
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

DIET: A Scalable Toolbox to Build

Network Enabled Servers on the Grid

Eddy Caron ,

Frédéric Desprez
June 2005

Research Report No 2005-23

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

DIET: A Scalable Toolbox to Build Network Enabled Servers

on the Grid

Eddy Caron , Frédéric Desprez

June 2005

Abstract

Among existing grid middleware approaches, one simple, powerful, and flexible
approach consists of using servers available in different administrative domains
through the classical client-server or Remote Procedure Call (RPC) paradigm.
Network Enabled Servers implement this model also called GridRPC. Clients
submit computation requests to a scheduler whose goal is to find a server avail-
able on the grid.
The aim of this paper is to give an overview of a middleware developed in
the GRAAL team called DIET 1. DIET (Distributed Interactive Engineering
Toolbox) is a hierarchical set of components used for the development of ap-
plications based on computational servers on the grid.

Keywords: Grid Computing, Network Enabled Servers, Client-Server Computing.

Résumé

Parmi les intergiciels de grilles existants, une approche simple, flexible et per-
formante consiste à utiliser des serveurs disponibles dans des domaines admi-
nistratifs différents à travers le paradigme classique de l’appel de procédure à
distance (RPC). Les environnements de ce type, connus sous le terme de Net-
work Enabled Servers, implémentent ce modèle appelé GridRPC. Des clients
soumettent des requêtes de calcul à un ordonnanceur dont le but consiste à
trouver un serveur disponible sur la grille.
Le but de cet article est de donner un tour d’horizon d’un intergiciel développé
dans le projet GRAAL appelé DIET 2. DIET (Distributed Interactive Engi-
neering Toolbox) est un ensemble hiérarchique de composants utilisés pour le
développement d’applications basées sur des serveurs de calcul sur la grille.

Mots-clés: Calcul sur Grille, Network Enabled Servers, calcul client-serveurs.

DIET: Scalable NES on the Grid 1

1 Introduction

Large problems coming from numerical simulation or life science can now solved through the
Internet using grid middleware [10, 22]. Several approaches co-exist to port application on grid
platforms like classical message-passing [32, 29], batch processing [1, 42], web portals [23, 25, 28],
etc.

Among existing middleware approaches, one simple, powerful, and flexible approach consists
of using servers available in different administrative domains through the classical client-server or
Remote Procedure Call (RPC) paradigm. Network Enabled Servers (NES) [30, 36, 37] implement
this model also called GridRPC [39]. Clients submit computation requests to a scheduler whose
goal is to find a server available on the grid. Scheduling is frequently applied to balance the work
among the servers and a list of available servers is sent back to the client; the client is then able
to send the data and the request to one of the suggested servers to solve their problem. Thanks
to the growth of network bandwidth and the reduction of network latency, small computation
requests can now be sent to servers available on the grid. To make effective use of today’s scalable
resource platforms, it is important to ensure scalability in the middleware layers as well.

The Distributed Interactive Engineering Toolbox (DIET) [12, 20] project is focused on the
development of scalable middleware by distributing the scheduling problem across multiple agents.
DIET consists of a set of elements that can be used together to build applications using the
GridRPC paradigm. This middleware is able to find an appropriate server according to the
information given in the client’s request (problem to be solved, size of the data involved), the
performance of the target platform (server load, available memory, communication performance)
and the local availability of data stored during previous computations. The scheduler is distributed
using several collaborating hierarchies connected either statically or dynamically (in a peer-to-peer
fashion). Data management is provided to allow persistent data to stay within the system for future
re-use. This feature avoid unnecessary communication when dependences exist between different
requests.

This paper is organized as follows. After an introduction of the GridRPC programming
paradigm used on this software platform, we present the overall architecture of DIET and its
main components. We give detail about their connection which can be either static or dynamic.
Then, in Section 4 we present the architecture of our performance evaluation and prediction sys-
tem based on the NWS. The way DIET schedules the clients’ request is discussed in Section 5.
Then we discuss the issue of data management by presenting two approaches (hierarchical and
peer-to-peer). In Section 7, we present some tools used for the deployment and monitoring of
the platform. Finally, and before a conclusion and our future work, we present the related work
around Network Enabled Servers.

2 GridRPC Programming Model

The GridRPC approach [39] is a good candidate to build Problem Solving Environments on
computational Grid. It defines an API and a model to perform remote computation on servers.
In such paradigm, a client can submit problems to an agent that chooses the best server amongst
a set of candidates, given information about the performance of the platform gathered by an
information service. The choice is made using static and dynamic information about software
and hardware resources. Requests can be then processed by sequential or parallel servers. This
paradigm is close to the RPC (Remote Procedure Call) model.

The GridRPC API is a Grid form of the classical Unix RPC approach. It has been designed by
a team of researchers within the Global Grid Forum. It defines the client API to send request to a
Network Enabled Server implementation. Request are sent through synchronous or asynchronous
calls. Asynchronous calls allow a non-blocking execution and thus it provides a level of parallelism
between servers. A function handle represents a binding between a problem name and an instance
of such function available on a given server. Of course several servers can provide the same function
(or service) and load-balancing can be done at the agent level before the binding. Then session

2 E. Caron, F. Desprez

IDs can be manipulated to get information about the status of previous non-blocking requests.
Wait functions are also provided for a client to wait for specific request to complete. This API is
instantiated by several middleware such as DIET, Ninf, NetSolve, and XtremWeb.

3 DIET Architecture

3.1 DIET Aim and Design Choices

The aim of our project is to provide a toolbox that will allow different applications to be ported
efficiently over the Grid and to allow our research team to validate theoretical results on scheduling
or on high performance data management for heterogeneous platforms. Thus our design follows
the following principles:

Scalability When the number of requests grows, the agent becomes the bottleneck of the plat-
form. The machine hosting this important component has to be powerful enough but the
distribution of the scheduling component is often a better solution. There is of course a trade-
off that needs to be found for the number (and location) of schedulers depending on various
parameters such as number of clients, frequency of requests, number of servers, performance
of the target platform, etc.

Simple improvement The goal of a toolbox is to provide a software environment that can be
easily adapted to match users’ needs. Several API have to be carefully designed at the client
level, at the server level, and sometimes even at the scheduler level. These API will be used
by expert developers to either plug a new application on the grid or to improve the tool for
an existing application.

Ease of development The development of such large environment needs to be done using ex-
isting middleware that will ease the design and that will offer good performance at a large
scale. We chose to use Corba as a main low level middleware (OmniORB), LDAP, and
several open-source software suites like NWS, OAR, ELAGI, SimGrid, etc.

3.2 Hierarchical Architecture

The DIET architecture is based on a hierarchical approach to provide scalability. The architecture
is flexible and can be adapted to diverse environments including heterogeneous network hierarchies.
DIET is implemented in Corba and thus benefits from the many standardized, stable services
provided by freely-available and high performance Corba implementations.

DIET is based on several components. A Client is an application that uses DIET to solve
problems using an RPC approach. Users can access DIET via different kinds of client interfaces:
web portals, PSEs such as Scilab, or from programs written in C or C++. A SeD, or server
daemon, provides the interface to computational servers and can offer any number of application
specific computational services. A SeD can serve as the interface and execution mechanism for a
stand-alone interactive machine, or it can serve as the interface to a parallel supercomputer by
providing submission services to a batch scheduler.

Agents provide higher-level services such as scheduling and data management. These services
are made scalable by distributing them across a hierarchy of agents composed of a single Master
Agent (MA), several Agents (A), and Local Agents (LA). Figure 1 shows an example of a
DIET hierarchy.

