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RESEARCH Open Access

Diet and toenail arsenic concentrations in a New
Hampshire population with arsenic-containing
water
Kathryn L Cottingham1*, Roxanne Karimi1,2, Joann F Gruber1,3, M Scot Zens4, Vicki Sayarath4, Carol L Folt1,
Tracy Punshon1, J Steven Morris4 and Margaret R Karagas4

Abstract

Background: Limited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure,
particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic
concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap
water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest.

Methods: Associations between toenail arsenic and consumption of 120 individual diet items were quantified
using general linear models that also accounted for household tap water arsenic and potentially confounding
factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations
between log-transformed toenail arsenic and each diet item differed between subjects with household drinking
water arsenic concentrations <1 μg/L versus ≥1 μg/L.
Results: As expected, toenail arsenic concentrations increased with household water arsenic concentrations.
Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption
was detected, but there was a positive association with consumption of dark meat fish, a category that includes
tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and
consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations
were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and
cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water
(≥1 μg/L).
Conclusions: This study suggests that diet can be an important contributor to total arsenic exposure in U.S.
populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US
warrants consideration as a potential health risk.

Keywords: Biomarkers, Drinking water, Population-based study, Food borne exposure, Rice, Fish

Background
Exposure to arsenic has been linked to a variety of
adverse human health effects, including skin lesions;
skin, lung, and bladder cancer; vascular diseases; low
birth weight; and potentially diabetes mellitus and
increased susceptibility to infection [1-3]. Although
human exposure to the more toxic, inorganic forms of
arsenic is thought to occur primarily through drinking

water [3,4], elevated concentrations of arsenic in certain
foods may pose an additional risk to consumers (e.g., [2]).
Foods with particularly high total arsenic concentrations
include fish and seafood [5-9]; cereals and cereal products,
particularly rice and rice-based products [5-7,10,11]; and
bran and germ [2]. Using diet data and physiological
models to estimate total arsenic exposure, Xue et al. [12]
found that fruits and fruit juices, vegetables, and beer and
wine also can be important sources of dietary arsenic;
more recent studies document high arsenic concentrations
in cruciferous vegetables in particular [13]. Importantly,
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the form of arsenic differs among these different types of
food: the arsenic in seafood is primarily in putatively less
toxic, organic forms such as arsenobetaine, arsenolipids,
and arsenosugars [9,14], while the arsenic in most other
items includes both inorganic and organic forms of arsenic
that have been associated with toxicity [2].
Estimates of arsenic intake based on dietary patterns

and arsenic concentrations in individual food items
suggest that food can be a significant source of arsenic
in Western diets. For example, a recent, comprehensive
report by the European Food Safety Authority (EFSA)
concluded that some Europeans, especially children,
may be consuming appreciable levels of arsenic through
food [2]. Moreover, Xue et al. [12] estimated that the
general U.S. population may be at greater risk of exposure
to arsenic via food than drinking water, supporting similar
conclusions by previous researchers [7,15-17]. Pregnant
women, infants, children, the elderly, and those with
compromised immune function could be particularly
vulnerable to the health effects of dietary arsenic exposure
[1,12,18].
Despite these advances, neither the EFSA report [2]

nor previous research (e.g., [6]) has specifically evaluated
exposure via diet after accounting for exposure to arsenic
via the household water supply used for drinking and
cooking. Therefore, as part of ongoing studies of arsenic
and cancer risk, we evaluated the relationships between
long-term diet, as reported by subjects using a validated
food-frequency questionnaire, and total arsenic concen-
trations in toenail clippings in a population with vary-
ing exposure to arsenic via household water. Toenail
clippings provide a biomarker of exposure over the past
2–18 months [6,19-25]: ingested inorganic arsenic
circulating through the body binds irreversibly to the
sulfhydryl groups in keratin at the base of the growing
nail [22,26], which then grows out to be clipped some
months later. Previous research indicates that arsenic in
toenail clippings is positively correlated with arsenic
concentration in the household water at water arsenic
concentrations ≥1 μg/L [19,26-28] but is only weakly
associated when concentrations are <1 μg/L [19]. One
plausible explanation for the latter is that dietary exposure
explains more of the variability in toenail arsenic in
individuals with little exposure via drinking water. Here,
we evaluate whether associations between overall body
burden (as indicated by toenail arsenic concentration)
and potential dietary exposure from individual food
items differ with exposure via drinking water.

