 
$Constant Vc_H2O# = 57.1E-3 (m^3/kmol) 
 
$Constant Zc_CO2# = 0.274 
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$Constant Zc_N2# = 0.290 
$Constant Zc_H2O# = 0.235 
 
"Calculate critical mixture temperature based on Kays Rule" 
TcMix = YCO2#*Tc_CO2#+YH2O#*Tc_H2O#+YN2#*Tc_N2#;  
Pcra = 
R*TcMix*(YCO2#*Zc_CO2#+YH2O#*Zc_H2O#+YN2#*Zc_N2#)/(YCO2#*Vc_CO2#+YN2#*V
c_N2#+YH2O#*Vc_H2O#) *convert(kPa,Bar) 
 
"Par = Reduced Ambient Pressure"  
Par = Pa/Pcra;  
 
"Molecular Weight - Ambient" 
 
MWMix =  (YCO2#*MWCO2#+YH2O#*MWH2O#+YN2#*MWN2#) 
Ma = MWMix; "kg/kmol " 
 
"Ambient Density - Defined for Test Conditions in 0% O2 Environment, 
Core Gas" 
 
"Pa = Ambient Pressure" 
"Calculate from Density / Temperature Ambient; MWMix (0% O2)= 27.89 
kg/kmol" 
Pa = RhoA*R*Ta/MWMix*convert(kPa,bar) 
 
"Calculate Saturated Liquid Fuel Density at Fuel Injection Temperature" 
 
RhoF = 1/((R*Tcr/(PcrkPa*Mf))*ZraCetane^(1+(1-Tfr)^(2/7))) 
 
"Trs = Reduced Saturation Temperature - Definition" 
Trs = Ts/Tcr; "Unitless" 
 
"Evaluate Functions" 
 
"Fuel Saturation Pressure" 
Ps = FuelSaturationPressure(Ts) 
 
"Prs = Reduced Saturation Pressure - Definition" 
Prs = Ps/Pcr; "Unitless" 
 
"Fuel saturated enthalpy" 
Hfs = SaturatedFuelEnthalpy(Prs, Trs); 
 
"Fuel Enthalpy at Injection Temperature" 
Hf = FuelEnthalpy(Tf, Par) 
 
"Fuel Compressibility" 
Zf = FuelCompressibility(Trs);  
 
"Ambient Enthalpy at Ambient Temperature" 
 
HN2 = N2Enthalpy(Ta, R) 
HH2O = H2OEnthalpy(Ta,R) 
HCO2 = CO2Enthalpy(Ta,R) 
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HaMolar = HN2*YN2#+HH2O*YH2O#+HCO2*YCO2#;  
Ha = HaMolar/MWMix;  
 
"Ambient Enthalpy at Saturation Temperature" 
 
HN2Ts = N2Enthalpy(Ts, R) 
HH2OTs = H2OEnthalpy(Ts,R) 
HCO2Ts = CO2Enthalpy(Ts,R) 
 
HasMolar = HN2Ts*YN2#+HH2OTs*YH2O#+HCO2Ts*YCO2# 
Has = HasMolar/MWMix;  
 
"Evaluate Vapor Coefficient for Iterative Solution for Ts" 
LHS = (Za*Mf) 
RHS = ((Ha-Has)/(Hfs-Hf))*(Zf*(Pa-Ps)*Ma)/Ps 
LHS = RHS;  
 
"Calculate LL using Correlation" 
 
"Evaluate Evaporation Coefficient" 
B = ((Ha-Has)/(Hfs-Hf)) 
 
"Calculate TanTheta/2 Using Siebers 1999-01-0528 Correlation" 
"Assume constant 0.2640 per literature" 
TanTheta2 = 0.2640*((RhoA/RhoF)^0.19-0.0043*sqrt(RhoF/RhoA)); 
"Tan(Theta/2)" 
Theta2 = arctan(TanTheta2); "Degrees" 
 
"LL Correlation Constants - Siebers 1999-01-0528" 
aLL = 0.66 
bLL = 0.41 
 
"Guess for Ca -- per Literature" 
Ca = 0.8 
 
"Evaluate LL" 
LL = bLL/aLL*sqrt(RhoF/RhoA)*(sqrt(Ca)*d)/(TanTheta2)*sqrt((2/B+1)^2-1) 
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Table 12.10 

Variable guesses, units, and lower and upper limits for the LL model evaluation, 

using tabulated thermodynamic properties.  
Variable Guess Lower Limit Upper Limit Units 

aLL 0.66 -Infinity Infinity  

B 1 -Infinity Infinity  

bLL 0.41 -Infinity Infinity  

Ca 0.8 -Infinity Infinity  

d 0.145 -Infinity Infinity mm 

Ha 1 -Infinity Infinity kJ/kg 

HaMolar 1 -Infinity Infinity kJ/kmol 

Has 1 -Infinity Infinity kJ/kg 

HasMolar 1 -Infinity Infinity kJ/kmol 

HCO2 1 -Infinity Infinity kJ/kmol 

HCO2Ts 1 -Infinity Infinity kJ/kmol 

Hf 1 -Infinity Infinity kJ/kg 

Hfs 1 -Infinity Infinity kJ/kg 

HH2O 1 -Infinity Infinity kJ/kmol 

HH2OTs 1 -Infinity Infinity kJ/kmol 

HN2 1 -Infinity Infinity kJ/kmol 

HN2Ts 1 -Infinity Infinity kJ/kmol 

LHS 226.4 -Infinity Infinity  

LL 1 -Infinity Infinity mm 

Ma 28.42 -Infinity Infinity kg/kmol 

Mf 226.4 -Infinity Infinity kg/kmol 

MWMix 28.42 -Infinity Infinity kg/kmol 

Pa 1 -Infinity Infinity Bar 

Par  -Infinity Infinity  

Pcr 14.1 -Infinity Infinity Bar 

Pcra 43.49 -Infinity Infinity Bar 

PcrkPa 1410 -Infinity Infinity kPa 

Prs 1 -Infinity Infinity  

Ps 1 -Infinity Infinity  

R 8.314 -Infinity Infinity kJ/kmol-K 

RhoA 1 -Infinity Infinity kg/m
3
 

RhoF 720.9 -Infinity Infinity kg/m
3
 

RHS 226.4 -Infinity Infinity kg/kmol 

Ta 1 -Infinity Infinity K 

TanTheta2 1 -Infinity Infinity  

TcMix 161.7 -Infinity Infinity K 

Tcr 722 -Infinity Infinity K 

Tf 363 -Infinity Infinity K 

Tfr 0.5028 -Infinity Infinity  

Theta2 1 -Infinity Infinity Degrees 

Trs 1 -Infinity Infinity  

Ts 500 453 760 K 

Za 1 -Infinity Infinity  

Zf 1 -Infinity Infinity  

ZraCetane 0.2386 -Infinity Infinity  
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12.7.1.3. Equation of State Approach – Liquid Length 
Liquid length is calculated using the Siebers 1999 model via an equation of state 

approach, for single component fuels. Inputs are ambient temperature and pressure and 

fuel temperature (experimental test conditions), fuel properties of critical pressure and 

temperature, acentric factor, Rackett parameter, molecular weight of the fuel, and ideal 

gas constant pressure specific heat capacity coefficients for the fuel. The program outputs 

the fuel spray liquid length by solving for the saturation temperature, and evaluating the 

model equation.   

 

ComboEOSMethodology.EES 

 
“Evaluate Liquid Length for Cetane as a single-component Surrogate” 
"Nasa " 
 
"http://www.me.berkeley.edu/gri_mech/data/nasa_plnm.html" 
 
"GRI 3.0 mechanism coefficients" 
 
"Ambient Mixture" 
 
"Function to calculate the ambient enthalpy Ideal Gas -- for 0%O2 Post 
Preburn" 
 
function HN2(Ta) 
 
if (Ta < 1000) then  
 
a1N2 = 0.02926640E+02 
a2N2  = 0.14879768E-02 
a3N2  = -0.05684760E-05  
a4N2  = 0.10097038E-09 
a5N2  = -0.06753351E-13     
 
HN2 = 
GasConstant#*(a1N2*Ta+a2N2*Ta^2/2+a3N2*Ta^3/3+a4N2*Ta^4/4+a5N2*Ta^5/5 -
(a1N2*TRef#+a2N2*TRef#^2/2+a3N2*TRef#^3/3+a4N2*TRef#^4/4+a5N2*TRef#^5/5 
)) 
endif  
 
if (Ta >=1000) then 
 
a1N2 =0.03298677E+02  
a2N2 =0.14082404E-02 
a3N2 = -0.03963222E-04 
a4N2 =0.05641515E-07 
a5N2 =-0.02444854E-10 
 
a1N2r = 0.02926640E+02 
a2N2r  = 0.14879768E-02 
a3N2r  = -0.05684760E-05  
a4N2r  = 0.10097038E-09 
a5N2r  = -0.06753351E-13   
 



 

451 

HN2 = 
GasConstant#*(a1N2*Ta+a2N2*Ta^2/2+a3N2*Ta^3/3+a4N2*Ta^4/4+a5N2*Ta^5/5 -
(a1N2r*TRef#+a2N2r*TRef#^2/2+a3N2r*TRef#^3/3+a4N2r*TRef#^4/4+a5N2r*TRef
#^5/5 )) 
 
endif 
end 
 
function HH2O(Ta) 
 
if (Ta < 1000) then  
 
a1H2O = 3.03399249E+00  
a2H2O  = 2.17691804E-03 
a3H2O  = -1.64072518E-07 
a4H2O  = -9.70419870E-11 
a5H2O =  1.68200992E-14 
 
