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Dietary and pharmacological modification of the insulin/
IGF-1 system: exploiting the full repertoire against cancer
RJ Klement1 and MK Fink2

As more and more links between cancer and metabolism are discovered, new approaches to treat cancer using these mechanisms
are considered. Dietary restriction of either calories or macronutrients has shown great potential in animal studies to both reduce
the incidence and growth of cancer, and to act synergistically with other treatment strategies. These studies have also shown that
dietary restriction simultaneously targets many of the molecular pathways that are targeted individually by anticancer drugs. The
insulin/insulin-like growth factor-1 (IGF-1) system has thereby emerged as a key regulator of cancer growth pathways. Although
lowering of insulin levels with diet or drugs such as metformin and diazoxide seems generally beneficial, some practitioners also
utilize strategic elevations of insulin levels in combination with chemotherapeutic drugs. This indicates a broad spectrum of
possibilities for modulating the insulin/IGF-1 system in cancer treatment. With a specific focus on dietary restriction, insulin
administration and the insulin-lowering drug diazoxide, such modifications of the insulin/IGF-1 system are the topic of this review.
Although preclinical data are promising, we point out that insulin regulation and the metabolic response to a certain diet often
differ between mice and humans. Thus, the need for collecting more human data has to be emphasized.
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INTRODUCTION
It is increasingly recognized that not only age but also the
denaturalization of our food, lifestyle and environment are partly
responsible for the current rise in non-communicable diseases
such as obesity, type II diabetes mellitus (T2D) and related types of
cancer.1–4 This has motivated research into lifestyle interventions
and drugs for prevention and treatment of these diseases. One
of the most promising interventions is dietary restriction (DR)
of either calories in general or specific macronutrients, as it
consistently has been shown to prolong life- and healthspan in a
broad range of model organisms and possibly humans, too, when
compared with unrestricted food intake.5,6 DR targets whole-body
metabolism, impacting hormones, metabolic substrates and
molecular signaling pathways that have a role in metabolic
disorders such as obesity and T2D. Intriguingly, the same
pathways are increasingly implicated in the development and
growth of cancer, as more and more associations and parallels
between obesity, T2D and an abnormal metabolism of cancer
patients become evident. An important example is insulin
resistance: reduced glucose uptake in cancer patients compared
with healthy controls during an euglycemic hyperinsulinemic
glucose clamp has commonly been observed not only during7,8

but also before weight loss or malnutrition.8–10 This has
been linked to chronic low-level inflammation induced by
pro-inflammatory cytokines released by the tumor and
tumor-associated macrophages (see review on cachexia in the
same issue of this topical issue). Along these lines, insulin
resistance in T2D and obesity seems connected to low-grade
chronic inflammation induced by an increased release of
pro-inflammatory cytokines from predominantly visceral
adipose tissue and its associated immune cells, combined
with a decreased release of the insulin-sensitizing hormone

adiponectin.11 Furthermore, hyperglycemia itself, resulting from
insulin resistance, induces a pro-inflammatory environment
through its effect on immune cells.12–14 Together, the pathological
features of T2D—notably elevated serum concentrations of
inflammatory cytokines, glucose, insulin and free insulin-like
growth factor-1 (IGF-1)—provide a pro-tumorigenic environment
that may account for the increased risk of diabetic and obese
patients for the development of cancer at various sites11 as well as
the worse prognosis of patients with cancer that display one or
more of these abnormalities.15–25

Although inflammation is a powerful driver of tumor growth,26

it is the aim of this review to focus on the connection between
insulin/IGF-1 signaling and cancer, and discuss possibilities to
modulate these interactions through DR and pharmaceutical
interventions to improve cancer outcomes. We here refer to DR as
any intervention that either restricts the total amount of energy
consumed without changing the macronutrient ratio (calorie
restriction; CR) or restricts a particular macronutrient without
necessarily lowering the energy content of the diet. Usually, CR
involves a 20–50% reduction in energy intake while maintaining
sufficient intake of essential vitamins and minerals.27 It can be
achieved via chronic energy restriction, the most extreme form of
which is short-term starvation (STS, corresponding to water-only
fasting) or intermittend fasting (IF) regimes such as only eating
every other day.

INSULIN, IGF-1 AND CANCER
Molecular pathways
Insulin and the IGFs, IGF-1 and IGF-2, are structurally similar
peptides with important roles in controlling metabolism and
growth in response to nutrient signals and nutritional status.
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IGF-1-1 and IGF-2 are primarily produced in the liver and to a
lesser extent locally in target tissues where they exert autocrine
and paracrine actions. Both have similar biological effects that are
caused by binding to the IGF-1 receptor (IGF-1R), whereas the
IGF-2R is specific for IGF-2 and thought to have no physiological
role except serving to degrade IGF-228 (Figure 1). Serum
concentrations of IGF-2 increase during childhood and then level
off at ~ 500 ng/ml,29 although abnormal IGF-2 concentrations can
occur in certain conditions such as IGF-2-producing tumors.30

IGF-1 is low at birth, increases throughout puberty and declines
with older age, its concentration being roughly three times lower
than that of IGF-2.29 Bioavailability of IGFs is regulated by a class of
six IGF-binding proteins (IGFBP-1–6), which are also produced in
the liver. Production of IGF-1 and the most abundant binding
protein in plasma, IGFBP-3, occurs via growth hormone-mediated
signaling, and insulin influences IGF-1 bioavailability by controlling
the transcription of IGFBP-1.31

Insulin is a key hormone for coordinating nutrient intake with
energy production and storage through both excitatory and
inhibitory actions. Insulin is secreted from pancreatic β-cells with
blood glucose being the main secretagogue in humans. As an
anabolic hormone, insulin accelerates glucose uptake in various
tissues and promotes lipid synthesis in the liver while
simultaneously inhibiting lipolysis, proteolysis, glycogenolysis,
ketogenesis and gluconeogenesis. The latter function is
particularly important for insulin’s well-known ability to lower
and regulate blood glucose levels within a narrow physiological
range during the postprandial phase.32

Insulin is also well established as a growth-stimulating
hormone.33 In this respect, its effects parallel those of IGF-1 and
IGF-2. This is due not only to the structural similarity between
insulin and the IGFs, but also to the high degree of homology
between the insulin receptor (IR) and the IGF receptors (Figure 1).
The IR, IGF-1R and their hybrid receptors are expressed by most
human tumors, whereby predominant expression of the IR-A
isoform correlates with a poor differentiation grade.30 Among the
pathways activated by IR and IGF-1R signaling are the
RAS− RAF−MEK1/2− extracellular signal-regulated kinase (ERK)-
1/2 pathway34 and the phosphatidylinositol-3-kinase (PI3K)−
AKT−mammalian target of rapamycin (mTOR) pathway, two
fundamental pathways for tumor cell proliferation and survival
(Figure 2). The serine/threonine protein kinase mTOR is part of a
protein complex called mTORC1, which has important roles in
tumor cell growth and metabolism. Reduced glucose, insulin and
IGF-1 levels or—more generally—DR activate an energy-sensing