Methods
Study population
We analyzed existing data from population-based case–
control studies of bladder and skin cancer conducted
among 25 to 74 year old residents of New Hampshire

[29-33]. Groundwater arsenic concentrations for this pop-
ulation vary from <0.0003 to 180 μg/L [34-36], creating
a natural gradient of exposure to inorganic arsenic via
drinking water. The Committee for the Protection of Hu-
man Subjects (CPHS) of Dartmouth College approved study
materials and protocols (current CPHS #10107 & #11697)
and participants provided informed consent according to
the approved protocol.

Data collection
In this study, we evaluated the association between
arsenic in toenail clippings, household water arsenic,
and average daily consumption of 120 different diet
items for which data were available. Study participants
provided toenail clippings and a household tap water
sample for analysis of total arsenic concentration using
previously established protocols [19,37]; most of the
arsenic in both of these matrices is likely to be in the
inorganic form (see e.g., [38] and [22], respectively).
Toenail clippings (mass 0.04 ± 0.01 g, mean ± 1 standard
deviation [SD]) were analyzed at the University of
Missouri Research Reactor Center using standard-
comparator instrumental neutron activation analysis
(NAA). Nails were washed carefully to remove external
contamination, freeze-dried, and then stored in sealed
vials until testing [19,37]. Samples, certified reference
material, and a keratin quality control sample were
irradiated for 60 min at a thermal neutron flux of 8 ×
1013 neutrons cm-2 s-1, then live-counted for 2 hours
at a sample-to-detector distance of ~10 cm using a
high resolution gamma-ray spectrometer after a decay
period of ~24 hours. Arsenic was calculated from the
559-keV gamma ray from the decay of As-76, relative
to known standards and after correction for physical
decay. Quality control samples were within 1 SD of
the expected value [19].
Drinking water samples were analyzed in the Dartmouth

Trace Element Analysis Core using a Finnigan MAT
GmbH ELEMENT high resolution inductively coupled
mass spectrometer equipped with an MY hydride generator
(Finnigan MAT GmbH, Bremen, Germany) [19]. Samples
were acidified to pH 1 with ultrapure nitric acid upon
arrival at the laboratory, then spiked with Suprapur
H2O2 (Merck KGaA, Darmstadt, Germany) to 0.01% at
least 24 hours prior to analysis. During analysis, hydride
generation was used to separate arsenic from ArCl +
species, increasing the ability to detect arsenic at con-
centrations <5 μg/L [19].
Participants also completed a written, validated, semi-

quantitative food frequency questionnaire (FFQ) [39,40]
to quantify diet over the previous year. An annual FFQ
should provide a good match to the time scale over which
the toenail clippings provide an integrated measure of
exposure [6,37]. The FFQ asked about the consumption of
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specific portion sizes of 120 different items from seven
broad categories (dairy, fruits, vegetables, eggs and
meat, breads, beverages, and baked goods) over the
previous 12-month period; we analyzed associations
between toenail arsenic and each of these diet items.
We converted all responses to servings per day using
the midpoint of each interval and assuming that a
month has 30 days (Additional file 1: Table S1). When
participants skipped a question, we set the frequency of
consumption to missing. As in MacIntosh et al. [6], we
focused on whole foods; the associations between toenail
arsenic concentrations and micronutrient and vitamin
consumption, both with and without supplements, were
analyzed separately [41].
In addition, participants were interviewed, usually in

their home, to obtain information on sociodemographic
and lifestyle factors (e.g., smoking history, drinking water
source, [33]) that may have affected the association
between toenail arsenic concentration, drinking water
arsenic concentration, and individual diet items.