HH2O = 
GasConstant#*(a1H2O*Ta+a2H2O*Ta^2/2+a3H2O*Ta^3/3+a4H2O*Ta^4/4+a5H2O*Ta^
5/5 -
(a1H2O*TRef#+a2H2O*TRef#^2/2+a3H2O*TRef#^3/3+a4H2O*TRef#^4/4+a5H2O*TRef
#^5/5 )) 
endif  
 
if (Ta >=1000) then 
 
a1H2O = 4.19864056E+00 
a2H2O =-2.03643410E-03  
a3H2O = 6.52040211E-06 
a4H2O =-5.48797062E-09  
a5H2O =1.77197817E-12 
 
a1H2Or = 3.03399249E+00  
a2H2Or  = 2.17691804E-03 
a3H2Or  = -1.64072518E-07 
a4H2Or  = -9.70419870E-11 
a5H2Or =  1.68200992E-14 
 
HH2O = 
GasConstant#*(a1H2O*Ta+a2H2O*Ta^2/2+a3H2O*Ta^3/3+a4H2O*Ta^4/4+a5H2O*Ta^
5/5 -
(a1H2Or*TRef#+a2H2Or*TRef#^2/2+a3H2Or*TRef#^3/3+a4H2Or*TRef#^4/4+a5H2Or
*TRef#^5/5 )) 
 
endif 
 
end 
 
 
function HCO2(Ta) 
 
if (Ta < 1000) then  
 
a1CO2 =  3.85746029E+00  
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a2CO2  =4.41437026E-03 
a3CO2 = -2.21481404E-06  
a4CO2  = 5.23490188E-10 
a5CO2 =  -4.72084164E-14 
 
HCO2 = 
GasConstant#*(a1CO2*Ta+a2CO2*Ta^2/2+a3CO2*Ta^3/3+a4CO2*Ta^4/4+a5CO2*Ta^
5/5 -
(a1CO2*TRef#+a2CO2*TRef#^2/2+a3CO2*TRef#^3/3+a4CO2*TRef#^4/4+a5CO2*TRef
#^5/5 )) 
 
endif  
 
 
if (Ta >=1000) then 
 
a1CO2 =  2.35677352E+00  
a2CO2  =8.98459677E-03 
a3CO2 = -7.12356269E-06 
a4CO2  =  2.45919022E-09 
a5CO2 =  -1.43699548E-13 
 
a1CO2r =  3.85746029E+00  
a2CO2r  =4.41437026E-03 
a3CO2r = -2.21481404E-06  
a4CO2r  = 5.23490188E-10 
a5CO2r =  -4.72084164E-14 
 
HCO2 = 
GasConstant#*(a1CO2*Ta+a2CO2*Ta^2/2+a3CO2*Ta^3/3+a4CO2*Ta^4/4+a5CO2*Ta^
5/5 -
(a1CO2r*TRef#+a2CO2r*TRef#^2/2+a3CO2r*TRef#^3/3+a4CO2r*TRef#^4/4+a5CO2r
*TRef#^5/5 )) 
endif 
 
end 
 
function HaN2(Ta) 
 
if (Ta <=1000) then  
 
a1N2 = 0.02926640E+02 
a2N2  = 0.14879768E-02 
a3N2  = -0.05684760E-05  
a4N2  = 0.10097038E-09 
a5N2  = -0.06753351E-13     
 
HaN2 = 
GasConstant#*(a1N2*Ta+a2N2*Ta^2/2+a3N2*Ta^3/3+a4N2*Ta^4/4+a5N2*Ta^5/5 -
(a1N2*TRef#+a2N2*TRef#^2/2+a3N2*TRef#^3/3+a4N2*TRef#^4/4+a5N2*TRef#^5/5 
)) 
endif  
 
if (Ta >1000) then 
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a1N2 =0.03298677E+02  
a2N2 =0.14082404E-02 
a3N2 = -0.03963222E-04 
a4N2 =0.05641515E-07 
a5N2 =-0.02444854E-10 
 
a1N2r = 0.02926640E+02 
a2N2r  = 0.14879768E-02 
a3N2r  = -0.05684760E-05  
a4N2r  = 0.10097038E-09 
a5N2r  = -0.06753351E-13     
 
HaN2Ref = 
GasConstant#*(a1N2r*TMid#+a2N2r*TMid#^2/2+a3N2r*TMid#^3/3+a4N2r*TMid#^4
/4+a5N2r*TMid#^5/5 -
(a1N2r*TRef#+a2N2r*TRef#^2/2+a3N2r*TRef#^3/3+a4N2r*TRef#^4/4+a5N2r*TRef
#^5/5 )) 
HaN2Up = 
GasConstant#*(a1N2*Ta+a2N2*Ta^2/2+a3N2*Ta^3/3+a4N2*Ta^4/4+a5N2*Ta^5/5 -
(a1N2*TMid#+a2N2*TMid#^2/2+a3N2*TMid#^3/3+a4N2*TMid#^4/4+a5N2*TMid#^5/5 
)) 
HaN2 = HaN2Ref+HaN2Up 
 
endif 
end 
 
function HaH2O(Ta) 
 
if (Ta <= 1000) then  
 
a1H2O = 3.03399249E+00  
a2H2O  = 2.17691804E-03 
a3H2O  = -1.64072518E-07 
a4H2O  = -9.70419870E-11 
a5H2O =  1.68200992E-14 
 
 
 
HaH2O = 
GasConstant#*(a1H2O*Ta+a2H2O*Ta^2/2+a3H2O*Ta^3/3+a4H2O*Ta^4/4+a5H2O*Ta^
5/5 -
(a1H2O*TRef#+a2H2O*TRef#^2/2+a3H2O*TRef#^3/3+a4H2O*TRef#^4/4+a5H2O*TRef
#^5/5 )) 
endif  
 
if (Ta >1000) then 
 
a1H2O = 4.19864056E+00 
a2H2O =-2.03643410E-03  
a3H2O = 6.52040211E-06 
a4H2O =-5.48797062E-09  
a5H2O =1.77197817E-12 
 
 
a1H2Or = 3.03399249E+00  
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a2H2Or  = 2.17691804E-03 
a3H2Or  = -1.64072518E-07 
a4H2Or  = -9.70419870E-11 
a5H2Or =  1.68200992E-14 
 
HaH2ORef = 
GasConstant#*(a1H2Or*TMid#+a2H2Or*TMid#^2/2+a3H2Or*TMid#^3/3+a4H2Or*TMi
d#^4/4+a5H2Or*TMid#^5/5 -
(a1H2Or*TRef#+a2H2Or*TRef#^2/2+a3H2Or*TRef#^3/3+a4H2Or*TRef#^4/4+a5H2Or
*TRef#^5/5 )) 
HaH2OUp = 
GasConstant#*(a1H2O*Ta+a2H2O*Ta^2/2+a3H2O*Ta^3/3+a4H2O*Ta^4/4+a5H2O*Ta^
5/5 -
(a1H2O*TMid#+a2H2O*TMid#^2/2+a3H2O*TMid#^3/3+a4H2O*TMid#^4/4+a5H2O*TMid
#^5/5 )) 
 
HaH2O = HaH2ORef+HaH2OUp 
endif 
 
end 
 
function HaCO2(Ta) 
 
if (Ta <= 1000) then  
 
a1CO2 =  3.85746029E+00  
a2CO2  =4.41437026E-03 
a3CO2 = -2.21481404E-06  
a4CO2  = 5.23490188E-10 
a5CO2 =  -4.72084164E-14 
 
HaCO2 = 
GasConstant#*(a1CO2*Ta+a2CO2*Ta^2/2+a3CO2*Ta^3/3+a4CO2*Ta^4/4+a5CO2*Ta^
5/5 -
(a1CO2*TRef#+a2CO2*TRef#^2/2+a3CO2*TRef#^3/3+a4CO2*TRef#^4/4+a5CO2*TRef
#^5/5 )) 
 
endif  
 
if (Ta >1000) then 
 
a1CO2 =  2.35677352E+00  
a2CO2  =8.98459677E-03 
a3CO2 = -7.12356269E-06 
a4CO2  =  2.45919022E-09 
a5CO2 =  -1.43699548E-13 
 
a1CO2r =  2.35677352E+00  
a2CO2r  =8.98459677E-03 
a3CO2r = -7.12356269E-06 
a4CO2r  =  2.45919022E-09 
a5CO2r =  -1.43699548E-13 
 
HaCO2Ref = 
GasConstant#*(a1CO2r*Tmid#+a2CO2r*Tmid#^2/2+a3CO2r*Tmid#^3/3+a4CO2r*Tmi
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d#^4/4+a5CO2r*Tmid#^5/5 -
(a1CO2r*TRef#+a2CO2r*TRef#^2/2+a3CO2r*TRef#^3/3+a4CO2r*TRef#^4/4+a5CO2r
*TRef#^5/5 )) 
HaCO2Up = 
GasConstant#*(a1CO2*Ta+a2CO2*Ta^2/2+a3CO2*Ta^3/3+a4CO2*Ta^4/4+a5CO2*Ta^
5/5 -
(a1CO2*Tmid#+a2CO2*Tmid#^2/2+a3CO2*Tmid#^3/3+a4CO2*Tmid#^4/4+a5CO2*Tmid
#^5/5 )) 
HaCO2 = HaCO2Ref+HaCO2Up 
endif 
 
end 
 
function HFuelS(Ts) 
 
A = -1.302E1 
B = 1.529E0 
C = -8.537E-4 
D = 1.85E-7 
 
HFuelS= (A*Ts+B*Ts^2/2+C*Ts^3/3+D*Ts^4/4 - 
(A*TRef#+B*TRef#^2/2+C*TRef#^3/3+D*TRef#^4/4)) 
 
end  
 
function HFuel(Tf) 
 
A = -1.302E1 
B = 1.529E0 
C = -8.537E-4 
D = 1.85E-7 
 
HFuel = (A*Tf+B*Tf^2/2+C*Tf^3/3+D*Tf^4/4 - 
(A*TRef#+B*TRef#^2/2+C*TRef#^3/3+D*TRef#^4/4)) 
 
end  
 
function RootFinder(AConstant, BConstant) 
 
