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Abstract Abstract 
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in 
females has not been clearly established. The goal of this study was to investigate whether dietary 
omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying 
genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific 
overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-
type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. 
Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow 
ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet 
suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of 
mechanical recovery [ratepressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was 
similar (50 ± 7% vs. 45 ± 12%, 30 min reperfusion), and this was not significantly different from CTR-fed 
WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the 
responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent 
of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 ± 4% vs. 64 ± 8%) was not enhanced 
compared with CTR-fed mice (RPP, 60 ± 11% vs. 80 ± 8%, P = 0.335). Dietary FO did not suppress the 
incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate 
a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and 
arrhythmic activity postischemia in a murine ex vivo heart model. 
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Huggins CE, Curl CL, Patel R, McLennan PL, Theiss ML,
Pedrazzini T, Pepe S, Delbridge LM. Dietary fish oil is antihypertro-
phic but does not enhance postischemic myocardial function in female
mice. Am J Physiol Heart Circ Physiol 296: H957–H966, 2009. First
published January 30, 2009; doi:10.1152/ajpheart.01151.2008.—Clini-
cally and experimentally, a case for omega-3 polyunsaturated fatty
acid (PUFA) cardioprotection in females has not been clearly estab-
lished. The goal of this study was to investigate whether dietary
omega-3 PUFA supplementation could provide ischemic protection in
female mice with an underlying genetic predisposition to cardiac
hypertrophy. Mature female transgenic mice (TG) with cardiac-spe-
cific overexpression of angiotensinogen that develop normotensive
cardiac hypertrophy and littermate wild-type (WT) mice were fed a
fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4
wk. Myocardial membrane lipids, ex vivo cardiac performance (in-
traventricular balloon) after global no-flow ischemia and reperfusion
(15/30 min), and reperfusion arrhythmia incidence were assessed. FO
diet suppressed cardiac growth by 5% and 10% in WT and TG,
respectively (P � 0.001). The extent of mechanical recovery [rate-
pressure product (RPP) � beats/min � mmHg] of FO-fed WT and TG
hearts was similar (50 � 7% vs. 45 � 12%, 30 min reperfusion), and
this was not significantly different from CTR-fed WT or TG. To
evaluate whether systemic estrogen was masking a protective effect of
the FO diet, the responses of ovariectomized (OVX) WT and TG mice
to FO dietary intervention were assessed. The extent of mechanical
recovery of FO-fed OVX WT and TG (RPP, 50 � 4% vs. 64 � 8%)
was not enhanced compared with CTR-fed mice (RPP, 60 � 11% vs.
80 � 8%, P � 0.335). Dietary FO did not suppress the incidence of
reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or
OVX). Our findings indicate a lack of cardioprotective effect of
dietary FO in females, determined by assessment of mechanical and
arrhythmic activity postischemia in a murine ex vivo heart model.

polyunsaturated fatty acids; ischemia-reperfusion; Langendorff per-
fused hearts

LARGE CLINICAL TRIALS HAVE demonstrated that when omega-3
polyunsaturated fatty acid (PUFA) from fish oil (FO) [doco-
sahexaenoic acid (DHA) � eicosapentaenoic acid (EPA)] are
used in secondary prevention following myocardial infarction,
there is a marked reduction in cardiac-related death and par-
ticularly in sudden cardiac death (3, 17). More recently ome-
ga-3 PUFA supplementation (DHA � EPA) has been demon-
strated to be a beneficial adjunct to present therapies for

treatment of heart failure (16). Although these findings have
been of landmark significance, a limitation has been the un-
derrepresentation of women, with women either not included
in the cohort (3) or comprising only a small proportion (8–
20%) of participants (16, 17). This limited female representa-
tion is significant because sex differences in cardiac function
and in the incidence and progression of cardiovascular diseases
are well documented (10, 25).

One recent exception is the Japan EPA Lipid Intervention
Study (JELIS), which was a large study (18,645 participants)
of predominantly postmenopausal women (�70%). Interest-
ingly, this study found no significant association between EPA
supplementation and sudden cardiac death (49). It is plausible
that this reflects a sex specificity of omega-3 PUFA not
previously identified (34). In a subanalysis of the JELIS cohort,
a risk reduction for major coronary events (combining sudden
cardiac death, fatal myocardial infarction, and nonfatal myo-
cardial infarction) could be identified but only in the quartile
comprising a largest ratio of men to women (40).

Experimentally there is also a dearth of information on the
cardiac effects of omega-3 PUFA in the female heart. There is
some evidence to suggest that the balance between omega-3 and
omega-6 PUFA affects males and females differently. Korotkova
et al. (26) demonstrated that the supply of dietary PUFA (of
varying ratios of n3:n6 PUFA) during the perinatal period in rats
had long-term effects on blood pressure in adulthood that were
different for males and females (associated with the specific n3:n6
PUFA ratio of the diet). Thus the possibility that dietary omega-3
PUFA supplementation may have distinct cardiovascular actions
in females requires evaluation.

There is strong evidence from experimental studies (of
males) that dietary omega-3 PUFA have antiarrhythmic prop-
erties in the setting of ischemia and reperfusion and postmyo-
cardial infarction (29, 31, 39) although the cellular mechanisms
are incompletely understood and controversial (4, 29). Omega-
3-mediated improvement of postischemic contractile recovery
independent of vascular function (39) has been attributed at
least in part to the incorporation of these PUFA into membrane
phospholipids. Systemic estrogen has also been shown to
afford protection against arrhythmogenesis, ischemia-reperfu-
sion injury, and myocardial hypertrophy (22, 35, 43). Various
in vitro studies suggest that the biological actions and cellular
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targets of omega-3 PUFA and estrogen may be similar, sug-
gesting that omega-3 PUFA may exert a greater effect in
females after a period of estrogen withdrawal; albeit a possible
convergence of action has not been directly investigated ex-
perimentally (7, 18, 27, 33, 47).