Statistical analyses
Prior to analysis, we normalized data on toenail arsenic
concentrations using natural-log (ln) transformation.
Analyses reported here exclude the 70 subjects who
did not report using their household water for drinking
and cooking as well as subjects who did not meet the
caloric thresholds suggested by Willett [42]: 18 men
below 800 calories and 13 above 4000 calories, and
three women below 500 calories and four above 3500
calories. We also excluded from the analysis one individ-
ual with an extremely high toenail arsenic concentration
(7.6 μg/g), which was 420% higher than the next highest
concentration [41]. This left us with a sample size of
852 subjects, down from 934.
In all analyses, we accounted for the previously observed

non-linear association between toenail arsenic concen-
trations and household water arsenic concentration [19]
by including natural-log transformed household water
arsenic, an indicator variable [43] for whether subjects
had concentrations of arsenic in household water <1 μg/L
or ≥1 μg/L, and their interaction in a general linear model
(GLM, SAS version 9.2).
We then evaluated associations with the self-reported,

estimated daily rate of consumption of each of the 120
diet items in the FFQ. In the first stage of the analysis,
we determined whether the association between water-
corrected toenail arsenic concentration and each diet
item differed between the two household water arsenic
groups (<1 μg/L vs. ≥1 μg/L) using an interaction between
the consumption rate of the diet item and the indicator
variable for household water arsenic. If there was no
statistically significant (α = 0.05) interaction between the
diet item and the water exposure group, we concluded

that the association between water-corrected toenail
arsenic and the diet item was not affected by water
exposure, and fit a GLM to the full dataset in the
second stage of analysis (Model 1). However, if there
was a statistically significant interaction between the
diet item and the water exposure group, we concluded
that the association between water-corrected toenail
arsenic and the diet item differed between the two
water exposure groups and so conducted analyses
separately for the two groups (Models 2a and 2b). The
slope coefficients ( β̂ ) for each dietary item have the units
natural-log transformed (toenail arsenic concentrations,
μg/g) ● (servings/d)-1.
For those diet items for which the slope coefficient

was statistically significant for the appropriate model
(1 or 2a/2b), we evaluated robustness to extreme values in
the predictors by looking at unadjusted scatterplots, then
recalculating regression coefficients after systematically
deleting visually apparent outliers. Seven diet items were
no longer significant after removal of such values and were
not considered further.
Although associations between toenail arsenic and

demographic characteristics such as age have previously
been described [19], the mechanisms behind these
associations have not been elucidated. For example,
we do not know whether age directly affects toenail
arsenic, or whether age influences diet, which in turn
influences exposure as indicated by toenail concentrations.
We therefore reported “crude” unadjusted associations
between water-corrected toenail arsenic and each diet
item, as well as analyses after adjustment for covariates
that were deemed important from previous literature
[19,44,45], biological plausibility, and univariate associ-
ations [41]. We adjusted for four categorical variables
(sex, smoking status [never/ever], season of toenail collec-
tion, case–control status [control, bladder cancer, basal
cell carcinoma, squamous cell carcinoma]) and three
continuous variables (age, daily intake of water from
the household water source [ounces ● d-1], and total
energy intake [kcal ● d-1]).
To help interpret regression coefficients from these

adjusted models, we determined the percent change in
predicted (back-transformed) toenail arsenic concentrations
between 5th percentile and 95th percentile consumers for
each food, using an approach similar to that described in
Gruber et al. [41]. Predictions were made for non-smoking,
control subjects whose toenails were collected during
the most common season (fall), separately for males
and females at the mean age, caloric consumption, and
water consumption for their sex. For Model 1 foods
(those for which associations were consistent across
household water arsenic concentrations), we used the
overall median household water concentration. For
Model 2 foods (those for which associations differed
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between water arsenic exposure groups), we used the
median household water concentration for the appropriate
exposure group.
We accounted for multiple testing across the individual

foods using the false discovery rate (FDR) procedure
implemented in the R package qvalue [46]. Specifically,
we calculated the Q-value, the minimum FDR at which
a test may be called statistically significant [47], from
the combined list of P-values for the association with
each of the 120 foods, as generated by the appropriate
model (1, 2a or 2b). We considered variables with a
Q-value > 0.1 as less likely due to multiple testing.

