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Abstract: Grape pomace (GP) is the main solid by-product of winemaking and represents a rich source
of potent bioactive compounds which could display a wide range of beneficial effects in human health
for their association with reduced risk of several chronic diseases. Several studies have proposed
the use of GP as a macro-ingredient to obtain economically worthwhile animal feedstuffs naturally
enriched by polyphenols and dietary fibers. Moreover, the research carried out in this field in the
last two decades evidences the ability of GP to induce beneficial effects in cow milk and its derived
dairy products. First of all, a general increase in concentration of polyunsaturated fatty acids (PUFA)
was observed, and this could be considered the reflection of the high content of these compounds
in the by-product. Furthermore, an improvement in the oxidative stability of dairy products was
observed, presumably as a direct consequence of the high content of bioactive compounds in GP that
are credited with high and well-characterized antioxidant functions. Last but not least, particularly
in ripened cheeses, volatile compounds (VOCs) were identified, arising both from lipolytic and
proteolytic processes and commonly associated with pleasant aromatic notes. In conclusion, the GP
introduction in the diet of lactating cows made it possible to obtain dairy products characterized
by improved nutritional properties and high health functionality. Furthermore, the presumable
improvement of organoleptic properties seems to be effective in contributing to an increase in the
consumer acceptability of the novel products. This review aims to evaluate the effect of the dietary
GP supplementation on the quality of milk and dairy products deriving from lactating dairy cows.

Keywords: grape pomace; dairy cow; milk; cheese; antioxidant; polyunsaturated fatty acid; linoleic
acid; volatile compound

1. Introduction

Grape (Vitis spp.) represents one of the most consumed and appreciated fruits in the world.
As previously reported by Zhu et al. [1], approximately 75% of the entire production is utilized for
wine-making, which accounts an annual worldwide production of just under 30 billion liters, mainly
from Vitis vinifera, with Italy, France and Spain that, in that order, representing the main producers [2].

As in all agro-industrial sectors, a significant production is generally associated with the relevant
accumulation of difficult-to-degrade by-products, management of which represents an issue of great
importance due to its environmental impact [3]. The need for ecologically sustainable and economically
advantageous disposal of agro-industrial by-products has led over time to the development of specific
research that has enhanced these matrices, highlighting their high biotechnological potential and
paving the way for alternative uses, especially as food supplements for humans and mainly for farm
animals [4].
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With particular regard to this last aspect, several experimental feeding strategies have been
developed over time and administered mainly to ruminants, but also to pigs, chickens and laying
hens [5]. Overall, the use of matrices of plant origin, particularly rich in bioactive compounds, has
led to interesting effects both on animal welfare and on quantitative and qualitative aspects of animal
productions. For instance, the use of olive pomace, the main by-product of olive oil production, as
feed supplement for dairy cows results in effective improvement of the health functionality of milk
and its derived dairy products [6], and has been observed to induce positive effects on inflammation
and cholesterol in laying hens [7].

Grape pomace (GP) is the solid by-product of wine-making, approximately representing 20% of
the total processed grapes, and has been reported to be a rich source of biologically active compounds,
especially polyphenols, to which is attributed the ability to interfere with several biological mechanisms,
determining positive effects for human health [8]. Specifically, the dietary intake of these compounds
has been demonstrated to reduce the risk of the onset of chronic pathological conditions, such as
inflammatory and neoplastic diseases [9,10]. In addition to polyphenols, particular interest has also
been given to the recovery of antioxidant fibers from skin [11,12], as well as oil extraction from
seeds [13]. Over time, all these matrices have undergone a thorough characterization with a view to
evaluating their possible use as macro-ingredients for the production of novel functional food products
enriched with bioactive compounds [14–16].

In the last two decades, the use of grape pomace as a dietary supplement for farm animals has
been the focus of numerous experimentations. The RNA sequencing-based whole-transcriptome
profiling of Friesian calves that have received a dietary supplementation with dried GP showed a
reduced expression of genes coding for cholesterol biosynthesis enzymes. This finding has also been
consolidated by the reduction of blood cholesterol levels and an improvement of oxidative stability
in carcasses [17]. In ewes the ability of dietary GP to induce an immune-modulatory function has
been reported, without adverse effects on milk production [18]. In lambs, the GP intake significantly
increased the activity of reduced glutathione and catalase in blood and tissues, contributing to
the reduction of oxidative damage in lipids and proteins. In addition to this, in fecal microbiota,
an enhanced growth of facultative probiotic bacteria and the concomitant inhibition of pathogen
populations such as E. coli was observed [19]. GP was also demonstrated to increase the diversity of
the rumen microbiota in dairy calves [20], although in sheep the GP dietary intake was reported to
impoverish the cellulolytic and proteolytic bacteria population in rumen, with consequent reduction of
microbial protein yield [21]. To highlight the wide range of experimentation carried out by feeding
farm animals with GP, an interesting finding was also represented by the role of this agro-industrial
by-product in improving the membrane integrity and overall quality of boar semen during storage,
presumably as a consequence of reduced lipid peroxidation of ejaculated spermatozoa induced by GP
polyphenols [22].