"Solve Cubic Equation" 
 
"Z^3 - (1-B)Z^2 + (A-2B-3B^2)Z - (AB-B^2-B^3) = 0" 
 
a_2 = -(1-BConstant) 
a_1 = (AConstant-2*BConstant-3*BConstant^2) 
a_0 = -(AConstant*BConstant-BConstant^2-BConstant^3) 
 
call RealCubicRoots(a_2, a_1, a_0:z_1, z_2, z_3) 
 
Z = max(z_1, z_2, z_3) 
 
RootFinder= (Z) 
 
end 
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"Determine liquid compressibility root" 
function RootFinderL(AConstant, BConstant) 
 
"Solve Cubic Equation" 
 
"Z^3 - (1-B)Z^2 + (A-2B-3B^2)Z - (AB-B^2-B^3) = 0" 
 
a_2 = -(1-BConstant) 
a_1 = (AConstant-2*BConstant-3*BConstant^2) 
a_0 = -(AConstant*BConstant-BConstant^2-BConstant^3) 
 
call RealCubicRoots(a_2, a_1, a_0:z_1, z_2, z_3) 
 
Zl = min(z_1, z_2, z_3) 
 
RootFinderL = (Zl) 
 
end 
 
"Determine  fugacity" 
function FugacityEval(Zl, AConstant, BConstant, Pressure) 
 
FugacityEval= Pressure*exp(Zl-1-ln(Zl-BConstant)-
AConstant/(2*sqrt(2)*BConstant)*ln((Zl+(1+sqrt(2))*BConstant)/(Zl+(1-
sqrt(2))*BConstant))) 
 
end 
 
"Define Constants" 
$Constant GasConstant# = 8.314  (kJ/kmol-K) 
$Constant TRef# = 298.15 (K) 
$Constant d# = 0.145 (mm) 
$Constant Ca# = 0.8  
 
"LL Correlation Constants - Siebers 1999-01-0528" 
$Constant aLL# = 0.66 
$Constant bLL# = 0.41 
 
"Fuel Properties" 
Tc = 722 (K) 
Pc = 1410 (kPa) 
$Constant w# = 0.742  
$Constant MWFuel# = 226.41 (kg/kmol) 
 
"Ambient Properties" 
 
$Constant MWCO2# = 44 (kg/kmol) 
$Constant MWN2# = 28 (kg/kmol) 
$Constant MWH2O# = 18 (kg/kmol) 
 
$Constant YCO2# = 0.0632 
$Constant YN2# = 0.8852 
$Constant YH2O# = 0.0475 
 
$Constant Pc_CO2# = 7380 (kPa) 
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$Constant Pc_N2# = 3390 (kPa) 
$Constant Pc_H2O# = 22120 (kPa) 
 
$Constant Tc_CO2# = 304.1 (K) 
$Constant Tc_N2# = 126.2 (K) 
$Constant Tc_H2O# = 647.3 (K) 
 
$Constant Vc_CO2# = 93.9E-3 (m^3/kmol) 
$Constant Vc_N2# = 89.8E-3 (m^3/kmol) 
$Constant Vc_H2O# = 57.1E-3 (m^3/kmol) 
 
$Constant Zc_CO2# = 0.274 
$Constant Zc_N2# = 0.290 
$Constant Zc_H2O# = 0.235 
 
$Constant w_CO2# = 0.239 
$Constant w_H2O# = 0.344 
$Constant w_N2# = 0.039 
 
TcMix = YCO2#*Tc_CO2#+YH2O#*Tc_H2O#+YN2#*Tc_N2#;  
Wmix = YCO2#*w_CO2#+YH2O#*w_H2O#+YN2#*w_N2# 
PcMix = 
GasConstant#*TcMix*(YCO2#*Zc_CO2#+YH2O#*Zc_H2O#+YN2#*Zc_N2#)/(YCO2#*Vc_
CO2#+YN2#*Vc_N2#+YH2O#*Vc_H2O#)  
MWMix = YCO2#*MWCO2#+YH2O#*MWH2O#+YN2#*MWN2# 
 
"Fuel temperature" 
Tf = 363  (K) 
Tfr = Tf/Tc 
 
"Density - Fuel" 
 
ZraFuel = 0.2388 
RhoF = 1/((GasConstant#*Tc/Pc)*ZraFuel^(1+(1-Tfr)^(2/7)))*MWFuel# 
 
"Corresponding saturation pressurea t the fuel temperature" 
Zlfps = RootFinderL(AConstantF, BConstantF) 
Zgfps = RootFinder(AConstantF, BConstantF) 
 
flfps = FugacityEval(Zlfps, AConstantF, BConstantF, Pfs) 
fgfps = FugacityEval(Zgfps, AConstantF, BConstantF, Pfs) 
 
"Equate fugacities to determine saturation pressure for given 
temperature" 
flfps = fgfps 
 
"Saturation Temperature" 
 
"Ps = 662.6 (kPa)" 
 
"Corresponding saturation pressure at the saturation temperature" 
Zlfs = RootFinderL(AConstantFS, BConstantFS) 
Zgfs = RootFinder(AConstantFS, BConstantFS) 
 
flfs = FugacityEval(Zlfs, AConstantFS, BConstantFS, Ps) 
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fgfs = FugacityEval(Zgfs, AConstantFS, BConstantFS, Ps) 
 
"Equate fugacities to determine saturation pressure for given 
temperature" 
flfs = fgfs  
 
"Reduced Fuel Temperature" 
Trf = Tf/Tc 
Trs= Ts/Tc 
 
"Ambient Conditions" 
Ta = 1300 (K) 
Pa = 12170 (kPa) 
PDelta = Pa-Ps 
RhoA = MWMix*Pa/(GasConstant#*Ta) 
 
Tra = Ta/TcMix 
Tras = Ts/TcMix 
 
"EOS Parameters" 
 
"Fuel" 
a = 0.4572*GasConstant#^2*Tc^2/Pc  
b = 0.0778*GasConstant#*Tc/Pc 
Kappa = 0.37464+1.54226*w#-0.26992*w#^2 
 
"Fuel at Fuel Temperature" 
alphaF  = (1+(Kappa)*(1-Trf^0.5))^2 
BConstantF = b*Pfs/(GasConstant#*Tf)  
AConstantF= a*alphaF*Pfs/(GasConstant#^2*Tf^2) 
dadTf =-a*Kappa*sqrt(alphaF/(Tf*Tc)) 
 
"Fuel at Saturation Temperature" 
alphaFS  = (1+(Kappa)*(1-Trs^0.5))^2 
BConstantFS = b*Ps/(GasConstant#*Ts)  
AConstantFS = a*alphaFS*Ps/(GasConstant#^2*Ts^2) 
dadTfs = -a*Kappa*sqrt(alphaFS/(Ts*Tc)) 
 
"Charge Gas" 
a_amb = 0.4572*GasConstant#^2*TcMix^2/PcMix 
b_amb = 0.0778*GasConstant#*TcMix/PcMix 
Kappa_amb = 0.37464+1.54226*wMix-0.26992*wMix^2 
 
"Charge Gas at Ambient Temperature" 
alphaA  = (1+(Kappa_amb)*(1-Tra^0.5))^2 
BConstantA = b_amb*Pa/(GasConstant#*Ta)  
AConstantA = a_amb*alphaA*Pa/(GasConstant#^2*Ta^2) 
dadTa = -a_amb*Kappa_amb*sqrt(alphaA/(Ta*TcMix)) 
 
"Charge Gas at Saturation Temperature" 
alphaAS  = (1+(Kappa_amb)*(1-Tras^0.5))^2 
BConstantAs = b_amb*PDelta/(GasConstant#*Ts)  
AConstantAs = a_amb*alphaAS*PDelta/(GasConstant#^2*Ts^2) 
dadTAs = -a_amb*Kappa_amb*sqrt(alphaAS/(Ts*TcMix)) 
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"Determine Fuel Enthalpy at Tf" 
"Saturated vapor compressibility at Tf, Pfs" 
Zvf = RootFinder(AConstantF, BConstantF) 
HDepSVF = (GasConstant#*Tf*(Zvf-1)+(Tf*(dadTf)-
a)/(2*sqrt(2)*b)*ln((Zvf+(1+sqrt(2))*BConstantF)/(Zvf+(1-
sqrt(2))*BConstantF)))  
 
"Calculate enthalpy of vaporization - Pitzer + Watson method" 
"Calculated for the temperature of the liquid fuel" 
 
TrFake = 0.8 
EnthalpyVapFake = GasConstant#*Tc*(7.08*(1-TrFake)^0.354+10.95*w#*(1-
TrFake)^0.456) 
EnthalpyVapF = EnthalpyVapFake*((1-Trf)/(1-TrFake))^0.38 
 
HStarF = HFuel(Tf) 
 
EnthalpyFuelTf = -EnthalpyVapF+HDepSVF+HStarF 
 
Hf_Tf = EnthalpyFuelTf/MWFuel# 
 
"Determine Fuel Enthalpy at Ts" 
Zvfs = RootFinder(AConstantFS, BConstantFS) 
 
HDepFS = (GasConstant#*Ts*(Zvfs-1)+(Ts*(dadTfs)-
a)/(2*sqrt(2)*b)*ln((Zvfs+(1+sqrt(2))*BConstantFS)/(Zvfs+(1-
sqrt(2))*BConstantFS)))  
 
HStarFS = HFuelS(Ts) 
 
EnthalpyFuelTs = HDepFS + HStarFS 
 
Hf_Ts = EnthalpyFuelTs/MWFuel# 
 
Denominator = Hf_Ts-Hf_Tf 
 
"Determine Ambient Enthalpy at Ta" 
Za = RootFinder(AConstantA, BConstantA) 
 
