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INTRODUCTION

Invasive species are a major threat to biological
diversity. They have the potential to transform marine
habitats worldwide, and to cause hundreds of billions
of dollars in economic damages (reviews in Strayer
et al. 2006, Molnar et al. 2008). Predators are known
to have profound effects on the structure of marine
communities, and have been shown capable of en -
hancing species diversity (keystone species) and alter-
ing community structure (trophic cascades) (Paine
1966, Estes et al. 1998, Rilov 2009). Invasive predators
have been implicated as one of the most important
causes of declines and extinctions of species worldwide

(Vitousek et al. 1997). Generalist invasive predators
that become established might potentially affect a
wide range of species, but the risk of local extirpation
for native species is thought to be lower than for
 specialized invasive predators. These, in contrast,
would be expected to exert stronger direct impacts on
a few species and possibly cause more extensive indi-
rect effects, depending on the ecological status of the
targeted prey (Rilov 2009). To determine the ecolo -
gical impacts of invasive predators, we must under-
stand how they interact with other members of the
community and how their arrival and establishment
affects community structure (Kalogirou et al. 2007,
Rilov 2009).
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Along the United States Southeast Atlantic coast,
and in Bermuda and the Bahamas, red lionfish Pterois
volitans and devil firefish P. miles are now established
and are continuing to expand their range in the Carib -
bean (Morris et al. 2009, Schofield 2009). These 2 spe-
cies are nearly morphologically identical and 93% of
specimens sampled from the Atlantic as well as North
Carolina were P. volitans (Hamner et al. 2007), so here-
after we refer to invasive specimens collectively as
lionfish or P. volitans. Native to the subtropical and
tropical regions of the South Pacific, Indian Ocean, and
the Red Sea, lionfish are venomous predators whose
popularity in the aquarium trade may have contributed
to their introduction to Atlantic waters (Whitfield et al.
2002, Semmens et al. 2004, Ruiz-Carus et al. 2006).
Classified as demersal mesocarnivores together with
groupers (Serranidae) and snappers (Lutjanidae) (Cail-
let et al. 1986), lionfish are believed to be opportunistic
predators that consume fish, shrimp, and crabs in their
native range (Hiatt & Strasburg 1960, Harmelin-Vivien
& Bouchon 1976, Sano et al. 1984). However, until their
recent invasion of the Atlantic and Caribbean, their
biology and ecology were poorly understood beyond
general descriptions because conclusions from these
earlier studies were hampered by small sample sizes
(n = 1 to 12; Hiatt & Strasburg 1960, Harmelin-Vivien &
Bouchon 1976, Sano et al. 1984). For example, in the
native range, lionfish are reported to have few natural
predators (Bernadsky & Goulet 1991), to attain a size of
38 cm total length (TL), and to reach depths of 50 m
(Randall et al. 1990). In contrast, lionfish in the invaded
range have been found in the stomach contents of pis-
civorous groupers (Maljkoviç et al. 2008) and have
been observed to occur at greater depths (down to
304.8 m, R. Gilmore unpubl.) and attain sizes larger
(47.6 cm TL; J. Morris unpubl.) than in the native
range. These depth and size extensions, as well as
novel observations of predation on lionfish in the
invaded range, probably reflect the paucity of investi-
gations in the native range.

Recent studies of lionfish in the Bahamas are begin-
ning to shed light on their ecology and biology in their
invaded range (Morris et al. 2009). Bahamian studies
documented lionfish at 5 to 177 times higher densities
than in their native range (Grubich et al. 2009), capa-
ble of reducing reef fish recruitment by 79% from
experimental patch reefs, and preying mostly on fishes
(78% by volume), including 41 species from 21 families
(Albins & Hixon 2008, Green & Cote 2009, Morris &
Akins 2009). Based on laboratory studies, 80 adult lion-
fish along a 1 km stretch of reef in Eilat (Red Sea) were
estimated to cumulatively consume approximately
230 kg of mostly small-bodied prey fishes per year
(Fishelson 1997). The size (and economic importance)
of prey consumed in the invaded range may increase,

however, as increases in body size (relative to the
native range) are known for a variety of invasive
 species, potentially including lionfish (Grosholz & Ruiz
2003).

The invaded range, and densities, size attained and
depth distribution of lionfish in invaded habitats,
together with laboratory studies of food consumption,
all indicate the possibility for substantial impacts to
both native prey communities and trophic competitors.
A comprehensive understanding of the impacts of
invasive species requires investigation of interactions
at broad geographic scales (Crooks & Rilov 2009),
because impacts may vary as invaders confront and
respond to different ecological and physical factors in
their invaded range. For example, the narrower depth
distribution of lionfish in northern parts of the invaded
range may be related to winter water temperatures
(Whitfield et al. 2002, Kimball et al. 2004, Ruiz-Carus
et al. 2006). Ultimately, the impact of lionfish on popu-
lations of potential prey and competitors cannot be
assessed without detailed data on food habits (Meister
et al. 2005, Ruiz-Carus et al. 2006).

