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viewed. While most studies were performed in adults, a few 

studies also demonstrated a role of AGEs in obesity and as-

sociated cardiometabolic comorbidities in the younger pop-

ulation. Available evidence suggests an involvement of AGEs 

in the pathogenesis of adiposity and β-cell failure in children. 

Potential areas for further research to investigate underlying 

mechanisms are proposed.   © 2016 S. Karger AG, Basel 

 Introduction 

 There is a worldwide worsening epidemic of obesity, 
diabetes mellitus (DM) and cardiovascular disease (CVD) 
with an increasing onset in children and young adults  [1] . 
However, the knowledge of mechanisms underlying the 
progression to DM and CVD particularly in children is 
still limited; this represents a barrier for further progress 
in this field. Strategies to identify the child at risk, mech-
anisms involved and how to prevent/treat these condi-
tions in their early stages of development, are needed ur-
gently and are vital in effectively preventing or halting the 
progression of DM and CVD. 

  These multifactorial diseases are known to be associ-
ated with low-grade inflammation, insulin resistance (IR) 
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 Abstract 

 The rising incidence of obesity and metabolic diseases such 

as diabetes mellitus and cardiovascular disease in adoles-

cents and young adults is of grave concern. Recent studies 

favor a role of lifestyle factors over genetics in the perpetua-

tion of inflammation, insulin resistance and oxidative stress, 

which are pathophysiologic processes common to the above 

diseases; furthermore, the importance of dietary factors in 

addition to calories and physical activity in these processes 

is being increasingly recognized. Advanced glycation end 

products (AGEs) belong to a category of dietary oxidants 

which have been implicated in the pathogenesis of inflam-

mation, oxidative stress, insulin resistance, β-cell failure and 

endothelial dysfunction. This paper reviews the studies of 

AGEs with a focus on their role in cardiometabolic disease in 

children. A Medline search was performed using the key 

words ‘childhood obesity’, ‘metabolic syndrome’ and ‘ad-

vanced glycation end products’. Articles published in En-

glish between 1975 and 2015 and their references were re-
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and oxidative stress (OS) across the age spectrum  [2] . An 
increasing number of studies point to a pathogenic role 
of dietary factors in obesity-associated chronic inflamma-
tion, particularly with regard to their pro-oxidant proper-
ties. Advanced glycation end products (AGEs) belong to 
one such category of oxidants, which may cause β-cell 
failure, IR and endothelial dysfunction. AGEs are tradi-
tionally known to be produced endogenously as a result 
of hyperglycemia and increased OS. Recently, accumu-
lated data additionally indicate that exogenous AGEs in-
gested with food or smoking represent a major contribu-
tor to the pool of AGEs in the body. In this article, we will 
review experimental and human studies looking at the 
role of AGEs in causing DM and CVD with special em-
phasis on dietary AGEs and on studies in children. We 
will also review studies evaluating the role of AGEs and 
their receptor variants in children with a focus on cardio-
metabolic risk. Finally, we will delineate the challenges of 
research in the field and present some insights into future 
directions, particularly in relation to children and adoles-
cents. 

  What Are AGEs and What Are Their Pathogenic 

Mechanisms? 

 Reducing sugars such as glucose and fructose undergo 
spontaneous reactions with free amino groups on pro-
teins, peptides or amino acids, lipids and nucleic acids to 
form a heterogeneous group of compounds known as 
AGEs; this is the classical Maillard reaction. The term 
AGEs, as currently used, broadly encompasses products 
of both glycoxidation and lipid peroxidation such as in-
termediate reactive precursors [1-deoxyglyoxal (1-DG), 
3-DG and methylglyoxal (MG)] as well as terminal non-
reactive AGEs [carboxymethyllysine (CML) and pentosi-
dine]. These reactions increase in the presence of hyper-
glycemia and OS in vivo. In addition, all these reactions 
also occur in the environment and accelerate in the pres-
ence of high temperatures. For example, cooking food 
under dry conditions with the application of high heat 
significantly increases the formation of AGEs. 