A Master Agent is the entry point of our environment. In order to access DIET scheduling
services, clients only need a string-based name for the MA (e.g. ”MA1”) they wish to access;
this MA name is matched with a Corba identifier object via a standard Corba naming service.
Clients submit requests for a specific computational service to the MA. The MA then forwards
the request in the DIET hierarchy and the child agents, if any exist, forward the request onwards
until the request reaches the SeDs. The SeDs then evaluate their own capacity to perform the

DIET: Scalable NES on the Grid 3C l i e n t M AD I E TL AD I E T L AD I E T S E DD I E TAD I E T S E DD I E T S E DD I E TS E DD I E T S E DD I E T S E DD I E T L AD I E TS E DD I E T S E DD I E T

C l i e n t C l i e n t C l i e n t C l i e n t

Figure 1: DIET hierarchical organization.

C l i e n t M A J M A J M A JM A J M A JM A J M AD IE TL AD IE T L AD IE TS E DD IE T
M AD IE TL AD IE T L AD IE TS E DD IE T S E DD IE T S E D JS E D J S E D J

M AD IE T J X T A p i p e (d y n . c o n n e c t .)J N I i n t e r f a c eD I E T c o n n e c t i o n
C l i e n t C l i e n tC l i e n t

Figure 2: DIETJ architecture.

requested service; capacity can be measured in a variety of ways including an application-specific
performance prediction, general server load, or local availability of data-sets specifically needed
by the application. The SeDs forward their responses back up the agent hierarchy. The agents
perform a distributed collation and reduction of server responses until finally the MA returns to
the client a list of possible server choices sorted using an objective function (computation cost,
communication cost, machine load, . . .). The client program may then submit the request directly
to any of the proposed servers, though typically the first server will be preferred as it is predicted to
be the most appropriate server. The scheduling strategies used in DIET are described in Section 5.

Finally, NES environments like Ninf and NetSolve use a classic socket communication layer.
Nevertheless, several problems to this approach have been pointed out such as the lack of portabil-
ity or the limitation of opened sockets. A distributed object environment, such as Corba [26] has
been proven to be a good base for building applications that manage access to distributed services.
It provides transparent communications in heterogeneous networks, but it also offers a framework
for the large scale deployment of distributed applications. Moreover, Corba systems provide a
remote method invocation facility with a high level of transparency. This transparency should not
dramatically affect the performance, communication layers being well optimized in most Corba
implementations [17]. Thus, Corba has been chosen as a communication layer in DIET.

3.3 DIET Peer-To-Peer Extension

The aim of DIETJ is to dynamically connect together distributed DIET hierarchies at a large
scale. This new architecture has the following properties:

Connecting hierarchies dynamically for scalability To increase the scalability of DIET over
the grid, we now dynamically build a multi-hierarchy by connecting the entry points of the
hierarchies (Master Agents), and thus research institutes, cities together. Note that the
multi-hierarchy is build on-demand by a Master Agent only if it fails to retrieve a service
requested by a client, inside its own hierarchy. Moreover, a client can now dynamically
discover one or several Master Agents when looking for a service, and thus connect the
server with the best latency and locality.

Sharing the load on the Master Agents So, the entry point for each client is now dynami-
cally chosen, thus better sharing the load through Master Agents. Master Agents are con-
nected in an unstructured peer-to-peer fashion (without any mechanism of maintenance,
routing, or group membership).

Gathering services at large scale Services are now gathered on-demand thus providing to
clients an entry point to resources of hierarchies put in common in a transparent way.

4 E. Caron, F. Desprez

The DIETJ architecture, shown in Figure 2, is divided into two parts. The JXTA part including
the MAJ , the SeDJ and the ClientJ . All these elements are peers on the JXTA virtual network
and communicate together through it. The interface part: Java (JXTA native language) and C++
(DIET native language) must cooperate. The technology used is JNI, that allows a Java program
to call functions written in C++. A quick description of main JXTA features is available in our
research report [13]. Now, we introduce the different elements built on top of JXTA and their
behavior.

Based on results presented in [27], we believe JXTA pipes offer the right trade-off between
transparency and performance for our architecture. Our implementation is based on JXTA 2.3
which minimizes the latency of the JXTA pipes, according to [27].

The ClientJ . The ClientJ is a JXTA peer. When looking for a given service, it discovers one or
several MAJ by their JXTA advertisement, chooses and binds one of them and sends it a
request (encapsulated in a JXTA message) for this service. It waits for the MAJ ’s response.
Once the response is received, it extracts the reference of the SeD(s)J found by this MAJ .
It binds one available SeDJ and sends to it the problem (encapsulated in a JXTA Message)
to be solved by the SeDDIET . Finally, the ClientJ extracts the result of the computation
from the response. Questions sécurité ?

The SeDJ . The SeDJ is a JXTA peer that allows the ClientsJ to send computation requests
including data needed for the computation to the SeDDIET , allowing in addition to pass
through firewalls if any between the Client and the SeD. The SeDJ loads the SeDDIET ,
and waits for ClientJ requests. When a JXTA message is received, the SeDJ extracts the
problem and the data and calls the SeDDIET to solve the problem. The result returned by
the SeDDIET is encapsulated in a JXTA message and sent back to the ClientJ .

The Multi-MA and the MAsJ One Multi-MA is composed of all MAsJ running at a given
time over the network and reachable from a first MAJ . The MAJ is able to dynamically
connect these other MAsJ . Each MAJ is known on the JXTA network by an advertisement
with a name common to all of them (“DIET MA”) that is published at the beginning of its
life. This advertisement is published with a short lifetime to avoid ClientsJ (or other MAsJ)
to try to bind an already stopped MAJ , and thus easily take into account the dynamicity of
the platform.

The MAJ loads the MADIET , periodically re-publishes its advertisement, waiting for re-
quests. When receiving a clientJ ’s request, it submits the problem description to its
MADIET . If the submission to the DIET hierarchy retrieves no SeD with this service,
the MAJ builds a multi-hierarchy by discovering others MAJ and propagate the request
to them. When the MAJ has received responses from all other MAsJ , the responses are
encapsulated in a JXTA message and sent back to the ClientJ .

Dynamic connections are only used between the client and the Master Agents, between the
client and the SeD, and between the Master Agents themselves (using JXTA pipes advertisements).
The communication between the agents inside one hierarchy are still static as we believe that small
hierarchies are installed within each administrative domain. At the local level, performances are
not so fluctuent and new elements are not so frequently added.

4 Performance Evaluation

Scheduling tasks on computers comes down to mapping task requirements to system availability.
We now describe these values more precisely. Requirements of routines group principally the time
and the memory space necessary to their execution, as well as the amount of generated commu-
nication. These values depend naturally on the chosen implementation and on input parameters
of the routine, but also on the machine on which the execution takes place. System availability
information captures the number of the machines and their speed, as well as their status (down,

DIET: Scalable NES on the Grid 5

available, or allocated through a batch system). One must also know the topology, the capacity,
and the protocols of the network connecting these machines. From the scheduling point of view,
the actual availability and performance of these resources is more important than their previous
use or the theoretical peak performance.

The goal of FAST [38] is to constitute a simple and consistent Software Development Kit
(SDK) for providing client applications with accurate information about task requirements and
system performance information, regardless of how theses values are obtained. The library is
optimized to reduce its response time, and to allow its use in an interactive environment. FAST
is not intended to be a scheduler by itself and provides no scheduling algorithm or facility. It only
tries to provide an external scheduler with all information needed to make accurate and dynamic
scheduling decisions.