Results
The 852 individuals in our study had a median arsenic
concentration in the household tap water of 0.30 μg/L
and a median toenail arsenic concentration of 0.085 μg/g.
Mean arsenic concentrations in toenails were lower for
those with household water arsenic concentrations <1 μg/L
than in the group with household water arsenic ≥1 μg/L
(Table 1). Fifty-two individuals had household water
arsenic concentrations at or above the EPA drinking
water standard of 10 μg/L.

Individuals with <1 μg/L vs. ≥1 μg/L water arsenic were
similar with respect to gender, smoking status, case status,
and the season of toenail collection (Table 1). Further,
there was comparability between groups in age, energy
intake, and amount of water consumed from the house-
hold source each day (Table 1).
In interpreting the results of our general linear models,

we focused on the foods known to be high in arsenic (e.g.,
rice, seafood [2]) and those foods that were statistically sig-
nificant after correction for multiple testing (Q-values
≤0.1), based on the models that included potential con-
founders. Although the statistical significance of some rela-
tionships depended on whether we used crude or adjusted
models to evaluate associations between water-corrected
toenail arsenic and diet, the direction of effects (i.e.,
whether associations were positive or negative) was robust
to the inclusion of potential confounding variables.
For 116 of the 120 foods investigated, the association

between water-corrected ln-transformed toenail arsenic
and diet did not differ by whether arsenic was present
in the drinking water supply at concentrations ≥1 μg/L
(i.e., the interaction term between the indicator variable
and the diet item was not statistically significant). We

Table 1 Summary statistics for the study population

Variable Total Water arsenic Water arsenic

population <1 μg/L ≥1 μg/L

Drinking water arsenic (μg/L) 2.72 (0.35) 0.27 (0.01) 10.86 (1.36)

Toenail arsenic (μg/g) 0.12 (0.005) 0.10 (0.004) 0.19 (0.02)

Age (years) 61.1 (0.3) 61.2 (0.4) 60.7 (0.7)

Intake from household tap water (# 8 oz. glasses/d) 5.0 (0.1) 5.1 (0.1) 5.0 (0.2)

Energy intake (kcal/d) 1920 (22) 1912 (25) 1944 (42)

Sex

Female 330 [61] 254 [39] 76 [39]

Male 522 [39] 401 [61] 120 [61]

Smoking Status

Never Smoked 275 [32] 208 [32] 67 [34]

Has Smoked 577 [68] 447 [68] 130 [66]

Season

Winter 168 [20] 127 [19] 41 [21]

Spring 171 [20] 137 [21] 34 [17]

Summer 246 [29] 175 [27] 71 [36]

Fall 267 [31] 216 [33] 51 [26]

Case–control Status

Control 211 [25] 167 [25] 44 [22]

Bladder Cancer 248 [29] 168 [28] 62 [31]

Basal Cell Skin Cancer 198 [23] 150 [23] 48 [24]

Squamous Cell Skin Cancer 195 [23] 152 [23] 43 [22]

Legend: Summary statistics are provided first for the total study population (n = 852), and then for the two household drinking water exposure groups: <1 μg/L
(n = 655) and ≥1 μg/L (n = 197). Continuous variables are given as mean (SE) and categorical variables as N [%].
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found a positive association with dark meat fish, a category
that includes tuna steaks, mackerel, salmon, sardines,
bluefish, and swordfish and which accounted for about
1.5% of the variation in ln-transformed toenail arsenic
in our adjusted model. Based on this model, toenail
arsenic is predicted to be 7.4% higher among both males
and females eating these fish once weekly (95th percentile
consumers) as compared to less than once per month
(5th percentile consumers, Table 2). In contrast, we did
not detect a clear relationship between toenail arsenic
and rice consumption (adjusted model β̂ for brown
rice = 0.23 ± 0.22 (1 SE), P = 0.29; β̂ for white rice =
0.065 ± 0.15, P = 0.67), although toenail arsenic was
positively associated with two other types of grains:
bran and a miscellaneous category that included bulgur,
kasha, couscous, and other grains (Table 2).
Of all the diet items evaluated, only beer, white wine,

and Brussels spouts were statistically significant after
correction for multiple testing (Table 2). Alcoholic bev-
erages – beer and white wine, and to a lesser extent red
wine – were positively associated with toenail arsenic;