Despite recent studies of potential impacts of lionfish
to tropical reef communities in the Bahamas (Albins &
Hixon 2008, Morris & Akins 2009, Cote & Maljkoviç
2010), impacts to warm-temperate hard bottom reefs of
the Southeast US Atlantic Ocean remain unknown.
These hard bottom reefs are well recognized as essen-
tial fish habitats that support economically valuable
commercial and sport fisheries and an increasingly
popular sport diving industry (Struhsaker 1969, Parker
& Ross 1986), and lionfish have become widespread
residents in the region (Whitfield et al. 2007, Morris et
al. 2009). Additional stressors in the Southeast US
Atlantic include multiple non-native marine fish spe-
cies (Semmens et al. 2004, Schofield et al. 2009), poten-
tial increases in winter bottom water temperatures
(Parker & Dixon 1998), and the overfishing of many
important predatory reef species (Coleman et al. 1999,
Huntsman et al. 1999, Shertzer & Williams 2008).

We set out to contribute to the understanding of lion-
fish impacts in their invaded range by determining
their diet on hard bottom communities of the Southeast
US Atlantic Ocean. Our goal was to assess both imme-
diate (stomach contents) and long-term (isotopes) lion-
fish diets in combination with data from prey commu-
nity surveys to make inferences about the specialist or
generalist predatory role of  lionfish. Stomach contents
provided information on ingested prey, representing
the animal’s diet over the last few hours to days, while
stable isotopes offered additional information on the
trophic status of lionfish by providing a long-term inte-
gration of the diet over previous weeks to months
(Cocheret de la Morinière et al. 2003). We then consid-
ered these results within the context of native reef fish
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diets, hard bottom community structure, and ecologi-
cal stressors in the Southeast USA to infer potential
impacts (trophic overlap and direct predation) of this
invasive fish in these warm-temperate reef systems.

MATERIALS AND METHODS

During June to August 2004 and 2006, we collected
lionfish with spears through daylight hours from 18
continental shelf locations in Onslow Bay, North
 Carolina, at depths from 30 to 45 m (Fig. 1, Table S1
in  Supplement 1 at www.int-res.com/articles/suppl/
m432 p181_supp.pdf) using decompression diving tech -
niques. In 2006, at each site (n = 11), we also  conducted
visual surveys of small benthic fishes to estimate the
abundance of potential prey. Visual surveys always
took place before collections. The prey fish surveys
consisted of one 15 min underwater visual census per
site, along a 25 m long transect (Brock 1954, Samoilys
& Carlos 2000). The width of the transects was
restricted to 2 m and targeted active cryptic (or juve-

nile) prey fishes 10 cm and less in TL, on or above the
benthos. This group is often underestimated in surveys
of larger conspicuous fishes. However, crevices were
not searched, so sedentary or truly cryptic species such
as scorpionfish (Scorpaenidae) are unlikely to have
been sampled effectively. Because collection of fishes
at depth may cause regurgitation (Bowen 1992), we
immediately placed speared lionfish in plastic bags to
prevent loss of regurgitated stomach contents.

Stomach contents. At the surface, fish were weighed
and measured, mouth and gills examined for regurgi-
tated prey (Parrish 1987), and stomachs removed and
preserved in 95% ethanol. We identified prey items in
the stomachs to the lowest practical level using a dis-
secting microscope and published taxonomic keys and
reference texts (Dahlberg 1975, Robins et al. 1986,
Bohlke & Chaplin 1993, Hoese & Moore 1998, Mc -
Eachran & Fechhelm 1998, Carpenter 2002a,b, Mc -
Eachran & Fechhelm 2006). We blotted the prey items
dry, counted, measured and weighed them, and deter-
mined their volume by displacement (Hyslop 1980). In
2004, we also removed and froze muscle tissue for
 isotope analysis. In the laboratory, we rinsed muscle
tissue in distilled water, dried it at 60°C for 48 h, and
then ground the tissue prior to analysis. Results are
expressed as δ values (‰), which represent deviations
from the standard reference materials (Fry 1988). Sam-
ples were analyzed for δ13C and δ15N values with a
mass spectrometer at University of California-Davis
Stable Isotope Facility.