Client application

programs
External

benchmarker

FAST

FAST

file
Configuration

D
ur

in
g

in
st

al
la

ti
on

routineroutine routine routine

FAST Library

D
ur

in
g

th
e

cl
ie

nt
 c

al
l

Monitoring tool

Distributed database system

modeling

Routine needs
forecasting

System availability

Modeling using polynomial functions

Automatic benchmarking

32

1 4

Needed memory as

Needed time as

Memory load
CPU load

Latency
Bandwidth

Actual status:
− Machine

− Routine

− Parameters

− Routine

− Parameters

function of:

function of:

Knows

About each network link:

Knows
About each machine:

− Available
− Down
− Reserved (batch)

Figure 3: FAST’s architecture.

Figure 3 gives an overview of FAST’s architecture, which is composed of two main parts. On
the bottom of the Figure, a benchmarking program is used to discover the routine’s requirements
on every machine in the system. Then, on top, a shared library provides accurate forecasting
to the client application. This library is divided in two submodules: the right one on the figure
forecasts the system performance capabilities while the left one uses the routine’s requirements
models. Figure 3 shows that FAST uses principally two types of external tools (in grey): A system
monitoring tool (NWS [44]), and a distributed database. The first one is used to get the system
performance capabilities while the second is used to store data computed at installation phase
about routine’s needs. Both types of tools are fully pluggable, and adding support for a new
distributed database system or a new monitoring tool is very simple.

The NWS (Network Weather Service) [44] is a project leaded by Pr. Wolski at the University
of California, Santa-Barbara. It constitutes a distributed set of sensors and statistical forecasters
that capture the current state of each platform, and predict its future behavior. It is possible to
monitor the latency and throughput of any TCP/IP link, the CPU load, the available memory or
the disk space on any host. Concerning the CPU load, the NWS can not only reports the current
load, but also the time-slice a new process would get at startup. In order to benefit from a solid
and well tested basis, the main monitoring system used is the NWS. But for sake of completeness,
the monitoring acquisition mechanism is easily pluggable, allowing FAST obtain information from
other sources. For example, to ease the installation of FAST, it is possible to get information
about the CPU load from a limited internal sensor when the NWS is not available for a given

6 E. Caron, F. Desprez

platform. In its current version, FAST can monitor the CPU and memory load of hosts, as well as
latency and bandwidth of any TCP link. In addition to the NWS, it can also report the number
of CPUs on each host to ease the comparison. Monitoring new resources like free disk space or
non-TCP links should be relatively easy in the FAST framework.

At FAST install time, a list of problems of interest are specified along with their interfaces;
FAST then automatically performs a series of macro-benchmarks which are stored in a database for
use in the DIET scheduling process. For some applications, a suite of automatic macro-benchmarks
can not adequately capture application performance. In these cases, DIET also allows the server
developer to specify an application-specific performance model to be used by the SeD during
scheduling to predict performance. Although the primary targeted application class consists of
sequential tasks, this approach has been successfully extended to address parallel routines as well,
as explained in more details in [19].

5 Scheduling

Scheduling is one of the most important issues to be solved in such an environment. Classical NES
algorithms use First Come First Served approaches with the goal of minimizing the turnaround
time of requests or the makespan of one application. The distributed approach chosen in the DIET
platform allows the study of other algorithms where some intelligence can be put at various levels
of the hierarchy.

5.1 DIET Distributed Scheduling

The primary interest of the DIET scheduling approach lies in its distribution, both in terms
of collaborative decision making and in terms of distribution of information important to the
scheduling decision. We return to the general process of servicing a request to provide greater
details. When the MA receives a client request, it (1) verifies that the service requested exists
in the hierarchy, (2) collects a list of its children that are thought to offer the service, and (3)
forwards the request on those subtrees. Local agents use the same approach for forwarding the
request to their children, whether the children are other agents or SeDs. Agents obtain information
on services available in sub-trees during the deployment process. When a SeD or agent starts up,
it joins the DIET hierarchy by contacting its parent agent (located by a string-based name in a
naming service). The parent adds the new child to its list of children and records which services
are available via that child. The parent need not track whether the service is provided directly
by the child (if the child is a server) or by another server in the child’s subtree (if the child is an
agent); it suffices to know the service is available via the child. Thus if an agent has N children
and the DIET hierarchy offers a total of M services, the most hierarchy information any agent in
the tree will store is N*M service/child mappings.

When an agent forwards a request to its children, it sets a timer restricting the amount of
time to wait for child responses. This avoids a deadlock in the hierarchy based on one failed or
slow-to-respond server. Eventually, a child will be forgotten if it is unresponsive for long enough.

SeDs are responsible for collecting and storing all of their own performance and status data.
Specifically, the SeD stores a list of problems that can be solved on it, a list of any persistent data
that are available locally to the server, and status information such as the number of requests
currently running on the SeD and the amount of time elapsed since the last request. When a
request arrives at a SeD, the SeD creates a response object containing both status information
and performance data. SeDs are capable of collecting dynamic system availability metrics from the
Network Weather Service (NWS) [44] or can provide application-specific performance predictions
using the performance evaluation module FAST [38] (presented in the previous section).

After the SeDs have formulated a response to the request, they send their response to their
parent agent. Each agent is responsible for aggregating the responses of its children and forwarding
on a sorted list of responses to the next level in the hierarchy. DIET normally returns to the user
multiple server choices, sorted in order of the predicted desirability of the servers. The number

DIET: Scalable NES on the Grid 7

N of servers to return to the client is configurable, but is of course limited by the total number
of servers managed by the DIET hierarchy. Since agents have no global knowledge of the DIET
hierarchy, to ensure a full list can be returned to the client each agent must return a sorted list of
its N best child responses (or less if the agent subtree contains less than N servers).

The agent sorting process uses an efficient binary tree with each child node placed as the leaves.
In the case of a server child, the leaf node in the sorting tree consists of just one response. In the
case of an agent child, the leaf node consists of an already sorted list of servers available in that
child’s sub-hierarchy. For small values of N , the sorting overhead incurred by an agent is thus
more strongly related to the number of direct children the node has than to the number of SeDs
included in the deep sub-hierarchy below the agent. Increasing the number of children an agent
has increases the agent’s sorting time while increasing the depth of the agent hierarchy increases
the communication latency incurred during the hierarchical decision process.

While the agent aggregation routines are designed to select the best servers for a problem, it
is in fact even more important that they ensure a decision is always made. The sorting approach
thus relies on a series of comparison options where each comparison level utilizes a different type
of SeD-provided data. In this way, the agent hierarchy does not become deadlocked simply be-
cause, for example, some of the SeDs do not have the capability to provide an application-specific
performance prediction. In fact, for system stability, any agent-level sorting routine should rely
on a final random selection option to provide a last-resort option for choosing between servers.

5.2 Scheduling Extensions

The distributed approach chosen in the DIET platform allows the study of other algorithms where
some intelligence can be put at various levels of the hierarchy. One first optimization consists in
adding queue-like semantics to the DIET server and Master Agent levels [15].

At the server level, the number of concurrent jobs allowed on a server can be limited. This
control can greatly improve performance for resource-intensive applications where resource sharing
can be very harmful to performance. Such control at the server-level is also necessary to support
some distributed scheduling approaches of interest. The following paragraph shows through an
example which kind of problem may appear.