partial R2 for these effects ranged from 1.1-2.4% in the
adjusted models. Associations with alcohol consumption
differed by sex. In men, predicted toenail arsenic con-
centrations are >30% higher in those consuming 2.5
beers/day (95th percentile consumers) as compared to
non-consumers (5th percentile consumers). In women,
predicted toenail arsenic is >20% higher for those drinking
5–6 glasses of white wine per week (95th percentile
consumers) compared to those who did not drink this
beverage (5th percentile consumers). Increased consump-
tion of Brussels sprouts was also positively related to
toenail arsenic: the models predict a 10% increase in
toenail arsenic when consumption increases from never
eating Brussels sprouts (5th percentile consumers) to eating
them once per week (95th percentile consumers) (Table 2).
Other associations between diet items and toenail

arsenic were not statistically significant after correction
for multiple testing (Table 2). For example, we detected
positive associations with tofu and other soy products,
cantaloupe, raw carrots, celery, eggplant or zucchini, and
red chili sauce, and inverse associations with consumption

Table 2 Diet items that were associated with toenail arsenic across the whole population

Crude models1 Adjusted models2

% change from 5th

to 95th percentile
consumers3

Category Item β̂ ± SE4 P partial R2 β̂ ± SE P partial R2 Males Females

Meats Dark meat fish (tuna steak, mackerel, salmon,
sardines, bluefish, swordfish, 3–5 oz)

0.50 ± 0.22 0.025 0.8% 0.62 ± 0.22 0.004 1.5% 7.4 7.4

Beef, calf, or pork liver (3–4 oz.) −1.21 ± 0.52 0.019 0.9% −0.89 ± 0.50 0.073 1.1% −5.8 −5.8

Hamburger (1 patty) −0.32 ± 0.15 0.034 −0.1% −0.32 ± 0.15 0.038 −0.3% −12.6 −12.6

Dairy Eggs (1) −0.12 ± 0.05 0.036 0.4% −0.10 ± 0.05 0.060 0.3% −7.7 −7.7

Grains Bran, added to food (1 Tbsp) 0.14 ± 0.08 0.094 0.4% 0.15 ± 0.08 0.048 1.0% 0.9 6.0

Other grains (bulgur, kasha, couscous, etc.: 1 cup) 1.26 ± 0.46 0.006 1.9% 0.80 ± 0.45 0.074 2.4% 5.5 12.1

Cold breakfast cereal (1 cup) −0.12 ± 0.05 0.014 1.1% −0.10 ± 0.05 0.039 1.2% −11.6 −11.6

Fruits Cantaloupe (1/4 melon) 0.22 ± 0.12 0.079 0.7% 0.25 ± 0.12 0.039 1.0% 9.7 9.7

Vegetables Brussels sprouts (1/2 cup) 0.69± 0.27 0.010 0.3% 0.89 ± 0.26 0.001 1.0% 10.4 10.4

Raw carrots (1/2 carrot or 2–4 sticks) 0.18 ± 0.08 0.025 0.4% 0.15 ± 0.08 0.048 0.7% 7.9 14.9

Celery (4" stick) 0.25 ± 0.10 0.010 0.3% 0.29 ± 0.09 0.002 0.8% 11.3 21.8

Eggplant or zucchini (1/2 cup) 0.44 ± 0.18 0.017 0.8% 0.37 ± 0.18 0.047 1.2% 6.5 20.8

Tofu or soybeans (3–4 oz.) 0.58 ± 0.26 0.025 0.3% 0.46 ± 0.25 0.063 0.7% 3.1 6.8

Salsa/red chili sauce (1 Tbsp) 0.53 ± 0.18 0.003 0.6% 0.33 ± 0.17 0.057 0.9% 4.8 4.8

Beverages Beer, regular (1 glass, bottle, or can) 0.11± 0.03 0.001 0.8% 0.11± 0.03 0.001 1.1% 32.0 4.9