Isotope analysis. We used a simple 2-source mixing
model (Vander Zanden & Rasmussen 2001) and lion-
fish δ13C values to estimate the contribution of phyto-
plankton and benthic algae to the lionfish food web.
We used a mean δ13C value of –23.5 ‰ for phytoplank-
ton (Fogel et al. 1999), which is consistent with other
reports of coastal phytoplankton. There are few
reported δ13C values for the benthic macroalgae and
microalgae, which occur on the shallow portions of the
continental shelf and contribute significantly to pri-
mary production in the coastal ocean (Cahoon & Cooke
1992, Jahnke et al. 2000). We used a value of –17.0‰
for benthic algae, which is consistent with values
reported from the West Florida Shelf (Fonseca et al.
2006), the Seto Inland Sea (Takai et al. 2002), and the
known enrichment in δ13C by benthic primary produc-
ers (France 1995). We estimated the trophic level at
which lionfish are feeding by comparing the δ15N val-
ues of the primary producers at the base of the food
web with lionfish δ15N values (Fry 1988, Vander Zan-
den & Rasmussen 2001). Fogel et al. (1999) report
phytoplankton δ15N values averaging +4‰ from the
study area, and we assumed that benthic algae would
have a similar N isotope value. We assumed that car-
nivorous fish muscle tissue is enriched by 3.4‰ from its
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Fig. 1. Coastal North Carolina, showing bathymetric depth
zones, (inset) the location of Onslow Bay on the US East
Coast, and sampling locations in Onslow Bay in (�) 2004, (�)
2006, and (�) both years. Geographic extent of locations
ranged from 34° 10.523’ N and 76° 31.308’ W in the north to

33° 11.653’ N and 77° 48.434’ W in the south

http://www.int-res.com/articles/suppl/m432p181_supp.pdf
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prey (Fry 1988, Vander Zanden & Rasmussen 2001)
and that herbivorous fish and invertebrates are en -
riched by 2.4‰ from their food source (Vander Zanden
& Rasmussen 2001, McCutchan et al. 2003).

Statistical analysis. We constructed cumulative prey
curves to determine the adequacy of sample sizes
(see Supplement 2 at www.int-res.com/articles/suppl/
m432p181_supp.pdf). For each prey category, we cal-
culated mean percent number (%n), volume (%V) and
weight (%W) from the percentage representation of
each prey category in the total number, volume and
weight, respectively, of food items for individual lion-
fish. Rather than pooling prey items across stomachs
(sacrificial pseudoreplication) and to quantify the vari-
ation around each dietary index, we calculated indices
at the level of individual stomachs and then calculated
mean values (Ferry & Caillet 1996, Graham et al.
2007). Frequency of occurrence (%O) was calculated
as the number of stomachs that contained one or more
of a given prey type expressed as a percentage of all
lionfish examined. These data were used to calculate
the percent index of relative importance (%IRI = [IRIi /
Total IRI] × 100, where i = a given prey category, IRIi =
(%ni + %Vi) × %Oi), and Total IRI = sum of individual
IRIs for each prey category (Caillet 1977, Macdonald &
Green 1983, Bowen 1992, Cortes 1997). Percent IRI
limits the biases of the individual components of diet
analysis and facilitates comparison with other diet
studies (Cortes 1997). 

We used 1-way analysis of similarities (ANOSIM) tests
to examine differences in prey categories, lengths, vol-
ume, and number consumed between sampling years,
and between prey categories consumed versus prey
categories censused during field surveys (see Supple-
ment 3 at www.int-res.com/articles/suppl/m432 p181_
supp.pdf). A 2-way ANOSIM with year and lionfish
size class as factors was used to examine changes in
lionfish diet with size while accounting for any dif -
ferences between years (see Supplement 4 at www.
int-res.com/articles/suppl/m432p181_supp.pdf). Where
significant differences were found, similarity percent-
ages (SIMPER) analyses were used to determine the
contribution of particular categories responsible for the
observed dissimilarities. We used the Mann-Whitney
Rank Sum test to examine differences between sizes of
lionfish collected between years and to compare the
sizes of lionfish consuming crustaceans with those that
did not, since these data were not normally distributed.
As with nearly all studies of stomach contents from
predatory fishes, we sampled specimens that con-
tained prey items that could only be categorized as
unidentifiable fish species. However, since different
fish species are not expected to show differential
digestion rates, we assumed that unidentifiable fish
prey came from the same species and in similar pro-

portions as identifiable species (Pine et al. 2005). We
incorporated unidentifiable fish prey for those analyses
that did not depend on the identity of the particular
prey item (cumulative prey curve, broad prey cate-
gories consumed, distributions of volume and number
of prey consumed), and only used recognizable prey
items for the remaining analyses. We examined the
relationship between fish TL and both δ13C and δ15N
with linear regression using all data.

RESULTS

We found lionfish on nearly all habitats we sampled,
including high, medium, and low relief natural hard
bottoms, algal sand plains, and artificial relief wreck
sites. A total of 226 lionfish were collected, 115 in 2004
and 111 in 2006. Of these, 81% contained food and of
these 183 specimens, 96% contained fish prey (see
Table S1 in Supplement 1). Unidentifiable prey fishes
accounted for 45% by both volume and weight, and
57% by number. The cumulative number of prey cate-
gories (18) recorded from these specimens had neared
an asymptote and additional estimates of prey items
indicated that only 1.5 to 3 prey categories may have
been missed by sampling (see Fig. S1 in Supple-
ment 2). In addition, the mean coefficient of variation
(CV) of the mean cumulative number of prey taxa gen-
erated for the final 4 stomach samples was 0.59%, sug-
gesting that characterizing the diet of lionfish from
these samples was sufficiently precise.