  AGEs, endogenous or exogenous, can produce tissue 
damage by two main mechanisms. First, AGEs can cova-
lently crosslink proteins and, therefore, directly alter pro-
tein structure and function. Second, through a variety of 
receptor and non-receptor mechanisms, AGEs can acti-
vate several intracellular pathways that increase genera-
tion of reactive oxygen species (ROS) and inflammatory 
cytokines. 

  The receptor for AGEs [membrane-bound receptor of 
AGE (mRAGE)] is a well-studied membrane-bound re-
ceptor that binds AGEs, initiating a cascade of intracel-
lular events leading to inflammation and OS  [3] . Other 
receptors of AGEs such as advanced glycation end prod-
uct receptor-1, -2 and -3 (AGE-R1, AGE-R2 and AGE-
R3) and scavenger receptors are considered to be endo-
cytic in nature and also involved in the clearance of AGEs. 
Moreover, AGE-R1 has been shown to participate in 
pathways that decrease intracellular OS  [4] . It has been 
proposed that chronic AGE overload results in unbal-
anced activation of downstream proinflammatory and 
pro-oxidative pathways. There is also a circulating pool 
of RAGE, collectively known as soluble RAGE (sRAGE), 
whose role still remains controversial. sRAGE consists of 
the isoform derived from membrane-bound RAGE by 
the proteolytic action of metalloproteases [such as a dis-
integrin and metalloprotease-10 (ADAM-10) and matrix 
metalloprotease-9] and a minor, alternatively spliced, 
isoform of RAGE known as endogenously secreted RAGE 
(esRAGE)  [5] . In animal studies, administration of 
sRAGE prevented and stabilized established atheroscle-
rosis  [6, 7]  and ameliorated retinal neuronal dysfunction 
in experimental diabetic retinopathy  [8] . Therefore, 
sRAGE has been suggested to act as a decoy receptor that 
binds and eliminates circulating AGEs. A contrary view 
that has been proposed is that sRAGE may be a marker of 
tissue RAGE expression and represent disease activity  [9] . 
The exact pathophysiological role of these soluble vari-
ants remains controversial and is a matter of active inves-
tigation. More recently, it has been shown that AGEs also 
activate intracellular pathways through Toll-like recep-
tor-4 in addition to RAGE  [10] .  Figure 1  shows possible 
actions of major receptors as a result of interaction with 
AGEs during normal cellular homeostasis. 

  Dietary AGEs 
 Food and tobacco are two major environmental sourc-

es of AGEs. The dietary content of AGEs depends on the 
protein, lipid and carbohydrate content of the food as well 
as on the temperature and conditions of cooking, espe-
cially moisture. Animal-derived foods cooked at high 
temperature, for a prolonged time and under dry condi-
tions have the highest content of AGEs  [11] . Dietary 
sources of AGEs contain both highly reactive intermedi-
ate precursors such as carbonyl derivatives as well as ter-
minal AGEs such as CML. The gastrointestinal absorp-
tion of dietary AGEs has been confirmed by the oral ad-
ministration of double-labeled single-protein AGEs, with 
or without specific AGE inhibitors, such as aminoguani-
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dine in rats, or the enrichment of low-AGE experimental 
diets with specific AGEs in mice  [4, 12] . Chronic studies 
involving dietary AGE modification have also confirmed 
an association between dietary AGE burden and circulat-
ing AGE levels. An estimated 10% of ingested AGEs are 
absorbed into the circulation and about 70% of those ab-
sorbed are retained in the body and contribute to the AGE 
pool in the body, where they become indistinguishable 
from endogenous AGEs both structurally and function-
ally; kinetic studies in rats have shown that dietary AGEs 
are bioreactive molecules capable of covalently crosslink-
ing tissue proteins and causing glycoxidative damage 
similar to glycotoxins produced endogenously  [13] . AGEs 
are further metabolized by detoxifying enzymes such as 
glyoxalases in different tissues as well as excreted by the 
kidneys. Therefore, AGEs may accumulate with de-
creased availability of glyoxalases  [14]  or in conditions of 
decreased renal clearance. 