Figure 1. Insulin/IGF receptor binding. As tyrosine kinase receptors,
the IR and the IGF receptors, consist of an extracellular ligand-
binding domain and a cytosolic tyrosine kinase domain that
autophosphorylates upon ligand binding and transphosphorylates
several substrates that initiate downstream signaling. The IR shares
~ 50 and 80% homology with the ligand-binding and tyrosine kinase
domain, respectively, of the IGF-1 receptor (IGF-1R).30 It exists in two
isoforms, IR-A and IR-B, which promote either mainly mitogenic or
metabolic effects, depending on the ligand and the cellular context,
allowing cells flexibility in responding to mainly one or the other
stimulus. In general, IR-A is preferentially associated with mitogenic
and anti-apoptotic signaling, whereas IR-B is associated with cell
differentiation and metabolic effects.30 A predominant expression of
IR-A has correspondingly been found in fetal tissue and tumors with
autocrine production of IGF-2, which binds this receptor with
30–40% affinity compared with insulin.210 In this way, these tumors
promote cell proliferation in an autocrine manner.30,211 IGF-2 also
binds to the IGF-1R, whereas IGF-1 binds to its own IGF-1R and to
hybrid receptors of IGF-1R and IR-A as well as IGF-1R and IR-B.30,212

Physiological concentrations of insulin show no measurable binding
to the IGF-1R both in vitro30 and in vivo.213 Nevertheless, in
mammals, insulin may be the major controller of insulin/IGF-1
action due to its effect on the bioavailability of IGF-1.43

Figure 2. Insulin/IGF-1 signaling network and its modulation by
dietary restriction. Dietary restriction in the form of overall calorie
restriction or specific restriction of carbohydrates or protein has
specific effects on the insulin/IGF-1 system that transduces cellular
signals through its insulin and IGF-1 tyrosine kinase receptors. This
picture can only provide a partial overview of the complexity of this
signaling network. The classical action of activated extracellular
signal-regulated kinase (ERK)-1 and ERK-2 is their translocation into
the nucleus where they activate mitogenic transcription factors.
Similarly, mTORC1 targets transcription factors that increase
proliferation and counteract apoptosis. Activation of mTORC1 via
IR/IGF-1R− PI3K−AKT converges with its activation by amino acids
at the lysosomal membrane. There, the guanosine triphosphatase
(GTPase) Rheb (Ras homolog enriched in brain) stimulates mTOR
activity, whereas a lack of growth signals activates the tumor
suppressor tuberin (TSC2), which translocates to the lysosomal
membrane and inhibits Rheb-stimulated mTORC1 activation.214

High insulin levels activate AKT that phosphorylates and inactivates
TSC2, whereas CR or glucose withdrawal induce energy stress,
decrease the intracellular ATP/AMP ratio and activate TSC2 through
liver kinase B1 (LKB1)—adenosine monophosphate-activated pro-
tein kinase (AMPK) signaling. AMPK can also directly inhibit mTORC1
by phosphorylating the regulatory-associated protein of mTOR
(Raptor). AMPK has similar actions to the class III histone deacetylase
SIRT1, which is a NAD+-dependent enzyme that is also activated
under DR-induced energy stress through an increase in the NAD+/
NADH ratio.36 AMPK and SIRT1 amplify each other and both activate
the peroxisome proliferator-activated receptor gamma 1α coacti-
vator (PGC-1α) protein that cooperates with peroxisome proliferator-
activated receptor α (PPARα) to induce major metabolic shifts under
DR such as an upregulation of lipid oxidation and downregulation
of glycolysis.35 mTORC1 inhibits these actions, providing another
link to insulin/IGF-1 signaling.
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network consisting of AMPK, SIRT1, PPARα and PGC-1α with the
potential to counteract tumor cell proliferation.35,36 AMPK activa-
tion by anti-diabetic drugs such as metformin is currently
considered a beneficial adjunct to standard cancer therapy.37,38

The insulin/IGF-1 system and tumor cell metabolism
Apart from a few exceptions, glucose has a key role in tumor cell
metabolism and its connection to proliferation and cell protection.
As known since the seminal studies of Otto Warburg et al.39–41

most tumors ferment glucose to lactate even under sufficient
oxygen supply, which in normal cells of the same tissue would
shuffle pyruvate, the end product of glycolysis, into the
mitochondria for further oxidative utilization. This peculiar feature
of tumor cell metabolism is now known as the ‘Warburg effect’ or
‘aerobic glycolysis’. It is the basis of molecular 2-(18 F)fluoro-2-
deoxy-d-glucose (FDG)-positron emission tomography (PET) ima-
ging with the radioactively labeled glucose analog FDG (Figure 3).
A high uptake of glucose in tumor cells not only serves for energy
production but also for protection from endogenous and
exogenous reactive oxygen species because NADPH, a by-
product of the oxidative pentose phosphate pathway, is used to
regenerate glutathione, an important cellular antioxidant.
On a molecular basis, the PI3K–AKT–mTORC1 pathway has been

found to significantly contribute to the high glycolytic activity of
many tumor cells.42 AKT directly and indirectly—by the activation
of mTOR, which promotes the stabilization of the transcription
factor hypoxia-inducible factor-1α—stimulates the expression of

glucose transporters and key glycolytic enzymes (Figure 3). AKT
also phosphorylates the pro-apoptotic and anti-proliferative
transcription factor FOXO1, which leads to its exclusion from the
nucleus and cytosolic degradation, thereby connecting tumor cell
metabolism with cell cycle progression and survival.
High IGF-1 and insulin levels in the microenvironment therefore

provide a plausible mechanism of carcinogenesis and early tumor
growth through anti-apoptotic signaling and metabolic
reprogramming mediated by the PI3K–AKT–mTORC1 pathway.
This is consistent with the finding that diabetes and obesity
mainly raise the risk for those cancers that exhibit a Warburg
phenotype.43 The relevance of this pathway for tumorigenesis is
demonstrated by the fact that humans with the Laron syndrome, a
recessively inherited defect in the growth hormone receptor,
display extremely low IGF-1 and reduced insulin concentrations
and usually do not develop cancer despite high prevalence of
obesity and dyslipidemia.44,45