HDepA = (GasConstant#*Ta*(Za-1)+(Ta*(dadTA)-
a_amb)/(2*sqrt(2)*b_amb)*ln((Za+(1+sqrt(2))*BConstantA)/(Za+(1-
sqrt(2))*BConstantA)))  
 
$Constant TMid# = 1000 (K) 
HCO2_A = HaCO2(Ta) 
HN2_A = HaN2(Ta) 
HH2O_A = HaH2O(Ta) 
 
HStarA = (HCO2_A)*YCO2#+(HH2O_A)*YH2O#+(HN2_A)*YN2# 
 
Ha = HDepA+HStarA 
 
Ha_Ta = Ha/MWMix;  
 
"Determine Ambient Enthalpy at Ts" 
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Zas = RootFinder(AConstantAS, BConstantAS) 
 
HDepAS = (GasConstant#*Ts*(Zas-1)+(Ts*(dadTas)-
a_amb)/(2*sqrt(2)*b_amb)*ln((Zas+(1+sqrt(2))*BConstantAS)/(Zas+(1-
sqrt(2))*BConstantAS)))  
 
HCO2_AS = HCO2(Ts) 
HN2_AS = HN2(Ts) 
HH2O_AS = HH2O(Ts) 
 
HStarAS = HCO2_AS*YCO2#+HH2O_AS*YH2O#+HN2_AS*YN2# 
 
HaS = HDepAS+HStarAS 
 
Ha_Ts = HaS/MWMix;  
 
Numerator = Ha_Ta-Ha_Ts 
 
BRHS = Numerator / Denominator 
 
BLHS = (Ps*MWFuel#*Zas)/(Zvfs*(Pa-Ps)*MWMix) 
 
"Equate evaporation coefficient to determine saturation temperature" 
BRHS = BLHS 
 
"Calculate TanTheta/2 Using Siebers 1999-01-0528 Correlation" 
"Assume constant 0.2640 per literature" 
TanTheta2 = 0.2640*((RhoA/RhoF)^0.19-0.0043*sqrt(RhoF/RhoA)); 
"Tan(Theta/2)" 
Theta2 = arctan(TanTheta2); "Degrees" 
 
"Evaluate LL" 
LL = 
bLL#/aLL#*sqrt(RhoF/RhoA)*(sqrt(Ca#)*d#)/(TanTheta2)*sqrt((2/BLHS+1)^2-
1) 
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Table 12.11 

Variable guesses, units, and lower and upper limits for the LL model evaluation, 

using tabulated thermodynamic properties.  
Variable Guess Lower Limit Upper Limit Units 

a 1 0 Infinity m
6
*kPa/(kmol

2
) 

AConstantA 1 0 1  

AConstantAS 0.09 0 10  

AConstantF 0.00016 1E-6 1  

AConstantFS 0.3 0 10  

alphaA 1 0 1  

alphaAS 0.5 0 10  

alphaF 1 0 10  

alphaFS 1.8 0 10  

a_amb 1 0 Infinity m
6
*kPa/(kmol

2
) 

B 1 0 1 m
3
/kmol 

BConstantA 1 0 Infinity  

BConstantAS 0.08 0 Infinity  

BConstantF 0.0000067 0 AConstantF  

BConstantFS 0.04 0 AConstantFS  

BLHS 0.7 0 Infinity  

BRHS 0.7 0 Infinity  

b_amb 1 0 Infinity m
3
/kmol 

dadTa 1 -Infinity Infinity m
6
*kPa/(kmol

2
-K) 

dadTAs 1 -Infinity Infinity m
6
*kPa/(kmol

2
-K) 

dadTf 1 -Infinity Infinity m
6
*kPa/(kmol

2
-K) 

dadTfs 1 -Infinity Infinity m
6
*kPa/(kmol

2
-K) 

Denominator 1 -Infinity Infinity kJ/kg 

EnthalpyFuelTf 1 -Infinity Infinity kJ/kmol 

EnthalpyFuelTs 1 -Infinity Infinity kJ/kmol 

EnthalpyVapF 1 -Infinity Infinity kJ/kmol 

EnthalpyVapFake 1 -Infinity Infinity kJ/kmol 

fgfps 0.06 0 Infinity kPa 

Fgfs 440 0 Infinity kPa 

flfps 0.06 0 Infinity kPa 

flfs 440 0 Infinity kPa 

Ha 28964 -Infinity Infinity kJ/kmol 

HaS 1 -Infinity Infinity kJ/kmol 

Ha_Ta 1019 -Infinity Infinity kJ/kg 

Ha_Ts 1 -Infinity Infinity kJ/kg 

HCO2_A 43940 -Infinity Infinity kJ/kmol 

HCO2_AS 1 -Infinity Infinity kJ/kmol 

HDepA 9.93 -Infinity Infinity kJ/kmol 

HDepAS 1 -Infinity Infinity kJ/kmol 

HDepFS 1 -Infinity Infinity kJ/kmol 

HDepSVF 1 -Infinity Infinity kJ/kmol 

Hf_Tf 1 -Infinity Infinity kJ/kg 

Hf_Ts 1 -Infinity Infinity kJ/kg 

HH2O_A 34109 -Infinity Infinity kJ/kmol 

HH2O_AS 1 -Infinity Infinity kJ/kmol 

HN2_A 27741 -Infinity Infinity kJ/kmol 

HN2_AS 1 -Infinity Infinity kJ/kmol 

HStarA 28954 -Infinity Infinity kJ/kmol 
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Table 12.11, Continued 
HStarAS 1 -Infinity Infinity kJ/kmol 

HStarF 26302 -Infinity Infinity kJ/kmol 

HStarFS 1 -Infinity Infinity kJ/kmol 

Kappa 1 -Infinity Infinity  

Kappa_amb 1 -Infinity Infinity  

LL 1 -Infinity Infinity mm 

MWMix 1 -Infinity Infinity kg/kmol 

Numerator 1 -Infinity Infinity kJ/kg 

Pa 1 -Infinity Infinity kPa 

Pc 1 -Infinity Infinity kPa 

PcMix 1 -Infinity Infinity kPa 

PDelta 1 -Infinity Infinity kPa 

Pfs 0.06 1E-2 10 kPa 

Ps 600 2E2 Pc kPa 

RhoA 1 -Infinity Infinity kg/m
3
 

RhoF 1 -Infinity Infinity kg/m
3
 

Ta 1 -Infinity Infinity K 

TanTheta2 1 -Infinity Infinity  

Tc 1 -Infinity Infinity K 

TcMix 1 0 Infinity K 

Tf 1 0 Infinity K 

Tfr 1 -Infinity Infinity  

Theta2 1 -Infinity Infinity Degrees 

Tra 1 0 Infinity  

Tras 1 0 Infinity  

Trf 1 0 Infinity  

TrFake 1 0 Infinity  

Trs 0.9 0 Infinity  

Ts 600 Tf Tc K 

Wmix 1 0 Infinity  

Za 1 BConstantA 2  

Zas 1 BConstantAS 2  

Zgfps 1 BConstantF 1  

Zgfs 0.7 BConstantFS 1  

Zlfps 0.000007 BConstantF Zgfps  

Zlfs 0.06 BConstantFS Zgfs  

ZraFuel 1 -Infinity Infinity  

Zvf 1 BConstantF 2  

Zvfs 0.7 BConstantFS 2  

 

12.7.1.4. Single-Component Fuel Properties 
General fuel properties of molecular weight and boiling point for various single-

component fuels are provided in Table 12.12. 
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Table 12.12 

General fuel properties (Reid et al. 1987). *Data from Poling et al. 2001. Diesel fuel 

properties from AFDC 2010a. 
Fuel Formula Molecular Weight (kg/kmol) Boiling Point (K) 

Cetane C16H34 226.448 560 

n-Heptane C7H16 100.205 372 

n-Heptadecane C17H36 240.475 575 

n-Decane C10H22 142.286 447 

1-Methylnapthalene C11H10 142.201 518 

Iso-octane C8H18 114.232 372 

Methylcyclohexane C7H14 98.189 374 

Toulene C7H8 92.141 384 

n-Dodecane C12H26 170.34 490 

n-Octadecane C18H38 254.504 590 

n-Tetradecane C14H30 198.394 527 

Heptamethylnonane* C16H34 226.446 520 

Diesel C8 to C25 ~200 453-613 K 

 

12.7.1.5. Fuel Properties - Equation of State Evaluation 
Fuel properties required for the equation of state evaluation are critical 

temperature and pressure, molecular weight, acentric factor (omega), and the Rackett 

parameter. Properties are readily available in Reid et al. (1987) and are reproduced here 

for fuels typically used in representing diesels, in Table 12.13.  

Table 12.13 

Fuel properties for Equation of State Modeling (Reid et al. 1987). n/a signifies data 

not available / tabulated. *Data from Poling et al. 2001. 
^
Data from Schihl et al. 

2006.  

Fuel Formula 

Molecular 

Weight 

(kg/kmol) 

Tc (K) Pc (Bar) Omega Zra 

Cetane C16H34 226.448 722.0 14.1 0.742 0.2388 

n-Heptane C7H16 100.205 540.3 27.4 0.349 0.2604 

n-Heptadecane C17H36 240.475 722.0 13.0 0.770 0.2343 

n-Decane C10H22 142.286 617.7 21.2 0.489 0.2507 

1-Methylnapthalene C11H10 142.201 772.0 36.0 0.310 n/a 

Iso-octane C8H18 114.232 544.0 25.7 0.266 0.2684 

Methylcyclohexane C7H14 98.189 572.2 34.7 0.268 0.2704 

Toulene C7H8 92.141 591.8 41.0 0.263 0.2644 

n-Dodecane C12H26 170.34 658.2 18.2 0.575 0.2466 

n-Octadecane C18H38 254.504 748.0 12.0 0.790 0.2275 

n-Tetradecane C14H30 198.394 693.0 14.4 0.581 0.238
^ 

Heptamethylnonane* C16H34 226.446 693.0 15.7 0.548 n/a 

12.7.1.6. Ideal Gas Ambient Charge Gas Specific Heat 

Constants 
Constant pressure specific heat capacity is used to calculate the enthalpy of the 

ambient charge gas as an ideal gas, using equation (109).  
Cp∗ (T) = R ∙ (a1 + a2T + a3T2 + a4T3 + a5T4) (109) 
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Constants for the ai values for the three species comprising the charge-gas mixture are 

provided in Table 12.14 

. For cases where the ambient temperature is greater than the mid-point of the 

temperature validity range (1000 K), the integral is evaluated in two phases, first from the 

reference temperature to 1000 K using the ai constants for the lower temperature range, 

and second from 1000 K to the ambient temperature, using the ai constants for the upper 

temperature range.  