Analyses of stomach contents suggest a generalist
carnivorous diet. Prey categories included decapod
crustaceans (mean ± SE volume per stomach = 0.45 ±
0.13 ml, n = 17 stomachs), cephalopod and bivalve mol-
lusks (0.05 ± 0.05 ml, n = 2), and ophiuroid echino-
derms (0.10 ml, n = 1), but these made up only a frac-
tion of prey contents by volume and number (3.8%
invertebrates combined). In contrast, a diverse array of
prey fishes from 16 different families was observed in
the stomachs (3.77 ± 0.37 ml, n = 176; Table 1, Fig. 2).
Goatfishes (Mullidae) and wrasses (Labridae) were the
largest prey consumed and grunts (Haemulidae), par-
rotfishes (Scaridae), and sea basses (Serranidae) were
consumed in the greatest abundance (Fig. 2).

Major differences in the importance of prey were
seen between years. Serranidae and Scaridae domi-
nated the diet in 2004 while Haemulidae, Carangidae
(scad and jacks), and Crustacea were important in
2006 (Fig. 3, 1-way ANOSIM, R = 0.306, p = 0.001;
SIMPER, % contribution to dissimilarity: Serranidae =
22.50, Scaridae = 10.19, Haemulidae = 20.38, Carangi-
dae = 6.99, Crustacea = 10.54). These differences may
have been due to the availability of prey or a reflection
of the sizes of lionfish collected between years. Lion-
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fish collected in 2004 were significantly larger than
those collected in 2006 (mean ± SE TL in 2004 vs. 2006:
30.9 ± 0.53 vs. 28.4 ± 0.74 cm; Mann-Whitney Rank
Sum test, T = 13 738, n2004 = 115, n2006 = 111, p = 0.02);
and lionfish consuming Crustacea were significantly
smaller than lionfish that did not consume Crustacea
(TL of samples containing Crustacea vs. those with
no Crustacea: 25.9 ± 1.62 vs. 29.5 ± 0.49 cm; Mann-

Whitney Rank Sum test, T = 1343, nCrustacea = 20, 
nno Crustacea = 163, p = 0.026). The mean prey/predator
TL ratio for 2004 was 0.18 ± 0.01 (max. 0.41, n = 41),
compared with 0.16 ± 0.01 (max. 0.25, n = 35) for 2006
and the difference was not significant (t-test, t74 = 1.84,
p = 0.07).

Subtle ontogenetic differences in predatory habit
were apparent when examining changes in recogniz-
able prey with lionfish size (2-way ANOSIM, Ryear =
0.344, p = 0.001; Rsize class = 0.064, p = 0.029). We found
that the smallest lionfish contained the greatest pro-
portion by volume of crustacean prey, and higher pro-
portions of small bodied benthic fishes such as gobies
(Gobiidae) and blennies (Blenniidae) (Fig. 4, Table S3
in Supplement 4). Their diet was distinct from all other
size classes except fish of 25 to 29.9 cm TL (Table S2 in
Supplement 4). With increasing size, the percent vol-
ume of larger-bodied prey such as sea basses, parrot-
fishes, and grunts increased, along with the variety of
different prey categories consumed, but the diets of
larger size classes of lionfish were not significantly dif-
ferent from each other (Fig. 4, Supplement 4).

Despite the differences in prey consumed between
years, general characteristics of prey found in stom-
achs indicated consistency in lionfish predatory habits.
Prey lengths, volumes of stomach contents, and num-
bers of prey consumed per stomach were similar
between years. Mean ± SE TL of prey in 2004 vs. 2006
was 44.2 ± 1.7 mm, n = 122 vs. 43.9 ± 1.5 mm, n = 94
(Fig. 5A; 1-way ANOSIM, R = 0.01, p > 0.05); mean vol-
ume of prey in 2004 vs. 2006 was 3.4 ± 0.33 ml, n = 104
vs. 4.0 ± 0.72 ml, n = 79 (Fig. 5B; 1-way ANOSIM, R =

185

Prey category Total no. %IRI %IRI 
consumed 2004 2006

Synodontidae 2 0.40 0
Saurida normani

Scorpaenidae 1 0.07 0

Triglidae 1 0 0.08

Serranidae 52 70.15 0.08
Tattler bass Serranus phoebe
Belted sandfish S. subligarius
Harlequin bass S. tigrinus
Lantern bass S. baldwini
School bass Schultzea beta
Sandperch Diplectrum spp.

Apogonidae 11 0.40 0
Twospot cardinalfish 
Apogon pseudomaculatus

Carangidae 31 0.40 6.94
Selar crumenophthalmus

Haemulidae 150 0 72.83
Haemulon aurolineatum

Mullidae 1 n/a n/a

Pomacentridae 8 0.24 1.58
Chromis enchrysura

Labridae 9 1.71 0.38
Bodianus spp., Halichoeres spp.
Thalassoma spp.