  In vitro Studies Linking AGEs and Metabolically 

Active Tissues 

 Adipose Cells 
 Incubation with AGEs prevented the differentiation of 

3T3-L1 adipocytes, a commonly studied adipose cell line. 
In addition, the cells demonstrated a decreased glucose up-
take activity and increased ROS in the presence of AGEs. 

Glucose uptake activity perturbation was reversed by 
blocking RAGE as well as by  N -acetylcysteine, an antioxi-
dant. This suggests that AGE action on glucose uptake is 
mediated by RAGE-generated intracellular OS. Further-
more, AGEs increased the expression of monocyte che-
moattractant protein-1, an inflammatory marker involved 
in adipose tissue macrophage infiltration and IR  [15] .

  Islet Cells 
 Incubation of two insulin-secreting cell lines (HIT-

T15 and INS-1) with AGEs enhanced cell apoptosis and 
inhibited insulin secretion in cell culture models  [16, 17] . 
It was also suggested that AGEs might bind to insulin and 
decrease its biologic activity. The apoptotic effects of 
AGEs were shown to be mediated via mitochondrial elec-
tron transport chain inhibition as well as the NADPH ox-
idase-mediated increase in ROS  [17] . Further, studies in 
rat islets showed that RAGE blockade could reverse the 
apoptotic effects of AGEs, although the impact of AGEs 
on glucose-stimulated insulin secretion could not be re-
versed. Interestingly, the addition of glucagon-like pep-
tide-1 reversed apoptosis and impaired glucose-stimulat-
ed insulin secretion in the islets, suggesting that it has a 
protective action against AGEs  [18] . It is not known, 
however, if this glucagon-like peptide-1 effect is at the 
receptor-binding site or at a post-receptor level. This sug-
gests that AGEs might act via different receptors to exert 
their actions on insulin secretion as well as apoptosis.

esRAGE

sRAGE

mRAGE

OS

MAPK

TLRs

AGEs

ROS

NF B

ADAM-10

SIRT-1

AGE-R1

  Fig. 1.  AGEs and their major receptors. 
AGEs bind to mRAGE and cause activation 
of inflammatory pathways (MAPK, NFκB) 
or are endocytosed and cleared by AGE-
R1. AGE-R1 activates sirtuins, a group of 
deacetylases that suppress NF-κB. ADAM-
10 is a metalloprotease that cleaves mRAGE 
and releases it into the circulation as 
sRAGE. esRAGE is an alternatively spliced 
form that constitutes approximately 15% 
of the circulating RAGE pool. TLR-4 is an-
other receptor implicated in mediating the 
action of AGEs. AGE-R1 = Advanced gly-
cation end product receptor (OST-48); 
MAPK = mitogen-activated protein ki-
nase; NFκB = nuclear factor κ light-chain 
enhancer of activated B cells; SIRT-1 = sur-
vival factor sirtuin 1; TLR = Toll-like recep-
tor.  
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  Hepatic Cells 
 The liver is a major clearing house for AGEs with 85% 

of intravenously injected AGEs being cleared by sinusoi-
dal cells and Kupffer cells and less than 15% by hepato-
cytes. AGEs, on the contrary, impair the scavenger func-
tion of rat hepatic sinusoidal endothelial cells  [19] . Fur-
thermore, hepatic stellate cells are activated when exposed 
to triglyceraldehyde-derived AGEs and demonstrate an 

