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Abstract

Background—The purpose of this study was to determine if dietary manipulation can reliably 

induce early-stage atherosclerosis and clinically relevant changes in vascular function in an 

established, well-characterized nonhuman primate model.

Methods—We fed 112 baboons a high cholesterol, high fat challenge diet for two years. We 

assayed circulating biomarkers of cardiovascular disease (CVD) risk, at 0, 7, and 104 weeks into 

the challenge; assessed arterial compliance noninvasively at 104 weeks; and measured 

atherosclerotic lesions in three major arteries at necropsy.

Results—We observed evidence of atherosclerosis in all but one baboon fed the two-year 

challenge diet. CVD risk biomarkers, the prevalence, size, and complexity of arterial lesions, plus 

consequent arterial stiffness, were increased in comparison to dietary control animals.

Conclusions—Feeding baboons a high cholesterol, high fat diet for two years reliably induces 

atherosclerosis, with risk factor profiles, arterial lesions, and changes in vascular function also 

seen in humans.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mortality worldwide1–3, accounting 

for nearly 50% of the deaths (Global status report on noncommunicable diseases 2010; 

http://www.who.int/nmh/publications/ncd_report_full_en.pdf). CVD encompasses a broad 

range of disorders of the cardiovascular system, including coronary heart disease, 

cerebrovascular disease, and peripheral artery disease. The underlying cause of these 

diseases is atherosclerosis - a complex disorder in which a host of different intrinsic and 

extrinsic processes and factors contribute to the development of lesions that eventually 

compromise normal vascular function4.

Baboons (Papio hamadryas ssp.) have been used to great advantage in studies of biological 

and environmental factors known to influence variation in risk for CVD in humans for over 

60 years5. The baboon has been one of the more thoroughly genetically characterized 

nonhuman primate species during the past 3 decades and, as such, the goals of a majority of 

CVD-related studies utilizing baboons have been the detection, characterization, and 

identification of genes6–8. However, in the “post genomics” era their value may be more 

fully realized in experimental studies focused on mechanisms of development and 

progression of atherosclerosis with clear and direct translational implications for its 

diagnosis, prevention, and treatment. The baboon satisfies the majority of key criteria of an 

ideal animal model for many studies of CVD and related disorders. The species mimics the 

human subject developmentally, metabolically and pathophysiologically9–11; it is large 

enough to allow repeated whole organism physiological and metabolic studies; it naturally 

develops atherosclerosis and exhibits similar responses to an atherogenic diet, including 

dyslipidemia and susceptibility to atherosclerosis. Also like humans, baboons exhibit 

individual variation in the extent of atherosclerotic lesions and have been shown to develop 

end-stage disease(s) comparable to those in humans9, 12, 13. Moreover, as in humans, 

quantitative variation in traditional CVD risk factors is heritable in baboons5. Several studies 

have confirmed and identified novel genes that play roles in the mediation of response to 

atherogenic diets (e.g.,6, 8, 14–16). Further, baboon growth, development, maturation, and 

aging follow a generalized Old World primate pattern17–20 shared with humans, and their 

longer lifespans compared to small animal models provide unique opportunities to better 

observe the development and progression of atherosclerosis, its comorbidities, and 

consequent disease end-points. These characteristics correspond to those of the “ideal 

animal model” for CVD-related studies – i.e., one likely to have potential for more 

immediate translation to humans13.

Many researchers eschew the baboon and related nonhuman primates in favor of smaller, 

shorter-lived, less phenotypically and genetically variable animals like inbred mice, despite 

well recognized dissimilarities of the latter to the human condition21. The most frequently 

raised reasons for this are the greater time and expense associated with breeding and 

developing atherosclerosis in a nonhuman primate like the baboon12, 13. These concerns 

likely are amplified by a common misperception that genetic variability in non-inbred 

baboon breeding colonies makes model development unpredictable, necessitating larger 

initial sample sizes, which further increase total costs before data collection can even 

begin21.
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In this paper, we demonstrate that the baboon is a reliable animal model for studies related 

to onset, severity, and progression of atherosclerosis. We show that simple dietary 

manipulation (i.e., addition of cholesterol and saturated fat) for two years induces the classic 

features of early stage atherosclerosis – fatty streaks and fibrous plaques22 – as well as 

increased stiffness in the large and medium arteries (decreased vascular compliance), a 

hallmark of arteriosclerosis. Thus, a salient link between atherosclerosis and consequent 

CVD can be produced predictably in a time frame that accommodates a majority of current 

study designs. The data presented are derived from a recently completed phase of a long-

term study of the interaction between diet and genes underlying variation in atherosclerosis 

risk factors in baboons from a single, large, six-generation pedigree, the members of which 

have been extensively characterized – genetically and phenotypically5.

MATERIALS AND METHODS

Humane Care Guidelines

All research procedures involving animals for this study were conducted in facilities 

certified by the Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) International at the Southwest National Primate Research Center (SNPRC) in 

San Antonio, TX. All procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee at the Texas Biomedical Research Institute, the host institution for 

the SNPRC.

Subjects and Diets

The subjects of the study were 173 baboons [olive baboons (Papio hamadryas anubis), 

yellow baboons (P. h. cynocephalus), and their hybrid descendants], all of which were 

members of a large pedigreed breeding colony developed and maintained at the SNPRC.

The study utilizes data from two groups of baboons distinguished by diet protocols. Baboons 

in the control diet group were fed a basal diet, low in cholesterol and fat (LCLF), for at least 

7 years prior to, and for the duration of, this study. Baboons in the experimental diet group 

were fed the LCLF diet prior to beginning a two-year dietary challenge with a diet high in 

cholesterol and saturated fat (HCHF). Data for animals in this group were obtained just prior 

to beginning the two-year HCHF diet challenge (while on LCLF diet), at seven weeks, and 

at the end of two-year period. Table 1 shows the composition of the basal (LCLF) diet and 

the base diet used to prepare to atherogenic HCHF diet (respectively, “Monkey Diet 15%/