Given the lack of available female-specific experimental data,
and in the absence of convincing clinical findings relating to the
cardiovascular efficacy of omega-3 PUFA in women, a case for
omega-3 cardioprotection in females has not been clearly estab-
lished. Therefore, the aim of this study was to determine whether
dietary omega-3 PUFA supplementation could provide cardiopro-
tection in female mice, specifically by enhancing the recovery of
ex vivo hearts to an ischemic insult. Cardiac hypertrophy is
associated with increased risk of arrhythmia and vulnerability to
ischemia and reperfusion injury (14, 24) and hence is a patholog-
ical condition that would be expected to be favorably modulated
by the protective actions of omega-3 PUFA supplementation.
Thus our study included a cohort of female mice additionally
compromised by an underlying genetic predisposition for cardiac
hypertrophy. Our experiments utilized the angiotensinogen-over-
expressing mouse, a model of load-independent cardiac hypertro-
phy resulting from amplified cardiac-specific angiotensin II (Ang
II) production (30). We hypothesized that dietary FO supplemen-
tation would be most efficacious (in enhancing postischemic
recovery and suppressing arrhythmias) in females where there is
an underlying predisposition for cardiac hypertrophy and addi-
tionally that a protective effect of dietary FO would be more
prominent in the context of systemic estrogen depletion.

MATERIALS AND METHODS

The project was approved by the University of Melbourne Animal
Ethics Committee (AEC Project 05173).

Experimental model. All animals were handled in the manner specified
by the Prevention of Cruelty to Animals Act 1986 and NHMRC/CSIRO/
ACC Australian Code of Practice for the Care and Use of Animals for
Scientific Purposes (1997). The generation and characterization of a
transgenic heterozygous mouse (TG1306/1R) harboring multiple cop-
ies of a transgene expressing the rat angiotensinogen gene under the
�-myosin heavy chain promoter have been reported previously (9,
30). A colony of these mice was established in the Biological
Research Facility (Department of Physiology, University of Mel-
bourne). In this study, female age-matched transgenic mice (TG) and
littermate wild-type (WT) controls were investigated with the use of
a 4-wk treatment (the reported time required to achieve maximum
membrane omega-3 incorporation) (37) terminating at age 34 wk. At
the conclusion of the 4-wk treatment period, mice were anesthetized
with pentobarbital sodium (100 mg/kg), and hearts were excised and
perfused ex vivo (described below). In a separate cohort of mice,
hearts were excised, adipose tissue and lungs removed, and hearts
blotted dry and weighed. Atria and ventricle were then separated and
weighed. Tissues were snap frozen in liquid and stored at �80°C until
determination of membrane fatty acid composition.

Diets. During the treatment period, mice were fed ad libitum a fully
fabricated phytoestrogen-free diet (based on the American Institute of
Nutrition standard diet, 1993; AIN93), prepared at the Smart Foods
Center, University of Wollongong (P. L. McLennan). The control diet
(CTR) was specified to be representative of a “standard” commercial
chow diet with minimum nutritional level omega-3 content and was
fabricated (% of dry weight) from 50.5% cornstarch, 10% sucrose,
15% casein, 5% gelatin, 5% fiber, 3.5% mineral mix, 1% vitamin mix,
and 10% oil (5% sunflower seed oil and 5% olive oil). The FO
omega-3-rich diet comprised 10% oil content consisting of 7% tuna
fish oil (Nu-Mega Ingredients, Brisbane, QLD, Australia) and 3%

olive oil (FO diet). The FO diet was matched for total level of fatty
acid polyunsaturation and caloric content to the CTR diet (1).

Cardiac membrane phospholipid fatty acid analysis. Total nonfrac-
tionated ventricular membrane phospholipid fatty acids were ex-
tracted from 70–100 mg of ventricular tissue using a modification of
the Folch method as previously described (31). Phospholipids were
isolated by solid-phase extraction, using silica Sep-pak cartridges

Fig. 1. Body weight and cardiac growth of female angiotensinogen transgenic
mice (TG, hatched bars) at diet treatment completion (4 wk), age 34 wk,
compared with littermate controls [wild-type (WT), open bars]. Data are
presented as means � SE (n � 8/group). Two-way ANOVA (factors, genetic
type, and diet). A: body weight: WT vs. TG, P � 0.305; control diet (CTR) vs.
fish oil diet (FO), P � 0.483; interaction factor P � 0.507. B: heart weight: WT
vs. TG, *P � 0.001; CTR vs. FO, P � 0.081; interaction factor P � 0.272. C:
heart weight normalized to body weight (mg/g): WT vs. TG, *P � 0.001; CTR
vs. FO, #P � 0.014; interaction factor, P � 0.422.
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(Waters, Milford, MA). Fatty acids were methylated using methanol:
toluene (4:1 vol/vol) plus 200 	l of acetyl chloride and placed on a
dry heat block at 100°C for 1 h. Fatty acid methyl esters were
analyzed by gas chromatography using a Shimadzu GC-17A with
flame ionization detection. The column used was a FAMEWax Cross-
bond-PEG 30 m � 0.25 mm � 0.25 	m (Restek, Bellefonte, PA) with
hydrogen used as the carrier gas (temperature rise 150–230°C over 28
min). Fatty acids were identified from authentic fatty acid methyl ester
standards (Sigma-Aldrich, San Leandro, CA) and expressed as a percent-
age of total fatty acids. All solvents used during lipid extraction and
transesterification of phospholipids were of analytical grade (Sigma-
Aldrich) with 0.01% butylated hydroxy toluene added as an antioxidant.