increased expression of RAGE as well as of genes involved 
in inflammation and fibrogenesis  [20] . These findings, 
coupled with elevated levels of triglyceride-derived AGEs 
in patients with nonalcoholic steatohepatitis, suggest a 
role of AGEs in nonalcoholic steatohepatitis and cirrhosis 
of the liver  [21] . In addition, AGEs may cause IR and up-
regulate inflammation [as evidenced by increased C-re-
active protein levels (CRP)] in hepatocytes. Both of the 
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  Fig. 2.  Chronic AGE overload leads to in-
creased mRAGE expression, leading to OS. 
In addition, the AGE-R1 level is decreased. 
This is manifested as increased macro-
phage infiltration and IR in the fat cell ( a ) 
and as decreased insulin secretion in the β 
cell ( b ). AGE-R1 = Advanced glycation end 
product receptor (OST-48); GLUTR = glu-
tamyl-tRNA reductase; MAPK = mitogen-
activated protein kinase; MCP-1 = mono-
cyte chemoattractant protein-1; NFκB = 
nuclear factor κ light-chain enhancer of ac-
tivated B cells; SIRT-1 = survival factor sir-
tuin 1; TLR = Toll-like receptor. 
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above effects are thought to be mediated by the activation 
of Rac-1 kinases followed by IκB kinase and c-Jun  N -ter-
minal kinase activation and downstream insulin receptor 
substrate-1 (IRS-1) serine phosphorylation in the hepato-
cyte and adjacent hepatic stellate cells  [22] . 

  Muscle Cells 
 Exposure of L6 skeletal muscle cells to human glycated 

albumin induced IR (decreased insulin-stimulated glu-
cose uptake and decreased glycogen synthase activity) via 
protein kinase Cα-mediated serine and threonine phos-
phorylation of IRS-1 and IRS-2  [23] .

  Endothelial Cells 
 A study with human umbilical vein endothelial cells 

confirmed that food-derived AGEs induce significant tu-
mor necrosis factor α activation as well as cell-oxidative and 
crosslink formation activities and that these actions are me-
diated by RAGE and non-receptor mechanisms  [24] .

   Figure 2  demonstrates the hypothesized impact of 
AGE ligand excess in the fat cell ( fig. 2 a) and the β cell 
( fig. 2 b) in the pathogenesis of cardiometabolic risk.

  Experimental Studies Linking Dietary AGEs and 

Disease 

 Studies of various animal models of diabetes, athero-
sclerosis and kidney disease have demonstrated a nega-
tive impact of a high-AGE diet and benefits of dietary 
intervention with a low-AGE diet. For example, in both 
control C57/Bl-6  [25]  and spontaneously diabetic db/db 
mice  [26] , restriction of AGE intake decreased serum 
AGE levels and improved insulin sensitivity. This sug-
gests that dietary AGEs induce and exacerbate IR both 
under genetic and environmentally acquired conditions 
that predispose to IR. Furthermore, Lin et al.  [27, 28]  
have shown that apolipoprotein-E-deficient mice devel-
op atherosclerotic lesions in the presence and absence of 
diabetes when exposed to a high dietary AGE intake. In-
terestingly, the lesions decreased significantly by lower-
ing of dietary AGEs, suggesting a link of dietary AGEs 
with atherosclerosis. Glycation of low-density lipopro-
tein cholesterol and endothelial dysfunction are some of 
the proposed mechanisms for AGE-mediated athero-
sclerosis.

 Table 1. Studies in various animal models assessing the impact of a lower dietary AGE intake

Animal Animal model Age at start Intervention Duration Observed effects Ref.