As a simple first approach we do not attempt to keep extra jobs from reaching the SeD. Instead,
once solve requests reach the SeD we place their threads in what we will call a SeD-level queue.
In fact, to keep overheads low we implement a very lightweight approach that offers some, but not
all, of the semantics of a full queue. We add a counting semaphore to the SeD and initialize the
semaphore with a user-configurable value defining the desired limit on concurrent solves. When
each request finishes its computational work, it calls a post on the counting semaphore to allow
another request to begin computing. The order in which processes will be woken up while waiting
on a semaphore is not guaranteed on many systems; therefore we augmented the semaphore to
ensure that threads are released in the appropriate order. Figure 4 provides an overview of the
queueing structures added. C l ie n t C l ie n t C l ie n t C l ie n tM A S T E RA G E N TS e DC P U C P U C P U C P U C P U S e DC P U C P U C P U C P U C P U

Figure 4: DIET extensions for request flow control.

8 E. Caron, F. Desprez

To support consideration of queue effects in the scheduling process, we use a number of ap-
proaches for tracking queue statistics. It is not possible to have complete information on all the
jobs in the “queue” without adding significant overhead for coordinating the storage of queue data
between all requests. Thus we approximate queue statistics by storing the number of jobs waiting
in the queue and the sum of the predicted execution times for all waiting jobs. Once jobs begin
executing we individually store and track the jobs’ predicted completion time. By combining these
data metrics and taking into account the number of physical processors and the user defined limit
on concurrent solves, we can provide a rough estimate of when a new job would begin execution.
This estimate is included by the SeD with the other performance estimates passed up the hierarchy
during a schedule request.

There are some disadvantages to this method of controlling request flow. Most importantly,
requests are in fact resident on the server while they wait for permission to begin their solve phase.
Thus, if the parameters of the problem sent in the solve phase include large data sets, memory-
usage or disk-usage conflicts could be seen between the running jobs and the waiting requests.
Some DIET applications with very large data sets use a different approach for transferring their
data where only the file location (e.g. perhaps an http locator for publicly available data) is sent
in the problem parameters and the data is retrieved at the beginning of the solve. The impact
of this problem will therefore depend on the data approach used by the application. A second
problem with this approach arises from the fact that once requests are allocated to a particular
server, DIET does not currently support movement of the request to a different server. When
system conditions change, although the jobs have not begun executing, DIET can not adjust the
placement to adapt to the new situation. Thus performance will suffer in cases of unexpected
competing load or poorly predicted job execution time. Also, in the case of improvements in
the system, such as the dynamic addition of server resources, DIET can not take advantage of
the resources for those tasks already allocated to servers. To avoid this problem we could plan
to integrate the ability to carry out task migrations. The last problem but not least, relates to
fault-tolerance. If a server crash becomes, we also lose the queue information. Thus a replication
mechanism should be implemented.

At the Master Agent level, under high-load conditions, incoming requests can be stalled at the
master agent and then scheduled as a batch at an appropriate time. This batch window addition
can be used to test a variety of scheduling approaches: the MA can re-order tasks to accomodate
data dependencies, co-scheduling of multiple tasks on the same resource can be avoided even when
the requests arrive nearly simultaneously, and inter-task dependencies can be accounted for in
the scheduling process. In the standard DIET system, requests are each assigned an independent
thread in the master agent process and that thread persists until the request has been forwarded
in the DIET hierarchy, the response received, and the final response forwarded on to the user. In
this approach, the only data object shared among threads is a counter that is used to assign a
unique request ID to every request. In the modified master agent, each request is still assigned a
thread that persists until the response has been sent back to the client. However, we introduce
one additional thread that provides higher-level management of request flow. Scheduling proceeds
in distinct phases called windows and both the number of requests scheduled in a window and
the time interval spent between windows are configurable. An interesting aspect of this algorithm
is that the master agent can only discern characteristics of the DIET hierarchy, such as server
availability, by forwarding a request in the hierarchy. We avoid sending any task twice in the
hierarchy, thus the GlobalTaskManager must schedule some jobs in order to have information
about server loads and queue lengths. Information may given from NWS sensor [44], as discussed
in Section 4.

5.3 Plugin Schedulers

Finally, we are now working on plugin schedulers specially designed for expert users who wish
to upgrade the scheduling for a specific application. This will allow the user to play with the
internals of agents and tune DIET’s scheduling by changing the heuristics, adding queues, changing
the performance metrics and the aggregation functions, . . . Also we believe that this feature will

DIET: Scalable NES on the Grid 9

be useful both for computer scientists to test their algorithms on a real platform and expert
application scientists to tune DIET for specific application behavior.

6 Data Management

GridRPC environments such as NetSolve, Ninf, and DIET are based on the client-server program-
ming paradigm. However, generally in this paradigm, no data management is performed. Like
in the standard RPC model, request parameters (input and output data) are sent back and forth
between the client and the remote server. A data is not supposed to be available on a server for
another step of the algorithm (an new RPC) once a step is finished. This drawback can lead to
extra overhead due to useless communications over the net.

This problem has been identified by NetSolve and Ninf projects as a major performance
loss. NetSolve has proposed several ways to keep data in place. The first approach is called
request sequencing [5]. It consists in scheduling a sequence of NetSolve calls on one server.
The sequence of request written between two sequence delimiters netsl_sequence_begin and
netsl_sequence_start is analyzed and a dataflow graph is computed that allow useless data
transfers to be avoided. However this feature is only available on a single server without redis-
tribution between servers. Another approach is called Distributed Storage Infrastructure [6]. The
DSI helps the user for controlling the placement of data that will be accessed by a server. Instead
of having multiple transmissions of the same data, DSI allows the transfer of the data once from
the client to a storage server. A data handle is then used at the request level. DSI acts as a data
cache. One instance of the DSI is based on IBP (Internet Backplane Protocol) 3. This approach
is interesting but not connected to the choice of computational servers. A last optimization has
been provided that allows the redistribution of the data between servers and the persistence of
data [18]. A new API is provided that allow a client to manage its data locally and remotely
between request calls. Ninf has similar solutions with other data management systems.

6.1 Data Tree Manager

A first data management service has been developed for the DIET platform [16] called Data Tree
Manager (DTM). This DIET data management model is based on two key elements: the data
identifiers and the Data Tree Manager (DTM). To avoid multiple transmissions of the same data
from a client to a server, the DTM allows to leave data inside the platform after computation
while data identifiers will be used further by the client to reference its data.

First, a client can choose whether a data will be persistent inside the platform or not. We call
this property the persistence mode of a data. We have defined several modes of data persistence
as shown in Table 1.

mode Description

DIET VOLATILE not stored
DIET PERSISTENT RETURN stored on server, movable and copy back to client
DIET PERSISTENT stored on server and movable
DIET STICKY stored and non movable
DIET STICKY RETURN stored, non movable and copy back to client

Table 1: Persistence Modes.

In order to avoid interlacing between data messages and computation messages, the proposed
architecture separates data management from computation management. The Data Tree Manager
is build around three entities, the logical data manager, the physical data manager, and the data
mover (see Figures 5 and 6).

The Logical Data Manager is composed of a set of LocManager objects. A LocManager is set
onto the agent with which it communicates locally. It manages a list of couples (data identifier,

3http://loci.cs.utk.edu/

http://loci.cs.utk.edu/

10 E. Caron, F. Desprez

owner) which represents data that are present in its branch. So, the hierarchy of LocManager
objects provides the global knowledge of the localization of each data.

The Physical Data Manager is composed of a set of DataManager objects. The DataManager
is located onto each SeD with which it communicates locally. It owns a list of persistent data.
It stores data and has in charge to provide data to the server when needed. It provides features
for data movement and it informs its LocManager parent of updating operations performed on its
data (add, move, delete). Moreover, if a data is duplicated from a server to another one, the copy
is set as non persistent and destroyed after it uses with no hierarchy update.