Scaridae 48 18.67 0.16
Bucktooth parrotfish 
Sparisoma radians, Scarus spp.

Blenniidae 22 2.94 0.41
Hypleurochilus geminates

Gobiidae 3 0 1.01

Acanthuridae 1 0 0.16

Bothidae 7 0.25 1.02

Monacanthidae 12 0.62 0.65
Monacanthus ciliatus

Mollusca 3 0.10 0.16
Bivalvia, Cephalopoda

Crustacea 29 4.06 14.55
Stomatopoda, Decapoda, Cirripedia

Echinodermata 1 n/a n/a
Ophiuroidea

Table 1. Pterois volitans. Prey consumed by lionfish off North
Carolina. IRI: Index of relative importance (see ‘Materials and
methods: statistical analysis’ for details); n/a: stomach con-
tents regurgitated from multiple fish while in a common hold-
ing tank. Unidentifiable fishes represented 45% of total 
volume (664 ml) and weight (616 g), and 57% of total number 

(826) of prey fishes recorded from lionfish stomachs
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0.004, p > 0.05); mean number of prey per stomach in
2004 vs. 2006 was 4.0 ± 0.36, n = 104 vs. 5.5 ± 1.0, n =
79 (Fig. 5C; 1-way ANOSIM, R = 0.015, p = 0.035). In
the case of number of prey, the low global R statistic
indicates that the overall distribution of prey numbers
consumed between years, although statistically signif-
icant (because of large sample sizes; Warwick 1993,
Warwick & Clarke 2001), was not biologically signifi-
cant. Visual surveys of prey availability compared with
prey from stomach contents revealed that grunts were
observed most frequently in the environment and also
in the stomachs of lionfish (Fig. 6). Differences be -
tween damselfish (Pomacentridae) and scad that were
censused versus eaten were not large enough to result
in significant differences (1-way ANOSIM, R = 0.367,
p = 0.09).

A total of 115 samples collected in 2004 from 17 sites
were analyzed for δ13C and δ15N values (see Table S1

in Supplement 1). The δ13C values of lionfish muscle
tissue exhibited little variability between samples, with
an overall mean of –16.60 ± 0.02‰ (range –16.0 to
–17.2‰). The range in δ15N values was greater (9.61 to
12.07‰), with an overall mean of 11.00 ± 0.04‰
(Fig. 7). There was no significant relationship between
total length of specimens, which ranged between 14.5
and 45.0 cm, and either δ13C (F = 0.006, p = 0.9552,
adjusted r2 = 0.0088, df = 114) or δ15N (F = 2.16, p =
0.1447, adjusted r2 = 0.0100, df = 114) values of lionfish
tissue. Given our previous assumptions regarding δ15N
values for benthic algae and tissue enrichment for car-
nivorous fish, herbivorous fish, and invertebrates (see
‘Materials and methods’), there are 2.3 trophic level
steps between the mean lionfish δ15N value and pri-
mary producers. Assuming a trophic level of 2.3 and a
0.8‰ increase in δ13C per trophic step, the 2-source
mixing model results indicated that benthic primary
producers provide about 77% of the carbon in the lion-
fish food web.

DISCUSSION

Our study of stomach contents, prey surveys, and
isotope analyses for Pterois volitans off North Carolina
indicates a generalist feeding strategy for this invasive
fish. Since stomach contents provide only a snapshot of
prey consumed, we hoped that samples from multiple
years would provide insight regarding the consistency
or variability of targeted prey. We found that prey cat-
egories that were important (sea basses, parrotfishes)
in 2004 were less important in 2006 (when grunts,
crustaceans, and scad were the dominant prey items).
Although lionfish that had consumed crustaceans were
smaller than those that had not and lionfish collected in
2006 were smaller (by approx. 2 cm) than those col-
lected in 2004, it is improbable that such dramatic dif-
ferences in prey consumption were due to the slight
size difference in specimens alone. Rather, differences
between years are most likely driven by differences in
prey availability.

Unfortunately, we did not conduct prey censuses in
2004 so we do not know if these differences in prey
importance between years were a response to the local
availability of prey. However, our prey community sur-
veys from 2006 do suggest that lionfish consume prey
in relation to their availability in the environment
rather than preferentially consuming particular prey
types, as grunts were the most abundant prey item
seen and also the most abundant prey in stomachs.
Additionally, although we found a mismatch between
scad in stomachs (second most abundant prey species)
versus censused (absent from visual surveys), subse-
quent surveys from multiple years and sites indicate