Mouse db/db C57/BL-6J Adult
(4 weeks)

LAGE vs. HAGE 
chow 10-fold

20 weeks Lower AGE levels, improved insulin sensitivity, 
glucose tolerance in the LAGE diet group, better 
preserved islet architecture

26

Mouse C57BL6 Adult 
(6 weeks)

LAGE-HF vs. HAGE-HF 
diet 2.4-fold

6 months HAGE-HF-fed mice were heavier, 
hyperinsulinemic and diabetic compared to the 
LAGE-HF or control diet

25

Mouse NOD Adult/neonatal LAGE vs. HAGE 
5-fold

44 weeks LAGE diet decreased autoimmune diabetes 3-fold 
in F0 females and 5-fold in their first- and 
second-generation offspring when kept on a 
LAGE diet

31

Mouse NOD, db/db mice Adult LAGE vs. HAGE 
6-fold

4 or 11 
months

LAGE diet mitigated DM nephropathy in both 
models, increased survival in NOD mice

29

Mouse DM Apo E–/– Adult 
(6 – 8 weeks)

LAGE vs. HAGE 
4-fold

2 months Reduced atherosclerotic lesions with no change in 
lipids

27

Mouse Apo E–/– with 
intimal injury

Adult
(12 weeks)

HAGE vs. LAGE 10-fold 
followed by arterial injury

5 weeks Decreased neointimal area, intima/media ratio, 
number of macrophages, lower AGE levels in 
blood and endothelial cells and macrophages in 
the neointimal lesions

28

Mice C57/BL6J Adult/F3 
offspring

MG added to LAGE diet 18 months Increased adiposity, AGE, leptin and insulin level, 
insulin resistance earlier in F3 vs. F0, decreased 
AGER-1 and SIRT-1 levels in adipose tissue, 
skeletal muscle and liver

32

Rats Sprague-Dawley Adult Aminoguanidine 
after AGE albumin

Single dose Aminoguanidine increased urinary excretion of 
AGEs and decreased AGE deposits in the kidney 
and liver

12

 LAGE = Low AGE; HAGE = high AGE; HF = high fat; NOD = non-obese diabetic; F0, F1, F3 = successive generations; AGER-1 = advanced glycation 
end product receptor-1; SIRT-1 = survival factor sirtuin 1.
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  A low-AGE diet prevented further progression of dia-
betic nephropathy in both db/db mice and high-fat-fed 
mice models  [29] , suggesting a pathogenic role of AGEs in 
renal dysfunction. This was further reinforced by the find-
ing that a high-AGE diet administered for a 6-week period 
increased proteinuria in 5/6 nephrectomized rats  [30] .

  Interestingly, in a model of autoimmune diabetes, 
when female non-obese diabetic mice were maintained on 
an AGE-restricted diet, the incidence of diabetes dropped 
from 90 to 30% with reduced insulitis and lower antigenic 
response  [31] . It is possible that a low-AGE environment 
prevented the onset of type 1 DM (T1DM) possibly by de-
creasing the T-cell stimulus or by inhibiting direct β-cell 
damage. Furthermore, the impact of a dietary restriction 

of AGEs continued in the next two generations with the 
incidence of diabetes being less than 15% as long as the 
dams and their offspring were continued on the low-AGE 
diet. This suggests that avoidance of AGEs during critical 
developmental periods can prevent their detrimental ef-
fects. The preserved transgenerational protective effect of 
the restricted AGE intake points to a strong likelihood of 
reduced transplacental transfer of AGEs with involve-
ment of an epigenetic mechanism. In another study, the 
F3 offspring of female mice fed an otherwise low-AGE diet 
supplemented with MG showed an earlier onset of adipos-
ity and IR  [32] , further reinforcing the possibility of an 
epigenetic transmission of the effects of AGEs in offspring. 
The data from animal studies are summarized in  table 1 . 

 Table 2. Human studies assessing the impact of AGEs on healthy subjects as well as various diseases

Study design Humans n Age, years Diet type; duration Impact on chronic inflammation/disease Ref.