Table 12.14 

Ideal gas constant pressure specific heat capacity polynomial constants (McBride et 

al. 1993, Smith 1999). 

 

Valid 

Temperature 

Range (K) 

a1 (-) a2 (1/k) a3 (1/K
2
) a4 (1/K

3
) a5 (1/K

4
) 

CO2 
200 - 1000 3.85746E0 4.41437E-3 -2.21481E-6 5.23490E-10 -4.7208E-14 

1000 - 3500 2.35677E0 8.98459E-3 -7.12356E-6 2.45919E-9 -1.43699E-13 

N2 

300 -1000 0.0292E2 0.14879E-2 -0.05684E-5 0.10097E-9 -0.06753E-13 

1000-5000 0.03298E2 0.14082E-2 -0.03963E-4 0.05641E-7 -0.02444E-10 

H2O 
200 - 1000 3.03399E0 2.17691E-3 -1.64072E-7 -9.7041E-11 1.68200E-14 

1000 - 3500 4.19864E0 -2.03643E-3 6.52040E-6 -5.48797E-9 1.77197E-12 

O2 
200 - 1000 3.28253E0 1.48308E-3 -7.57966E-7 2.09470E-10 -2.16717E-14 

1000 – 3500 3.78245E0 -2.99673E-3 9.84730E-6 -9.68129E-9 3.24372E-12 

12.7.1.7. Ideal Gas Fuel Specific Heat Constants 
Constant pressure specific heat capacity is used to calculate the enthalpy of the fuel as 

an ideal gas, using equation (110).  

 Cp,fuel∗ (T) = ACpf + BCpf ∙ T + CCpf ∙ T2 + DCpf ∙ T3 (110) 

Constants of ACpf, BCpf, CCpf, and DCpf are tabulated in Reid et al. (1987), with values 

listed in Table 12.15, for several hydrocarbon fuels of interest.  

Table 12.15 

Ideal gas constant pressure specific heat capacity polynomial constants for fuels 

(Reid et al. 1987). *Data from LLNL heptamethylnonae mechanism. 

Fuel 
ACpf (kJ/kmol-

K) 

BCpf (kJ/kmol-

K
2
) 

CCpf (kJ/kmol-

K
3
) 

DCpf (kJ/kmol-

K
4
) 

Cetane -1.302E1 1.529E0 -8.537E-4 1.85E-7 

n-Heptane -5.146E0 6.762E-1 -3.651E-4 7.658E-8 

n-Heptadecane -1.397E1 1.624E0 -9.081E-4 1.972E-7 

n-Decane -7.037E1 1.232E0 -8.646E-4 2.455E-7 

1-Methylnapthalene -6.482E1 9.387E-1 -6.942E-4 2.016E-7 

Iso-octane -7.461E0 -7.779E-1 -4.287E-4 9.173E-8 

Methylcyclohexane -6.192E1 7.842E-1 -4.438E-4 9.366E-8 

Toulene -2.435E1 5.125E-1 -2.765E-4 4.911E-8 

n-Dodecane -9.28E0 1.149E0 -6.347E-4 1.359E-7 

n-Octadecane -1.447E1 1.717E0 -9.592E-4 2.078-7 

n-Tetradecane -1.098E1 1.338E0 -7.423E-4 1.598E-7 

Heptamethylnonane 5.1559E1 7.3606E-2 -2.4989E-5 3.8609E-9 
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12.7.1.8. Multi-Component Surrogate Fuel Liquid 

Length Methodology 
To determine the liquid length using the equation of state approach for a multi-

component surrogate, the Mean Evaporation Coefficient methodology is used. This 

requires applying the generic equation of state program, defined in section 0 to determine 

the evaporation coefficient for each of the single component fuels. The results are then 

combined for all of the fuel components to enable determination of the multi-component 

fuel surrogate, using the program provided below. Required inputs are ambient pressure 

and temperature conditions, fuel component properties including critical temperature and 

pressure, acentric factor, molecular weight, and Rackett parameter, along with each 

evaporation coefficient and mole fraction of the individual fuel species defining 

properties of the multi-component surrogate.  

 

MultiComponentLL_MECMethod.EES 

 
"MEC Method" 
“Determine Liquid Length of Multi-Component Fuel” 
 
"Results from single component runs of Evaporation Coefficient" 
 
$Constant B1# = 1.238 
$Constant B2# = 1.14 
 
"Define Constants" 
$Constant Tf# = 363 (K) 
$Constant aLL# = 0.66 
$Constant bLL# = 0.41 
$Constant Ca# = 0.8 
$Constant d# = 0.145 (mm) 
$Constant GasConstant# = 8.314 (kJ/kmol-K) 
 
"Define Ambient Conditions" 
$Constant Ta# = 1430 (K) 
$Constant Pa# = 13260 (kPa) 
 
$Constant MWCO2# = 44 (kg/kmol) 
$Constant MWN2# = 28 (kg/kmol) 
$Constant MWH2O# = 18 (kg/kmol) 
 
$Constant YCO2# = 0.0632 
$Constant YN2# = 0.8852 
$Constant YH2O# = 0.0475 
 
MWMix = YCO2#*MWCO2#+YH2O#*MWH2O#+YN2#*MWN2# 
 
RhoA = MWMix*Pa#/(GasConstant#*Ta#) 
 
"Fuel 1 – n-decane" 
 
$Constant Ra1# = 0.2507 
$Constant MW1# = 142.286 (kg/kmol) 
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$Constant Pc1# = 2120 (kPa) 
$Constant Tc1# = 617.7 (K) 
$Constant w1# = 0.489  
 
"Fuel 2 - methylnaphthalene" 
 
$Constant w2# = 0.310 
$Constant MW2# = 142.201 (kg/kmol) 
$Constant Pc2# = 3600 (kPa) 
$Constant Tc2# = 772 (K) 
 
Ra2 = 0.29056 - 0.08775*w2# 
 
"Mixture Composition - Volume (Mole Fraction)" 
 
$Constant Y1# = 0.70 
$Constant Y2# = 0.30 
 
"Mixture Critical Temperature - Kays Rule" 
 
TcMix = Y1#*Tc1# + Y2#*Tc2# 
 
"Convert mixture composition to mass fraction Basis" 
 
MWMixF = Y1#*MW1#+Y2#*MW2# 
 
X1 = Y1#*MW1#/MWMixF 
X2 = Y2#*MW2#/MWMixF 
 
"Mixture Fuel Density" 
 
ZraMix = X1*Ra1#+X2*Ra2 
 
Tfr = Tf#/TcMix 
 
Vmix = GasConstant#*(X1*Tc1#/Pc1#+X2*Tc2#/Pc2#)*ZraMix^(1+(1-
Tfr)^(2/7)) 
 
RhoFMix = 1/(VMix/MWMixF) 
 
"Evaluate Spray Angle for LL Determination" 
TanTheta2 = 0.2640*((RhoA/RhoFMix)^0.19-0.0043*sqrt(RhoFMix/RhoA)); 
"Tan(Theta/2)" 
 
"Evaluate Mean Evaporation Coefficient" 
 
BMix = X1*B1# + X2*B2# 
 
"Evaluate LL" 
LL = 
bLL#/aLL#*sqrt(RhoFMix/RhoA)*(sqrt(Ca#)*d#)/(TanTheta2)*sqrt((2/BMix+1)
^2-1) 
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12.8. Supplements to Chapter 8 

12.8.1. Frequency Analysis Matlab Programs 
Two matlab files were used in the frequency analysis of the liquid length fluctuations 

and fuel pressure fluctuations, as provided below.  

12.8.1.1. Frequency Analysis of Liquid Length 
Fluctuations 

Frequency analysis of the liquid length fluctuations is characterized using the 

following .m File. This program loads in the liquid length data saved as a result of image 

processing, and applies frequency analysis including an FFT, autopower, and PSD to the 

quasi-steady region of interest, 1 to 2 ms ASOI. To determine the frequency peaks it calls 

an existing .m file, Extrema.m, provided in the Matlab Central File Exhchange (Aguilera 

2006).  