5LEO” and “Monkey Diet 25/50456,” LabDiet, St. Louis, MO). To make the HCHF diet, we 

add a mix of lard, cholesterol, sodium chloride, vitamins [ascorbic acid and vitamin A (a 

retinyl acetate)], and water to the base diet (Table 1). Our analyses of the resulting 

atherogenic HCHF diet reveal the following23. Metabolizable energy is approximately 3.8 

kcal/g; fats and carbohydrates each make up approximately 40% of calories, with proteins 

comprising 20%. The composition of total fatty acids, determined by gas-liquid 

chromatography of the fatty acid methyl esters [on DB-225 column (15 m), J&W Scientific], 

is saturated fatty acids: myristic (1.7%), palmitic (24.9%), and stearic (17.9%); 

monounsaturated fatty acids: palmitoleic (2%) and oleic (38.7%); and polyunsaturated acids: 

linoleic (13.9%) and linolenic (0.9%). All baboons in the study were fed daily and allowed 

Mahaney et al. Page 3

J Med Primatol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to eat ad libitum. The approximate mean per animal daily intake of the LCLF diet is 500 g 

(~1500 kcal) and that for the HCHF diet is 400 g (~1200 kcal). Respectively, the mean 

amount of cholesterol consumed daily by animals on each of these diets is approximately 30 

mg and 2230 mg (the latter being equivalent to that in 10–12 large eggs).

Control diet groups—There were two control groups consisting of animals fed only the 

LCLF basal diet for most of their lives, including two years prior to data collection. As the 

control group for the arterial lesion study (see below), we selected 20 adult baboons: 9 

females and 11 males (mean age = 12.6 years, range = 7.2 to 18.4 years). A second control 

group, for the arterial compliance study, was made up of 41 animals: 11 females and 30 

males (mean age: 11.7 years, range: 8.9 to 17.4 years).

Experimental diet group—The experimental diet group included 112 baboons: 47 

females and 65 males. Ages ranged from 8.1 years to 17.0 years. Mean age for the females 

was 12.6 years (range = 8.7 to 17.0 years) and that of the males was 11.4 years (range = 8.1 

to 14.1 years).

Arterial lesions

We assessed lesion formation in three major arteries: the aortic arch, thoracic section of the 

descending aorta, and the common iliac artery. Atherosclerosis in these three arteries has 

been shown to be relevant to systemic risk of the disease and its complications in humans. 

Aortic arch atherosclerosis is an independent risk factor for ischemic stroke and recurrent 

vascular events24–26; atherosclerosis in the thoracic aorta is strongly predictive of 

generalized atherosclerosis24 and coronary artery disease27, 28; and the common iliac arteries 

are the second most frequently affected blood vessels (after the arteries of the thigh) in 

atherosclerotic peripheral artery disease29. These associations have been replicated in earlier 

studies of baboons from this same pedigreed breeding colony30, 31.

For the lesion studies, baboons in the control and experimental diet groups were humanely 

euthanized and subjected to a standard necropsy procedure. Baboons in the experimental 

group were euthanized after two-years on HCHF diet. The three above noted arteries were 

defatted and dissected longitudinally. Adventitial surfaces were adhered to chip-board, and 

the arteries were fixed in buffered 10% formalin and stained for 18 h with Sudan IV in 38% 

isopropanol (v/v) made up as a stock solution and diluted to a consistent optical density (i.e., 

A520nm=0.22±0.01)32.

A team of research support staff, trained by an experienced cardiovascular pathologist, first 

identified fatty streaks and raised fibrous lesions (plaques) by visual inspection of the stained 

arterial sections. The same team assessed all arteries from which data for this study were 

obtained. Members of this team, trained by an experienced histomorphometrist, quantified 

the extent of atherosclerotic lesions (i.e., percent area covered by fatty streaks, plaques, or 

both when each was present) on arterial surfaces using BioQuant Image Analysis software 

(Nashville, TN) as previously described33). Briefly, an entire artery was photographed and 

images imported into the BioQuant software. Subsequently, regions in the imager 

corresponding to lesion were scanned to obtain the fraction of pixels in affected regions 

compared to the entire artery template. The fraction of involved pixels represented the 
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percent of intimal surface area or the extent of a specific type of lesion in a given artery as 

explained33. Age- and sex-adjusted residuals of these measures were normalized (inverse 

Gaussian transformation).

Arterial compliance

We used a computerized central blood pressure and pulse wave analysis/pulse wave velocity 

(PWA/PWV) assessment system (AtCor Medical, Itasca, IL) to noninvasively assess 

parameters related to arterial compliance (stiffness) in two cohorts of baboons: 50 animals 

fed the HCHF atherogenic challenge diet for two years and 41 fed the LCLF basal diet for 

two years. Following the validated approach of Lazar et al34 with bonnet macaques (Macaca 
radiata), the chosen peripheral artery was brachial and all assessments were done on the left 

side. We conducted evaluations in animals immobilized with an intramuscular injection of 

ketamine hydrochloride (10 mg/kg) after observing a stable state – i.e., stable pulse rate and 

resting blood pressures within one standard deviation of values observed in previous studies 

of non-anesthetized (tethered) baboons from this same pedigreed colony35. Note: Ketamine 

HCl has been shown to be “a suitable anesthetic for endocrine, metabolic, and 

cardiovascular studies,” including vascular compliance in baboons36, 37, 34 and other Old 

World Monkeys38 because it generally does not significantly affect vascular resistance or 

systemic blood pressure39. We accepted data for analyses only if the operators observed 

consistent, acceptable waveform profiles for at least ten seconds. Acceptable waveforms 

were those with in-device quality indexes (a function of mean pulse height, variation in 

pulse height and diastolic pressure, and the maximum rise of the peripheral waveform) 

greater than 80%. All assessments were performed by research staff after training by both 

the device manufacturer and a veterinary researcher with experience using the device with 

nonhuman primates.

CVD-related biomarkers

We also obtained data on circulating CVD risk factors, including lipids and lipoproteins, 

lipoprotein-related enzymes, and biomarkers of inflammation and oxidative stress from 

fasting blood samples collected at three time points from all animals undergoing the two-

year dietary challenge and at one-time point from animals in the basal LCLF diet control 

group for lesion studies.

Lipids and Lipoproteins—We quantified the concentrations of the following serum 

lipids and lipoproteins. Total serum cholesterol (TSC) and triglyceride (TG) concentrations 

were determined enzymatically using commercial reagents in a clinical chemistry analyzer. 

High density lipoprotein cholesterol (HDLC) was measured in the supernatant after heparin-

Mn+2 precipitation, and non-HDLC (V+LDLC) was calculated as the difference between 

total and HDLC. Concentrations of apolipoproteins AI (APOAI), B (APOB), and E (APOE) 

were determined using an immunoturbidometric approach with commercial reagents in a 

clinical chemistry analyzer. We provide detailed descriptions of the methods used in these 

assays elsewhere6, 40, 41.