Data Manager
Logical

F
 A

 S
 T

Data Manager
Physical

Agent

SeD Data Mover

Figure 5: DTM: Data Tree Manager.

LocMgr1

LA1

LocMgr2

LA2

LocMgr3

SeD1 SeD2 SeD3

F() F()
A B

idA, DataMgr1

idB, LocMgr2
idA, LocMgr2

idB, DataMgr2

DataMgr1

MA

DataMgr2 DataMgr3

Client1
F(B,C)=D

Figure 6: DataManager and LocManager objects.

This structure is built in a hierarchical way as shown in Figure 6. It is mapped on the DIET
architecture. There are several advantages to define such a hierarchy. First, communications
between agents (MA or LA) and data location objects (LocManager) are local like those between
computational servers (SeD) and data storage objects (DataManager). This ensures that a lower
cost for the communication for agents to get information on data location and for servers to retrieve
data. Secondly, considering the physical repartition of the architecture nodes (a LA front-end of a
local area network for example), when data transfers between servers localized in the same subtree
occur, the following updates are limited to this subtree. So, the rest of the platform is not involved
in the updates.

The Data Mover provides mechanisms for data transfers between Data Managers objects as well
as between computational servers. The Data Mover has also to initiate updates of DataManager
and LocManager when a data transfer has finished.

6.2 Juxmem

JuxMem (Juxtaposed Memory) [2] is a peer-to-peer architecture which provides memory sharing
service allowing peers to share memory data, and not only files (Note that from DIET view a
memory sharing or a file sharing have similar behavior). The software architecture of JuxMem,
mirrors a hardware architecture consisting of a federation of distributed clusters and is therefore
hierarchical. The JuxMem architecture is made up of a network of peer groups, which generally
correspond to clusters at the physical level. All the groups are inside a wider group which includes
all the peers which run the service (the JuxMem group). Each cluster group consists of a set of
nodes which provide memory for data storage. We will call these nodes providers. In each cluster
group, a node is used to make up the backbone of JuxMem’s network of peers. This node is
called cluster manager. Finally, a node which simply uses the service to allocate and/or access
data blocks is called client. It should be stressed that a node may at the same time act as a cluster
manager, a client, and a provider. However, each node only plays a single role in the example
illustrated on Figure 7 for the sake of clarity.

DIET: Scalable NES on the Grid 11

Each block of data stored in the system is associated to a group of peers called data group.
Note that a data group can be made up of providers from different cluster groups. Indeed, a data
can be spread over on several clusters (here A and C). For this reason, the data and cluster groups
are at the same level of the group hierarchy. Note that the cluster groups could also correspond
to subsets of the same physical cluster.

Another important feature is that the architecture of JuxMem is dynamic, since clusters and
data groups can be created at run time. For instance, a data group is automatically instantiated
for each block of data inserted into the system.

The integration of JUXMEM with DIET can be done in two modes: sharing and concurrent
model. The sharing model is the solution invoked by the principle of grid offered for large number
of resources. The resources with different attributes can be DIET components or JUXMEM
component as shown in Figure 7 (a). The advantage of this model is that it limits the interference
between the two systems foundation to utilize the memory shared by others. On the other hand
the number of resources for each system is reduced.

PC/PF

PC/PF

MA

SeD SeD SeD SeD

Client

LA

SeDSeDSeD

PG

PG

PG

PG

PC/PF

PC/PF

PC/PF

PC/PF

PC/PF

PC/PF

PC/PF

PC/PF

PC/PF

PC/PF

MA

SeD SeD SeD SeD

Client

LA

SeDSeDSeD

PG

PG

PG

PG

PC PC PC

Figure 7: (a) Sharing model (b) Concurrent model

The concurrent model, shown in Figure 7 (b), allows to share the grid resource between DIET
and JuxMem, but this model increases the difficulty to have a correct achievement for the perfor-
mance forecasting tool. Indeed, in pursuit of simplicity, we avoid this model because there are no
mechanism to communicate between DIET and JuxMem to take into account the impact of one
on the other.

7 Deployment and Monitoring of the Platform

This section focuses on the deployment of DIET. Although the deployment of such an architecture
may be constrained e.g., firewall, access rights or security, its efficiency depends heavily on the
quality of the mapping between its different components and the grid resources. In [11] we have
proposed a new model based on linear programming to estimate the performance of a deployment
of a hierarchical set of schedulers. The advantages of our modeling approach are: to evaluate a
virtual deployment before a real deployment, to provide a decision builder tool (i.e., designed to
compare different architectures or to add new resources), and to take into account scalability of
the platform. Using our model, it is possible to determine the bottleneck of the platform and thus
to know whether a given deployment can be improved or not.

12 E. Caron, F. Desprez

7.1 Steady-state Scheduling

A collection of heterogeneous resources (e.g., a processor or a cluster) and the communication
links between them is naturally modeled as nodes and edges of an undirected tree-shaped graph.
Each node is a computing resource capable of computing and communicating with its neighbors
at different rates. We assume that one specific node, referred as the client, initially generates
requests and floods the MAs with these requests. The main problem is then to determine a steady
state scheduling policy for each processor, i.e. the fraction of time spent in computing the request
coming from client to server, fraction of time spent to select the best server, the fraction of time
spent sending the request, and the fraction of time spent in receiving the reply packet (reply of
the request), so that the (average) overall number of requests processed at each time-step can be
maximized.

Beaumont et al. solved in [8] the steady-state master-slave scheduling problem for a tree-
shaped heterogeneous platform. They explained how to allocate a large number of independent
and equal size tasks on a heterogeneous grid computing platform. They first compute the maxi-
mum steady-state throughput of the platform using a linear program. Then, they show that this
throughput can be reached if each node locally uses a bandwidth-centric strategy which states that,
if enough bandwidth is available, then all children nodes are kept busy; if bandwidth is limited,
then tasks should be allocated first to the children which have sufficiently small communication
times, regardless of their computation power.

Some interesting points of this theoretical framework, such as the steady state scheduling
strategy, equal size of requests, using linear constraints, etc. can be applied to our practical
framework.

7.2 Hierarchical Deployment Model

Here we describe how we model the deployment problem. It is out of scope of this paper to provide
the complete model. For more details the reader can refers to [11].

The target platform is represented by a weighted graph G = (V,E,w, c). Each Pi ∈ V

represents a computing resource of computing power wi, meaning that node Pi executes wi

MFlop/second (so the bigger the wi, the faster the computing resource Pi). There is a client
node, i.e. a node Pc, which generates the requests that are passed to the following nodes4. Each
link Pi → Pj is labelled by the bandwidth value ci,j which represents the size of data sent per
second between Pi and Pj . The unit used for link bandwidth is Mb/second. The size of the

request generated by the client is S
(in)
i and the size of the reply request created by each node is

S
(out)
i . The unit used for these quantities is Mb/request. The amount of computation needed by

Pi to process one incoming request is denoted by W
(in)
i and the amount of computation needed

by Pi to merge the reply requests of its children is denoted by W
(out)
i . We denote by W

(DGEMM)
i

the amount of computation needed by Pi to process a generic problem (i.e., level 3 BLAS matrix
multiplication function called DGEMM). We selected a BLAS routine as it gives good forecast
predictions [14] and can be easily expressed as linear constraints.

7.3 Automatic Deployment and Redeployment

Even when neglecting the servers’ constraints, finding the best topology is a hard problem since
it amounts to finding the best broadcast tree on a general graph, which is known to be NP-
complete [9]. Note that even when neglecting the request mechanism, as soon as one takes in
account the communications of the problem’s data, the problem of finding the best deployment
becomes NP-complete too [7].