186

%
 n

um
b

er

0

10

20

30

40

50

60
2004
2006

Prey taxa

Ser
ra

nid
ae

Sca
rid

ae

Blen
nii

dae

Apog
on

idae

M
on

ac
an

th
idae

Cru
sta

ce
a

La
brid

ae

Car
an

gid
ae

Bot
hid

ae

Pom
ac

en
tri

dae

Syn
od

on
tid

ae

Sco
rp

ae
nid

ae

Biva
lvi

a

Hae
m

uli
dae

Gob
iid

ae

Tri
gli

dae

Aca
nt

hu
rid

ae

%
 v

ol
um

e

0

10

20

30

40

50

60

2.1

2.1

4.3 4.3

23.4

4.3

21.3

6.4 8.5

2.1

48.9

6.4

2.1 2.1

52.6

33.3

15.8 3.5 5.3

15.8 10.5
3.5

3.5 3.5
1.8 1.8

3.5

Fig. 3. Pterois volitans. Relative importance of prey categories
consumed by lionfish from 2004 and 2006, shown as mean
(+SE) percent of total number (upper panel) and total volume
(lower panel) of prey consumed. Numbers above and below
bars show percent frequency of occurrence for prey cate-

gories in 2006 and 2004, respectively



Muñoz et al.: Lionfish diet in Southeast US Atlantic

that scad is a patchily distributed species that occa-
sionally visits benthic habitats in large (1100 to
40 000 ind. ha–1) schools while feeding (Parker et al.
1994, Kendall et al. 2009, P. Whitfield et al. unpubl.).
Thus, due to their patchy distribution, our visual sur-
veys were unlikely to have effectively censused scad.
Tomtate grunts Haemulon aurolineatum and scad
Decapterus spp. can be the 2 most abundant species on
hard bottom reefs (Parker et al. 1994, Kendall et al.
2009, P. Whitfield et al. unpubl.) and it is likely that
scad was one of the most abundant potential prey spe-
cies in our study area, resulting in a match between
availability and consumption. Although the magnitude
of damselfishes observed during censuses is greater
than that recorded in stomach contents, this same pat-
tern was also found for 2 other studies of piscivorous
groupers in such disparate locations as the Great Bar-
rier Reef (GBR) and Hawaii (Beukers-Stewart & Jones
2004, Dierking et al. 2009). These authors suggested
that the close association by damselfishes with the
shelter of reefs may make them less vulnerable to pre-
dation than mid-water schooling fishes. The groupers
Cephalopholis spp. studied at the GBR ate a variety of
prey but focused on the 2 most abundant families on
the reefs: cardinalfishes (Apogonidae) and dam-
selfishes (Beukers-Stewart & Jones 2004). When pre-
sent, however, mid-water schooling herrings (Clupei-
dae) and fusiliers (Caesionidae) were selected over
reef-associated species, similar to our observations of
consumption of mid-water schooling grunts and scad.
Predators may preferentially attack large schools if
school size increases the conspicuousness and detec -
tability of prey (Botham & Krause 2005), and not all

predators succumb equally to the confusion effect
attributed to schools (Turesson & Brönmark 2004). Our
density estimates for grunts, scad, and damselfishes
suggest that the 3 most abundant prey items observed
in lionfish stomachs were also the 3 most abundant
prey in the environment. This suggests that prey are
generally taken in relation to their local abundance but
additional prey surveys coupled with stomach contents
are needed to strengthen this conclusion.

The flexibility (across years) in prey consumption
and apparent generalist feeding strategy observed for
lionfish in this study is consistent with predatory strate-
gies documented for other invasive fishes, including
racer goby Neogobius gymnotrachelus and flathead
catfish Pylodictis olivaris (Grabowska & Grabowski
2005, Pine et al. 2005). Available evidence suggests
that the most successful fish invaders appear to be pis-
civorous or omnivorous and ecological generalists
(Kolar & Lodge 2001, Unmack & Fagan 2004). Such
predation strategies likely aid invasive species during
establishment in novel environments where the food
base may differ from the species’ natural range
(Grabowska & Grabowski 2005, Pine et al. 2005), pro-
viding an abundance of diverse potential prey re -
sources that would only rarely be limiting (Grabowska
& Grabowski 2005, Rehage et al. 2005). The generalist
feeding strategy that we have documented for Pterois
volitans indicates one potential mechanism for the suc-
cess of this invasive piscivore.

Although we found crustaceans, mollusks, and echi -
noderms in lionfish stomachs, all measures of prey
importance indicate that adult lionfish are essentially
piscivorous. This designation does not discount the
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finding that smaller lionfish may target invertebrate
prey and smaller-bodied fishes, and gradually de -
crease the quantity of invertebrate prey with ontogeny.
Such an ontogenetic shift is a general pattern for
numerous piscivores and can result in increased
growth rates following the shift (Reñones et al. 2002,
Scharf et al. 2009). Morris and Akins (2009) examined