Observational

Cross-sectional Healthy young 
and elderly

325 19 – 90  Dietary AGE intake and serum AGE levels 
correlate with CRP and mononuclear TNFα, 
VCAM-1 and isoprostane level

38

Cross-sectional Adults with MS 130 49 – 75  Dietary AGE intake and CML level higher in 
those with MS compared to those without 
MS

39

 Adults without MS 137 52 – 85  

Longitudinal Healthy subjects 49   Change in AGE intake correlates with 
change in AGE level 

38

Cross-sectional Obese vs. lean 
children

18 obese
18 lean

5 – 10
4 – 17

 CML and FL-AGE levels are lower in obese 
children despite worse CRP, 
IL-6 and HOMA-IR

36

Cross-sectional Obese children 88 (51 
male)

11 – 15  CML levels correlate inversely with waist 
z-score, IL-6 as well as isoprostane, TNFα 
and VCAM-1

37

Interventional

Randomized 
parallel

Healthy 30 18 – 45, >60 Low AGE vs. standard diet; 
4 months

↓ CML and RAGE expression, 
↑ AGER-1 

38

CKD stage 3 9 Low AGE vs. standard diet; 
4 months

Nonrandomized 
one arm

Healthy 64 18 – 24 Heat-processed high 
AGE diet; 1 month

↓ CML, improved HOMA-IR 46

Crossover DM 11 32 – 52 Low AGE vs. high AGE diet; 
2 weeks

↓ Serum AGE levels corresponded with ↓ in 
dietary AGE

47

Randomized 
parallel

DM 13 ∼62 Low AGE vs. high AGE diet; 
6 weeks

↑ TNFα and CRP on HAGE and ↓ on LAGE 
diet

47

Randomized 
parallel

T2DM 20 41 – 71 Single high and low 
AGE diet meal

↓ Endothelial dysfunction and reactive 
hyperemia impairment after LAGE diet, also 
lower markers of endothelial dysfunction 
and OS

49

Nonrandomized 
one arm

T2DM 13 51.3 – 62.5 Single high AGE meal Endothelial dysfunction improved after 
benfotiamine treatment prior to a high-AGE 
meal

50

↑ = Increased; ↓ = decreased; CKD = chronic kidney disease; TNFα = tumor necrosis factor α; VCAM-1 = soluble vascular cell adhesion molecule-1; 
MS = metabolic syndrome; FL = fructose lysine; IL-6 = interleukin-6; HOMA-IR = homeostatic model assessment of insulin resistance.
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  Human Studies Linking Dietary AGEs and Disease 

 Most studies assessing dietary AGEs have involved a 
modification of diet or supplementation with anti-AGE 
agents and have been performed in adults. Recently, a few 
studies have examined dietary AGEs in children either 
directly or indirectly by measuring receptors of AGEs, es-
pecially the soluble form.  Table 2  presents a summary of 
observational and interventional studies of AGEs in chil-
dren and adults. 

  Studies in Children/Adolescents 
 Dietary AGEs in Children 
 To date, there have been very few studies assessing 

AGEs in children/adolescents, and they have shown 
mixed results. A study of mother-infant pairs demon-
strated a strong correlation of maternal levels of serum 
AGEs (represented by CML and MG) with those of the 
neonates. Further, the introduction of processed infant 
foods increased the dietary AGE consumption, which was 
also reflected in higher serum AGE levels in the infants. 
In addition, levels of serum AGEs correlated inversely 
with levels of adiponectin, an antiinflammatory adipo-
kine in the infants  [33] . A recent study by another re-
search group confirmed differences in insulin sensitivity 
based on AGE levels in breastfed versus formula-fed in-
fants, although these differences disappeared at follow-up 
at age 12–14 months  [34] . Boor et al.  [35]  recently exam-
ined the interaction of AGEs in diet and RAGE gene poly-
morphisms in infants by comparing formula-fed and 
breastfed infants, although dietary AGE was not mea-
sured directly. Breastfed infants carrying the major allele 
of the –374A/T RAGE gene polymorphism were noted to 
be most insulin sensitive, while insulin sensitivity im-
proved in formula-fed infants carrying the same major 
allele. Thus, they concluded that the –374A/T RAGE gene 
polymorphism impacted glucose metabolism and insulin 
sensitivity in a diet-dependent manner. 