 

FrequencyAnalysis_VaporizingSprays.m 

 
%% Frequency analysis of Liquid Length Fluctuations (0% O2) 
 
%% Setup Workspace 
clear all 
close all 
clc 
 
% Define time vector in ms during steady state, based on camera framing 
rate.  
Time = (-0.1+74*1/67500*1000:1/67500*1000:1/67500*1000*141-0.1); 
 
% Input desired test for processing. Open liquid length results (as 
determined from image processing) 
TimeProcess = input('Enter Test Time in HHMM Format:','s'); 
filename = strcat(TimeProcess, 'LLData.mat');  
load(filename) 
 
% Plot Combined Liquid Length Results 
figure;  
plot(Time, PenetrationSpray(1,:), 'ro-', 'MarkerFaceColor', 'r') 
hold on 
plot(Time, PenetrationSpray(2,:), 'go-', 'MarkerFaceColor', 'g') 
hold on 
plot(Time, PenetrationSpray(3,:), 'bo-', 'MarkerFaceColor', 'b') 
hold on 
plot(Time, PenetrationSpray(4,:), 'mo-', 'MarkerFaceColor', 'm') 
hold on 
plot(Time, PenetrationSpray(5,:), 'co-', 'MarkerFaceColor', 'c') 
hold on 
plot(Time, PenetrationSpray(6,:), 'yo-', 'MarkerFaceColor', 'y') 
hold on  
plot(Time, PenetrationSpray(7,:), 'o-', 'Color', (0.5 0 0.5), 
'MarkerFaceColor', (0.5  0 0.5)) 
hold on  



 

468 

plot(Time, PenetrationSpray(8,:), 'o-', 'Color', (0 0.5 0.5), 
'MarkerFaceColor', (0  0.5 0.5)) 
hold on 
h = plot(Time, mean(PenetrationSpray(:,:)), 'k-', 'LineWidth', 2); 
set(gca, 'FontName', 'Calibri', 'FontSize', 14, 'FontWeight', 'Bold'); 
grid on 
xlabel('Time ASOI (ms)', 'FontName', 'Calibri', 'FontSize', 14, 
'FontWeight', 'Bold') 
ylabel('Quasi-Steady Liquid Penetration (mm)', 'FontName', 'Calibri', 
'FontSize', 14, 'FontWeight', 'Bold') 
grid on 
xlim((1 2)) 
ylim((0 15)) 
hleg = legend('Plume 1', 'Plume 2', 'Plume 3', 'Plume 4', 'Plume 5', 
'Plume 6', 'Plume 7', 'Plume 8', 'Mean', 'Location',  
 
'South');  
set(hleg, 'FontName', 'Calibri', 'FontSize', 12, 'FontWeight', 'Bold') 
%% ANALYSIS for 8 PLUMES 
 
PeakFrequency = zeros(8, 5);  
PeakTimes = zeros(8, 5);  
PeakAmps = zeros(8, 5);  
 
% Process each plume indepdendently.  
 
PlumeNum = 1;  
 
for PlumeNum = 1:8 
     
PenPlume = PenetrationSpray(PlumeNum,:);  
 
%% Apply offset to plume (mean SS LL) to remove dc frequency 
MeanSSLL = mean(PenPlume);  
PenPlumeOffset = PenPlume - MeanSSLL;  
 
%% Plot Pen of Plume Relative to Mean SS LL, And Offset plume 
figure;  
plot(Time, PenPlume, 'b-', 'LineWidth', 2) 
hold on 
plot(Time, zeros(size(Time))+MeanSSLL, 'g-', 'LineWidth', 2) 
hold on 
plot(Time, PenPlumeOffset, 'r-', 'LineWidth', 2) 
legend('Plume Penetration Data', 'Mean SS Liquid Length', 'Plume 
Penetration Offest by Mean SS LL', 'Location', 'South') 
hold off 
ylabel('Liquid Penetration (mm)') 
xlabel('Time ASOI (ms)') 
title(strcat('Plume  ', num2str(PlumeNum))) 
xlim((0.9 2.1)) 
grid on 
 
%% Define Sampling Parameters 
 
Fsample = 67500; % Framing Rate 
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N = size((PenPlume),2); %Blocksize - Take of  Penetration 
 
F_Nyquist = Fsample/2;  
 
delta_T = 1/Fsample; %Seconds 
 
T_meas = N*delta_T; %Seconds 
 
delta_f = 1/T_meas; %Hz 
 
frequency = (0:delta_f:delta_f*N/2);  
 
%% Apply WINDOW - Tukey Window 
 
% r <= 0 gives rectangular window -- no window 
% r>= 1 gives Hann Window 
% Default r = 0.5 
% L = number of points for window.  
 
% Setup window function Using r = 0.5  
L = size(PenPlumeOffset,2);  
r = 0.5;  
 
w = tukeywin(L,r)';  
 
% Apply window to data 
TukeyData = PenPlumeOffset.*w; 
 
% Uncomment to plot results of windowed data, compared to original 
data.  
% figure;  
% grid on 
% xlabel('Time (ms)') 
% ylabel('Shifted and Windowed Penetration (mm)') 
% plot(Time,TukeyData, 'b-', 'LineWidth', 2) 
% hold on 
% plot(Time, PenPlumeOffset, 'r-', 'LineWidth', 2) 
% legend('Windowed Data', 'Data') 
% title('Tukey Window, R = 0.5') 
% hold off 
 
%% Frequency Analysis -> FFT, PSD, Autopower 
 
fft_result_tukey = transpose(fft(TukeyData))./(sum(w.^2)/N); % Apply 
ECF 
fft_final_tukey = (fft_result_tukey(1) 2*fft_result_tukey(2:N/2+1)');  
 
AutoPower_tukey = fft_final_tukey.*conj(fft_final_tukey);  
 
PSD_tukey = AutoPower_tukey / delta_f;  
 
% Uncomment to plot PSD results of frequency analysis.  
% figure;  
% plot(frequency, PSD_tukey, 'b-', 'LineWidth', 2) 
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% title('PSD of Offset Penetration Data with Tukey Window') 
% grid on 
% xlabel('Frequency (Hz)') 
% ylabel('Power -- Magnitude^2 per unit Frequency (Hz)') 
 
%% Find Extrema 
 
(ymax,imax,ymin,imin) = extrema(PSD_tukey);  
 
% Look at first 5 maximum spikes in PSD - their frequency is of 
interest.  
 
MaxFreqs = frequency(imax(1:5)); %Hz 
MaxTimes = 1./MaxFreqs*1000; %us 
MaxAmps = ymax(1:5); 
 
%% Save Data 
PeakFrequency(PlumeNum, :) = MaxFreqs;  
PeakTimes(PlumeNum, :) = MaxTimes;  
PeakAmps(PlumeNum, :) = MaxAmps;  
PSDResults(PlumeNum, :) = PSD_tukey;  
FrequencyResults(PlumeNum, :) = frequency;  
 
%% Set up workspace for next iteration 
clear PenPlume PenPlumeOffset 
clear FSample N L r w delta_T delta_F F_Nyquist T_meas frequency 
clear TukeyData 
clear fft_result_tukey fft_final_tukey AutoPower_tukey 
AutoPowerScaling_tukey 
clear PSD_tukey 
clear ymax imax ymin imin MaxFreqs MaxTimes MaxAmps 
clear MeanSSLL 
end 
 
% Plot combined PSD results for all 8 plumes 
figure;  
plot(FrequencyResults(1,:)./1000, PSDResults(1,:), 'r-') 
hold on 
plot(FrequencyResults(2,:)./1000, PSDResults(2,:), 'g-') 
hold on 
plot(FrequencyResults(3,:)./1000, PSDResults(3,:), 'b-') 
hold on 
plot(FrequencyResults(4,:)./1000, PSDResults(4,:), 'm-') 
hold on 
plot(FrequencyResults(5,:)./1000, PSDResults(5,:), 'c-') 
hold on 
plot(FrequencyResults(6,:)./1000, PSDResults(6,:), '-', 'Color', (0.5 
0.5 0)) 
hold on  
plot(FrequencyResults(7,:)./1000, PSDResults(7,:), '-', 'Color', (0.5 0 
0.5)) 
hold on  
plot(FrequencyResults(8,:)./1000, PSDResults(8,:), '-', 'Color', (0 0.5 
0.5)) 
set(gca, 'FontName', 'Calibri', 'FontSize', 14, 'FontWeight', 'Bold'); 
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grid on 
xlabel('Frequency (kHz)', 'FontName', 'Calibri', 'FontSize', 14, 
'FontWeight', 'Bold') 
ylabel('PSD - Power Magnitude^2 per unit Frequency (Hz)', 'FontName', 
'Calibri', 'FontSize', 14, 'FontWeight', 'Bold') 
grid on 
hleg = legend('Plume 1', 'Plume 2', 'Plume 3', 'Plume 4', 'Plume 5', 
'Plume 6', 'Plume 7', 'Plume 8', 'Location',  
 
'NorthEast');  
set(hleg, 'FontName', 'Calibri', 'FontSize', 12, 'FontWeight', 'Bold') 
 

12.8.1.2. Frequency Analysis of Fuel Pressure 

Fluctuations 
The frequency of the fuel pressure fluctuations is characterized by applying an 

FFT to the fuel pressure data during the region of interest, surrounding the injection 

event, focused on the fluctuations in the data as a result of injection. This is accomplished 

using the following m-file, FFT_FuelPressure.m.  

 

FFT_FuelPressue.m 

 
%% Run this program to characterize fuel pressure fluctuations - 
frequency 
 
% First run data processing (BDF Conversion file) through the 0% O2 
data processing, to provide 
% fuel pressure data, as well as information on timings.  
 
% Define start and end of injection (Sample Numbers) 
 
InjectionStart = 2.140*10^5; 
EndInjection = 2.200*10^5; 
 
% Plot Fuel Pressure ROI - Injection 
figure;  
plot(t(InjectionStart:EndInjection), 
FuelPressureBar(InjectionStart:EndInjection)) 
xlabel('Time (ms)') 
ylabel('Fuel Pressure (bar)') 
 
% Define fuel pressure ROI 
FuelPressureInterest = FuelPressureBar(InjectionStart:EndInjection); 
 
% Define sampling parameters, based on 100 kHz sampling rate.  
Fsample = 100000; 
 
N = size(FuelPressureInterest,1); %Blocksize 
 
F_Nyquist = Fsample/2;  
 
delta_T = 1/Fsample; %Seconds 
 
T_meas = N*delta_T; %Seconds 
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delta_f = 1/T_meas; %Hz 
time = (0:N-1)*delta_T; %Seconds 
frequency = (0:delta_f:delta_f*N/2);  
 
%% Take an FFT of the fuel pressure ROI 
fft_result = transpose(fft(FuelPressureInterest));  
fft_final = (fft_result(1) 2*fft_result(2:N/2+1))./N;  
 
% Plot FFT Results 
figure;  
plot(frequency, abs(fft_final));  
xlabel('Frequency (Hz)') 
ylabel('FFT Amplitude');  
% Determine the spikes in frequency based on the above figure 

12.8.2. Magnitude of Liquid Length 

Fluctuations 
The magnitude of liquid length fluctuations were determined, both the maximum 

and average extent relative to the mean value, as detailed below. The average extent of 

the fluctuations was determined to mitigate the influence of outlier points on 

understanding these fluctuations. Key observations from the liquid length fluctuations 

were that the positive fluctuations typically exceeded that of the negative fluctuations, 

with the overall magnitude of the fluctuations, both average and maximum extent, being 

very similar over all test conditions investigated. These results are discussed in detail in 

Chapter 8.3, with the figures here providing supporting information.  