We used composite gradient gels to further resolve LDLs and HDLs on the basis of size37 

and Sudan black B to quantify lipoprotein cholesterol size distributions. Fractional 
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cholesterol absorbance among APOB-containing lipoproteins was estimated for the 

following very low density lipoprotein (VLDL) fractions and LDL fractions: VLDL1C (36–

33 nm), VLDL2C (33–30 nm), LDL1C (30–28 nm), LDL2C (28–27 nm), LDL3 (27–26 

nm), and LDL4 (26–24 nm): and HDL fractions: HDL1AC (24–20 nm), HDL1BC (20–13 

nm), HDL2C (13–9.9 nm), and HDL3C (9.9–8.2 nm). From these we estimated serum 

concentration for each fraction by multiplication with non-HDL or HDL cholesterol 

concentrations as appropriate. For cholesterol distributions only, we estimated median 

diameters for APOB-containing lipoproteins (Bmed; 24–36 nm) and HDLs (Hmed; 8.2–24 

nm), which were defined as the diameter where half the absorbance was on larger, and half 

was on smaller, particles. We measured plasma oxidized LDL (OxLDL) concentrations 

(U/L) immunologically using a sandwich-style enzyme-linked immunoabsorbent assay 

(Mercodia Oxidized LDL ELISA; ALPCO Diagnostics, Salem, NH)41.

Lipoprotein-related enzymes—We measured serum activity levels of two lipoprotein-

associated enzymes, lipoprotein-associated phospholipase A2 (Lp-PLA2) and paraoxonase 1 

(PON1) on two substrates. We determined the activity of the APOB associated enzyme, Lp-

PLA2 (µmol/min/L), using 2-thio-PAF as substrate in a commercial microplate-based 

colorimetric assay42). We used a microplate-based colorimetric assay43 to measure the 

activity (µmol/min/L) of HDL-associated enzyme, PON1, with paraoxon as substrate 

(PON1-para) in one case and arylesterase with phenylacetate as substrate (PON1-aryl) in the 

other.

Inflammation and Oxidative Stress—We assayed interleukin-8 (IL8; pg/mL) using a 

sandwich-style enzyme-linked immunoassay kit, as suggested by the manufacturer (R&D 

Systems, Inc.)44. Total antioxidant status (TAS), reflecting the overall antioxidant capacity 

of serum, was defined as the ability to prevent oxidation of 2,2'-azino-di-(3-

ethylbenzthiazoline sulfonate) by metmyoglobin with the use of a kit from Calbiochem (San 

Diego, CA)41. We used a high-sensitivity assay kit (Kamiya Biomedical, Seattle), with a 

latex particle-enhanced immunoturbidometric method, to measure C-reactive protein (CRP) 

concentrations (mg/L). We quantified the Von Willebrand factor (vWF; expressed as 

percentage of an international standard value41) using a sandwich-style enzyme-linked 

immunoassay kit (Diagnostica Stago, Parsippany, NJ).

Data analysis

Summaries of raw data are presented as means, standard deviations, and medians. Unless 

otherwise indicated, data in all analyses were i-normalized residuals of the quantitative 

variables after adjustments for the significant mean effects of common covariates like sex, 

age, body weight, etc. Because the data are derived from related animals (mean kinship 

coefficient = 0.03, between second and first cousins), we used a maximum likelihood-based 

variance decomposition approach, implemented in SOLAR46, that is designed to account for 

kinship in data from pedigrees to estimate both the mean effects of covariates and 

appropriately weighted correlations. We used likelihood ratio tests to assess significance of 

these parameter estimates.
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We used a Bayesian model selection approach, also implemented in SOLAR, to identify the 

subset of the highly inter-correlated CVD risk factors contributing the most independent 

information to lesion extent. Using this method, we computed an approximate Bayes factor, 

the Bayesian Information Criterion (BIC), for each covariate model47. BIC differences 

greater than 2 provide positive evidence of support for one model over another (posterior 

probabilities, PPosterior, ≥ 75%); differences of 6 units indicate stronger support (PPosterior, = 

95%); and differences greater than 10 units indicate posterior probabilities of at least 99%. 

The approach automatically eliminates multiple testing bias and the penalties for it47, 48.

In all tests, α = 0.05. When necessary to control for multiple testing bias in non-Bayesian 

analyses, we used Bonferroni adjusted p-values; even though they are overly conservative, 

given expected intercorrelations among the CVD risk factors. For descriptive analyses in 

which kinship was not an issue, we used statistical routines implemented in the 

commercially available software package NCSS, version 07.1.949.

RESULTS

Arterial lesions

We observe atherosclerotic lesions (fatty streaks and/or plaques) in the aortic arch, thoracic 

aorta, and common iliac artery (Figure 1). Lesions are observed in at least one artery from 

111 of 112 animals (99%) that completed the two-year diet challenge; more than twice the 

40% prevalence observed in the same three arteries harvested from 20 dietary control 

animals. All three arteries are affected in 109 baboons (Table 2). The mean percentages of 

the areas covered by lesions (fatty streaks plus plaques, when the latter are present) in all 

three arteries from the challenge diet group are approximately 2.6 times to 5.0 times larger 

than in those from controls (P<0.0004). Two-sample t-tests show no difference between the 

percentages of areas covered by lesions in the aortic arch and common iliac artery (*P = 

0.694) but the means for each of these arteries differ significantly from that of the thoracic 

aorta (*P = 0.0002).

Extent of atherosclerotic lesions for the aortic arch and thoracic aorta, but not the common 

iliac artery, differ by sex. Mean percentages for areas affected in females are significantly 

greater than that in males in both the aortic arch (P = 0.00052) and the thoracic aorta (P = 

0.000009), but not in the common iliac artery (P = 0.768). These analyses also reveal a 

significant effect of age on lesion extent in the aortic arch (P = 0.0023) and common iliac 

artery (P = 0.039), but not in the thoracic aorta (P = 0.42), even when accounting for the 

possible confounding effect of variation in days on the challenge diet which does exert a 

significant mean effect on percent area covered by fatty streaks in the thoracic aorta (P = 

0.032).