Human tumors stimulated by insulin in vitro include breast
cancer,46,47 colon cancer,48 various leukemia cells lines49–51 or
melanomas.52 In addition, most cancer cells are extremely
vulnerable to glucose withdrawal,53–59 a feature they owe to
metabolic reprogramming, leading to constitutively active
proliferation pathways and ‘glucose addiction’. In fact,
hyperglycemia itself stimulates tumor growth through distinct
mechanisms and often amplifies the growth-promoting action
of insulin.60 Thus, 100 ng/ml of insulin increased proliferation rates
of human breast, colon, prostate and bladder cancer cell lines in a
glucose-dependent manner, achieving 7–44% higher proliferation
when combined with diabetogenic glucose concentrations of
11 mM compared with glucose concentrations of 5.5 mM without
added insulin.61 Furthermore, high glucose and insulin altered the
activity of several cell adhesion and migration genes, increasing
migratory ability and the duration of locomotion. This coincided
with an upregulation of the PI3K pathway,61 and a 29 and 66%
increase of Akt expression in MDA-MB-468 breast and SW480
colon cancer cell lines, respectively.62

Despite these indications of tumor sensitivity to insulin, it is not
clear to which extent the modulation of insulin and IGF-1 levels is
able to influence the proliferation of progressive cancers that have
become self-sufficient in growth and metabolic signals as
illustrated for example by: (i) expression of insulin-independent
glucose transporter isoforms; (ii) concurrent overexpression of IR-A
and IGF-2; (iii) gain of function mutations in the PIK3CA gene,
encoding the catalytic subunit of human PI3K; and (iv) loss of
function mutations in PTEN, encoding the phosphatase PTEN
which inhibits PI3K. This may not only pose a resistance
mechanism against specific IR and IGF-1R inhibitors but also
against dietary and pharmacological insulin and IGF-1 modulation.
Kalaany and Sabatini had shown in NOD-SCID (non-obese
diabetic, severe combined immunodeficient) mice that
xenografted tumors with constitutive activation of AKT by either
gains in PIK3CA or loss of PTEN are resistant against CR, and
insensitive to insulin and IGF-1 treatment in vitro. At the same
time, tumors without such a constitutive activation were
stimulated by insulin and IGF-1, and responded to CR with
increased rates of apoptosis mediated through FOXO1.63 This is
reminiscent of the classical studies of the 7,12-dimethylbenz(a)
anthracene (DMBA)-induced mammary carcinoma of the rat by
Heuson and Legros. In rats bearing this tumor, induction of type-1-
like diabetes with alloxan was followed in up to 90% of cases by
rapid onset of remission, whereas treatment with insulin and
especially combined treatment with insulin and glucose stimu-
lated tumor growth considerably.64 These insulin-sensitive tumors
also regressed in response to 60% CR, and insulin treatment
in vitro induced a parallel rise of DNA synthesis and DNA
polymerase activity.65 Some tumors however had apparently
reached an autonomous growth without responding to insulin

Figure 3. Glycolytic pathways in tumor cells. Sketch of the most
important glucose-degrading metabolic pathways in a tumor cell.
Glucose uptake into the cytoplasm is accomplished via specific
transpcorters (GLUTs) that are often overexpressed in tumor cells.
Here the enzyme hexokinase (HK) phosphorylates glucose to
glucose-6-phosphate (glucose-6-P). This metabolite either gets
degraded to pyruvate via several intermediate steps of glycolysis
or serves as the precursor for conversion into ribulose-5-phosphate
in the oxidative part of the pentose phosphate pathway (PPP). In the
PPP, CO2 gets released and the reducing equivalent NADPH is
produced. The generated ribulose-5-phosphate either serves as the
basis for de novo synthesis of nucleotides or is converted to various
C3–C7 sugars through the transketolase/transaldolase reaction in
the non-oxidative part of the PPP. Pyruvate, the end product of
glycolysis, usually gets transported into the mitochondria, converted
to acetyl-CoA and channeled into the TCA cycle for oxidative
degradation. In case of insufficient oxygenation, dysfunctional
mitochondria or metabolic reprogramming through hyperactivation
of AKT–mTOR signaling, pyruvate is increasingly converted to
lactate via the enzyme lactate dehydrogenase (LDH). Lactate gets
transported out of the cell by monocarboxylate transporters (MCTs).
The PI3K–AKT pathways increases glycolytic rate by the mechanisms
depicted and described in the main text. Dashed arrows indicate
several intermediate steps.
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withdrawal or CR, similar to the tumors with constitutively
activated AKT studied by Kalaany and Sabatini.
Some inconsistencies, however, remain. For example, the U87-

MG glioma that was found resistant to CR when grown as a
subcutaneous xenograft in NOD-SCID mice63 was responsive to CR
when grown orthotopically in mice of a different genetic
background.66 The CT-2A malignant mouse astrocytoma
responded to CR when grown orthotopically or subcutaneously
in C57BL/6J mice despite its PTEN and TSC2 deficiency, and
constitutive AKT activation.67 Notably, growth retardation was
accompanied by decreased phosphorylation of AKT and IGF-1R/IR
tyrosine kinase domains, decreased production of IGF-1 and
downregulation of IGF-1R protein expression in the tumors
(Figure 4).
It was further shown that in some cases, including a large

percentage of human non-small cell lung cancers, AKT activity can
be low despite loss of PTEN; in an experimental setting, such
cancers were sensitive to upstream activation by insulin and IGF-1,
and regressed during CR.68 Other common mutations in
oncogenes such as RAS and BRAF or tumor suppressors such as
TP53 did not affect the sensitivity of such tumor cells to insulin
and IGF-1 in vitro or to CR in vivo.63 Together, these findings
indicate that (i) the sensitivity of tumors to insulin and IGF-1
parallels their response to CR, and (ii) neither the activation status
of PI3K−AKT per se nor mutation status of individual genes
predicts for the sensitivity of tumors to both growth factors and
CR; instead, the metabolic environment of the host (NOD-SCID
mice display signs of both type 1 and type 2 diabetes69) and
genetic conformity between host and tumor (xenograft/allograft/
isograft) seem to have the dominant role.