Heart perfusion and ventricular pressure measurement. Hearts
were excised, cannulated, and perfused at a constant pressure of 80
mmHg in Langendorff mode and allowed to spontaneously beat at
37°C as previously described (20). Hearts were perfused with a
filtered (0.45 	m) modified Krebs-Henseleit buffer containing the
following: 119 mmol/l NaCl, 22 mmol/l NaHCO3, 4 mmol/l KCl, 1.2
mmol/l MgCl, 1.2 mmol/l KH2PO4, 0.5 mmol/l EDTA, 2.5 mmol/l CaCl,
5 mmol/l glucose (BDH, AnalaR), and 100 	U/ml insulin (Humulin, 100
IU/ml; Eli Lilly, West Ryde NSW, Australia). Perfusate was equilibrated
with 95% O2 and 5% CO2 (pH 7.4). Baseline contractile function was
assessed after a 20-min normoxic equilibration period. Global no-flow
ischemia was induced for 15 min followed by 30-min reperfusion.

For assessment of isovolumic contractile function, a small fluid-
filled plastic-wrap balloon was inserted into the left ventricle via the
mitral valve and inflated to a set diastolic pressure (5 mmHg), and this
pressure was maintained throughout the equilibration period (4.0 �
0.4 mmHg at end of equilibration, i.e. 20-min normoxic perfusion).
The parameters measured included intrinsic heart rate (HR, beats/
min), systolic pressure (SP, mmHg), diastolic pressure (DP, mmHg),
left ventricular developed pressure (LVDevP � SP-DP), rate-pressure
product (LVDevP � HR, RPP mmHg/min), and the maximum posi-
tive and negative pressure derivatives (�dP/dt and �dP/dt, mmHg/
ms). Coronary flow was measured by timed collection of the coronary
effluent and normalized to wet heart weight (ml �min�1 �g�1). Myo-

cardial oxygen consumption (MV̇O2) was determined by measuring
the coronary flow rate and the partial pressure of oxygen (PO2) (ABL
615; Radiometer, Brønshøj, Denmark) of both the perfusate and the
coronary effluent at 5-min reperfusion. MV̇O2 was expressed as mol
O2/min per gram wet weight using the equation: MV̇O2 � PO2

(arterial-venous) � solubility of O2/mmHg � coronary flow rate/wet
heart weight (39). Hearts were excluded from the study where the
baseline cardiac function was unstable, as previously defined in detail (20).

Arrhythmia analysis. The extent of ectopy during the first 10 min
of reperfusion was assessed from the ventricular pressure traces, and
given by the equation: number of ectopic beats/total beats � 100.
Arrhythmias were also classified by type according to the following
designations: ventricular premature beats (VPB; early contraction
before relaxation), bigeminy (a variant of a VPB: paired beats occur-
ring in repetition), potentiated contraction (normal sinus rhythm,
slight delay, subsequent increased single contraction, resumption of
sinus rhythm), ventricular tachycardia (VT; 4 or more consecutive
VPBs), and ventricular fibrillation (VF; barely discernable beat, de-
veloped pressure �5 mmHg), as previously described (19).

Bilateral ovariectomy. To withdraw gonadal estrogen, mice from
each experimental group (i.e., CRT WT and TG and FO WT and TG)
underwent bilateral ovariectomy or sham surgery. Mice were anes-
thetized with isoflurane (2.4% and 200–220 ml airflow; Univentor
U400, Zejtun, Malta). A small transverse incision was made to expose
the uterus, and the uterine horns were ligated just distal to the ovarian
pedicle (5–0 silk; Dynek, London, UK). Ovaries were removed
(OVX) and the incision closed by suture. After surgery, mice were
monitored daily for 4-wk diet treatment period until euthanized for
isolated heart perfusion experiments.

A period of 4 wk of estrogen withdrawal was employed on the basis of
our previous findings in rats that this duration is sufficient to induce
significant changes in cardiomyocyte Ca2� kinetics (7). At the conclusion
of the 4-wk intervention, uterine weight was used to confirm ovarian
estrogen withdrawal. In all mice, ovariectomy was associated with
significant uterine atrophy compared with intact mice (109 � 8 vs. 24 �
1 mg), and uterine weights were comparable for all OVX groups.

Table 1. Membrane PUFA levels at diet completion

LA Arachidonic EPA DHA Omega-3:Omega-6

18:2 n6 20:4 n6 20:5 n3 22:6 n3

WT
CTR 16.3�0.5 10.6�0.1 ND 24.2�0.3 0.8�0.1
FO 2.8�0.1 3.2�0.1 0.5�0.1 47.5�0.2 5.9�0.1

TG
CTR 16.5�0.5 10.5�0.1 ND 24.0�0.3 0.8�0.1
FO 2.9�0.1 2.9�0.1 0.4�0.1 48.8�0.1 6.2�0.1

P WT vs. TG 0.763 0.240 0.292 0.244 0.033
CTR vs. FO �0.001 �0.001 �0.001 �0.001
interaction 0.904 0.630 0.010 0.014

Data are presented as a percentage of total membrane phospholipid fatty acids (means � SE; n � 3-5/group). 2-way ANOVA (factors, genetic type, and diet),
P, probability. Eicosapentaenoic acid (EPA) was analyzed by unpaired t-test. PUFA, polyunsaturated fatty acid; CTR, control diet; FO, fish oil; LA, linoleic acid;
DHA, docosahexaenoic acid; WT, wild-type mice; TG, transgenic mice.