Red wine (5 oz glass) 0.12 ± 0.05 0.012 0.5% 0.14 ± 0.05 0.003 1.3% 12.9 5.3

White wine (5 oz glass) 0.27± 0.06 0.000 1.9% 0.27± 0.06 0.000 2.4% 12.1 23.3

Legend: Model results for the diet items with statistically significant associations with ln-transformed toenail arsenic, adjusted for tap water arsenic. Sample sizes
ranged from n = 807-843. Bolding indicates a Q-value < 0.1.
1“Crude” indicates the model with adjustment for tap water arsenic only.
2“Adjusted” indicates the model with adjustment for tap water arsenic, age, sex, caloric intake, daily water consumption, smoking status, case–control status, and
season of toenail collection.
3These columns summarize the percent change in predicted toenail arsenic concentration from 5th to 95th percentile consumers for males and for females; gender
is included since males and females consumed some diet items (e.g., beer, wine) differently.
4Units for the estimated coefficients are natural-log transformed (toenail arsenic concentration, μg/g) ● (servings/d)-1.
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of cold breakfast cereals; eggs; beef, calf, or pork liver;
and hamburger (Table 2).
The associations for four foods differed according to

household tap water arsenic concentration (Table 3).
For cooked oatmeal/oat bran and beans or lentils, the
association was stronger among those with ≥1 μg/L
water arsenic. For hot dogs and liquor, the direction of the
association changed for those with <1 μg/L vs. ≥1 μg/L
water arsenic (Table 3). None of these associations
remained statistically significant after adjustment for
multiple testing.

Discussion
We found that increased consumption of a number of
individual diet items, including some but not all of the
items expected to be high in arsenic concentrations, was
associated with increasing toenail arsenic concentrations
in this U.S. population. Importantly, although toenail
arsenic increased with household water arsenic, we de-
tected few interactions between household water arsenic
and diet; this suggests that responses to dietary arsenic
exposure were not highly sensitive to exposure via water.

Grains, especially rice
We expected to find an association between toenail
arsenic and rice consumption because elevated con-
centrations of arsenic in rice are well documented,
both in the U.S. [48-50] and in Southeast Asia [51-54].
Moreover, previous studies have found positive associations
between rice consumption and arsenic concentrations
in both urine [55-58] and toenails [6]. However, rice
consumption was relatively low in this study population:
the median study participant reported eating no brown
rice and eating white rice just 1–3 times per month. By
contrast, consumption rates were higher in studies relating
rice consumption and urinary arsenic concentrations

[55-58], consistent with a per capita rice consumption
in the United States of about 0.4 cup of cooked rice per
day (derived from USDA commodity consumption data
[59]), with some sub-populations consuming up to 2.2
cups per day [60]. Thus, consumption of rice grains in
this study population was probably not sufficiently
high to leave a signal in a long-term biomarker like
toenail clippings. More work is needed to evaluate the
association between rice consumption and long-term
biomarkers like toenail clippings in a population that
regularly consumes rice.

Fish and seafood
Many previous studies have found that fish have high
total arsenic concentrations compared to other food
items [5,7] and that fish and seafood contribute a large
part of human exposure to total arsenic [2,5-7,12,61].
However, the arsenic in these items is expected to be
predominantly in organic forms that are excreted from
the body without undergoing biotransformation, such as
arsenobetaine and arsenocholine [9]. Thus, our finding
of elevated toenail arsenic – which is primarily in inorganic
forms [22] – in subjects who consumed more dark meat
fish (tuna steak, mackerel, salmon, sardines, bluefish,
or swordfish), but not more fish overall, is somewhat
unexpected. We do not have data on arsenic speciation
for the fish consumed by our study population, but
speculate that the forms of arsenic in these types of fish
may be qualitatively different from other types of seafood:
that is, some of the organic arsenic in these fish might be
biotransformed to inorganic forms within the body that
then circulate through the bloodstream before being
incorporated into nails. This speculation will need to
be assessed in further work that includes detailed data
on the species of arsenic found in an individual’s diet as
well as both urinary and toenail arsenic biomarkers.