There are hints that constitutive activation of PI3K–AKT
signaling could be exploited therapeutically because it underlies
a differential stress response between malign and benign cells,
such that only the latter increase their resistance against cytotoxic
insults upon reduction of growth factors induced by CR.70 In
C57BL/6J mice, CR promoted stress resistance in a FOXO1-
dependent manner,71 which would not occur in tumor cells with
FOXO inactivation due to constitutively active AKT. We have
recently argued that a similar, albeit less pronounced, differential
stress response may also be induced by a ketogenic diet (KD).72 A
KD is usually defined as an isocaloric diet low enough in CHO and
high enough in fat to induce significant elevations (⩾0.5 mmol/l in
humans) of the ketone bodies (KBs) β-hydroxybutyrate and
acetoacetate (termed ‘ketosis’). It therefore can be considered a
fasting mimicking diet. This would be of special value for patients
undergoing several week long radiotherapy during which
prolonged fasting is no option. The state of ketosis, induced by
low insulin levels, may generally benefit cancer patients, as KBs
have been shown to inhibit glycolysis in various tumor cell
lines73,74 and probably also patients,75–77 and tumor cells often
lack the enzymes78–81 or oxygenation82 to effectively use ketones
for energy production. Furthermore, in glioblastoma xenografts it
was shown that KBs can partly reverse the genetic alterations that
occur in these tumors.83

In conclusion, beneficial effects may be achieved by lowering
insulin and IGF-1 levels in patients with both insulin-sensitive and
insulin-insensitive tumors.
As a final note, some experimental tumors have been described

whose growth is suppressed by insulin and stimulated by
induction of type 1 diabetes, with the R3230AC adenocarcinoma
of the rat being the most intensively studied tumor of this
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Figure 4. Effects of CR on IGF-1 and IGF-1R mRNA expression and growth of the CT-2A astrocytoma. For conditions a and b, tumors were
implanted into the brains of C57BL/6J mice. At 10 days post tumor implantation, mice were randomly switched to either an unrestricted
(UR; n= 9) or CR (n= 9) diet that aimed at reducing body weight by ~ 30%. In condition c, tumors were implanted subcutaneously and CR
started at day 14; the Kaplan–Meier survival curve indicates significantly longer survival for CR compared with UR (P= 0.01). Figure parts
reproduced with permission from67.
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type.84–86 A tumor-suppressing effect of insulin and glucagon, and
especially of their combination has been found by Salter et al.87

and was reproduced in different experimental systems.88,89 The
Morris hepatoma, which was also suppressed by insulin,90 was
stimulated by acute fasting,91 and it was later discovered that
linoleic and arachidonic acid released from adipose tissue were
the main substrates promoting tumor growth.92 Similarly, in a
hamster model of pancreatic cancer, high substrate levels of
glucose, linoleic acid and other fatty acids mobilized through
streptozocin-induced diabetes significantly enhanced tumor
growth, which was prevented by insulin treatment.93 Collectively,
these experimental tumors provide evidence not for a direct
tumor growth-suppressing effect of insulin but indirect effects
such as an influence on metabolic growth-promoting substrates
whose global abundance is controlled by insulin.

DR AND ITS EFFECT ON THE INSULIN/IGF-1 SYSTEM
The importance of the insulin/IGF-1 system for the antitumor
effects of DR is exemplified by the fact that in vivo IGF-1
administration94–96 completely rescued CR-sensitive tumors from
CR-induced growth inhibition. Therefore, it is important to review
the effects of different DR regimes on circulating levels of these
growth factors and other substrates influenced by them. Relevant
to many preclinical studies are the extensive investigations in
male C57BL/6 mice that are summarized in Table 1 and compared
with the data from insulin-resistant humans, because many cancer
patients are also insulin resistant. From Table 1, it is already
evident that mice and humans can respond differently to the
same DR regime, an important fact we will elaborate on later.

Calorie restriction
Because of the simultaneous lowering of all three macronutrients
and energy, CR induces a complex metabolic response that is not
straightforward to attribute to one of these individual factors.
Mitchell et al.97 have shown that 10–40% CR over 3 months in
C57BL/6 mice (corresponding to approximately a tenth of their
lifespan) decreases blood glucose, insulin and IGF-1 concentra-
tions, the latter showing the greatest dependence upon the
severity of CR.
Many of the metabolic effects of CR in model organisms are also

observed in humans.5 CR reduces fasting insulin levels and
improves insulin sensitivity in overweight individuals, whereby
these effects may be more pronounced with regular IF compared
with chronic CR.98,99 A CR diet supplying 600 kcal/day over
8 weeks significantly decreased fasting insulin from 151 to
65 pmol/l and glucose levels from 9.2 to 5.7 mmol/l in overweight
individuals with T2D, with the greatest declines already apparent

after 1 week.100 Kitada et al.101 showed that 7 weeks of 25% CR
significantly reduced insulin levels and inflammatory markers in
healthy obese males. Interestingly, incubation of human skeletal
muscle cells with serum obtained from these subjects after the
intervention resulted in an increase in PGC-1α expression, AMPK
and SIRT1 activity, and mitochondrial biogenesis. Mercken et al.102

investigated tissue samples from m. vastus lateralis of individuals
following long-term CR (average 9.6 years) of ~ 30% compared
with a typical Western diet. Thereby, PI3K and AKT transcription
was downregulated 1.7- and 2-fold, respectively, whereas PGC-1α
transcripts were increased 7-fold and AKT phosphorylation was
reduced by 35–50%. This indicates that chronic CR reduces
PI3K−AKT signaling in humans.
In contrast to rodents, IGF-1 levels in humans are usually not

reduced with chronic CR unless protein is also restricted103 (see
below). STS, on the other hand, decreases IGF-1, glucose and
insulin levels, and increases KB levels comparable to 40% CR over
3 weeks in mice.104

Clinically, it is well established that weight loss and physical
activity can reduce insulin levels by 10–30%, and that lowering
of insulin by 25% may be associated with a 5% absolute
improvement in breast cancer mortality.105 Although this is not
generalizable to other cancer patients, especially those at risk for
malnourishment, IF and STS could be considered as therapeutic
options in such cases; recommendations for their implementation
are given by Simone et al.106 or Klement and Champ.72

Carbohydrate restriction
The metabolic response of different mice strains to CHO restriction
differs and is also influenced by the total energy intake and the
percentage of the remaining macronutrients. A classical biomarker
of CHO restriction is the amount of circulating KBs.
Insulin and glucagon are key hormones regulating ketogenesis

by controlling the flux of non-esterified fatty acids to the liver for
KB production.107 Paradoxically, C57BL/6 mice gain excessive body
weight, display hyperlipidemia, and have concurrently elevated KB
and glucose levels when fed an unrestricted KD with 410%
energy (E%) from protein.108,109 Thereby, insulin levels are only
slightly decreased, but drop significantly together with blood
glucose levels and body weight once calorie intake is also
restricted.109 This is in contrast to healthy humans where
unrestricted KDs with adequate protein intake tend to lower
body weight and insulin levels,110 improve body composition by
increasing fat-free mass110,111 and decrease inflammatory
markers.112 Some authors argue that CHO restriction should
be the first approach in the treatment of T2D, as it improves
long-term glucose control, lowers insulin levels and allows a
reduction or even elimination of anti-diabetic drugs.113 Indeed,