Table 2. Baseline ex vivo functional parameters

LVDevP, mmHg �dP/dt, mmHg/s �dP/dt, mmHg/s HR, beats/min Flow, ml � min�1 � g�1

WT
CTR 163�6 5089�537 �3689�194 347�18 15.6�1.5
FO 153�11 5554�422 �3694�164 348�17 16.3�1.5

TG
CTR 143�7 4871�417 �3723�255 371�23 15.0�1.6
FO 150�10 4643�365 �3630�214 353�22 16.3�0.9

P WT vs. TG 0.199 0.408 0.700 0.454 0.828
CTR vs. FO 0.839 0.706 0.892 0.672 0.484
interaction 0.344 0.553 0.876 0.639 0.868

Data are presented as means � SE (n � 8/ group). All parameters were measured after 20-min normoxic perfusion (equilibration). 2-way ANOVA, P,
probability. LVDevP, left ventricular developed pressure; �dP/dt, rate of pressure development; -dP/dt, rate of pressure decline, HR, heart rate.
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Statistical analyses. Data are expressed as means � SE. Group
sizes for cardiac weight index determinations and for functional
analyses ranged from n � 8–12, and for membrane analyses, n � 3–4
(these data exhibit low variance). Data were analyzed using two-way
ANOVA and with repeated measures where appropriate. Multiple-
comparisons post hoc analysis was performed using Tukey HSD.
Arrhythmia duration data were analyzed with a nonparametric
Kruskal-Wallis test and incidence analyzed with the Fisher’s exact

test. All data were considered significant at P � 0.05. Statistical
calculations were performed using the SPSS V.15.0 (SPSS, Chicago, IL).

RESULTS

Somatic growth, cardiac growth, and ventricular membrane
fatty acid composition. Body mass and food consumption were
tracked throughout the 4-wk diet treatment period. The mean

Fig. 2. Effects of 4-wk dietary FO supple-
mentation compared with CTR diet in WT
(circles) and TG (triangles) on ex vivo con-
tractile recovery following 15-min global no-
flow ischemia. Time course shows basal
(time point B), which was measured after
20-min equilibration and time points at 5-min
intervals during 30-min reperfusion. Data are
presented as means � SE (n � 8/group),
analyzed by 2-way ANOVA (factors, genetic
type, and diet) with repeated measures.
A: developed pressure: WT vs. TG, P �
0.581; CTR vs. FO, P � 0.146; interaction
factor, P � 0.596. B: baseline normalized
developed pressure: WT vs. TG, P � 0.304;
CTR vs. FO, P � 0.230; interaction factor,
P � 0.394. C: rate pressure product (RPP,
developed pressure � heart rate): WT vs.
TG, P � 0.494; CTR vs. FO, P � 0.155;
interaction factor, P � 0.215. D: baseline
normalized RPP: WT vs. TG, P � 0.353;
CTR vs. FO, P � 0.366; interaction factor,
P � 0.278. E: rate of contraction (�dP/dt):
WT vs. TG, P � 0.518; CTR vs. FO, P �
0.129; interaction factor, P � 0.434. F: base-
line normalized rate of contraction: WT vs.
TG, P � 0.283; CTR vs. FO, P � 0.179;
interaction factor, P � 0.221. G: heart rate:
WT vs. TG, P � 0.503; CTR vs. FO, P � 0.358;
interaction factor, †P � 0.026. H: baseline
normalized heart rate: WT vs. TG, P � 0.918;
CTR vs. FO, P � 0.721; interaction factor, P �
0.072.
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food intake in g/mouse per day was not different across diet
group (CTR diet 3.1 � 0.3 g, FO diet 2.8 � 0.3 g, P � 0.459).
At the end of the diet treatment period, body mass was similar
between all groups (Fig. 1A). Heart mass and the normalized
cardiac weight index (heart mass normalized to body mass)
were significantly greater for TG hearts compared with WT
hearts in both dietary groups (P � 0.001, n � 8/group; Fig. 1,
B and C). FO diet was associated with smaller normalized heart
mass for both TG (by 10%) and WT hearts (by 5%) compared
with strain-matched CTR diet-fed mice (P � 0.014, Fig. 1C)
but no significant diet and genetic type interaction was detected
(Fig. 1C).

Four weeks of dietary FO markedly elevated the omega-3:
omega-6 PUFA ratio of both WT and TG (Table 1). This effect
was primarily achieved through decreased ventricular mem-
brane linoleic and arachidonic acid and elevated EPA and
DHA. For FO-fed TG mice there was a small but selectively
greater increase in DHA and in the omega-3:omega-6 PUFA
ratio compared with diet-matched WT (Table 1).

Effects of dietary FO on cardiac performance pre- and
postischemia. Ex vivo isovolumic mechanical function, coro-
nary flow, and MV̇O2 were measured pre- and postischemia in
hearts of WT and TG mice (n � 8/group). Under basal
conditions (normoxia), there were no significant differences
between any of the groups (Table 2). Global ischemia (15 min)
rapidly reduced contractile function in all of the groups, and all
hearts had resumed mechanical function by the end of reper-
fusion (30 min), albeit at a reduced level compared with
baseline (Fig. 2). The time course of postischemic recovery
throughout reperfusion is shown in Fig. 2 and depicted as
nonnormalized and baseline-normalized values. For the non-
normalized data, postischemic developed pressure (Fig. 2A),
the RPP (Fig. 2C), rate of contraction (�dP/dt, Fig. 2E), and
rate of pressure decline (�dP/dt, data not shown) were all not
significantly different between WT and TG hearts or between
the CTR- and FO-fed hearts. For intrinsic HR (Fig. 2G), a
significant interaction between genetic type and diet (P �
0.026) was detected, indicating that the FO diet had a differ-
ential effect in WT (increased HR) and TG (lowered HR)
hearts.

Normalization of postischemic function to preischemic
“baseline” values (Fig. 2, right) did not reveal any further
significant differences across any of the groups. Hearts of
CTR-fed TG appeared to recover a slightly higher level of
developed pressure, RPP, rate of contraction (�dP/dt) (Fig. 2,
B, D, and F), and rate of pressure decline (�dP/dt, data not
shown) compared with all other groups, but this effect was not
significant for any parameters (interaction P � 0.394, P �
0.366, P � 0.221, P � 0.209 for each parameter, respectively).
Baseline-normalized intrinsic HR followed a similar pattern to
the nonnormalized data, but the interaction effect (differential
effect of FO diet in TG and WT) did not quite attain statistical
significance (P � 0.072, Fig. 2H).

