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ABSTRACT DNA methylation influences the expression of some genes and depends upon the availability of methyl
groups from S-adenosylmethionine (SAM). Dietary methyl groups derive from foods that contain methionine, one-
carbon units and choline (or the choline metabolite betaine). Humans ingest �50 mmol of methyl groups per day; 60%
of them are derived from choline. Transmethylation metabolic pathways closely interconnect choline, methionine,
methyltetrahydrofolate (methyl-THF) and vitamins B-6 and B-12. The pathways intersect at the formation of methionine
from homocysteine. Perturbing the metabolism of one of these pathways results in compensatory changes in the others.
For example, methionine can be formed from homocysteine using methyl groups from methyl-THF, or using methyl
groups from betaine that are derived from choline. Similarly, methyl-THF can be formed from one-carbon units derived
from serine or from the methyl groups of choline via dimethylglycine, and choline can be synthesized de novo using
methyl groups derived from methionine (via SAM). When animals and humans are deprived of choline, they use more
methyl-THF to remethylate homocysteine in the liver and increase dietary folate requirements. Conversely, when they
are deprived of folate, they use more methyl groups from choline, increasing the dietary requirement for choline. The
availability of transgenic and knockout mice has made possible additional studies that demonstrate the interrelationship
of these methyl sources. In summary, as we consider dietary requirements and possible effects on DNA methylation, it
is important to realize that methionine, methyl-THF and choline can be fungible sources of methyl groups, and the
design of our studies should reflect this. J. Nutr. 132: 2333S–2335S, 2002.
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METHYL GROUPS PLAY A KEY ROLE
IN GENE EXPRESSION

DNA-methylation, which can regulate tissue-specific expres-
sion of certain genes (1), is especially important during embryo-

genesis (1,2) and carcinogenesis (3,4). DNA-methylation is cat-
alyzed by DNA methyltransferases (Dnmt1, Dnmt2, and Dnmt3;
EC 2.1.1.37)4 that transfer methyl groups from S-adenosylmethi-
onine (SAM) to cytosine (3). Cytosine guanine (CpG) dinucle-
otides often are located in the regions of DNA that regulate DNA
expression (promoter regions), and DNA methylation is rela-
tively specific for cytosine residues within these (3). In humans,
80% of CpG islands are methylated, whereas only 10% of cy-
tosines in DNA are methylated (2). Methylations of CpG islands
in the promoter region of a gene repress the expression of that
gene (2,3). The mechanism that leads to gene repression remains
unclear. It is suggested that methylated cytosines bind to a family
of methyl cytosine-binding proteins (MeCP1, MeCP2, MBD1,
MBD2, MBD3 and MBD4) that prevent the binding of transcrip-
tion factors to methylated CpG sites from the promoter region
(3,5). Another hypothesis proposes that the MeCP proteins bind
MeCP-binding proteins and recruit histone deacetylases and
other repressors that form stable complexes with the deacetylated
histones that induce chromatin compaction and gene silencing
(6). Whatever the proposed mechanism of action, the SAM
needed for DNA methylation is derived in part from dietary
methyl group intake (7–10).

DIET AND METHYL METABOLISM

For humans, the major sources of methyl groups in foods
come from methionine (�10 mmol of methyl/d), one-carbon
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metabolism via methylfolate (�5–10 mmol of methyl/d), and
from choline [� 30 mmoles methyl/d (11)] (Fig. 1). The
Institute of Medicine, National Academy of Sciences, USA,
recently made recommendations for choline intake in the diet
(11). Aside from its role as a methyl donor, choline is needed
for synthesis of the phospholipids in cell membranes, cholin-
ergic neurotransmission, transmembrane signaling and lipid-
cholesterol transport and metabolism (12). The tight interre-
lationship between these three dietary sources of methyl
groups makes it important that all three be assessed when
studying diet and DNA methylation.

Choline, methionine and folate metabolism interact at the
point that homocysteine is converted to methionine. Betaine:
homocysteine S-methyltransferase (EC 2.1.1.5) catalyzes the
methylation of homocysteine using betaine as the methyl
donor (13–15). In an alternative pathway, 5-methyltetrahy-
drofolate:homocysteine S-methyltransferase (EC 2.1.1.13) re-
generates methionine using a methyl group derived de novo
from the one-carbon pool (16,17). Methionine adenosyltrans-
ferase (EC 2.5.1.6) converts methionine to SAM (the active
methylating agent for DNA methylation) (13).