Table 1. Metabolic effect of various dietary restriction regimes in C57BL/6 mice and insulin-resistant humans

Parameter FGF21 IGF-1 Insulin Glucose BHB Body weight

Species Mouse Human Mouse Human Mouse Human Mouse Human Mouse Human Mouse Human

Starvation ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓
Calorie restriction ↗a ↗a ↘a ↘a ↘ab ↘b ↘b ↘ab ↗b ↗b ↓ ↓
Protein-deficient diet, isocaloric ↑ ↑ ↓ ↓ ↓ ↑, — ↘b ↗b — — ↓ ↑
Protein-deficient diet,
hypocaloric

↑ ↑ ↓ ↓ ↓ ↘b ↘b ↘b — — ↓ ↓

KD, isocaloric — — — — — —, ↓ ↑ —, ↓ ↑ ↑ ↑ ↓, —
KD, hypocaloric ↗a ↗ a ↘a ↘a ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓

Abbreviations: BHB, β-hydroxybutyrate; FGF21, fibroblast growth factor 21; KD, ketogenic diet. a, mainly dependent on the degree of protein restriction;
b, mainly dependent on the degree of CHO restriction. The protein-deficient diet is defined as a diet containing o10E% protein. The KD is assumed to contain
410E% protein.
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investigation of glucose kinetics and insulin secretion after a
low-CHO meal (20E% CHO, 65E% fat) in five young adult baboons
revealed minimal perturbations of glucose homeostasis, in stark
contrast to a high-CHO (65E% CHO, 20E% fat) meal.114 Consis-
tently, it has been shown that the metabolic effects of fasting in
humans are largely mediated by the absence of CHO.115 This is
the rationale for using KDs as fasting mimicking diets in the
oncological setting where maintenance of fat-free mass is
important.116,117

Protein restriction
Mitchell et al.97 found that isocaloric protein restriction down to
12E% over 3 months was not able to reproduce the beneficial
metabolic changes induced by CR in male C57BL/6 mice, in
particular the decrease in IGF-1 concentrations. Other studies,
however, have reported reduced IGF-1 levels in mice of this strain
when protein was restricted to o10E% within the context of
either ad libitum high-CHO118 or high-fat119 diets. In mice fed ad
libitum an 8-week protein restriction to 5E%120 or methionine
restriction121 have been shown to mimic several of the metabolic
effects of CR, such as decreases in triglycerides, blood glucose and
insulin levels. In the long run, however, such diets may impair
gains in lean body mass, and five out of nine experimental diets
with protein restricted to 5E% turned out to be not sustainable
due to excessive weight loss (420%), rectal prolapse or failure to
thrive (Supplementary Table S1 in118).
A change in IGF-1 concentrations is a marker for acute changes

in nitrogen balance that depends on protein intake, but also on
total energy intake.122–125 Insulin, for example, inhibits protein
breakdown, facilitating the maintenance of positive nitrogen
balance when protein is replaced with CHO. Accordingly, IGF-1
levels in healthy humans dropped significantly during STS122,123 or
the initiation phase of a KD126 but were unaltered after several
weeks of a KD110 or long-term CR with adequate protein intake.127

Another biomarker of protein restriction is fibroblast growth
factor 21 (FGF21). FGF21 has originally been described as a fasting
hormone that is upregulated in the liver via PPARα and partly
regulates ketogenesis during starvation or KDs;128 an important
role for SIRT1 in FGF21 expression was also recently
demonstrated.129 However, a study using Fgf21-knockout mice
found that FGF21 was not required for ketogenesis or other
adaptions to a KD.119 It was later shown that it is the de facto
protein restriction during starvation or protein-deficient diets that
increases FGF21 concentrations as only diets with o10E% from
protein,128,130 but not those with higher protein intake,119,131 led
to an upregulation of hepatic FGF21 expression and secretion,
independent of energy or CHO intake.131 This is consistent with
the data in humans showing that a low-protein diet (5E% protein)
increased plasma FGF21 concentrations by 171% over 4 weeks
despite caloric overfeeding.131 Other data indicate that depletion
of single amino acids such as methionine is sufficient for hepatic
FGF21 production.121 There are data showing that FGF21 acts as
an insulin-sensitizing and glucose-normalizing hormone in dia-
betic states and contributes to the action of anti-diabetic drugs.132

Protein restriction also limits mTORC1 activation by mechanisms
distinct from its regulation via IR/IGF-1R− PI3K−Akt. It is generally
believed that activation of mTORC1 by specific amino acids,
notably leucine, starts with its recruitment to the lysosomal
membrane by GTPases called Rags, which are concentrated there
as heterodimers consisting of RagA or RagB combined with RagC
or RagD. These heterodimers are part of an amino-acid-responsive
supercomplex also containing the Ragulator and vacuolar
adenosine triphosphatase protein complexes. This supercomplex
in turn is thought to be activated by amino acids transported from
the lysosomal lumen by transmembrane proteins, which in
this way act as amino-acid sensors.133 Two alternative,
Rag-independent ways of mTORC1 activation were also recently

described. Glutamine, but not leucine, was found to activate
mTORC1 by a pathway requiring the ADP ribosylation factor-1
GTPase and vacuolar adenosine triphosphatase for mTORC1
translocation and fixation, respectively, to the lysosomal
membrane.134 Thomas et al.135 described a pathway involving
amino-acid- but not insulin-stimulated binding of the small
GTPase Rab1A and mTORC1 with subsequent recruitment to
Golgi membranes where mTORC1 gets activated by Rheb. This
study identified Rab1A as an oncogene in certain human cancers
whose overexpression promotes amino-acid-stimulated tumor
growth but also renders these cells vulnerable to amino-acid
restriction.135

In humans, AMPK activation from training in a glycogen-
depleted state was not influenced by protein intake.136 Other data
have shown that CHO restriction is sufficient to activate the
AMPK–SIRT1–PGC-1α network in humans even under caloric
overconsumption.137 These findings complement the previously
mentioned hormonal and metabolic changes induced by CHO
restriction115 and indicate that in humans CHOs have a more
dominant role than protein in the response to fasting.
In summary, protein restriction exerts specific effects on IGF-1,

FGF21 and mTOR activity that probably contribute to the life-
prolonging and anticancer effects seen when rodents are placed
on low-protein diets. These effects can partly be mimicked by the
restriction of certain amino acids. On the other hand, severe
restriction of total protein intake, that is, either very-low-protein
diets (o10E%) or moderate protein intake combined with CR,
with the aim of reducing IGF-1 levels bears the risk of weight and
fat-free mass loss. This would have detrimental effects for cancer
patients, thus precluding severely protein restricted diets from a
role as supportive interventions in cancer patients.