Coronary flow and myocardial oxygen consumption were
markedly reduced postischemia (compared with baseline), by
�10–30% (Fig. 3 vs. Table 2). Dietary FO did not alter
coronary regulation for either WT or TG mice, compared with
genetically matched CTR-fed mice (Fig. 3A). Myocardial ox-
ygen consumption paralleled coronary flow (Fig. 3B), indicat-
ing a direct relationship between oxygen delivery and extrac-
tion for hearts of all groups.

Effects of dietary FO on the performance of the estrogen-
withdrawn heart pre- and postischemia. To determine whether
circulating ovarian hormones were masking a protective effect
of dietary FO, a separate cohort of WT and TG mice underwent
ovariectomy to eliminate gonadal supply of sex steroids during
the 4-wk diet treatment period (surgery success was confirmed
by uterine atrophy). Hearts were excised and cannulated, and
mechanical function was measured ex vivo. Hearts were
weighed at the end of the perfusion protocol (CTR WT/TG,
9.7 � 0.2, 10.5 � 0.3 mg/g; FO WT/TG, 9.4 � 0.4, 10.1 � 0.6
mg/g, 2-way ANOVA P 
 0.05). Postischemia, a variable and
marked extent of myocardial tissue edema, contributes to the
error in determining cardiac weight index. Although mean
cardiac weight index was higher in TG (vs. WT) and lower in
FO-fed mice (vs. CTR-fed), significant differences could not
be resolved in postperfused hearts of OVX groups.

Under basal conditions, mechanical function of hearts from
OVX mice was similar between WT and TG and between the
CTR and FO diet groups for the range of parameters investi-
gated: developed pressure CTR WT, 138 � 7 vs. CTR TG,
139 � 7 mmHg; FO WT, 163 � 9 vs. FO TG, 149 � 10
mmHg; rate pressure product; and rate of contraction (Fig. 4, A
and C, at time point B, P 
 0.05, n � 8–12/group). Overall,
OVX TG hearts (i.e., both diet groups) exhibited lower basal
coronary flow and myocardial oxygen consumption compared

Fig. 3. Effects of 4-wk dietary FO supplementation (compared with CTR) in
WT and TG on ex vivo cardiac performance during early reperfusion following
15-min global no-flow ischemia. A: coronary flow: WT vs. TG, P � 0.791;
CTR vs. FO, P � 0.754; interaction factor, P � 0.361. B: myocardial oxygen
consumption (MV̇O2): WT vs. TG, P � 0.661; CTR vs. FO, P � 0.681;
interaction factor, P � 0.479.
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with hearts of OVX WT (CTR 13.8 � 1.1 vs. 16.5 � 1.0
ml �min�1 �g�1 wet wt, P � 0.009; 7.4 � 0.5 vs. 8.8 � 0.4
	mol O2 �min�1 �g�1 wet wt, P � 0.006).

The time course of postischemic recovery throughout reper-
fusion (of OVX hearts) is shown in Fig. 4 and depicted as
nonnormalized and baseline-normalized values. Overall throughout
reperfusion, OVX TG hearts (from both diet groups) exhibited
enhanced recovery of RPP product and rate of pressure devel-
opment (�dP/dt), by �25% (Fig. 4, A and C), compared with
OVX WT hearts. Dietary FO did not enhance mechanical
recovery of OVX WT or TG hearts for any of the parameters
measured, including RPP (Fig. 4A), rate of pressure develop-
ment (�dP/dt, Fig. 4C), and developed pressure or rate of
pressure decline (�dP/dt) (data not shown). In the baseline-
normalized data (Fig. 4, right), a similar pattern to the nonnor-
malized values was observed. In contrast to the ovary-intact
mice (Fig. 2), FO diet did not significantly alter intrinsic HR of
WT or TG hearts. Similar to the hearts of ovary-intact mice
(Fig. 3), dietary FO did not significantly alter coronary regu-
lation for either WT or TG mice, compared with genetic-
matched CTR-fed mice (Fig. 5A). Myocardial oxygen con-
sumption paralleled coronary flow (Fig. 5B).

Interestingly, in general, ovariectomy was associated with an
apparent increase in the propensity for mechanical alternans
(beat-to-beat alterations in twitch amplitude �5 mmHg at a
constant HR) (19). Thirty-one percent of hearts (n � 13/41)
from the OVX groups displayed alternans compared with only
6% of hearts (n � 2/32) from the ovary-intact groups, and
notably this vulnerability was not detected at all in the ovary-
intact WT groups (P � 0.001). Furthermore, separation of the
WT hearts by diet groups revealed that the incidence of
alternans in CTR WT was markedly greater in the OVX hearts
(n � 6/10) than in the ovary-intact group, where there was no
occurrence (n � 0/8, P � 0.01). This difference was not

significant in the FO-fed WT OVX (OVX n � 3/8 vs. intact
n � 0/8).

Dietary FO supplementation and postischemic arrhythmia.
Arrhythmia incidence was evaluated during the first 10 min of
reperfusion from the ventricular pressure record and classified
as previously described (19). In the ovary-intact and OVX
groups, no significant differences in the incidence of VPB, VT
(4 or more consecutive premature beats), potentiated contrac-
tion, or the duration of bigeminy and VF were detected be-
tween WT and TG hearts. Hearts of FO-fed mice did not
exhibit an altered incidence of these arrhythmia types in either
the ovary-intact or OVX groups (Table 3).