Perturbing the metabolism of one of the methyl donors
reveals the intermingling of these metabolic pathways. Total
hepatic folate content decreased by 31–40% after 2 wk on a
choline-deficient diet in rats (14,15). This effect was reversible
by refeeding choline. Rats fed diets deficient in both methio-
nine and choline for 5 wk had hepatic folate concentrations
that were 50% of those in controls (16). Tetrahydrofolate
deficiency, induced by treatment with methotrexate (17–21)
or induced by dietary folate deficiency (22), resulted in dimin-
ished hepatic total choline, with the greatest decrease occur-
ring in hepatic phosphocholine concentrations. During cho-
line deficiency, hepatic SAM concentrations also decreased by
as much as 50% (23–26). In rats, choline deficiency doubled
plasma homocysteine levels (27).

The interrelationships between choline, methionine and
folate are apparent when knockout mice are studied. Methyl-
enetetrahydrofolate reductase (EC 1.5.1.20) knockout mice,
which have impaired availability of methyl groups from meth-
yltetrahydrofolate (methyl-THF), deplete choline and betaine
so as to maintain homocysteine remethylation (Zeisel, S. H.,
unpublished data). Methionine adenosyltransferase knockout
mice, which have impaired formation of SAM, activate the
gene expressing betaine:homocysteine methyltransferase and

have increased dietary choline requirements (13). Further,
cystathionine beta-synthase (EC 4.2.1.22) knockout mice,
which accumulate homocysteine and must convert it to me-
thionine to remove it, deplete choline and betaine pools in
liver (Zeisel, S. H., unpublished data). Liver and kidney are
the major tissues in which betaine:homocysteine methyltrans-
ferases is expressed (28); therefore, for other tissues to use
choline-derived methyl groups, they must be exported from
these organs.

DIET AND DNA METHYLATION

Animals fed diets deficient in methyl donors (choline and
methionine) have hypomethylated DNA (29–31). These
changes occur not only in global methylation (32), but also in
the methylation of specific genes (33). Increases in levels of
mRNA for c-fos, c-Ha-ras and c-myc were correlated with loss
of methylation at specific sites within these genes as early as 1
wk after the start of feeding a methionine- and choline-
deficient diet to rats (34,35). Mouse liver tumorigenesis in-
duced by a choline-devoid, methionine-deficient diet was as-
sociated with the hypomethylation of c-Ha-ras and raf
oncogenes (36). Surprisingly, the effects of methyl-deficient
diets on DNA methylation occur rapidly (within 1 wk in
Fischer rats) and before the tumor formation in their livers
(30). One to two weeks after the restoration of an adequate
diet, the overall extent of methylation of tRNA and DNA
from livers of previously methyl-deficient rats returned to
normal (37). It is interesting that DNA is not hypomethylated
in methionine adenosyltransferase 1A gene (MAT1A) knock-
out animals (despite diminished SAM), unless the mice also
are deprived of choline (13).

Folate deficiency also is associated with perturbed DNA
methylation. DNA is hypomethylated in brains of rats fed a
folate-deficient diet (38) or treated with methotrexate (7). A
decrease in folic acid intake, and the subsequent DNA hy-
pomethylation, may be involved in human gastric carcinogen-
esis (39). Postmenopausal women with modest dietary folate
deficiency were observed to have hypomethylation of lympho-
cyte DNA (40). In healthy human females, both cervical
tissue folate and serum folate levels were significantly corre-
lated to cervical tissue DNA methylation (41). Thus, dietary
status for choline and for folate can influence global DNA
methylation.

DISCUSSION

As we consider dietary requirements and possible effects on
DNA methylation, it is important to realize that methionine,
methyl-THF and choline can be fungible sources of methyl
groups. The importance of dietary choline and other methyl
donors as factors that influence DNA methylation and gene
expression has been evaluated in rodents and occasionally in
humans.

Alterations in DNA methylation, with resulting changes in
gene expression, can have important consequences for embry-
ogenesis (1,42) and might explain our laboratory’s observation
that dietary choline availability during pregnancy influences
the development of brain in the fetus via choline-mediated
alterations in the birth, migration and death of cells in the
hippocampus and septum (43,44). Diet-related changes in
DNA methylation also may contribute to carcinogenesis that
occurs in livers of methyl-deficient rats and mice (4,30,45).

Although we do not know whether there are significant
numbers of humans who are choline deficient, there are many
humans who are folate deficient (11), and 15–30% of the

FIGURE 1 DNA methylation depends upon the availability of
methyl groups from S-adenosylmethionine, which is derived from me-
thionine. Transmethylation metabolic pathways closely interconnect
choline, methionine and THF. The pathways intersect at the formation
of methionine from homocysteine. Perturbing the metabolism of one of
these pathways results in compensatory changes in the others. THF,
tetrahydrofolate.
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population may have increased dietary methyl requirements
due to polymorphisms in genes involved in methyl metabolism
(46). Therefore, it is likely that differences in DNA methyl-
ation, and resulting changes in gene expression, are due to
dietary variations in humans. This promising new area of
investigation promises to enhance our understanding of how
nutrition modulates the milieu in which biochemical and
genetic mechanisms operate.
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