DR and tumor growth retardation
Animal data. Two meta-analysis have evaluated the evidence for
tumor growth inhibition by CR. Focusing on studies on
spontaneous breast tumors in mice published between 1942
and 1995, Dirx et al.138 found that CR led to an average of 55% less
tumor development in CR-fed mice than in ad libitum controls. In a
recent meta-analysis, 40 out of 44 studies (90.9%) showed a tumor
inhibitory effect of CR in laboratory animals with respect to tumor
incidence, progression or metastasis.27 The evidence for a
protective role of various IF protocols was weaker, but still mostly
positive. Furthermore, eight out of nine preclinical studies
evaluated in this meta-analysis showed that a KD was able to
slow down tumor growth, often even as a monotherapy.27

In a study not included in these meta-analyses, Frimberger
et al.139 not only achieved a retardation of tumor growth but in
36% of cases a complete remission of benzo(α)pyren-induced
cutaneous squamous cell carcinomas. The mice in this study were
placed on a maximally tolerable restriction of both calories and
protein which was accompanied by an extreme loss of up to 50%
body weight.
In C57BL/6 mice, an unrestricted KD with 13E% from protein

reduced tumor growth after transplantation of Lewis lung
carcinoma cells compared with a high-CHO diet (77E% CHO),
and this became significant when protein was further restricted to
5E% and replaced with fat.119 In another study, a lower number of
lung metastases was observed when mice of this strain bearing
the B16 melanoma were fed a zero-CHO, zero-protein (100E%
from polyunsaturated fatty acids) diet.140 In contrast, growth of
the CT-2A Astrocytoma in these mice was not influenced by an
unrestricted KD containing 17E% protein,141 but significantly
reduced on a calorically restricted KD containing only 8E% protein,
along with significant reductions in blood glucose and IGF-1.142

These findings might be correlated to the metabolic abnormalities
that these mice develop on KDs that are not concurrently low in
protein as discussed above.
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In the majority of studies, antitumor effects of CHO restriction
have been achieved without concurrent CR. In the studies that
proofed tumor growth inhibition by a KD fed ad libitum, there was
a significant increase in KB levels, but not necessarily decreases in
blood glucose levels or body weight.74,140,143–148 In some models,
also non-ketogenic low-CHO diets (10–15E% CHO) led to
significant tumor growth retardation that was correlated to low
blood glucose and insulin levels.149,150

Clinical data. The large preclinical support for CR as an antitumor
therapy implies a possible role for CR in human cancer prevention,
treatment and survivorship.151 However, clinical trials to test its
effects in patients have only recently started, and published
results of CR interventions are restricted to small pilot studies or
case reports,75–77,152–159 which we summarize in Table 2.
One study reported the successful treatment of a patient with
end-stage ovarian cancer by a diet allowing only 300–400 kcal/
day.158 Notably, bioimpedance analysis indicated that of 21 kg
body weight loss within 6 months o2 kg consisted of
muscle mass.
In an evaluation of 10 patients, it was found that STS before

and/or after chemotherapy reduced therapy-related weakness,
fatigue and gastrointestinal side effects.152 Importantly, fasting did
not interfere with the cytotoxic effect of chemotherapy on tumor
cells. This might indicate that the fasting-induced differential
stress response between tumor and normal tissue may also be
achieved in humans.
Seven case reports exist for the treatment of glioblastoma

multiforme with a CR-KD. Although this diet achieved one
remission of 5 years when used as a monotherapy,75 the usual
progress within 12 weeks occurred in two other cases.159

The results obtained by combining the CR-KD with chemo- or
radiotherapy had been more promising, with remissions between
4 months and 4 years having been achieved.75,153,160,161

Ninteen more patients with recurrent glioblastoma were treated
in the ERGO trial by Rieger et al.157 with a KD consumed ad libitum.
Here, too, no clinical effects on tumor growth were achieved with
the KD as a monotherapy, with a median progression-free survival
of 5 weeks (range 3–13 weeks). However, subsequent salvage
therapy with bevacizumab and continuation of the KD led to a
response in six out of seven patients, and the authors confirmed in
a mouse experiment that the combination of KD and
bevacizumab, but not the KD alone, was superior to bevacizumab
combined with standard chow with respect to survival and tumor
size.157 A partial explanation for the failure of the KD as a
monotherapy in the ERGO trial could be based on the fact that
there was no significant drop in blood glucose or HbA1c levels,
and only part of the patients reached stable ketosis.157 According
to Seyfried et al.162 the ratio between blood glucose and KB levels
(both measured in mmol/l) should be below ~ 1.5 to enable
metabolic management of malignant brain cancer. As insulin
inhibits ketogenesis, low insulin levels are a prerequisite to
achieve such a metabolic state.
The importance of low insulin and high ketone body levels is

also implicated by the pilot trial of Fine et al.76 in which five out of
nine patients with previous progression responded to a 4-week
KD with partial remission or stable disease as judged by FDG-PET
scans; these five patients exhibited significantly higher KB levels
compared with their baseline values than the four non-
responders. Ketosis was thereby inversely correlated to insulin
levels. Together with the other reports measuring less FDG uptake
or a decline in intratumoral lactate levels as summarized in
Table 2, this implies that a KD is able to influence tumor cell
metabolism by lowering insulin levels and increasing ketone body
concentrations.
In addition, small parenteral feeding studies obtained direct

hints that a lipid-based diet (fat contributing 80% non-protein
calories) retards tumor cell proliferation while a dextrose-based

diet (dextrose contributing 100% non-protein calories) accelerates
it.163 A mixed diet (fat contributing 45% non-protein calories)
investigated in another study had no effect on tumor cell
kinetics.164 Finally, some, but not all, studies found worse survival
in patients who received nutritional support in the form of high
glycemic supplements165 or total parenteral nutrition.166 This
could be taken as a warning to monitor the caloric and glycemic
load of the diet to avoid overnutrition of patients that would
resemble the feeding of control animals in the preclinical DR
studies.