To obtain an aggregated “snap shot” of arrhythmia inci-
dence, the percentage ectopy was determined by expressing the
number of arrhythmic beats as a percentage of total beats.
Overall (i.e., from both diet groups), TG hearts of both ovary-
intact (Fig. 5A) and OVX groups (Fig. 5B) exhibited a smaller
percentage ectopy compared with WT hearts. Compared with
mice fed the CTR diet, dietary FO had no effect on the extent
of ectopy exhibited in the reperfused hearts in both ovary-intact
(Fig. 6A) and OVX groups (Fig. 6B).

DISCUSSION

This is the first experimental study to address the question of
whether dietary omega-3 PUFA intervention confers cardio-
protection in the ischemic female heart. The major findings of
this study are that, in the female murine heart, dietary FO
1) modestly suppresses hypertrophic growth 2) does not en-
hance postischemic recovery in the normal or the hypertrophic
heart, 3) does not enhance postischemic recovery in the normal
or hypertrophic hearts of estrogen-depleted mice, and 4) does
not lower the incidence of reperfusion arrhythmia in the normal
or hypertrophic heart. Thus contrary to our hypothesis, we find

Fig. 4. Effects of 4-wk dietary FO supple-
mentation (compared with CTR) in ovariec-
tomized (OVX) WT (circles) and TG (trian-
gles) on ex vivo contractile recovery and
coronary flow following 15-min global no-
flow ischemia. Time course shows basal (time
point B), which was measured after 20-min
equilibration and time points at 5-min inter-
vals during 30-min reperfusion. Data are pre-
sented as means � SE (n � 8–12/group).
Two-way ANOVA (factors, genetic type, and
diet) with repeated measures. A: RPP (devel-
oped pressure � heart rate): WT vs. TG,
*P � 0.016; CTR vs. FO, P � 0.335; inter-
action factor, P � 0.615. B: baseline normal-
ized rate pressure product: WT vs. TG, *P �
0.014; CTR vs. FO, P � 0.175; interaction
factor, P � 0.873. C: rate of contraction
(�dP/dt): WT vs. TG, *P � 0.005; CTR vs.
FO, P � 0.341; interaction factor, P � 0.417.
D: baseline normalized rate pressure product:
WT vs. TG, *P � 0.003; CTR vs. FO, P �
0.207; interaction, P � 0.813.

H962 DIETARY FISH OIL AND CARDIAC HYPERTROPHY IN FEMALES

AJP-Heart Circ Physiol • VOL 296 • APRIL 2009 • www.ajpheart.org

 on M
arch 18, 2010 

ajpheart.physiology.org
D

ow
nloaded from

 

http://ajpheart.physiology.org


no evidence of a protective effect of dietary FO on myocardial
postischemic recovery or arrhythmia suppression in females in
the normal heart, the hypertrophic heart, or the estrogen-
withdrawn heart. An important finding of this study is that sex
should be considered in future investigations of the cardiac
mechanisms of action of omega-3 PUFA.

Dietary FO modulates myocardial membrane composition
and growth. The finding that dietary FO suppresses heart
growth is important. FO-fed TG hearts had a greater proportion
of membrane-incorporated omega-3 DHA (22:6 omega-3) com-
pared with WT hearts, which may be linked to hypertrophic
growth suppression. There have been only two other (pub-
lished) experimental studies that have investigated the effects
of dietary omega-3 PUFA on cardiac hypertrophic growth, and
these studies have been in male rodents. Duda et al. (11)
reported that, in a rat model of pressure overload, the increase
in left ventricular mass was less marked in the FO-fed group
compared with rats fed the contrast diet (rich in saturated fat).
A FO diet-induced reduction in ventricular mass in a murine
model of systemic carnitine deficiency (JVS mice) where
cardiac enlargement occurs secondary to lipotoxicity has also
been reported (45). The mechanisms leading to regression of
cardiac hypertrophy in vivo remain to be elucidated. Takahashi
et al. (45) observed that dietary FO prevented the membrane
translocation of several cytosolic protein kinase C isozymes and
suggested that this may be the mechanism for the hypertrophy
suppression in the JVS mice. In vitro studies in isolated neo-
natal rat cardiac myocytes (sex of rats not reported) have
demonstrated that DHA and EPA inhibit the growth response
(i.e., protein synthesis) induced by phenylephrine and endothe-
lin-1 stimulation via the Ras/Raf/Erk1/2 and JNK signaling
pathways (41, 42). In the present study, the growth reduction
effect of FO diet was observed without a prior hemodynamic
loading stimulus and therefore likely reflects a direct modula-
tion of intrinsic myocardial trophic maintenance signaling. It
has been proposed that in females adaptive hypertrophic
growth plays a more important role in systolic functional
maintenance in compromised situations (36). A detailed mo-
lecular understanding is required to discern whether growth
suppression associated with omega-3 intervention in females is
cardioprotective.

Postischemic recovery in TG females is not undermined. The
hypertrophic TG female hearts did not exhibit contractile
dysfunction under basal conditions (when compared with WT),

Fig. 5. Effects of 4-wk dietary FO compared with CTR diet in OVX WT (circles)
and TG (triangles) on ex vivo cardiac performance during early reperfusion
following 15-min global no-flow ischemia. A: coronary flow: WT vs. TG, P �
0.386; CTR vs. FO, P � 0.232; interaction factor, P � 0.843. B: MV̇O2: WT vs.
TG, P � 0.129; CTR vs. FO, P � 0.134; interaction factor, P � 0.763.