Nevertheless, in real life, the topology of the underlying platform is particular and enforces some
parts of the deployment. Therefore, we propose to improve the throughput of a given deployment

4We use only one client node for sake of simplicity but modeling many different clients with different problem
types can be done easily.

DIET: Scalable NES on the Grid 13

by removing its bottleneck. Using the previous theorems, we can find the bottlenecks and get
rid of them by adding more LAs to the parent of a loaded LA so as to divide the load of that
particular LA. We add new LAs according to the greedy algorithm 1.

1: while (number of available nodes > 0) do
2: Calculate the throughput ρ of structure.
3: Find a node whose constraint is tight and

that can be split
4: if no such node exists then
5: The deployment cannot be improved.
6: Exit

endif
7: Split the load by adding new node to its parent
8: Decrease the number of available nodes

endwhile

Algorithme 1: Algorithm to add an LA

7.4 Configuration and launch

In complementary work of the previous theoretical approach, we developed GoDIET which is a
tool for the configuration, launching, and management of DIET on computational grids. Users
of GoDIET write an XML file describing their available compute and storage resources and the
desired overlay of DIET agents and servers onto those resources. GoDIET automatically generates
and stages all necessary configuration files, launches agents and servers in appropriate hierarchical
order, reports feedback on the status of running components, and allows shutdown of all launched
software.

7.5 Associated services

A number of associated services can optionally be used in conjunction with DIET. Since DIET
uses CORBA for all communication activities, DIET can directly benefit from the CORBA
naming service - a service for the mapping of string-based names for objects to their localization
information. For example, the MA is assigned a name in the MA configuration file; then, during
startup, the MA registers with the naming service by providing this string-based name as well
as all information necessary for other components to communication with the MA (e.g. machine
hostname and port). When another component such as an LA needs to contact the MA, the
LA uses the string-based name to lookup contact information for the MA. Therefore, in order to
register with the DIET hierarchy, a DIET element need only have (1) the host and port on which
the naming service can be found and (2) the string-based name for the element’s parent.

DIET also uses a CORBA-based logging service called LogService, a software package that
provides interfaces for generation and sending of log messages by distributed components, a cen-
tralized service that collects and organizes all log messages, and the ability to connect any number
of listening tools to whom LogService will send all or a filtered set of log messages. LogService is
robust against failures of both senders of log messages and listeners for log updates. When LogSer-
vice usage is enabled in DIET, all agents and SeDs send log messages indicating their existence
and a special configurable field is used to indicate the name of the element’s parent. Messages
can also be sent to trace requests through the system or to monitor resource performance (e.g.
CPU availability on a particular SeD’s host or the network bandwidth between an agent and a
SeD connected to the agent).

VizDIET is a tool that provides a graphical view of the DIET deployment and detailed
statistical analysis of a variety of platform characteristics such as the performance of request

14 E. Caron, F. Desprez

Figure 8: VizDIET Screenshot.

scheduling and solves. To provide real-time analysis and monitoring of a running DIET platform,
VizDIET can register as a listener to LogService and thus receives all platform updates as log
messages sent via CORBA. Alternatively, to perform visualization and processing post-mortem,
VizDIET uses a static log message file that is generated during run-time by LogService and set
aside for later analysis. Figure 8 presents a screenshot of VizDIET.

7.6 GoDIET

The goal of GoDIET is to automate the deployment of DIET platforms and associated services
for diverse grid environments. Specifically, GoDIET automatically generates configuration files
for each DIET component taking into account user configuration preferences and the hierarchy
defined by the user, launches complimentary services (such as a name service and logging services),
provides an ordered launch of components based on dependencies defined by the hierarchy, and
provides remote cleanup of launched processes when the deployed platform is to be destroyed.
Figure 9 provides an overview of the interactions between a running DIET platform, LogService,
and VizDIET. In the next section we describe the third external service in the figure - GoDIET.

Key goals of GoDIET included portability, the ability to integrate GoDIET in a graphically-
based user tool for DIET management, and the ability to communicate in CORBA with LogService;
we have chosen Java for the GoDIET implementation as it satisfies all of these requirements and
provides for rapid prototyping. The description of resources, the software to deploy, and user
preferences are defined in an XML file; we use a Document Type Definition file (DTD) to provide
automated enforcement of allowed XML file structure.

More specifically, the GoDIET XML file contains the description of DIET agents and servers
and their hierarchy, the description of desired complementary services like LogService, the physical
machines to be used, the disk space available on these machines, and the configuration of paths

DIET: Scalable NES on the Grid 15

Figure 9: Interaction of GoDIET, LogService, and VizDIET to assist users in controlling and
understanding DIET platforms.

for the location of needed binaries and dynamically loadable libraries. The file format provides
a strict separation of the resource description and the deployment configuration description; the
resource description portion must be written once for each new grid environment, but can then be
re-used for a variety of deployment configurations.

The basic user interface is a non-graphical console mode and can be used on any machine
where Java is available and where the machine has ssh access to the target resources used in the
deployment. An alternative interface is a graphical console that can be loaded by VizDIET to
provide an integrated management and visualization tool. Both the graphical and non-graphical
console modes can report a variety of information on the deployment including the run status and,
if running, the PID of each component, as well as whether log feedback has been obtained for each
component. GoDIET can also be launched in mode batch where the platform can be launched
and stopped without user interaction; this mode is primarily useful for experiments.

We use scp and ssh to provide secure file transfer and task execution. ssh is a tool for remote
machine access that has become (nearly) universally available on grid resources in recent years.
With a carefully configured ssh command, GoDIET can configure environment variables, specify
the binary to launch with appropriate command line parameters, and specify different files for
the stdout and stderr of the launched process. Additionally, for a successful launch, GoDIET
can retrieve the PID of the launched process; this PID can then be used later for shutting down
the DIET deployment. In the case of a failure to launch the process, GoDIET can retrieve these
messages and provide them to the user. To illustrate the approach used, an example of the type
of command used by GoDIET follows.

/bin/sh -c (/bin/echo ✂

"export PATH=/home/user/local/bin/:$PATH ; ✂

export LD_LIBRARY_PATH=/home/user/local/lib ; ✂

export OMNIORB_CONFIG=/home/user/godiet_s/run_04Jul01/omniORB4.cfg; ✂

cd /home/user/godiet_s/run_04Jul01; ✂

nohup dietAgent ./MA_0.cfg < /dev/null > MA_0.out 2> MA_0.err &" ; ✂

/bin/echo ’/bin/echo ${!}’) ✂

| /usr/bin/ssh -q user@ls2.ens.vthd.prd.fr /bin/sh -

It is important that each ssh connection can be closed once the launch is complete while
leaving the remote process running. If this can not be achieved, the system will eventually run
out of resources (typically sockets) and refuse to open additional connections. In order to enable
a scalable launch process, the above command ensures that the ssh connection can be closed after

16 E. Caron, F. Desprez

the process is launched. Specifically, in order for this connection to be closeable: (1) the UNIX
command nohup is necessary to ensure that when the connection is closed the launched process
is not killed as well, (2) the process must be put in the background after launch, and (3) the
redirection of all inputs and outputs for the process is required.

7.7 DIET Deployment

The DIET platform is constructed following the hierarchy of agents and SeDs. The very first
element to be launched during deployment is the naming service; all other elements are provided
the hostname and port at which the naming service can be found. Afterwards, deployed elements
can locate other elements on the grid using only the element’s string-based name and the contact
information for the naming service. After the naming service, the MA is launched; the MA is the
root of the DIET hierarchy and thus does not register with any other elements. After the MA, all
other DIET elements understand their place in the hierarchy from their configuration file which
contains the name of the element’s parent. Users of GoDIET specify the desired hierarchy in a
more intuitive way via the naturally hierarchical XML input file to GoDIET. Based on the user-
specified hierarchy, GoDIET automatically generates the appropriate configuration files for each
element, and launches elements in a top-down fashion to respect the hierarchical organization.