  The above studies suggest a possible relationship of 
dietary AGEs and insulin sensitivity in infancy. Also, they 
raise important questions about the possible postnatal 
programming effects of AGEs when considered in con-
junction with the animal studies discussed previously that 
span multiple generations  [31, 32] , although a causal ef-
fect cannot be yet established.

  Observational Studies of Serum AGEs in Children 
 A study comparing obese and lean children showed 

lower serum AGE levels in children with obesity than in 
lean children despite their higher levels of CRP and inter-

leukin-6 and comparable renal function. The authors 
suggested renal hyperfiltration of AGEs as a compensa-
tory mechanism that might explain these results  [36] . A 
similar negative correlation of CML with adiposity and 
inflammatory markers has been reported in a cross-sec-
tional study of middle-school children with obesity  [37] . 
These findings are contrary to those in adults  [38, 39]  and 
need further investigation for underlying mechanisms. 
An interesting explanation that has been suggested is 
trapping of AGEs in adipose-tissue macrophages, but this 
needs further confirmation.

  Another study of population-based and twin cohorts 
of children with T1DM showed elevated serum CML lev-
els to be a strong predictor of T1DM. Genetic model fit-
ting suggested CML levels to be an environmentally ac-
quired risk factor for diabetes  [40] . These results com-
bined with studies of animal models suggest an important 
role of AGEs in autoimmune diabetes that needs to be 
further investigated. Further, children and adolescents 
with type 2 DM (T2DM)  [41]  lose their β cells at a faster 
pace compared to adults  [42]  for reasons that are not yet 
clear. An important consequence to consider is the ad-
verse impact of AGEs on the glucose metabolism in obese 
children predisposed to develop T2DM; dietary AGEs 
can provide a further hit to the already stressed β-cell 
burdened to produce extra insulin in order to compen-
sate for the obesity-associated IR. Therefore, it would be 
important to study the effect of a low-AGE dietary inter-
vention in this population as a potential approach to mit-
igate the epidemic of T2DM that threatens future gen-
erations.

  AGE Receptor Variants in Children with Obesity 
 A common approach in previous studies has been to 

measure levels of circulating sRAGE instead of actual se-
rum AGE levels and trying to correlate them with the se-
verity of different diseases. An important problem here is 
that the exact role which these circulating forms of RAGE 
play in the AGE-RAGE axis remains elusive. A study of 
prepubertal children with obesity demonstrated a signifi-
cant negative correlation of sRAGE and esRAGE levels 
with birth weight; children born small and large for ges-
tational age had lower sRAGE and esRAGE levels com-
pared to their appropriate for gestational age counter-
parts  [43] . Whether these observations are related to ge-
netic factors or point to an epigenetic phenomenon is yet 
to be determined. In addition, sRAGE and esRAGE had 
a negative correlation with IR independent of birth 
weight. Other studies in prepubertal obese children 
showed a significant negative correlation of sRAGE and 
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esRAGE levels with carotid intima-media thickness  [44]  
as well as presence of hepatic steatosis, independent of 
body mass index  [45] . In the previously mentioned study 
of middle-school children with obesity  [37] , the authors 
reported a significant negative correlation of sRAGE with 
adiposity and of both sRAGE and esRAGE with acute in-
sulin response, which is consistent with observations in 
adults with diabetes. 