Table 3. Type and incidence of reperfusion arrhythmias in hearts of CTR-fed and FO-fed intact and ovariectomized
WT and TG mice

WT TG

CTR FO CTR FO

Intact n � 8 n � 8 n � 8 n � 8
VPB (incidence) 104�16 (8) 66�14 (8) 77�29 (8) 62�18 (8)
VT (incidence) 2�1 (3) ND ND ND
potentiated (incidence) 5�2 (8) 18�5 (7) 13�3 (7) 29�25 (5)
bigeminy (seconds) 82�21 (8) 61�22 (6) 39�8 (7) 46�26 (5)
VF (seconds) 51 (1) 108 (1) ND ND

Ovariectomized n � 10 n � 8 n � 12 n � 11
VPB (incidence) 70�9 (10) 89�24 (8) 62�11 (12) 67�13 (11)
VT (incidence) 2�1 (3) 9 (1) ND ND
potentiated (incidence) 25�11 (6) 20�8 (6) 24�16 (7) 21�13 (6)
bigeminy (seconds) 56�18 (8) 36�16 (5) 55�17 (8) 55�15 (7)
VF (seconds) 344�120 (2) 174 (1) ND ND

Assessment of ex vivo arrhythmia during the first 10 min of reperfusion. Arrhythmias were identified from the ventricular pressure record, using the criteria
described in MATERIALS AND METHODS. Numbers in parentheses indicate the number of hearts exhibiting the type of arrhythmia (SE is omitted where this number
is 1 only). Ventricular premature beat (VPB), ventricular tachycardia (VT), and potentiated contraction are expressed as number of events (incidence) occurring
during the first 10 min of reperfusion and shown as means � SE for the number of hearts in parentheses. Bigeminy and ventricular fibrillation (VF) are presented
as duration (seconds), occurring during the first 10 min of reperfusion and shown as means � SE for the number of hearts in parentheses. No significant
differences were detected. ND, not detected.
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which contrasts with our previous observations in male TG of
similar age (20). Although our earlier study did not involve a
specified diet and comparison, the diet used most closely
resembles the CTR diet described here. The present finding
accords with other reports in the literature that have shown that
the occurrence, onset, and progression of cardiac hypertrophy
are frequently different in females compared with males (10).
In addition, this study found that the TG female hearts exhibit
an intrinsic functional resistance to ischemia and reperfusion
(equivalent to WT). Hypertrophic exacerbation of ischemia
and reperfusion damage has been previously observed in some
experimental models where cardiac growth and function are
modified by systemic loading conditions. This study shows that
in the female, under these experimental conditions, primary
chronic hypertrophy occurring without hemodynamic compli-
cation does not impair postischemic mechanical recovery or
promote postischemic arrhythmia. This finding is consistent
with previous studies in the rat that have shown that female
hearts are protected from ischemia-reperfusion, exhibiting
lower incidence of arrhythmia, improved recovery of contrac-
tility, and decreased necrosis when compared with males (2,
22, 35). These differences are largely attributed to sex steroids
although the cellular and molecular mechanisms underlying
sex differences in cardiac function remain unresolved (25). The
sarcolemmal ATP-sensitive potassium channel may play a role
because expression of this channel is estrogen modulated and

pharmacological block has been shown to abolish sex differ-
ences in ischemia-reperfusion damage in ex vivo hearts (23).

FO may not confer protection in the female heart. Contrary
to our primary hypothesis, the extent of postischemic mechan-
ical recovery was found not to be enhanced in the hearts of
FO-fed TG (or WT), when compared with CTR-fed mice.
Dietary FO, which is generally considered to be cardioprotec-
tive (29, 31, 39), albeit not always (4), had no effect on
postischemic mechanical recovery or arrhythmia suppression
(VPB, VT, VF) in WT hearts. In younger animals fed diets
identical to those used in the present study, we have previously
identified a postischemic protective effect of FO in WT and TG
males (21). In the present study, hearts of FO-fed TG hearts did
exhibit a lower intrinsic HR during reperfusion compared with
TG CTR-fed mice. This finding is consistent with previous
studies in the rat and human (1) and has been suggested to be
beneficial since a lower resting HR reduces risk of arrhythmia.
However, surprisingly in this study we did not find an antiar-
rhythmic effect of dietary FO on postischemia arrhythmia
incidence in the TG (or WT) hearts when compared with
CTR-fed TG.

Review of the literature provides a basis for inferring that
omega-3 may act at similar cellular targets to estrogen (7, 18,
27, 33, 47). Dietary omega-3 PUFA and estrogen have been
both observed to modulate cardiomyocyte ion homeostasis,
particularly the ionic fluxes involved in excitation-contraction
coupling, and have been linked with intracellular Ca2�-depen-
dent downstream signaling. In addition, omega-3 PUFA and
estrogen may confer benefit by directly targeting the genome
(i.e., bind to nuclear transcription factors). In the estrogen-
replete female, activation and transcription of genes involved
with cardiac remodeling, cellular repair, and mitochondrial
biogenesis may already be invoked (by estrogen), hence pre-
cluding the potential for further omega-3 PUFA action. Thus
we advanced a second hypothesis that the effects of dietary FO
may be masked in the WT and TG hearts attributable to the
already “protected” state of the estrogen-replete female.

Withdrawal of ovarian sex hormones does not unmask a car-
dioprotective action of dietary FO. To evaluate whether systemic
estrogen was “preempting” a protective effect of omega-3 PUFA
(i.e., the effects of both estrogen and omega-3 PUFA are not
additive), we compared the responses of OVX WT and TG mice
to FO dietary intervention. It has been previously established that
a 4-wk period of experimental estrogen depletion by ovariectomy
is sufficient to reverse the functional cardiomyocyte modeling
conferred by endogenous estrogen (7). OVX CTR-fed WT hearts
exhibited a distinct vulnerability to ischemia, displaying a mark-
edly higher incidence of mechanical alternans suggestive of ab-
normal calcium handling (5, 12). Data subanalysis suggests that
FO may selectively influence alternans occurrence in WT-OVX.
Although mechanical alternans occurrence cannot be strictly con-
sidered of arrhythmogenic origin without additional characteriza-
tion, this observation does provide a possible avenue for further
cellular investigations. Previous dietary and acute (in vitro) studies
(in males) have indicated that omega-3 PUFA confers arrhythmia
protection through favorably modulating intracellular calcium
flux (18, 32, 47). Our finding was that dietary FO did not enhance
postischemic mechanical recovery in the estrogen-depleted WT or
TG hearts. Moreover, there was no beneficial effect of dietary FO
on the incidence of reperfusion arrhythmia.