The percentages of the areas in the three arteries covered by atherosclerotic lesions are 

significantly inter-correlated (P < 0.001). The correlations between their extent at the aortic 

arch and each of the other two sites (i.e., thoracic aorta: r = 0.488, r2 = 0.238; common iliac 

artery: r = 0.541, r2 = 0.293) are greater than that between the thoracic aorta and the 

common iliac artery (r = 0.317, r2 = 0.100).
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We observe plaques in only 29 baboons (12 females and 17 males) that completed the 

HCHF diet challenge, but in only four (20%) dietary control animals. The number of plaques 

per challenge diet baboon range from one to seven, versus one to four for the eight affected 

control diet animals.

While we observe no plaques in the thoracic aorta, three individuals (two females, one male) 

have plaques in the aortic arch and 26 (10 females, 16 males) have plaques in the common 

iliac artery. On average, plaques in the aortic arch are smaller than those in the common iliac 

artery (covering 0.2% to 1.0% vs. 0.6% to 6.1% of the intima, respectively).

Atherosclerotic lesion extent is only moderately predictive of the presence and numbers of 

plaques in the 112 animals that completed the two-year dietary challenge (χ2
[3] = 7.96, P = 

0.047) and nominally correlated with plaque size in the common iliac artery (r = 0.353, r2 = 

0.125, P = 0.042).

Circulating biomarkers of CVD risk—Concentrations (or activities) of the majority of 

circulating biomarkers of lipid/lipoprotein metabolism and inflammation show significant 

mean changes in the animals fed the HCHF challenge diet for two years (Figures 2A–2J). 

Values for HDL3C, LDL3C, vWF, and TAS at two-years (Week 104) are not significantly 

different from those at baseline (Week 0). An interesting observation is that all variables, 

except IL8 and TAS, exhibited a significant increase in the first seven weeks of the HCHF 

diet challenge; with the values for the major lipoprotein cholesterol classes, OxLDL, 

LpPLA2, PON-aryl, IL8, and vWF being greater than those after two years.

Concentrations of TSC and other biomarkers within or associated with the β-lipoprotein size 

range consistently show the strongest correlations with extent of lesions in the three arteries, 

as well as with PC1, the first principal component accounting for approximately 70% of the 

covariance among lesion sizes in all 3 arteries (Tables 3A–3C). Significant correlations are 

most pronounced for the aortic arch and common iliac artery. Taking into consideration only 

these significant correlations, the percent of the variance (r2 × 100) shared by the extent of 

lesions with TSC and key β-lipoprotein traits ranges from 9% to 20%. Compared to those 

measured at baseline, more CVD biomarkers assayed at either time point (seven weeks or 

two years) during the dietary challenge are significantly correlated with the extent of lesions 

in the three arteries. The number and means of correlations that are significant after 

Bonferroni corrections are greatest for those based on data from samples collected at seven 

weeks.

Bayesian model selection analyses of the subset of biomarkers exhibiting at least nominally 

significant correlations with the extent of lesions in any artery support the correlation 

analysis results and identify LDL1C (i.e., large LDL particles between 28 and 30 nm in 

diameter), measured at seven weeks on the HCHF diet, as the single best predictor of 

variation in PC1. The model with the closest BIC value is the two-degree model that 

includes LDL1C measured at both seven weeks and 104 weeks (BICdegree 1 = −25.11, 

BICdegree 2 = −23.09, difference = 2.02, PPosterior = 0.75). Positive evidence of support for 

these two models over the model with the next highest BIC, a three-degree model including 

LDL1C at seven and 104 weeks and LDL3C at 104 weeks, respectively, is approximately 
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85% and 79%. All more saturated models have much larger BIC values (weaker evidence), 

indicating that no additional information is to be had by addition of any number of the other 

covariates (previously found to be correlated with PC1) to a model that only included 

LDL1C at seven weeks.

An incidental, but still interesting, observation is suggestive evidence (P = 0.07) that some of 

the variation in the extent of lesions, as represented by PC1, is attributable to the additive 

effects of genes. Although, as we indicated in the Materials and Methods section, the mean 

kinship is low, there is sufficient variability in degrees of relationship among all possible 

pairs of baboons in these 112 to detect some evidence of genetic effects on the trait. The 

estimated heritability (h2), or the proportion of the residual phenotypic variance in PC1 that 

is due the effects of genes, in the model with the lowest BIC (above) is h2 = 0.21 ± 0.12.

After Bonferroni correction, OxLDL concentration and the median diameter of HDL 

particles are significantly correlated with the sum of plaque extent (P < 0.0018) in all three 

arteries (respectively, r = 0.603, r2 = 0.364 and r = −0.575, r2 = 0.331). We find nominal 

evidence (i.e., P < 0.05) for correlations between plaque extent and several additional 

variables related to LDL (APOB, r = 0.449, r2 = 0.201 and the APOB associated LpPLA2, r 

= 0.368, r2 = 0.135) and HDL (total HDLC, r = −0441, r2 = 0.194; HDL1BC, r = −0.475, r2 

= 0.226; and PON-aryl, r = 0.495, r2 = 0.245).

Arterial Compliance (Stiffness)

Data on arterial compliance and blood pressures come from 50 animals sampled randomly 

from the 109 in which lesions of some size are seen in all three arteries after being fed the 

HCHF diet for two years and from 41 adult baboons fed the LCHF diet for two years (Table 

4). The two groups do not differ significantly by age (p=0.39) or body weight (p=0.15), even 

when sex-adjusted residuals are analyzed (results not shown).

All measures from the pulse wave analyses show higher values in challenge-diet animals 

than in controls, but we find only nominally significant evidence of increased arterial 

stiffness (decreased arterial compliance) in analyses of PWV, augmentation index (Aix), and 

related measures: augmentation pressure (AugP) and aortic pulse pressure (APP), and aortic 

systolic pressure (ASP). In diet-challenged animals, mean PWV and mean AIx, respectively, 

are 23% (P = 0.0184) and 58% (P = 0.0073) greater than in control animals. Similarly, mean 

AugP and APP in animals fed the HCHF diet for two years, respectively, are 78% (P = 

0.0019) and 14% (P = 0.0199) greater than in control group baboons.