Table 3 Diet items that were differentially associated with toenail arsenic depending on household water arsenic

Tap water arsenic <1 μg/L Tap water arsenic ≥ 1 μg/L

Category Food β̂ ± SE 2 P partial
R2

%Change from 5th

to 95th percentile
consumers1 β̂ ± SE P partial

R2

% Change from 5th

to 95th percentile
consumers1

Males Females Males Females

Meats Hot dogs (beef or pork) −0.457 ± 0.192 0.018 0.8% −18.2 −6.5 0.564 ± 0.356 0.115 1.1% 34.7 10.5

Grains Cooked oatmeal or
cooked oat bran (1 cup)

0.085 ± 0.099 0.394 0.8% 1.4 2.6 0.539 ± 0.178 0.003 3.2% 18.2 35.8

Vegetables Beans or lentils, baked,
dried, or soup (1/2 cup)

0.194 ± 0.201 0.335 0.6% 6.6 6.6 1.144 ± 0.398 0.005 2.6% 30.0 30.0

Beverages Liquor, e.g., whiskey, gin,
vodka (1 drink or shot)

0.080 ± 0.034 0.019 1.5% 11.7 4.5 −0.119 ± 0.078 0.126 −0.3% −16.3 −6.9

Legend: Model results for the diet items for which the associations with ln-transformed toenail arsenic concentration, adjusted for tap water arsenic concentrations
and potential confounders, depended on whether the household tap water arsenic concentration was above or below 1 μg/L. Sample sizes ranged from n = 627-
648 for tap water arsenic <1 μg/L and n = 194-195 for tap water arsenic ≥ 1 μg/L.
1These columns summarize the percent change in predicted toenail arsenic concentration from 5th to 95th percentile consumers for males and for females; gender
is included since males and females consumed some diet items (e.g., beer, wine) differently.
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Negative associations with toenail arsenic were found
for several foods that may be considered alternatives to
fish: eggs; beef, calf, or pork liver; and hamburger in
the population as a whole, and hot dogs in the group
with drinking water arsenic <1 μg/L. MacIntosh et al.
[6] suggested that individuals who tend to consume
these types of foods tend not to eat as much seafood.
Future analyses exploring dietary patterns of “fish eaters”
and “non-fish eaters” in other populations may help to
further elucidate those at highest risk of arsenic exposure
via diet.

Alcoholic beverages
Our findings of increased toenail arsenic with increased
consumption of beer and wine are consistent with pre-
vious modeling studies [12] as well as epidemiological
studies with both toenail [6] and urinary [62-64] arsenic
biomarkers. This study was not designed to address the
mechanisms behind this finding, but we can speculate
based on previous research that high arsenic content in
these beverages and/or impairment of arsenic detoxification
processes within the body may be responsible. For example,
beer and wine may themselves be a source of dietary
arsenic due to contamination of key ingredients such as
hops, rice, and grapes [3,38,65,66]. Alternatively, the
use of diatomaceous earth in filtering these beverages
prior to consumption could be responsible for such an
association [67]. Moreover, past or current alcohol con-
sumption was associated with increased total urinary
arsenic concentrations in a study of bladder cancer in
Taiwan [62]. Additionally, among individuals exposed to
varying levels of water arsenic contamination, consumers
of one or more alcoholic beverages per week had
significantly higher proportions of inorganic urinary
arsenic species when compared to individuals who
consumed no alcoholic beverages [63,64], suggesting
that alcohol may impair the body’s ability to metabolize
inorganic arsenic. Unfortunately, we could not address
the issue of alcohol effects on arsenic metabolism as
nearly all toenail arsenic is in the inorganic form [22],
and few data are available on arsenic speciation in these
beverages. Nonetheless, our results confirm previous
studies suggesting that alcoholic beverages should be
taken into account when evaluating exposure to arsenic
via diet [12].

Fruits and vegetables
Although we did not observe any associations with
particular fruits or vegetables containing specific vitamins
or micronutrients known to enhance arsenic detoxifica-
tion [41,45], we did find that several vegetables and one
fruit were positively associated with water-corrected
toenail arsenic, consistent with the modeling study of
Xue et al. [12]. However, only the association with

Brussels sprouts remained statistically significant after
correction for multiple testing. This finding is consistent
with recent studies documenting high concentrations
of arsenic in Brussels sprouts and other cruciferous
vegetables [13] that may result from their high concentra-
tions of sulfur; arsenite is known to bind preferentially
to sulfur-containing compounds [68] as part of cellular
detoxification of arsenic in plants [69]. As such, further
evaluation of Brussels sprouts and other cruciferous
plants containing high concentrations of sulfur [70] may
be warranted, especially in geographic areas where soils
or irrigation water may contain high concentrations of
arsenic.