Fig. 6. Assessment of ex vivo arrhythmia incidence during the first 10 min of
reperfusion in WT and TG mice 4 wk after dietary FO supplementation or
CTR. Data (means � SE; n � 8–12/group) are expressed as a percentage
ectopy (arrhythmic beats/total beats � 100). ANOVA (factors, genetic type,
and diet). A: hearts of ovary-intact WT and TG mice: WT vs. TG, *P � 0.030;
CTR vs. FO, P � 0.299; interaction factor, P � 0.947. B: hearts of OVX WT
and TG mice: WT vs. TG, *P � 0.015; CTR vs. FO, P � 0.529; interaction
factor, P � 0.245.
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These findings, in particular the lack of effect on reperfusion
arrhythmias, represent intriguing experimental outcomes given
the consistent (but not universal) reports in the literature that
dietary FO-derived omega-3 PUFA are antiarrhythmic in male
rodents following ischemia and reperfusion (29, 31, 39). This
unanticipated finding adds to the emerging evidence that omega-3
PUFA may not be antiarrhythmic in all contexts. Given that the
diets fabricated for this study were matched for total PUFA
content, these findings may suggest that, in females, both omega-3
and omega-6 PUFA classes exert similar effects. The absence of
a cardioprotective FO effect in the estrogen-deplete female in this
study prompts consideration of the proposition that testosterone is
important in males in mediating the actions of omega-3 interven-
tion. There is evidence to suggest that testosterone may reduce the
activities of the enzymes involved in the desaturation process of
the 18-carbon chain PUFA to the longer more unsaturated PUFA
(28). Thus supplementation studies with long-chain omega-3
PUFA (e.g., DHA and EPA) may not achieve the same outcome
in females because of relatively greater intrinsic capacity to
produce these PUFA endogenously.

An additional finding of this study was that postischemia
differences in the extent of mechanical recovery were evident
in OVX TG (compared with intact) that were not apparent in
the OVX WT (Fig. 4C vs. Fig. 2F). In these TG hearts,
ovariectomy was associated with a higher level of intrinsic
contractility (i.e., �/-dP/dt) postischemia compared with gen-
otype-matched intact mice. Thus our findings suggest that the
absence of circulating sex hormones impacts differently on the
myocardium when there is a chronic local activation of RAS.
Previous studies have reported an Ang II-estrogen interaction
(38, 48). Chronic infusion with Ang II was associated with a
greater pressor effect in OVX females and males compared
with intact females, indicating a protective role of ovarian
hormones against Ang II-induced hypertension (48). The find-
ing that postischemic excitation-contraction coupling is altered
suggests that in vivo the local cardiac growth mediator milieu
may interact with systemic estrogen to modulate excitation-
contraction coupling.

Previous studies have shown that Ang II stimulates increases
in myocyte cytosolic free Ca2� by activating voltage-sensitive
Ca2� channels, producing a subsequent increase in contractil-
ity (13). Ang II modulates beat-to-beat Ca2� involved in
excitation-contraction coupling, and an Ang II-mediated posi-
tive inotropic effect on isolated rat myocytes has been demon-
strated (8). The positive inotropic effects of Ang II have been
attributed to an increase in the Ca2� transient with (15) or
without (46) an increase in myofilament sensitivity to Ca2�. In
contrast, it has been shown that estrogen suppresses cellular
Ca2� flux (6, 7, 33). Thus, in the TG, the removal of ovarian
estrogen would be expected to enhance intracellular Ca2� flux,
and, in a relatively low workload environment (as in this study,
with a modest ischemic insult), an augmented Ca2� flux may
improve inotropic state—conferring relative “hypercontractil-
ity”. However, more severe in vivo ischemic or workload
demands could be expected to unmask mechanical deficits
associated with higher resting intracellular Ca2�. In such
circumstances, it might be predicted that Ang II hypercontrac-
tility postischemia undermines long-term mechanical stability
and recovery. Interestingly, in a different pathological setting
of a disease model of familial hypertrophic cardiomyopathy,
dietary phytoestrogen enrichment (soy intake) has been shown

to exacerbate mechanical dysfunction (44). In this context, it
may be that high levels of ingested exogenous estrogens
undermine the supply of activator Ca2� for excitation-contrac-
tion coupling and impair the adaptive response to counter
genetic abnormality. Further work is required to understand the
effects of exogenous and endogenous estrogens on Ca2� mod-
ulation in hypertrophic disease states. The importance of using
fully specified diets rather than diets of regionally and season-
ally variable phytoestrogen content is also increasingly apparent.

In summary, this study provides the first experimental evaluation
of the effects of dietary FO in modulating the myocardial re-
sponses of female hearts to ischemic challenge. Our findings
indicate a lack of selective cardioprotective effect of FO dietary
intervention determined by assessment of mechanical and arrhyth-
mic activity in the murine ex vivo heart model. Furthermore,
relative to the CTR diet, FO intervention was without functional
benefit even in the presence of cardiac hypertrophy (induced by
cardiac Ang II overproduction) or in the context of chronic
systemic estrogen withdrawal (surgically simulated “meno-
pause”). Interestingly, FO diet exerted a significant (modest)
cardiac growth suppression effect, which was not selective for
hypertrophic hearts. These novel experimental findings highlight
the importance of gaining a more complete understanding of the
role of omega-3 PUFA in regulating growth and function specif-
ically in the female heart. The assumed benefits of omega-3
intervention/supplementation which have been largely identified
in male cohort studies may not necessarily translate to females.
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