lionfish stomachs from the Bahamas and also found
that the proportion of fishes in the diet increased with
lionfish size. The specimens they examined were
smaller on average (TL = 21.7 cm) than our North
 Carolina sample (TL = 28.4 to 30.9 cm, from 2006 and
2004) and this appears to have influenced the impor-
tance of prey as determined through dietary indices,
because larger-bodied predators are typically capable
of consuming larger-bodied prey (Unmack & Fagan
2004). Smaller-bodied fishes such as gobies, basslets
(Grammatidae), and wrasses were ranked as the most
important prey items in the Bahamas; whereas, typi-
cally larger-bodied prey (sea basses, grunts, parrot-
fishes) were most important off North Carolina. In
addition, the average prey/predator TL ratio was
slightly higher off North Carolina (0.16–0.18 vs. 0.15 in
the Bahamas), though the maximum prey/predator TL
ratio was higher in the Bahamas (0.48 vs. 0.25–0.41 in
North Carolina) (Albins & Hixon 2008, Morris & Akins
2009). Morris & Akins (2009) found a greater number
of families of fish prey (21 vs. 16 off North Carolina) in
their samples but also had a larger sample size (n =
1069 vs. 183 in the present study). However, a number
of prey families found in lionfish from the Bahamas
were also found in lionfish from North Carolina. These
include grunts, cardinalfish, damselfish, wrasses, par-
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rotfish, blennies, gobies, sea basses, lizardfish (Syno -
dontidae), surgeonfish (Acanthuridae), filefish (Mona -
canthidae), and goatfish. Prey families unique to North
Carolina relative to the Bahamian studies include scor-
pionfish, sea robins (Triglidae), scad, and flounders
(Bothidae).

Stable N isotopes provide another means of assess-
ing ontogenetic changes in lionfish diets and the
trophic level at which lionfish are feeding. The isotope
values of muscle tissue integrate diet over a longer
period of time than do stomach contents, and reflect
the isotope values of all assimilated prey, rather than
the identifiable remains of ingested prey. Despite the
decrease in percentage of invertebrates found in stom-
ach contents of larger lionfish, we did not see a signifi-
cant relationship between total length and δ15N values,
suggesting that the observed increase in fish consump-
tion with size did not result in a net increase in trophic
level. Small fishes that replaced invertebrates in diets
of larger lionfish are likely feeding at a similar trophic
level as invertebrates, and the utilization of herbivo-
rous fishes such as parrotfish may also contribute to the
observed static trophic level with increasing lionfish
size. Consumption of rapidly digested (e.g. soft-bodied
invertebrates), lower trophic level prey which are not

evident in stomach contents (Bowen 1992) may also
contribute to the observed δ15N values. The lack of
relationship between fish size and δ15N values is in
contrast to results from other studies examining marine
benthic carnivorous fishes (Reñones et al. 2002,
Cocheret de la Morinière et al. 2003), and supports the
conclusion that lionfish are generalist feeders. Based
on δ15N values, we conclude that lionfish are feeding at
a similar trophic level to multiple species of reef fish in
Onslow Bay (spottail pinfish Diplodus holbrooki, ver-
milion snapper Rhomboplites aurorubens, round scad
Decapterus punctatus, red porgy Pagrus pagrus, and
tomtate Haemulon aurolineatum) reported by Thomas
& Cahoon (1993) (Fig. 7).

The importance of benthic primary producers to the
food web supporting lionfish, as determined by the
2-source mixing model, is consistent with analyses of
the trophic importance of benthic algae to fishes
 occupying other shallow nearshore waters (Thomas &
Cahoon 1993, Reñones et al. 2002, Takai et al. 2002,
Fonseca et al. 2006). Lionfish C isotope values are also
intermediate to those reported for the 5 species of reef
fishes (–15.9 to –17.7‰) collected from Onslow Bay,
which were described as representative of separate
planktonic and benthic trophic pathways (Thomas &
Cahoon 1993; our Fig. 7). The range and average δ13C
values (–16.0 to –17.2, and –16.6‰, respectively) of
lionfish collected off North Carolina overlap with val-
ues for piscivore (–16.3 to –17.6‰) and opportunistic
generalist (–15.8 to –18.0‰) fishes from the literature
(Fry 1988), providing additional support that lionfish
feed as generalists.

Potential impacts — trophic overlap and direct
predation

Since lionfish appear to be generalist predators that
feed primarily on benthic fishes, there is potential in
the invaded range for trophic overlap with native
fishes that share prey resources (See Table S4 in
 Supplement 5 at www.int-res.com/articles/suppl/m432
p181_supp.pdf) as well as direct impacts to prey com-
munity structure via predation (Randall 1967, Sano et
al. 1984, Naughton & Saloman 1985, Matheson et al.
1986, Fishelson 1997). For example, economically im -
portant groupers in the genus Mycteroperca feed
almost exclusively on fishes (Randall 1967, Dodrill et
al. 1993), and scamp grouper (M. phenax) overlap in
habitat utilization and size classes with lionfish
(R. Muñoz & P. Whitfield unpubl.). Like lionfish, ser-
ranids, haemulids, and carangids are some of the most
important food items in the scamp diet (Matheson et al.
1986), so comparably sized scamp and lionfish may be
targeting similar prey, potentially resulting in negative
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Fig. 7. Plot of stable C and N isotope values for Pterois volitans
collected in this study (+) and mean values for Onslow Bay
reef fishes (Decapterus punctatus, Diplodus holbrooki, Rhom-
boplites aurorubens, Pagrus pagrus, and Haemulon aurolin-
eatum) from Thomas & Cahoon (1993). Onslow Bay reef fishes
include those utilizing a benthic pathway (filled symbols) and
pelagic pathway (open symbols). Estimated trophic level posi-
tions of fish are indicated on right side of graph. Boxes for
phytoplankton and benthic algae represent the mean ± 0.5 ‰
of published isotope values which were used in the mixing 

model and trophic level calculations
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trophic impacts from the growing lionfish population if
their shared prey resource became limited.