12.8.2.1. Maximum Extent of Fluctuations 
The magnitude of the liquid length fluctuations are determined over the quasi-

steady time period by defining the maximum and minimum values of the liquid length 

during this interval, relative to the mean value. This section provides results for mean 

liquid length for each plume of the multi-hole injector along with the average value in the 

bar charts, with error bars representing the fluctuation magnitude. The positive error bar 

magnitude is the difference between the maximum liquid length to the mean value, with 

the negative error bar magnitude being the difference between the minimum liquid length 

to the mean value, over the 1 to 2 ms ASOI period.  

 
Figure 12.104: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1034 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature. 
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Figure 12.105: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1379 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature. 

 
Figure 12.106: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature, repeat test 1. 

 
Figure 12.107: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1034 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature, repeat test 2. 

 
Figure 12.108: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1034 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature, repeat test 3. 
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Figure 12.109: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 800 K charge gas 

temperature. 

 
Figure 12.110: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 950 K charge gas 

temperature. 

 
Figure 12.111: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature, repeat test 2. 

 
Figure 12.112: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature, repeat test 3. 
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Figure 12.113: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 1200 K charge gas 

temperature. 

 
Figure 12.114: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 1300 K charge gas 

temperature. 

 As the determined liquid length results were not representative of the actual spray 

behavior based on interference in image processing, no results are provided for plume 1. 

 
Figure 12.115: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 17.4 kg/m
3
 density, 0% 

oxygen, 2000 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature. 
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Figure 12.116: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1034 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature. 

 
Figure 12.117: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1379 bar injection pressure, 363 K fuel temperature, 950 K charge gas 

temperature. 

 
Figure 12.118: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1379 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature. 

 
Figure 12.119: Mean quasi-steady liquid length with error bars showing the 

maximum magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% 

oxygen, 1379 bar injection pressure, 363 K fuel temperature, 1200 K charge gas 

temperature. 
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No results are provided for plume 1 due to errors in image processing based on 

interference from the ceramic surrounding the injector, therefore, the determined liquid 

length results are not representative of the actual spray behavior.  

12.8.2.2. Average Extent of Fluctuations 
The average magnitude of the liquid length fluctuations were determined over the 

quasi-steady value by finding the values of liquid length exceeding the mean value 

(positive value), and those falling below the mean value (negative value). The average of 

these positive and negative liquid lengths, relative to the mean, was determined. The 

average value defined the fluctuations, relative to the mean value. This section provides 

results for mean liquid length for each plume of the multi-hole injector, along with the 

average value in the bar charts with error bars representing the fluctuation average 

magnitude. The positive error bar magnitude is the difference between the average liquid 

lengths exceeding the mean value, with the negative error bar magnitude being the 

difference between the average liquid lengths being less than the mean value, over the 1 

to 2 ms ASOI period.  

 
Figure 12.120: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1034 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature. 

 
Figure 12.121: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1379 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature. 
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Figure 12.122: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature, repeat test 1. 

 

 
Figure 12.123: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1034 bar injection pressure, 355 K fuel temperature, 1100 K charge gas 

temperature, repeat test 2. 

 
Figure 12.124: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1034 bar injection pressure, 355 Kfuel temperature, 1100 K charge gas temperature, 

repeat test 3. 

 
Figure 12.125: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 800 K charge gas temperature. 
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Figure 12.126: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 950 K charge gas temperature. 

 
Figure 12.127: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature, repeat test 2. 

 
Figure 12.128: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature, repeat test 3. 

 
Figure 12.129: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 1200 K charge gas 

temperature. 
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Figure 12.130: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 1300 K charge gas 

temperature. 

No results were provided for plume 1 based on interference with the spray signal 

from the ceramic surrounding the injector, thereby providing errors in image processing 

and therefore the determined liquid length results are not representative of the actual 

spray behavior.  

 
Figure 12.131: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 17.4 kg/m
3
 density, 0% oxygen, 

2000 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature. 

 
Figure 12.132: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1034 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature. 
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Figure 12.133: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1379 bar injection pressure, 363 K fuel temperature, 950 K charge gas temperature. 

 
Figure 12.134: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1379 bar injection pressure, 363 K fuel temperature, 1100 K charge gas 

temperature. 

 
Figure 12.135: Mean quasi-steady liquid length with error bars showing the average 

magnitude of the fluctuations in liquid length, for 34.8 kg/m
3
 density, 0% oxygen, 

1379 bar injection pressure, 363 K fuel temperature, 1200 K charge gas 

temperature. 

No results were provided for plume 1 due to errors in image processing based on 

interference from the ceramic surrounding the injector, therefore, the determined liquid 

length results were not representative of the actual spray behavior.  

12.8.3. Penetration and PSD Results 
Plots for liquid penetration as a function of time ASOI, during the quasi-steady 

liquid length period (1 to 2 ms ASOI), are included in this section for each of the 

vaporizing spray tests, along with the corresponding PSD results from the frequency 

analysis. These plots include data for each of the eight plumes from the multi-hole 

injector for comparison.  
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Figure 12.136: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

1034 Bar, 355 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  
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Figure 12.137: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

1379 Bar, 355 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  
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Figure 12.138: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 355 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, Repeat 

test 1. Bottom figure provides information on the dominant mean frequencies for 

the mean liquid length fluctuations.  
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Figure 12.139: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 355 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, Repeat 

test 2. Bottom figure provides information on the dominant mean frequencies for 

the mean liquid length fluctuations.  
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Figure 12.140: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 355 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, Repeat 

test 3. Bottom figure provides information on the dominant mean frequencies for 

the mean liquid length fluctuations.  
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Figure 12.141: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for the first spray plume. Test conditions of 

2000 Bar, 355K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, high 

frame rate (216,000 fps frame rate).  

 

   

 
Figure 12.142: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 800 K 0% O2 environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  



 

488 

  

 
Figure 12.143: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 950 K 0% O2 environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  
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Figure 12.144: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, Repeat 

test 1. Bottom figure provides information on the dominant mean frequencies for 

the mean liquid length fluctuations.  
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Figure 12.145: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, Repeat 

test 2. Bottom figure provides information on the dominant mean frequencies for 

the mean liquid length fluctuations.  
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Figure 12.146: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment, Repeat 

test 3. Bottom figure provides information on the dominant mean frequencies for 

the mean liquid length fluctuations.  
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Figure 12.147: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1200 K 0% O2 environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  
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Figure 12.148: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1300 K 0% O2 environment. Bottom 

figure provides information on the dominant mean frequencies for the mean liquid 

length fluctuations.  

The reduced liquid length for this high temperature condition made accurate 

detection of the spray region difficult and more sensitive to reductions in signal to noise 

ratio. This error was evident in plume 1 results where the liquid penetration was mostly 

constant, at a penetration slightly less than 4 mm, signifying that the liquid spray region 

was being misidentified as the ceramic insulator surrounding the injector tip (seen in 

images in Chapter 6) based on the reduced signal to noise ratio in this area, amplified by 

the reducing liquid length under these higher temperature conditions.  



 

494 

  

 
Figure 12.149: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

2000 Bar, 363 K fuel temperature, 17.4 kg/m
3
, 1100 K 0% O2 environment.  
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Figure 12.150: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

1034 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment.  
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Figure 12.151: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

1379 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 950 K 0% O2 environment.  
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Figure 12.152: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

1379 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1100 K 0% O2 environment.  
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Figure 12.153: Quasi-steady penetration versus time ASOI (Left) for all eight spray 

plumes, PSD versus frequency (Right) for all eight sprays plumes. Test conditions of 

1379 Bar, 363 K fuel temperature, 34.8 kg/m
3
, 1200 K 0% O2 environment.  

There are errors in the liquid penetration of plume 1, similar to the 1300 K case at 

2000 bar injection pressure, attributed to reduced signal to noise ratio for the shorter 

penetrations, and the subsequent error in image processing with the ceramic shield for the 

injector being mistaken as the spray region. This data and the corresponding frequency 

analysis for this spray plume were not considered in the results.  