PWV is significantly correlated with percent artery area covered by plaque (r = 0.365, r2 = 

0.133) and fatty streaks in the thoracic aorta (r = 0.368, r2 = 0.135) after correction for 

multiple testing (Table 5). Evidence for correlation between AIx and extent of fatty streaks 

in the thoracic aorta is suggestive (r = 0.309, r2 = 0.095). AugP shows similar, suggestive 

correlations with fatty streak extent in the thoracic aorta (r = 0.282, r2 = 0.080); and with 

total number of plaques (r = 0.285, r2 = 0.081).

We observe the strongest and most consistent correlations (significant after adjustment for 

multiple testing) between arterial pressures and lesion extent variables. Brachial and aortic 
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diastolic pressures are significantly correlated with extent of plaques, number of plaques, 

and the summary measure of lesion extent (PC1). These correlations range from r = 0.388 

(r2 = 0.151) to r = 0.580 (r2 = 0.336). Mean brachial artery and aortic systolic pressures also 

show high correlations with PC1 (r = 0.431, r2 = 0.186 and r = 0.396, r2 = 0.157, 

respectively) and fatty streak size in aortic arch (r=0.59, r2 = 0.348 and r =0.426, r2 = 0.181, 

respectively).

DISCUSSION

Ultimately, successful treatment and/or prevention of atherosclerosis will require an 

understanding of mechanisms by which interactions between CVD risk factors and the cells 

of the vascular endothelium result in the development and progression of arterial lesions 

from simple fatty streaks to unstable plaques. Although recent advances in clinical 

diagnostic and research technologies (e.g., imaging modalities) have made it possible to 

detect and determine the extent of atherosclerosis in human research participants and 

patients with greater precision than ever before, many critical studies of disease onset and 

progression, and responses to therapy remain impractical, if not impossible, in humans. It is 

for this reason that we turn to animal models to elucidate pathogenetic steps and causalities 

in atherosclerosis50.

Our study shows that the baboon is a suitable model for human atherosclerosis studies in 

that the disease can be reliably induced in a time frame which will facilitate rapid research 

progress from discovery to translational outcomes in our own species. Together, the range of 

inter-individual phenotypic variation in the extent of lesions and their association with 

biomarkers of CVD risk and pathophysiology observed in nearly 100% of the baboons 

studied correspond well with what is observed in the early stages of atherosclerosis in 

humans22, 33. All lesions observed following a two-year exposure to the atherogenic diet, 

including those underlying raised areas, include fatty streaks. These fatty streaks, observed 

and described in reports of studies conducted over the past 35 years with baboons from 

earlier generations of this same pedigreed breeding colony (e.g.,31), correspond to AHA 

Type II lesions51, from which more complicated plaques arise. As other studies of 

biomaterials and data from these same baboons have shown, reliable, consistent production 

of sizable and widespread early stage lesions in two years makes the baboon a most 

appropriate model for studies designed to dissect and understand the biological mechanisms 

responsible for the earliest disruptions of vascular cellular function leading to 

atherosclerosis52, 53. Such studies can realistically be expected to further inform efforts to 

develop and evaluate interventions and individually tailored lifestyle recommendations to 

prevent early stage lesion formation.

In earlier studies of baboons from this breeding colony, raised lesions have been shown to be 

relatively uncomplicated fibrous plaques, made up primarily of vascular smooth muscle cells 

and connective tissue with varying amounts of lipid, most resembling AHA lesion Types Va 

or Vc30, 31, 51, 54. Our observation of these plaques in approximately 28% of the affected 

animals indicates that, under the described experimental conditions, pathology consistent 

with the progression of atherosclerosis can be induced in baboon as well.
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Our observations not only reinforce the validity of baboon model for studies relevant to our 

own species but they also point to the utility of baboons for studies involving experimental 

manipulation and/or control, which may be impractical in humans, designed to assess 

genetic influences on development, severity, and progression of atherosclerosis, as well as 

responsiveness of the disease to therapeutic interventions.

As reported for this species in the past9, 31, prolonged exposure to the HCHF diet 

significantly increased both prevalence and extent of atherosclerotic lesions. However, our 

observation of lesions in 40% of the dietary control group confirms that baboons, like 

humans but unlike mice, can naturally develop lesions without genetic manipulation. This is 

consistent with the results of previous studies, which have found that free-living baboons 

and captive baboons fed the LCLF diet also develop arterial lesions resembling those 

naturally observed in humans55, 56 and further reinforces the validity of the baboon model of 

atherosclerosis for translational studies.

To a large degree, our observations of responses of “classical” CVD risk factors – i.e., 

circulating concentrations and/or activities of biomarkers of lipid and cholesterol 

metabolism – to the HCHF challenge diet reaffirm the relevance of the baboon for studies of 

CVD risk factors in humans. In addition to observing evidence of expected lipemic 

responses to the diet, the concentrations of these biomarkers, particularly those within the 

LDL and VLDL particle size ranges, are the best predictors of overall extent of lesion 

development in baboons, corresponding well to their known pro-atherogenic effects in 

humans. Evidence of expected anti-atherogenic effects of molecules within the HDLC 

particle size ranges, albeit weaker, is equally suggestive of the baboon-human 

correspondence. Similarly, observed positive and negative correlations of extent of plaques 

with biomarkers related to, respectively, LDL (e.g., oxidized LDLC, APOB, LpPLA2) and 

HDL (e.g., HDLmed, total HDLC, HDL1BC, and PON-aryl) are consistent with well 

documented associations observed in human CVD epidemiology,22, 31.

Results from our analyses of these “classical” risk factors may point also to areas for further 

study in baboons, particularly with respect to the duration of exposure to a HCHF diet 

necessary to induce atherogenesis. For example, concentrations of circulating biomarkers of 

lipid and lipoprotein metabolism measured at seven weeks and two years into the HCHF diet 

challenge are both elevated significantly compared to those at baseline. However, the 7-week 

values are both greater than those measured at the end of the challenge and equally or more 

predictive of lesion extent at the end of the study (approximately 22 months later). The 

pattern of correlations between biomarkers and the extent of raised plaques is consistent 

with these findings – i.e., measures at seven weeks into the atherogenic diet challenge are 

more highly correlated with plaque development than those at either baseline or at the end of 

the 2-year challenge. These observations, plus others from shorter term studies57, suggest 

that circulating biomarkers obtained as early as seven weeks post diet challenge are 

predictive of future atherosclerosis burden. Also, as the concentrations of circulating risk 

factors like LDLC either peak or plateau at or before seven weeks, the model likely would 

be valuable for further studies of genetic and environmental (intrinsic and extrinsic) factors 

that influence variation in the norms of reaction for lipid and cholesterol homeostasis in the 

continued presence of dietary stressors. Previous studies in the larger pedigreed baboon 
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breeding colony from which these animals were selected have provided evidence for shared 

(pleiotropic) genetic effects, as well as diet-specific genetic effects on many of these 

circulating atherosclerosis risk factors in the two dietary environments studied here58–60.