Critically questioning the concept of DR: implications for humans
Together, it seems that humans are more sensible to the amount
and quality of CHO in their diet than mice in which high-protein
intake can decisively stimulate insulin output.108,118 This is not
surprising, given that the species-specific diet in mice is very
different from humans who are omnivores and during much of
their evolution consumed low-glycemic load diets.167 Further-
more, mice and humans differ substantially in insulin kinetics and
blood glucose control.69,168 Expression of mouse carbohydrates
and lipids on xenografted human tumor cells has also been
described and could potentially alter the response of such tumors
to the metabolic microenvironment.169 Together, these findings
question the relevance of such tumor models for humans and
complicate the translation of interventions tested in mice to
human subjects.170

This also applies to DR: a thorough investigation of the life-
prolonging effects of DR in mice shows that weight gain in the
ad libitum fed control group is the most important covariate
explaining most of the variation in the response of different strains
to DR.171 Making the reasonable assumption that the mechanisms
behind the life-prolonging effects of DR are also responsible for its
antitumor action, one would have to conclude that DR in humans
is most effective if it could replace a diet leading to weight gain
and metabolic disturbances when consumed ad libitum.117 The
prototype of such a diet is the Western diet, which is concurrently
high in refined CHOs and fat. Thus, it could be expected that CR,
CHO restriction or other fasting mimicking diets172 could be
effective against tumor growth in humans. It must be considered,
however, that mice have a metabolic rate approximately seven
times higher than humans, and their experimental tumors display
faster doubling times and larger relative weights.173,174 Contrary to
mice that appear fit and viable even with very high tumor masses,
humans generally develop advanced cachexia and die when
tumor masses have already reached 0.1% of body weight.174

Furthermore, relative weight loss in rodents under a particular DR
regime is more rapid and extreme than in humans, with up to 50%
weight loss being tolerated in tumor-bearing animals.139 Thus, the
effects of any DR regime are exacerbated in mice, explaining why
DR as a monotherapy has worked in preclinical studies but not in
humans. Studying humans is therefore urgently needed to
determine the dose–effect relation of DR interventions in human
cancer treatment.

PHARMACEUTICAL INTERVENTIONS
The modulation of plasma insulin and IGF-1 levels by pharma-
ceutical interventions is a promising approach for cancer
treatment. Broad interest is now focused on the biguanide
metformin37,38 (see review in the same issue of this topical issue)
as well as IR and IGF-1R inhibitors.37 The α-glucosidase inhibitor
acarbose, which suppresses several tumors, but simultaneously
promotes kidney tumors of the Sprague Dawley rat,175 has been
recently reviewed.176 As an extensive discussion of these drugs is
beyond the scope of this review, we refer the reader to the
referenced work and focus our discussion on two less frequently
mentioned interventions for which preclinical and clinical
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experience has been made by one of us (MKF). These are the
administration of insulin itself to potentiate the effect of
chemotherapy, and administration of the insulin-lowering drug
diazoxide.

Insulin administration for cancer treatment
Although somewhat counterintuitive, reports have been pub-
lished suggesting that insulin can be used therapeutically to treat
cancer under certain conditions. One approach is to utilize the
glucose-lowering effects of insulin to withdraw this preferred
metabolic substrate from cancer cells. The idea is not new, as
already Otto Warburg et al.177‘…kept tumor animals in very low
blood sugar content in insulin convulsions for hours’. Although
these experiments had no effects on tumor viability, the concept
was later picked up by Wilhelm Brünings178,179 who combined
maximally tolerable doses of insulin treatment with a KD into a
‘de-glycation method’ (‘Entzuckerungsmethode’) for the treatment
of head and neck cancer patients in his clinic. The results,
published in 1941/1942, indicated a very high rate of partial and
complete remissions after a few weeks of treatment, but tumors
became refractory after 2–3 months. Although the results could
not be replicated by others,180 15 years later Joseph Weiss181 was
able to achieve significant tumor growth inhibition in 20 out of 90
incurable cancer patients with a similar method. Finally, two case
reports exist according to which repeatedly administered high
doses of insulin resulting in hypoglycemic coma (lowest blood
glucose reading 22 mg/dl) were able to bring metastatic cancer in
complete remission of at least 1-year duration.182

A second approach using insulin administration consists of
giving low dosed chemotherapeutic drugs at onset of hypogly-
cemia after intravenous administration of (typically 0.3–0.4 IU/kg)
insulin, followed by hypertonic glucose. This so-called insulin
potentiation therapy is hypothesized to increase drug uptake
into tumor cells and additionally sensitize them to the
chemotherapeutic substances through insulin’s ability to
accelerate cell cycle progression into S-phase.183 However,
in vitro both of these mechanisms were not responsible for
insulin’s drastic enhancement of cytotoxicity of the folic acid
analog methotrexate to MCF-7 human breast cancer cells.184 But,
in a preclinical study on the DMBA-induced rat mammary
carcinoma, this enhanced effectiveness of methotrexate was far
outweighted by the growth-stimulating effect of 3-day pretreat-
ment with combined insulin/glucose infusions.185 In a clinical pilot
trial on 14 advanced cancer patients, combined insulin/glucose
infusions were therefore started at most 18 h before the
administration of methotrexate/5FU.186 Although results were
mixed regarding an increased efficacy of combined treatment,
there were some indications that tumor-associated pain could be
reduced, possibly due to insulin’s anti-inflammatory action.186

Currently, insulin potentiation therapy is practiced by over 400
therapists worldwide, and the few data available indicate that it
could allow a reduction of chemotherapeutic doses without
compromising efficacy.187

Reduction of insulin levels with diazoxide
Diazoxide is a nondiuretic benzothiadiazine that has an anti-
hypertensive effect and produces hyperglycemia via lowering
insulin levels by activation of ATP-sensitive K+-channels, which
have a key function in the control of insulin release.188,189 In
addition, diazoxide stimulates insulin degradation in the lysosomal
system.190 With 300 mg diazoxide per day, fasting insulin levels
decreased from 177 to 123 pmol/l (Po0.01), and insulin release in
response to 100 g oral glucose administration decreased from 223
to 55.6 nmol ×min/l (Po0.002) in obese patients with polycystic
ovary syndrome.191 This effect was less pronounced in healthy
non-obese women with a decrease of insulin release from 108 to
49.3 nmol ×min/l (P= 0.05).192 In moderately overweight patientsTa
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with polycystic ovary syndrome, 300 mg diazoxide per day also
reduced IGF-1 from 314.5 to 219.5 ng/ml (Po0.01).193 Further-
more, diazoxide inhibits glucagon secretion in healthy man194 and
in the dog,195 but stimulates glucagon release in rats.196