Foods cooked in water
In addition to Brussels sprouts, toenail arsenic was related
to consumption of several other foods that are often – but
not always – cooked in water, including oatmeal and
legumes (beans or lentils). This was more evident for the
sub-population with household water arsenic concentra-
tions ≥1 μg/L, although not statistically significant after
correction for multiple comparisons. These relationships
might reflect arsenic exposure from cooking water rather
than from the uncooked foods themselves. However, we
do not have information about the exact processes used in
preparing these foods, and there were no associations
for many other foods cooked in water (e.g., rice, pasta,
potatoes, other vegetables). Thus, it is not clear whether
it is the water or these foods themselves that are driving
this association.
The EFSA report [2] noted that cooking foods in con-

taminated water could increase dietary arsenic exposure.
Arsenic concentrations in cooking water, the type of food
processing, time, temperature, and cooking medium can
all affect arsenic concentrations in prepared final products.
For example, arsenic concentrations in prepared rice
[71-73] and vegetables [74] can be higher than in the
raw foods when cooked in arsenic-contaminated water.
However, cooking rice in excess water – even if the
water itself is contaminated with arsenic – can reduce
the arsenic concentrations in the prepared product
[75]. Why Brussels sprouts, oatmeal and beans/lentils
emerged from our analysis, but not other foods that are
often cooked in water, such as rice, requires further
scrutiny and replication in other study populations.

Potential limitations
There are some limitations to this study. First, as noted
above, we do not have information about the species
of arsenic – inorganic versus organic, or the kinds of
organic arsenic – consumed by the study participants.
Thus, although we can report associations between in-
dividual diet items and toenail arsenic, which reflects
inorganic arsenic circulating in the body [22,25], we
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cannot infer the potential toxicity of arsenic exposure
via diet. Second, although toenails can have limitations
as biomarkers due to variability in growth rate among
individuals, the risk of external contamination, and in-
consistent protocols for collection and analysis [23],
we have minimized these problems in this study by
comparing toenail samples to diet information over a
12 month time frame, collecting toenails immediately
after bathing and sonicating them prior to analysis, and
using standardized analytical procedures for all subjects
[41]. Third, although we have matched the temporal scale
of our dietary information to that represented by toenail
clippings, food frequency questionnaires are less precise
relative to other tools such as dietary records [76]. Because
our data on consumption rates are likely to be less precise
than our estimates of toenail arsenic concentration, we
have violated the assumption that the predictor variables
are known more precisely than the response variable.
Fortunately, this violation tends to bias results towards
the null [77], and so should not result in false positive
findings. Finally, while we adjusted for case status,
many of the participants were cancer cases. Although
this could affect the generalizability of our findings
since it is plausible that these individuals process
arsenic differently than non-cancer cases [41], the asso-
ciations with dark meat fish, white wine, beer and
Brussels sprouts were also present in analyses only of
control subjects (data not shown).

Conclusions
We found that arsenic concentrations in toenail clippings,
a known biomarker of exposure [19,21,23], were corre-
lated with individual diet items, particularly alcoholic
beverages and Brussels sprouts, but also dark meat fish.
Some foods cooked in water also were associated with
higher toenail arsenic concentrations, especially among
those with higher water arsenic concentrations, suggesting
that exposure might be reduced by using alternative
water sources in cooking or by using alternative cooking
procedures. The fact that several diet items each
accounted for 1-2% of the variability in log-transformed
toenail arsenic even after correction for water exposure
suggests that food is an exposure route likely to impact
the population as a whole, regardless of drinking water
arsenic concentrations. Further research is needed to iden-
tify patterns of dietary exposure that may pose particular
risk, especially in populations expected to be vulnerable
to exposure, such as pregnant women and infants [2].
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