Although not previously investigated in baboons, our PWV/PWA results comport with those 

from a series of studies conducted more than two decades ago with two other Old World 

Monkey species, cynomolgus macaques (Macaca fascicularis) and rhesus macaques 

(Macaca mulatta). Limited in sample size, those studies variously found evidence for altered 

aortic distensibility, elasticity, and composition, increased arterial stiffness, and altered 

central blood pressures in macaques fed diets high in cholesterol and fat for 26 to 36 months, 

as well as some evidence for association with extent of atherosclerotic lesions in both 

progression and regression61–65. Specific observations relevant to this study include an 

inverse correlation with peak compliance in 12 monkeys fed a high cholesterol diet for 26 

months65 and increased arterial stiffness in small groups of monkeys fed an HCHF diet 

(40% of calories from butter) for up to 30 months47.

More important, results from the current study with pedigreed baboons are concordant with 

associations of decreased arterial compliance with atherogenic diets, atherosclerosis risk 

factors, the disease itself, and CVD outcomes in general in a sizeable number of cross-

sectional and mixed longitudinal epidemiological studies in humans, and in smaller case-

control studies and randomized trials as well66–72). The degree of correspondence between 

observations on arterial stiffness (arteriosclerosis) in this study and those in humans strongly 

supports the value of the pedigreed baboon as a model for research on the effects of long-

term exposures to diet and other disease risk factors on atherosclerosis and its vascular 

consequences, which underlie variation in risk, severity, and progression of CVD.

While the pedigreed baboon model for early stage atherosclerosis certainly could be 

exploited for an analog of a human CVD epidemiological study (e.g., to mimic the effects of 

an average diet on the cardiovascular health of a human population), that is not our objective 

here. For our purposes, the principal value of the model derives from our ability to use diet 

as a tool to reliably and quickly induce atherosclerotic lesions on which we can conduct 

studies of the molecular and cellular determinants of variation in their initiation, 

development, severity, and progression; all in a species exhibiting greater genetic, anatomic, 

and physiological proximity to our own than most other animal models.

It is true that the relative amounts of cholesterol and fats in the HCHF atherogenic diet 

exceed those consumed on a daily basis by the average person in the US73. This diet has 

been designed to overcome the effects genes on inter-individual variation in susceptibility to 

endothelial damage and it does: increasing the probability of atherogenesis to nearly 100% 

in our studies.

Elevated though they are, the amounts of fat and cholesterol in the HCHF atherogenic diet 

are not so extreme as to compromise the relevance of the model to the human condition. 

Recent estimates place the mean fat intake for US men and women at approximately 33% of 

daily calories73, just above the recommended upper limit of 30% in the Dietary Guidelines 

for Americans74. With 40% of total calories due to fat, the HCHF diet fed to the baboons 
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certainly would be considered an unhealthy one, but not so extreme as those used in some 

short-term diet studies with human participants (e.g., 55%75 and 73%76). The HCHF diet 

also corresponds well to high fat diets, deriving 35% to 40% of calories from fats, used 

recently by others in cardiometabolic disease-related studies with related nonhuman primate 

species77–79; as well as widely-used experimental diets formulated by several companies to 

model atherogenic “Western” diets: e.g., 42% (Teklad TD88137, Harlan Laboratories, Inc., 

Indianapolis, IN) and 40% (TestDiet 5342, LabDiet, St. Louis, MO).

Likewise, at approximately 17.6% of total calories, the percentage of calories attributable to 

saturated fats in our HCHF diet is 33%–40% higher than the 11% recommended in the 

Dietary Guidelines for Americans74; with the percentage due to the highly atherogenic 16:0 

palmitic acid exceeding the estimated mean daily intake by Americans at all ages73: i.e., 

about 10% versus 6.2%, respectively.

Relative to that consumed on a daily basis by the average American, the amount of 

cholesterol in the HCHF atherogenic diet also is very high. As indicated in our description 

of the diet (Materials and Methods), the average amount consumed daily by each baboon 

was equivalent to that found in ten to twelve large eggs. However, compared to humans, 

many nonhuman primate species exhibit substantial variability in their responses to dietary 

cholesterol80. Consequently, investigators working with several species have used very high 

dietary cholesterol relative to standard American diets (from 0.5 – 2 mg/kcal or 1250 – 5000 

mg/2500 kcal) to enhance the effects of dietary fats and accelerate atherogenesis.

Because we repeatedly have shown that inter-individual variation in most “traditional” CVD 

risk factors – and now, likely lesion extent – has a heritable component, the considerable 

variation we observe in lesion development in both experimental and control baboons is a 

desirable characteristic, rather than a conundrum as some may describe it21. Indeed, it makes 

a pedigreed breeding colony of baboons, such as those from which these animals are 

derived, valuable for a broader range of studies than any single inbred line of most smaller 

mammalian species. Knowledge of pedigree relationships can be exploited to identify and 

select animals based on degrees of both phenotypic and relevant genetic similarity (even 

prior to, or without, molecular genetic characterization) for case-control type study designs 

(for example). It also allows for production of offspring that are phenotypically and 

genetically similar for study. Further, it makes possible larger-scale, pedigree-based studies 

with sufficient statistical power for detecting the effects of individual genes, gene-by-

environment (e.g., diet, pharmaceutical agent) interactions, and more. All these approaches 

have benefited CVD research projects with baboons from this pedigreed 

colony35, 57, 60, 81, 82.

CONCLUSIONS

Based on our results, we conclude that a diet high in cholesterol and fat can be employed to 

reliably produce a baboon model of human atherosclerosis that has greater translational 

potential than other frequently used species. This potential is attributable to the fact that the 

development of atherosclerotic lesions and their functional consequences (e.g., decreased 

arterial compliance), as well as interrelationships among “classical” CVD risk factors, 
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closely mirror those in humans. In addition, our study shows that baboons exhibit variation 

in extent of lesions as seen in humans. The potential for translation is further enhanced by 

the phylogenetic proximity of baboons to humans, which results in a high degree of genetic, 

anatomic, and physiological correspondence between the two species.