Typical oral doses of diazoxide for the treatment of patients
suffering from hyperinsulinemia197,198 and resistant
hypertension199 were 400 mg per day, with maximal doses of
800199 and 1500 mg/day,197 respectively. The main recognized
side effects of orally given diazoxide are fluid retention, nausa and
the growth of lanugo hair.197–199

The effect of diazoxide on cancer growth was examined in
DMBA- and N-methyl-N-nitrosurea (MNU)-induced mammary
carcinomas of the rat.200,201 The determination of glucose and
insulin levels in the blood of DMBA-induced tumor-bearing
animals showed that tumor induction itself led to significantly
higher glucose and lower insulin levels than in control animals.
Increasing dosages of diazoxide led to an increasing number of
remissions. After cessation of diazoxide treatment due to
progression, 30% rebound responses were observed in animals
that had a first remission due to diazoxide. This second remission
after withdrawal of the drug is characteristic of hormonal therapy.
In contrast to the rapid onset of remissions observed after
diabetes induction with alloxan,64 onset of remissions with
diazoxide was delayed and began about 2 weeks after the start
of treatment; the cause of this delay is unclear.
Treatment of the more aggressively growing MNU-induced

mammary carcinoma of the rat with 300 mg/kg diazoxide given
on 5 days/week induced a remission in 55% of the animals. This
effect was completely abolished by additional treatment with 2 IU
depot insulin/day.200 Thus, an insulin-mediated effect of diazoxide
was proven.
Combined therapy with a low dose (75 mg/kg) of diazoxide and

the alkylating agents melphalan or N-(2-chloroethyl)-N-
nitrosocarbamoyl (CNC)-omega-lysine increased the therapeutic
efficacy of both cytostatics up to twofold in the MNU-induced rat
mammary carcinoma.202 However, after the end of treatment with
diazoxide and alkylating agents, tumors in this group grew faster
than in controls. In DMBA-induced rat mammary carcinomas, the
combination of diazoxide and medroxyprogesterone acetate
moderately increased the remission rate, but clearly shortened
the remission duration.203 In contrast, adding 200 mg diazoxide
per kg to 5 mg/kg tamoxifen synergistically prolonged the
remission duration and decreased tumor weight, although the
latter effect was lost at the higher dose of 50 mg/kg tamoxifen
(Table 3).
In a clinical pilot study, diazoxide was used at a relatively low

dose of 200–300 mg/day.186 For inclusion, the maximal tolerated
fasting glucose level was 110 mg/dl, and 180 mg/dl after an oral
glucose load with 75 g. Nine breast cancer patients were included,
and the best response was seen in a 60-year-old woman, who had
glucose levels of only 56–105–115 mg/dl after an oral glucose
load. After progression of her cutaneous metastases during
tamoxifen, she was supplemented with 200 mg diazoxide
per day; fasting glucose levels rose to 90 mg/dl, and surprisingly
tamoxifen-induced hyperhydrosis disappeared. Partial remission
with this combination ended after 7 months, when liver
metastases were detected sonographically. Two months later,

both medicaments were withdrawn because of rapidly growing
cutaneous metastases and pleural effusion. Another 2 months
later, the patient exhibited a rebound response of 4 months
duration with disappearance of pleural effusions, partial remission
of the cutaneous metastases and stable size of the liver
metastases. In two additional patients with prior disease progress,
diazoxide treatment resulted in stable disease of 8 (combined with
tamoxifen) and 4 months (monotherapy).186

In vitro studies have uncovered other mechanisms of action by
which diazoxide suppressed proliferation of human acute
leukemic T cells204 and growth of human lung cancer cells.205

However, the growth of human colon cancer cells206 and
especially human glioma cells in vitro207,208 and in nude mice207

was stimulated through diazoxide-mediated opening of K+-
channels. The ATP-sensitive K+-channels were thereby found
overexpressed in glioma cell lines U87 and U251, and human
glioma tissue, and their opening by diazoxide stimulated cell cycle
progression and proliferation through activation of the extra-
cellular signal-regulated kinase pathway.207 In principle, diazoxide-
associated hyperglycemia may also raise concerns about brain
tumor stimulation given the well-established link between
hyperglycemia and brain cancer progression.17,18,23,24 However,
chronic neonatal diazoxide therapy during postnatal days 2–12
did not induce any lesions or morphological changes of brain
anatomy in mice,209 and to our knowledge no glioma or brain
metastasis in humans has been reported after treatment with
diazoxide.

CONCLUSIONS
A large body of preclinical data has indicated that inhibition of the
insulin/IGF-1 system has a therapeutic benefit for cancer-bearing
animals. However, rodents and man differ in some aspects of their
metabolic regulation in response to a certain diet or pharmaceu-
tical intervention targeting the insulin/IGF-1 system. In animals,
specifically DR in its various forms (CR/IF/STS, KD, protein
restriction) has shown a potential for simultaneously targeting
many of the pathways associated with insulin and IGF signaling,
usually with no serious, or with even beneficial side effects such as
a differential stress response between normal and tumor tissue.
We reviewed human data to obtain the following preliminary

conclusions concerning insulin/IGF-1 modulation in humans: (i) DR
could be considered as a supportive treatment during cancer
therapy due to its probable antitumor effects, and due to its
beneficial effects on human metabolism. Considering muscle mass
maintenance and the putatively beneficial effects of ketosis, KDs
and STS should be compared with chronic CR or protein restriction
in clinical studies. (ii) Insulin-lowering drugs such as metformin
and diazoxide provide another opportunity for improving cancer
outcome in patients. Although their administration is probably
easier accomplished than adherence to a DR regime, they do not
mimic all the effects of DR. Similar to DR, their anti-neoplastic
potential in humans is still insufficiently investigated. At least for
metformin it can be expected that current clinical trials will catch
upon this. Diazoxide was successfully studied in animals, exhibited
first effects in a clinical pilot study and is worth to be further
examined. The same may be true for insulin potentiation therapy.

Table 3. Combination therapy with tamoxifen and diazoxide of the DMBA-induced rat mammary carcinoma. (reproduced from ref. 203)

Tamoxifen 5 mg/kg Tamoxifen 50 mg/kg

Monotherapy +Diazoxide 200 mg/kg Monotherapy +Diazoxide 200 mg/kg

Remission (%) 53 47 50 59
Tumor weight compared to controls (%) 75 49 31 39
Duration of remission (weeks) 7 12 8.5 12
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These approaches may be useful options in the ambition to
exploit the full repertoire of insulin/IGF-1 modulation against
cancer.
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