Our ongoing research examining juvenile and cryp-
tic fish (lionfish prey) community structure on hard
bottoms is shedding light on potential predatory
impacts. Given that we found 100 mm prey items in
lionfish stomachs, that maximum prey/predator TL
ratios were 0.41 (or 0.48 if we use Bahamas estimates),
and that a 47 cm (1435 g) lionfish was landed off North
Carolina (J. Morris unpubl.), prey up to 22.5 cm TL
could potentially be consumed by lionfish in the South-
east US Atlantic. This estimate is larger than the 8 to
9 cm TL reported by Fishelson (1997) in the laboratory,
but the largest lionfish he studied also weighed less
(1006 g) than the specimen from North Carolina.
 During our ongoing research, we regularly observe
lionfish together with the juveniles of a variety of eco-
nomically important species such as black seabass
Centropristis striata, vermilion snapper, white grunt
Haemulon plumierii, and scamp grouper at sizes (<10
to 20 cm) such that they could be directly consumed by
lionfish (R. Muñoz & P. Whitfield unpubl.). Indeed,
Morris & Akins (2009) found economically important
yellowtail snapper Ocyurus chrysurus and Nassau
grouper Epinephelus striatus in the stomachs collected
from Bahamian lionfish.

On the other hand, numerous Atlantic fishes are
capable of consuming venomous scorpaenids, includ-
ing goosefish Lophius americanus and mutton snapper
Lutjanus analis, which are known to consume the ven-
omous scorpaenid blackbelly rosefish Helicolenus dac -
tylopterus and spotted scorpionfish Scorpaena plu -
mieri, respectively (Randall 1967, Bowman et al. 2000).
In addition, lionfish were recently documented in the
stomachs of tiger groupers Mycteroperca tigris and
Nassau groupers in the Bahamas (Maljkoviç et al.
2008). At this stage, however, the potential role of pre-
dation in decreasing the number of lionfish is un -
known, as is the effect of lionfish on native predators.
Predation by large carnivores such as groupers and
sharks may represent one of the best controls for inva-
sive lionfish (Albins & Hixon 2008), as low densities
(~2.2 ind. ha–1) of lionfish were observed in their native
range on Palauan reefs with robust grouper popula-
tions (Grubich et al. 2009).

Lionfish: a permanent component of the 
Western Atlantic fish community

Piscivores are believed most capable of altering the
communities which they invade (Marchetti et al. 2004)
and the overall pattern of generalist piscivory emerg-
ing from this study and others (Albins & Hixon 2008,
Morris & Akins 2009, Cote & Maljkoviç 2010) indicates

the potential for significant impacts to the invaded
community. In addition to the diversity of habitats
occupied off the North Carolina coast (P. Whitfield et
al. unpubl.), lionfish have also been found in Bahamian
mangroves (Morris & Akins 2009, Barbour et al. 2010).
Therefore, in southern locations where winter water
temperatures more closely resemble those found in the
native range, lionfish can be expected to eventually
occupy a variety of inshore and offshore habitats.
Because of their planktonic larval dispersal and their
opportunistic colonization of habitats and use of food
resources, we caution that eradication of lionfish will
not be feasible. Sustained control measures may miti-
gate the eventual extent of lionfish populations, but
only on a local scale, and the costs of these efforts will
need to be carefully evaluated. Fortunately, lionfish
are a popular food fish in their native range and aside
from the care required in avoiding spines once col-
lected, they are one of the easiest fishes to capture by
spear. Therefore, developing and encouraging a fish-
ery for lionfish should be an important part of local
control efforts.

In addition to trophic and predatory impacts outlined
here, further indirect effects are possible and remain to
be investigated in the Southeast US Atlantic. These
effects may be related to the overfishing of many
groupers and other native predators (Coleman et al.
1999, Huntsman et al. 1999, NMFS 2010) or invasional
meltdown (Simberloff & Von Holle 1999, Grosholz
2005) or interactions with other non-native marine
fishes (Semmens et al. 2004, Schofield et al. 2009). The
combined effects of overfishing, climate change, and
multiple invasive species on ecosystems are not well
understood but have been implicated in ecosystem
state shifts and decline in several marine ecosystems
(Harris & Tyrrell 2001, Stachowicz et al. 2002, Frank et
al. 2005, Grosholz 2005).
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