Given that the HCHF diet alone can induce a disease state in nearly 100% of adult baboons 

in two years or less, the baboon is a practical model for research into the pathobiology of 

atherosclerosis and its consequences for CVD and comorbidities. Considering the time 

frames associated with most independent investigator-initiated, NIH-funded research 

projects, this relatively brief interval allows for development and study of the disease state 

within a single funding cycle. The interval could be shortened further, thus facilitating more 

rapid progress towards research objectives using the baboon model, by augmenting the 

HCHF diet with other atherogenic components – e.g., simple carbohydrates83, 84. 

Additionally, dietary manipulation could be used to establish a standing nonhuman primate 

CVD research resource comprising adult baboons in which atherogenesis is nearly certain to 

have been initiated and progressed to a stage in which changes in vascular endothelial 

function (for example) are observable at the beginning of any project. An NIH-sponsored 

National Primate Research Center, like the SNPRC, would be well situated to develop and 

maintain such a resource.
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Figure 1. 

Atherosclerotic lesions in three arteries from baboons after being stained with lipophilic 

Sudan IV. Columns: Common iliac artery (Left), thoracic aorta (center), and aortic arch 

(right). Rows 1 and 2: Control diet animals with no (row 1) and highest (row 2) total percent 

area affected. Experimental diet animals with lowest (row 3) and highest (row 4) percent 

total area affected.

Mahaney et al. Page 20

J Med Primatol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
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A–2J. Serum biomarkers of lipid/lipoprotein metabolism, inflammation, and oxidative stress 

measured at three time-points in 112 baboons in the two-year HCHF diet challenge study: at 

baseline (Week 0, LCLF diet), seven weeks into the HCHF diet challenge (Week 7), and at 

the end of the HCHF dietary challenge (Week 104). Figure 2A, concentrations of major 

lipoproteins, apolipoproteins, and triglycerides; Figure 2B. concentrations of HDLC 

fractions; Figure 2C, concentrations of V+LDLC fractions; Figure 2D, Hmed and Bmed; 

Figure 2E, concentration of OxLDL; Figure 2F, activity of lipoprotein associated enzymes, 

LpPLA2, PON-para, and PON-aryl; Figure 2G, concentrations of CRP; Figure 2H, 

concentrations of IL8; Figure 2I, vWF as percentage of international standard value; and 

Figure 2J, TAS.
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Table 1

Characteristics of the LCLF Diet and HCHF Base Diet

LCLF
HCHF base
diet

Energy, kcal/g provided by

  Carbohydrate, % kcal* 67.3 63.5

  Protein, % kcal* 19 31.5

  Fat, % kcal* 13.7 5.0

Cholesterol, mg/kcal 0.02 0.0

Nutrients, % of ration

Protein, % 15.5 25.7

  Arginine, % 0.85 1.40

  Cystine, % 0.23 0.37

  Glycine, % 0.63 1.05

  Histidine, % 0.41 0.62

  Isoleucine, % 0.65 1.27

  Leucine, % 1.33 2.48

  Lysine, % 0.74 1.22

  Methionine, % 0.32 0.48

  Phenylalanine, % 0.77 1.31

  Tyrosine, % 0.53 0.93

  Threonine, % 0.56 0.96

  Tryptophan, % 0.19 0.31

  Valine, % 0.83 1.31

  Serine, % 0.80 1.42

  Aspartic acid, % 1.46 2.56

  Glutamic acid, % 3.71 6.22

  Alanine, % 0.890 1.49

  Proline, % 1.37 2.18

  Taurine, % 0.00 0.01

Primary fat source Vegetable Vegetable

Cholesterol, ppm 49 0.0

Fat (ether extract), % 5.0 1.8

Fat (acid hydrolysis), % 6.2 3.1

Fatty acid composition, %†

  Total saturated fatty acids, % 1.17 0.5

  Total monounsaturated fatty acids 1.33 0.5

  C18:2 linoleic 2.1 1.3

  C18:3 linolenic 1.9 0.1

  Other omega-3 polyunsaturated fatty acids 0.23 0.1

Fiber (crude), % 8.3 4.7

  Neutral detergent fiber, % 22.7 17.1
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LCLF
HCHF base
diet

  Acid detergent fiber, % 10.2 6.8

“Nitrogen-Free Extract” (by difference), % 54.7 51.8

  Starch, % 28.5 32.2

  Glucose, % 0.25 0.1

  Fructose, % 0.27 0.1

  Sucrose, % 1.73 2.6

  Lactose, % 0.15 1.7

Total digestible nutrients, % 76 75.3

  Gross energy, kcal/g 3.84 3.97

  Physiological fuel value, kcal/g 3.25 3.26

  Metabolizable energy, kcal/g 3.01 3.01

Minerals

  Ash, % 6.1 5.8

  Calcium, % 1.00 1.03

  Phosphorus, % 0.70 0.60

  Phosphorus (non-phytate), % 0.40 0.24

  Potassium, % 0.80 0.98

  Magnesium, % 0.21 0.23

  Sulfur, % 0.21 0.28

  Sodium, % 0.35 0.10

  Choline, % 0.55 0.11

  Fluorine, % 24.3 5.12

  Iron, ppm 378 387

  Zinc, ppm 131 162

  Manganese, ppm 118 145

  Copper, ppm 37 22

  Cobalt, ppm 0.76 0.53

  Iodine, ppm 1.54 1.75

  Chromium, ppm 1.79 0.42

  Selenium, ppm 0.37 0.48

Vitamins

  Carotene, ppm 1.1 1

  Vitamin K (as menadione), ppm 3.2 3.0

  Thiamin hydrochloride, ppm 11.0 17.0

  Riboflavin, ppm 12.0 8.9

  Niacin, ppm 123 113

  Pantothenic acid, ppm 61 62

  Choline chloride, ppm 1200 1800

  Folic acid, ppm 2.2 10.8

  Pyridoxine, ppm 15.0 14.75

  Biotin, ppm 0.2 0.2
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LCLF
HCHF base
diet

  Vitamin B-12, mcg/kg 33 48

  Vitamin A, IU/g 40 43

  Vitamin D-3 (added), IU/g 7.0 7

  Vitamin E, IU/kg 49 110

  Ascorbic acid, ppm 541 500

*
Based on specifications of the manufacturer, Ralston Purina Co.