The dominant frequencies as determined from the PSD frequency analysis are 

presented in the following set of tables for each of the 8 spray plumes from the multi-hole 

injector, over all test conditions. There exist some repeats in frequency, however, the 

presence of individual dominant frequencies is not evidenced over this range of test 

conditions.  
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Table 12.16 

Dominant frequency components resulting from PSD analysis, Plume 1.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 993 15882 24816 10919 6949 

34.8 1379 355 1100 2978 5956 993 25809 12904 

34.8 2000 355 1100 (R1) 23824 1985 27794 19853 10919 

34.8 2000 355 1100 (R2) 26801 9926 28787 1985 31765 

34.8 2000 355 1100 (R3) 13897 26801 15882 22831 18860 

34.8 2000 363 800 28787 6949 26801 33750 10919 

34.8 2000 363 950 16875 9926 7941 5956 21838 

34.8 2000 363 1100 (R1) 31765 17868 12904 27794 29779 

34.8 2000 363 1100 (R2) 4963 17868 26801 14890 22831 

34.8 2000 363 1100 (R3) 24816 14890 5956 32757 19853 

34.8 2000 363 1200 5956 15882 28787 21838 3971 

34.8 2000 363 1300 n/a n/a n/a n/a n/a 

17.4 2000 363 1100 16875 10919 6949 25809 1985 

34.8 1034 363 1100 1985 3971 5956 24816 28787 

34.8 1379 363 950 3971 27794 1985 5956 12904 

34.8 1379 363 1100 24816 12904 27794 20846 32757 

34.8 1379 363 1200 n/a n/a n/a n/a n/a 

 

Table 12.17 

Dominant frequency components resulting from PSD analysis, Plume 2.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 15882 6949 3971 25809 12904 

34.8 1379 355 1100 4963 32757 10919 13897 8934 

34.8 2000 355 1100 (R1) 18860 22831 9926 1985 5956 

34.8 2000 355 1100 (R2) 14890 22831 6949 1985 29779 

34.8 2000 355 1100 (R3) 3971 27794 33750 22831 20846 

34.8 2000 363 800 2978 993 8934 5956 14890 

34.8 2000 363 950 33750 29779 8934 31765 22831 

34.8 2000 363 1100 (R1) 6949 9926 11912 32757 2978 

34.8 2000 363 1100 (R2) 21838 17868 7941 31765 33750 

34.8 2000 363 1100 (R3) 24816 3971 12904 15882 29779 

34.8 2000 363 1200 993 3971 17868 9926 28787 

34.8 2000 363 1300 10919 7941 30772 2978 32757 

17.4 2000 363 1100 20846 4963 9926 25809 33750 

34.8 1034 363 1100 3971 993 9926 6949 11912 

34.8 1379 363 950 13897 3971 31765 993 11912 

34.8 1379 363 1100 3971 14890 31765 28787 25809 

34.8 1379 363 1200 17868 2978 9926 30772 22831 
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Table 12.18 

Dominant frequency components resulting from PSD analysis, Plume 3.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 8934 11912 4963 993 26801 

34.8 1379 355 1100 10919 993 18860 5956 25809 

34.8 2000 355 1100 (R1) 10919 7941 4963 13897 31765 

34.8 2000 355 1100 (R2) 29779 31765 15882 1985 18860 

34.8 2000 355 1100 (R3) 993 3971 23824 7941 25809 

34.8 2000 363 800 1985 28787 5956 23824 21838 

34.8 2000 363 950 23824 9926 29779 18860 4963 

34.8 2000 363 1100 (R1) 21838 24816 17868 26801 4963 

34.8 2000 363 1100 (R2) 10919 16875 4963 13897 18860 

34.8 2000 363 1100 (R3) 3971 993 9926 16875 14890 

34.8 2000 363 1200 15882 6949 4963 25809 33750 

34.8 2000 363 1300 10919 22831 7941 17868 993 

17.4 2000 363 1100 9926 25809 15882 3971 1985 

34.8 1034 363 1100 23824 4963 14890 20846 10919 

34.8 1379 363 950 4963 20846 12904 31765 993 

34.8 1379 363 1100 9926 2978 11912 31765 15882 

34.8 1379 363 1200 33750 2978 7941 14890 5956 

 

Table 12.19 

Dominant frequency components resulting from PSD analysis, Plume 4.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 31765 17868 33750 8934 14890 

34.8 1379 355 1100 14890 7941 16875 12904 24816 

34.8 2000 355 1100 (R1) 13897 11912 24816 6949 33750 

34.8 2000 355 1100 (R2) 10919 19853 26801 14890 4963 

34.8 2000 355 1100 (R3) 1985 19853 8934 28787 32757 

34.8 2000 363 800 24816 4963 29779 14890 12904 

34.8 2000 363 950 993 33750 5956 10919 12904 

34.8 2000 363 1100 (R1) 7941 13897 11912 2978 17868 

34.8 2000 363 1100 (R2) 12904 25809 4963 8934 2978 

34.8 2000 363 1100 (R3) 33750 28787 3971 31765 24816 

34.8 2000 363 1200 8934 21838 32757 25809 4963 

34.8 2000 363 1300 32757 5956 15882 21838 24816 

17.4 2000 363 1100 8934 30772 17868 6949 12904 

34.8 1034 363 1100 4963 21838 13897 1985 30772 

34.8 1379 363 950 11912 5956 2978 20846 23824 

34.8 1379 363 1100 3971 27794 24816 14890 11912 

34.8 1379 363 1200 2978 16875 19853 31765 25809 
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Table 12.20 

Dominant frequency components resulting from PSD analysis, Plume 5.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 1985 31765 6949 12904 25809 

34.8 1379 355 1100 2978 993 6949 10919 30772 

34.8 2000 355 1100 (R1) 2978 9926 32757 27794 23824 

34.8 2000 355 1100 (R2) 2978 993 18860 24816 5956 

34.8 2000 355 1100 (R3) 31765 13897 29779 23824 993 

34.8 2000 363 800 993 6949 24816 30772 16875 

34.8 2000 363 950 14890 7941 27794 5956 23824 

34.8 2000 363 1100 (R1) 7941 4963 22831 13897 24816 

34.8 2000 363 1100 (R2) 13897 22831 32757 30772 6949 

34.8 2000 363 1100 (R3) 33750 12904 9926 3971 7941 

34.8 2000 363 1200 18860 1985 13897 4963 6949 

34.8 2000 363 1300 12904 993 25809 10919 19853 

17.4 2000 363 1100 6949 28787 33750 31765 4963 

34.8 1034 363 1100 13897 27794 993 32757 17868 

34.8 1379 363 950 6949 25809 17868 14890 21838 

34.8 1379 363 1100 4963 10919 30772 15882 13897 

34.8 1379 363 1200 11912 19853 2978 26801 4963 

 

Table 12.21 

Dominant frequency components resulting from PSD analysis, Plume 6.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 5956 16875 2978 25809 30772 

34.8 1379 355 1100 5956 8934 993 16875 13897 

34.8 2000 355 1100 (R1) 33750 16875 30772 6949 11912 

34.8 2000 355 1100 (R2) 10919 7941 2978 26801 21838 

34.8 2000 355 1100 (R3) 14890 33750 2978 24816 17868 

34.8 2000 363 800 10919 7941 27794 993 23824 

34.8 2000 363 950 8934 16875 18860 23824 2978 

34.8 2000 363 1100 (R1) 2978 30772 33750 23824 25809 

34.8 2000 363 1100 (R2) 11912 17868 14890 2978 25809 

34.8 2000 363 1100 (R3) 26801 5956 21838 13897 1985 

34.8 2000 363 1200 28787 32757 1985 20846 26801 

34.8 2000 363 1300 1985 26801 9926 3971 6949 

17.4 2000 363 1100 32757 5956 9926 993 15882 

34.8 1034 363 1100 29779 15882 17868 13897 21838 

34.8 1379 363 950 10919 23824 8934 26801 14890 

34.8 1379 363 1100 31765 26801 28787 24816 33750 

34.8 1379 363 1200 11912 21838 26801 31765 2978 
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Table 12.22 

Dominant frequency components resulting from PSD analysis, Plume 7.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 32757 993 19853 2978 17868 

34.8 1379 355 1100 5956 8934 31765 993 33750 

34.8 2000 355 1100 (R1) 22831 30772 17868 24816 2978 

34.8 2000 355 1100 (R2) 1985 4963 10919 6949 23824 

34.8 2000 355 1100 (R3) 8934 5956 17868 12904 20846 

34.8 2000 363 800 33750 25809 23824 12904 5956 

34.8 2000 363 950 7941 5956 12904 14890 32757 

34.8 2000 363 1100 (R1) 8934 16875 21838 11912 29779 

34.8 2000 363 1100 (R2) 9926 18860 993 20846 32757 

34.8 2000 363 1100 (R3) 28787 24816 21838 31765 3971 

34.8 2000 363 1200 18860 30772 3971 14890 9926 

34.8 2000 363 1300 7941 19853 23824 32757 26801 

17.4 2000 363 1100 5956 993 23824 29779 8934 

34.8 1034 363 1100 1985 7941 19853 29779 27794 

34.8 1379 363 950 993 8934 30772 11912 13897 

34.8 1379 363 1100 993 2978 13897 16875 30772 

34.8 1379 363 1200 993 2978 4963 20846 18860 

 

Table 12.23 

Dominant frequency components resulting from PSD analysis, Plume 7.  
Ambient 

Density 

(kg/m
3
) 

Fuel 

Press. 

(bar) 

Fuel 

Temperature  

(K) 

Temp. at 

Injection  

(K) 

1
st
  

Freq. 

(Hz) 

2
nd

  

Freq. 

(Hz) 

3
rd

  

Freq. 

(Hz) 

4
th

  

Freq. 

(Hz) 

5
th

  

Freq. 

(Hz) 

34.8 1034 355 1100 12904 10919 32757 5956 28787 

34.8 1379 355 1100 29779 6949 993 2978 31765 

34.8 2000 355 1100 (R1) 20846 8934 29779 17868 3971 

34.8 2000 355 1100 (R2) 993 2978 23824 10919 13897 

34.8 2000 355 1100 (R3) 14890 4963 993 17868 11912 

34.8 2000 363 800 3971 5956 7941 27794 25809 

34.8 2000 363 950 993 6949 28787 33750 12904 

34.8 2000 363 1100 (R1) 3971 28787 12904 993 16875 

34.8 2000 363 1100 (R2) 21838 6949 8934 10919 33750 

34.8 2000 363 1100 (R3) 24816 27794 10919 15882 6949 

34.8 2000 363 1200 3971 1985 7941 10919 13897 

34.8 2000 363 1300 993 20846 22831 32757 8934 

17.4 2000 363 1100 12904 5956 17868 9926 993 

34.8 1034 363 1100 993 33750 25809 5956 12904 

34.8 1379 363 950 993 25809 5956 10919 15882 

34.8 1379 363 1100 19853 28787 2978 13897 9926 

34.8 1379 363 1200 993 26801 2978 21838 28787 
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