As a benefit of this approach, multiple DIET deployments can be launched on the same group
of machines without conflict as long as the name services for each deployment uses a different port
and/or a different machine.

DIET provides the features and flexibility to allow a wide variety of deployment configurations,
even in difficult network and firewall environments. For example, for platforms without DNS-based
name resolution or for machines with both private and public network interfaces, elements can
be manually assigned an endpoint hostname or IP in their configuration files; when the element
registers with the naming service, it specifically requests this endpoint be given as the contact
address during name lookups. Similarly, an endpoint port can be defined to provide for situations
with limited open ports in firewalls. These specialized options are provided to DIET elements at
launch time via their configuration files; GoDIET supports these configuration options via more
user-intuitive options in the input XML file and then automatically incorporates the appropriate
options while generating each element’s configuration file. For large deployements, it is key to
have a tool like GoDIET to make practical use of these features.

8 Related Work

Several other Network Enabled Server systems have been developed in the past [3, 21, 31, 35].
Among them, NetSolve [4] and Ninf [33] have pushed further the research around the GridRPC
paradigm.

NetSolve 5 has been developed at the University of Tennessee, Knoxville. NetSolve allows the
connection of clients (written in C, C++, Fortran, Matlab, etc.) to solve requests sent to servers
found by a single agent. This centralized agent maintains a list of available servers along with
their capabilities. Servers sent at a given frequency information about their status. Scheduling
is done based on simple models provided by the application developers, LINPACK benchmarks
executed on remote servers, and information given by NWS. Some fault tolerance is also provided
at the agent level. Data management is also done either through request sequencing or using
IBP (see Section 6). Security is also addressed using Kerberos. Client Proxies ensure a good
portability and interoperability with other systems like Ninf or Globus [6]. The NetSolve team has
recently introduced GrADSolve [43], a RPC system based on the GrADsS architecture. This new
framework allows the dynamic choice of resources taking into account application and resource
properties.

5http://www.cs.utk.edu/netsolve

http://www.cs.utk.edu/netsolve

DIET: Scalable NES on the Grid 17

Ninf 6 is a NES system developed at the Grid Technology Research Center, AIST in Tsukuba.
Close to NetSolve in its initial design choices, it has evolved towards several interesting approaches
using either Globus [41, 45] or Web Services [40]. Fault tolerance is also provided using Condor
and a checkpointing library [34]. The performance of the platform can be studied using a powerful
tool called BRICKS.

The main difference between the NES systems presented in this section and DIET are mainly
the use of distributed scheduling for DIET that allows a better scalability when the number of
clients is large and the request frequency is high and the use of Corba as a middleware.

9 Conclusion and Future Work

In this paper we have presented the overall architecture of DIET, a scalable environment for
the deployment on the grid of applications based on the Network Enabled Server paradigm. As
NetSolve and Ninf, DIET provides an interface to the GridRPC API defined within the Global
Grid Forum.

Our main objective is to improve the scalability of the platform using a distributed set of
agents managing a large set of servers available through the network. By being able to modify the
number of schedulers, we are able to ensure a level of performance adapted to the characteristics
of the platform (number of clients, number and frequency of requests, performance of the target
platform). Data management is also an important part of the performance gain when dependences
exist between requests. We investigate two approaches. One related to the DIET architecture
(DTM) and one that acts as a data cache (Juxmem). The management of the platform is handled
by several tools like GoDIET for the automatic deployment of the different components, LogService
for the monitoring, and VizDIET for the visualization of the behavior of the DIET’s internals.

Many applications have also been ported on DIET around chemical engineering, physics, bioin-
formatic, robotic, etc.

Our future work will consist in adding more flexibility using plugin schedulers, improving the
dynamicity of the platform using P2P connection (with JXTA), improving the relations between
the schedulers and the data managers, and finally to validate the whole platform at a large scale
within the GRID5000 project [24].

10 Acknowledgements

The authors wish to thank all our collegues who contributed to the design and development of
DIET and related tools. In particular, we would like to thank R. Bolze, M. Boury, Y. Caniou,
P. Combes, P. Kaur Chouhan, S. Dahan, H. Dail, B. DelFabbro, G. Hoesh, E. Jeannot, A. Legrand,
F. Lombard, J.-M. Nicod, C. Pera, F. Petit, L. Philippe, C. Pontvieux, M. Quinson, A. Su, F. Suter,
C. Tedeschi, and A. Vernois. We also want to thank our collegues porting applications on top
of DIET and in particular, J.-L. Barrat, C. Blanchet, F. Boughmar, M. Dayde, C. Hamerling,
G. Monard, R. Sommet, and S. Vialle.

References

[1] Sun grid engine. http://www.sun.com/gridware/.

[2] G. Antoniu, L. Bougé, and M. Jan. JuxMem: An adaptive supportive platform for data
sharing on the grid. In Proceedings Workshop on Adaptive Grid Middleware (AGRIDM 2003),
pages 49–59, New Orleans, Louisiana, September 2003. Held in conjunction with PACT 2003.
Extended version to appear in Kluwer Journal of Supercomputing.

6http://ninf.apgrid.org/

http://www. sun. com/gridware/
http://ninf.apgrid.org/

18 E. Caron, F. Desprez

[3] P. Arbenz, W. Gander, and J. Mori. The Remote Computational System. Parallel Computing,
23(10):1421–1428, 1997.

[4] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and S. Vadhi-
yar. Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical Report CS-01-467,
University of Tennessee, Knoxville, TN, July 2001. http://www.cs.utk.edu/netsolve/.

[5] D.-C. Arnold, D. Bachmann, and J. Dongarra. Request Sequencing: Optimizing Commu-
nication for the Grid. In Euro-Par 2000 Parallel Processing, 6th International Euro-Par
Conference, volume volume 1900 of Lecture Notes in Computer Science, pages 1213–1222,
Munich Germany, August 2000. Springer Verlag.

[6] D.C. Arnold, H. Casanova, and J. Dongarra. Innovations of the NetSolve Grid Computing
System. Concurrency And Computation: Practice And Experience, 14:1–23, 2002.

[7] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling strategies for master-slave
tasking on heterogeneous processor grids. In PARA’02: International Conference on Applied
Parallel Computing, LNCS 2367. Springer Verlag, 2002.

[8] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-Centric Al-
location of Independent Tasks on Heterogeneous Platforms. In International Parallel and
Distributed Processing Symposium IPDPS’2002. IEEE Computer Society Press, 2002.

[9] Olivier Beaumont, Arnaud Legrand, Loris Marchal, and Yves Robert. Optimizing the steady-
state throughput of broadcasts on heterogeneous platforms. Technical Report 2003-34, LIP,
June 2003.

[10] F. Berman, G.C. Fox, and A.J.H. Hey, editors. Grid Computing: Making the Global Infras-
tructure a Reality. Wiley, 2003.

[11] E. Caron, P.K. Chouhan, and A. Legrand. Automatic Deployment for Hierarchical Network
Enabled Server. In The 13th Heterogeneous Computing Workshop (HCW 2004), Santa Fe.
New Mexico, April 2004.

[12] E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, M. Quinson, and F. Suter. A Scalable
Approach to Network Enabled Servers. In Proc. of EuroPar 2002, Paderborn, Germany,
2002.