“Monkey Diet 15%”/5LEO, Ralston Purina Company/LabDiet
“Monkey Diet 25”/50456, Ralston Purina Company/LabDiet

†
Fatty acid composition of the diets was determined by using gas-liquid chromatography of the fatty acid methyl esters on a DB-225 column (15 

m) (J&W Scientific) with temperature programming from 100°C to 200°C at 3.25 °C/min.23
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Table 3

Correlation1 between extent of atherosclerotic lesions and serum biomarkers of lipid/lipoprotein metabolism 

and inflammation in 112 pedigreed baboons at three time-points before and during HCHF atherogenic diet 

challenge.

A. Baseline (week 0, LCLF diet) prior to the two-year HCHF atherogenic diet challenge study.

Trait PC1 Aortic Arch Thoracic Aorta Common Iliac

TSC 0.309** 0.230* 0.205* 0.315**

HDLC 0.195* 0.165 0.212* 0.091

HDL1AC 0.101 0.064 0.110 0.072

HDL1BC 0.235* 0.166 0.250* 0.154

HDL2C 0.133 0.115 0.183 0.021

HDL3C −0.095 −0.060 −0.186* 0.016

Hmed 0.209* 0.154 0.244* 0.107

V+LDLC 0.278* 0.177 0.093 0.409**

VLDL1C 0.179 0.077 0.081 0.285*

VLDL2C 0.385** 0.261* 0.354** 0.322**

LDL1C 0.373** 0.242* 0.287* 0.381**

LDL2C 0.255* 0.148 0.112 0.366**

LDL3C 0.031 0.014 −0.100 0.164

LDL4C −0.087 −0.054 −0.172 0.014

Bmed 0.250* 0.157 0.246* 0.205*

APOAI 0.028 0.031 0.065 −0.037

APOB −0.020 −0.078 −0.052 0.104

APOE 0.029 0.075 0.061 −0.084

TG −0.091 −0.114 −0.115 0.017

CRP 0.162 0.109 0.162 0.121

IL8 −0.100 −0.136 0.019 −0.109

LpPLA2 0.168 0.170 0.004 0.227*

OxLDL 0.226* 0.159 0.029 0.364**

PON1-para 0.077 0.053 0.029 0.104

PON1-aryl 0.025 0.030 −0.028 0.057

TAS −0.022 0.038 0.007 −0.106

VWF −0.053 −0.063 −0.001 −0.055

B. After seven weeks on the HCHF atherogenic diet.

Trait PC1 Aortic Arch
Thoracic
Aorta Common Iliac

TSC 0.499** 0.425** 0.300** 0.440**

HDLC 0.098 0.142 0.036 0.046

HDL1AC 0.121 −0.038 0.286 0.050
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B. After seven weeks on the HCHF atherogenic diet.

Trait PC1 Aortic Arch
Thoracic
Aorta Common Iliac

HDL1BC 0.353 0.368** 0.263 0.186*

HDL2C −0.043 0.078 −0.168 −0.024

HDL3C −0.189* −0.250* −0.062 −0.120

Hmed 0.252* 0.242* 0.203 0.139

V+LDLC 0.481** 0.414** 0.319** 0.386**

VLDL1C 0.365** 0.242* 0.166 0.448**

VLDL2C 0.365** 0.236* 0.168 0.453**

LDL1C 0.491** 0.445** 0.267 0.428**

LDL2C 0.009 0.136 0.106 −0.231*

LDL3C −0.125 −0.007 −0.001 −0.292*

LDL4C 0.058 0.113 0.168 −0.149

Bmed 0.318** 0.196* 0.178 0.373**

APOAI 0.077 0.137 0.108 −0.072

APOB 0.378 0.321** 0.267 0.292*

APOE 0.170 0.052 0.075 0.277*

TG −0.300** −0.278* −0.185 −0.234*

CRP 0.103 0.152 0.022 0.059

IL8 −0.178 −0.263* −0.131 −0.011

LpPLA2 0.250* 0.190* 0.107 0.287*

OxLDL 0.068 0.130 −0.138 0.158

PON1-para −0.135 −0.077 0.127 −0.114

PON1-aryl −0.119 −0.077 −0.088 −0.116

TAS −0.165 −0.079 −0.226 −0.088

VWF −0.171 −0.207* −0.051 −0.099

C. After 104 weeks on the HCHF atherogenic diet.

Trait PC1 Aortic Arch Thoracic Aorta Common Iliac

TSC 0.345** 0.327** 0.108 0.379**

HDLC 0.001 −0.037 −0.050 0.088

HDL1AC 0.098 0.004 0.154 0.094

HDL1BC 0.086 0.047 0.096 0.070

HDL2C 0.022 0.001 −0.072 0.117

HDL3C −0.177 −0.154 −0.193* −0.087

Hmed 0.114 0.054 0.181 0.055

V+LDLC 0.410** 0.403** 0.200* 0.372**

VLDL1C 0.249* 0.245* 0.019 0.315**

VLDL2C 0.383** 0.347** 0.113 0.443**
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C. After 104 weeks on the HCHF atherogenic diet.

Trait PC1 Aortic Arch Thoracic Aorta Common Iliac

LDL1C 0.451** 0.440** 0.241* 0.391**

LDL2C 0.053 0.029 0.113 −0.003

LDL3C −0.279* −0.244* −0.014 −0.393**

LDL4C −0.069 −0.039 0.074 −0.189*

Bmed 0.363** 0.368** 0.063 0.413**

APOAI −0.037 −0.038 −0.088 0.030

APOB 0.280* 0.300** 0.131 0.232*

APOE 0.112 0.113 0.032 0.117

TG −0.168 −0.184 −0.065 −0.146

CRP 0.136 0.065 0.178 0.099

IL8 0.112 0.045 0.164 0.076

LpPLA2 0.275* 0.27*2 0.140 0.241*

OxLDL 0.187* 0.212* 0.070 0.157

PON1-para 0.007 0.016 0.001 0.001

PON1-aryl 0.046 0.048 0.031 0.030

TAS 0.086 0.037 −0.130 0.281*

VWF −0.031 −0.049 −0.082 0.065

1
Pearson product-moment correlations

*
At α = 0.05 with nominally significant P = 0.05, |r| = 0.186 (2-tailed test).

**
At α = 0.05 with Bonferroni corrected P = 0.00185, |r| = 0.292 (2-tailed test).
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