  Interventional Studies 
 Healthy adults habitually consuming ‘high normal’ di-

etary AGEs were randomized to either continuing their 
high intake of AGEs or to a low-AGE diet. Those on the 
low-AGE diet were noted to have significant reductions 
in circulating AGE levels after 4 months of intervention 
with a parallel decrease in markers of OS and inflamma-
tion. Of note, there were no changes in energy or nutrient 
consumption during the study  [38] . In another trial of 62 
healthy adults, utilizing a randomized crossover design 
with two diets, one with a high amount of Maillard reac-
tion products (MRPs) and another milder diet incorpo-
rating steam-based cooking, Birlouez-Aragon et al.  [46]  
demonstrated a decrease in insulin sensitivity but an in-
crease in triglycerides and cholesterol after 1 month on 
the high-MRP diet. While CML levels correlated strongly 
with cholesterol and triglycerides, they did not correlate 
with insulin sensitivity, suggesting a possible involve-
ment of other MRPs.

  Studies in patients with DM have also shown a signifi-
cant decrease in CRP, vascular cell adhesion molecule-1 
and AGE levels as early as after 6 weeks  [47]  as well as a 
decrease in IR after 4 months of intervention with a low-
AGE diet  [48] . In addition, in patients with T2DM, a low-
AGE meal was noted to be associated with less impair-
ment of macrovascular and microvascular endothelial 
function than a similar meal enriched with AGEs by 
cooking with heat  [49] . Interestingly, pretreatment with 
benfotiamine (a liposoluble vitamin B1) prevented the in-
crease in serum levels of AGEs and markers of OS as well 
as endothelial dysfunction associated with a high-AGE 
diet in diabetic patients  [50] . 

  Interventional Studies in Children 
 A recent study in prepubertal obese children with he-

patic steatosis demonstrated an increase in esRAGE levels 
in response to a daily supplementation with 600 mg of 
vitamin E  [51] . Serum or dietary AGE levels were not 
measured in this study. Future studies will be needed 
to elucidate the mechanism underlying the improved 
 esRAGE level in response to vitamin E and its significance 

in the pathogenesis of hepatic steatosis. As mentioned 
previously, although not interventional in design, studies 
by Mericq et al.  [33]  and Boor et al.  [35]  have suggested 
effects of RAGE polymorphisms and AGEs in the diet on 
the glucose metabolism in infants. 

  The above studies suggest that circulating AGEs and 
RAGE variants are perhaps affected by both genetic and 
environmental factors and may be markers of cardiomet-
abolic disease risk. One interesting possibility that has not 
been studied so far is that AGEs derived from the diet may 
contribute to the changes in levels of circulating RAGE 
variants since AGEs stimulate RAGE directly. These 
studies further support the hypothesis that AGE-RAGE 
axis alterations occur in early childhood, although many 
issues remain undefined. 

  Conclusions 

 In summary, we believe there are enough data suggest-
ing a role for dietary AGEs in inducing low-grade chron-
ic inflammation, OS, IR and vascular dysfunction in 
adults, although similar studies in younger populations 
are lacking. In view of the rising incidence of obesity and 
the associated comorbidities of DM and CVD in children 
and the potential role of AGEs in adiposity and β-cell 
damage, further studies to help define whether dietary 
AGEs play a similar role in children and adolescents are 
definitely warranted. Several research gaps remain to be 
addressed. Given the challenges of recruitment in chil-
dren and the sample size needed, a collaborative multi-
center effort by investigators interested in studying this 
field can provide a useful strategy towards achieving 
meaningful results with the following common goals: (1) 
to characterize the response of serum AGE levels to di-
etary AGE intake in healthy and obese children; (2) to 
determine if serum AGEs are associated with measures of 
inflammation or IR in children with obesity independent 
of energy intake as they are in adults; (3) to investigate if 
general dietary counseling practices adequately modify 
dietary AGE content and intake in this population as pre-
viously shown in adults; (4) to study the impact of chang-
es in other antioxidant nutrients on AGE levels, and fi-
nally (5) to clearly define the relationship between AGE 
levels in the diet and serum and RAGE variants including 
sRAGE, esRAGE and RAGE at a cellular level as well as 
RAGE gene polymorphisms in children, both healthy and 
those with obesity. 
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