[13] E. Caron, F. Desprez, F. Petit, and C. Tedeschi. Resource Localization Using Peer-To-
Peer Technology for Network Enabled Servers. Research report 2004-55, Laboratoire de
l’Informatique du Parallélisme (LIP), December 2004.

[14] E. Caron and F. Suter. Parallel Extension of a Dynamic Performance Forecasting Tool. In
Proceedings of the International Symposium on Parallel and Distributed Computing, pages
80–93, Iasi, Romania, Jul 2002.

[15] H. Dail and F. Desprez. Experiences with Hierarchical Request Flow Management for Network
Enabled Server Environments. Technical Report TR-2005-07, LIP ENS Lyon, 2005.

[16] B. Del Fabbro, D. Laiymani, J.-M. Nicod, and L. Philippe. Data management in grid appli-
cations providers. In IEEE International Conference DFMA’05, Besançon, France, February
2005. to appear.

[17] A. Denis, C. Perez, and T. Priol. Towards high performance CORBA and MPI middlewares
for grid computing. In Craig A. Lee, editor, Proc. of the 2nd International Workshop on Grid
Computing, number 2242 in LNCS, pages 14–25, Denver, Colorado, USA, November 2001.
Springer-Verlag.

http://www.cs.utk.edu/netsolve/

DIET: Scalable NES on the Grid 19

[18] F. Desprez and E. Jeannot. Improving the GridRPC Model with Data Persistence and Redis-
tribution. In 3rd International Symposium on Parallel and Distributed Computing (ISPDC),
Cork, Ireland, July 2004.

[19] F. Desprez, M. Quinson, and F. Suter. Dynamic Performance Forecasting for Network Enabled
Servers in a Metacomputing Environment. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA 2001), 2001.

[20] DIET. Distributed Interactive Engineering Toolbox. http://graal.ens-lyon.fr/DIET.

[21] M.C. Ferris, M.P. Mesnier, and J.J. Mori. NEOS and Condor: Solving Optimization Prob-
lems Over the Internet. ACM Transaction on Mathematical Sofware, 26(1):1–18, 2000.
http://www-unix.mcs.anl.gov/metaneos/publications/index.html.

[22] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 2004.

[23] M. Good and J.-P. Goux. iMW : A web-based problem solving environment for grid com-
puting applications. Technical report, Department of Electrical and Computer Engineering,
Northwestern University, 2000.

[24] GRID’5000. http://www.grid5000.org/.

[25] T. Haupt, E. Akarsu, and G. Fox. WebFlow: A Framework for Web Based Metacomputing.
Future Generation Computer Systems, 16(5):445–451, March 2000.

[26] M. Henning and S. Vinoski. Advanced CORBA(R) Programming with C++. Addison-Wesley
Pub Co, 1999.

[27] M. Jan and D.A. Noblet. Performance Evaluation of JXTA Communication Layers. Technical
Report RR-5530, INRIA, IRISA, Rennes, France, october 2004.

[28] N. Kapadia, J. Robertson, and J. Fortes. Interfaces Issues in Running Computer Architecture
Tools via the World Wide Web. In Workshop on Computer Architecture Education at ISCA
1998, Barcelona, 1998. http://www.ecn.purdue.edu/labs/punch/.

[29] R. Keller, B. Krammer, M.S. Mueller, Michael M. Resch, and Edgar Gabriel. MPI De-
velopment Tools and Applications for the Grid. In Workshop on Grid Applications and
Programming Tools, held in conjunction with the GGF8 meetings, Seattle, June 2003.

[30] S. Matsuoka and H. Casanova. Network-Enabled Server Systems and the Computational
Grid, July 2000. Grid Forum, Advanced Programming Models Working Group whitepaper
(draft).

[31] S. Matsuoka, H. Nakada, M. Sato, , and S. Sekiguchi. Design Issues of Network Enabled
Server Systems for the Grid, 2000. Grid Forum, Advanced Programming Models Working
Group whitepaper.

[32] MPICH-G. http://www.hpclab.niu.edu/mpi/.

[33] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards a
Global Computing Infrastructure. Future Generation Computing Systems, Metacomputing
Issue, 15(5-6):649–658, 1999. http://ninf.apgrid.org/papers/papers.shtml.

[34] H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. The Design and Implementation of a
Fault-Tolerant RPC System: Ninf-C. In Proceeding of HPC Asia 2004, pages 9–18, 2004.

[35] NEOS. http://www-neos.mcs.anl.gov/.

[36] NetSolve. http://www.cs.utk.edu/netsolve/.

http://graal.ens-lyon.fr/DIET
http://www-unix.mcs.anl.gov/metaneos/publications/index.html
http://www.grid5000.org/
http://www.ecn.purdue.edu/labs/punch/
http://www.hpclab.niu.edu/mpi/
http://ninf.apgrid.org/papers/papers.shtml
http://www-neos.mcs.anl.gov/
http://www.cs.utk.edu/netsolve/

20 E. Caron, F. Desprez

[37] NINF. http://ninf.etl.go.jp/.

[38] M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a Meta-
computing Environment. In International Workshop on Performance Modeling, Evaluation,
and Optimization of Parallel and Distributed Systems (PMEO-PDS’02), in conjunction with
IPDPS’02, Apr 2002.

[39] K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The End-User and Middleware
APIs for GridRPC. In Workshop on Grid Application Programming Interfaces, In conjunction
with GGF12, Brussels, Belgium, September 2004.

[40] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based
Implementations of GridRPC. In Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing (HPDC-11 2002), pages 237–245, July 2002.
http://matsu-www.is.titech.ac.jp/∼sirasuna/research/hpdc2002/hpdc2002.pdf.

[41] Y. Tanaka, N. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A Reference
Implementation of RPC-based Programming Middleware for Grid Computing. Journal of
Grid Computing, 1:41–51, 2003.

[42] D. Thain, T. Tannenbaum, and Miron Livny. Distributed Computing in Practice: The Condor
Experience. Concurrency and Computation: Practice and Experience, 2004.

[43] S.S. Vadhiyar and J.J. Dongarra. GrADSolve – A grid-based RPC System for Parallel Com-
puting with Application Level Scheduling. Journal on Parallel and Distributed Computing,
64:774–783, 2004.

[44] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. Future Generation Computing Systems,
Metacomputing Issue, 15(5–6):757–768, Oct. 1999.

[45] Y. Tanaka and H. Takemiya and H. Nakada and S. Sekiguchi. Design, Implementation and
Performance Evaluation of GridRPC Programming Middleware for a Large-Scale Computa-
tional Grid. In Proceedings of 5th IEEE/ACM International Workshop on Grid Computing,
pages 298–305, 2005.

http://ninf.etl.go.jp/
http://matsu-www.is.titech.ac.jp/~sirasuna/research/hpdc2002/hpdc2002.pdf

	1 Introduction
	2 GridRPC Programming Model
	3 DIET Architecture
	3.1 DIET Aim and Design Choices
	3.2 Hierarchical Architecture
	3.3 DIET Peer-To-Peer Extension

	4 Performance Evaluation
	5 Scheduling
	5.1 DIET Distributed Scheduling
	5.2 Scheduling Extensions
	5.3 Plugin Schedulers

	6 Data Management
	6.1 Data Tree Manager
	6.2 Juxmem

	7 Deployment and Monitoring of the Platform
	7.1 Steady-state Scheduling
	7.2 Hierarchical Deployment Model
	7.3 Automatic Deployment and Redeployment
	7.4 Configuration and launch
	7.5 Associated services
	7.6 GoDIET
	7.7 DIET Deployment

	8 Related Work
	9 Conclusion and Future Work
	10 Acknowledgements