In addition to what has been reported, the effect of dietary GP on qualitative and quantitative
parameters of animal product has also been the subject of numerous studies. Specifically, much
attention has been paid to the evaluation of the chemical-nutritional characteristics of milk and its
derived products. Specifically, the objective of this review is to briefly recall the main properties of GP,
and to then focus attention on its use as a dietary supplement in ruminants, giving particular emphasis
to the effect that these feeding strategies have on the quality of dairy products, both fresh and ripened.

2. Grape Pomace Constituents: Chemical Composition and Biological Properties

GP mainly consists of grape seeds and skins. Seeds are rich in compounds credited of antioxidant
activity, such as phenolic acids, flavonoids and procyanidins, while grape skins contain abundant
anthocyanins. GP is also characterized by non-negligible amounts of lipids, proteins, minerals and
fiber. Specifically, grape seeds have an oil content ranging from 15% and 18%, which is rich in essential
fatty acids, non-digestible carbohydrates, proteins and non-phenolic bioactive compounds such as
tocopherols and β-carotene [8]. These characteristics make this by-product particularly interesting due
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to the potential health benefits for humans, and for this reason it has attracted over time great interest
from the nutraceutical sector.

2.1. Polyphenols in GP

2.1.1. Chemical Composition

Phenolic compounds are secondary metabolites of plants, characterized from a chemical point of
view by an aromatic residue wherein one or more hydroxyl substituents are present. These compounds
are classified into different classes taking into account the similarity of their chemical structures and
their precursor is mainly represented by phenylalanine (Figure 1), and only in a few cases by tyrosine.
The polyphenols of greatest interest in the food sector are largely divided into four classes, consisting
of phenolic acids, flavonoids, lignans and stilbenes [23].

β

 

Figure 1. Schematic representation of flavonoids, tannins, stilbenes, lignans, lignins, suberins and
cutins from phenylalanine.

Phenolic acids are characterized by a carboxylic functional group and are commonly found in the
form of hydroxycinnamic acids. This category consists of several compounds, including gallic, ferulic,
caffeic and coumaric acids, which are commonly found as glycosylated derivatives [24]. Flavonoids
certainly represent the most studied and best characterized polyphenols, and among them are listed
flavones, isoflavones, flavonols, flavanones, anthocyanidins/anthocyanins, flavanols and condensed
tannins (Figure 2), distinguished on the basis of the chemical structure [25].
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Figure 2. Representation of basic structures of flavonoid subclasses.

Polyphenols are present in virtually all matrices of plant origin, but some fruits, more than
others, are particularly rich in these bioactive compounds, as in the case of grape and apple. As
reported by Makris et al. [26], GP is characterized by high concentrations of extractable polyphenols
(approximatively 10% on a dry matter basis), specifically phenolic acids, anthocyanins, catechins,
procyanidins, flavonols, and stilbenes [27] whose exact composition is, however, strongly dependent
on grape variety. Generally, the red varieties are characterized by high concentrations of anthocyanins,
while in white varieties the flavan-3-ols (gallocatechin, procyanidin B1, procyanidin B2, procyanidin
B4, procyanidin C1, catechin and epigallocatechin) have been reported to be the most abundant
polyphenols [28,29]. Polyphenol composition also tends to vary in different parts of the grape. In grape
skins, mainly hydroxycinnamic acids, flavanols, flavonol glycosides and anthocyanins are represented,
which are greatly influenced by vinification method and contact time. Grape seeds, on the other hand,
are reported to be essentially rich in gallic acid and flavan-3-ols, which easily condense into oligomeric
and polymeric compounds, as in the case of condensed tannins [30].
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Another relevant bioactive compound found both in skins and seeds is represented by resveratrol
(Figure 3), the specific content of which in grapes is influenced not only by the grape variety, but
also by plant maturation [31]. Resveratrol and its glycosides represent the major stilbenoids, and are
phytoalexins synthesized in plants as a consequence of a pathogen attack. Its importance for humans
is related to its low toxicity and well-characterized anti-inflammatory and fungicidal activity [32]. An
important finding concerns the fact that during wine-making, higher resveratrol concentration tends
to remain in GP, only being transferred to wine in small percentages [33].

 

𝜅

Figure 3. Structures of stilbene and resveratrol.

Evaluations performed on the indigestible fraction of GP showed the presence of high
concentrations of condensed tannins (about 16.0% in white grape skins and 27% in red grape
skins), and non-starch polysaccharides, mainly cellulose and pectins, ranging from 17% to 21% on a
dry matter basis. In addition to this, a relevant percentage of protein (up to 80%) was also shown to be
indigestible in vitro [34].

2.1.2. Biological Properties

In recent decades, a large research area has been focused on the study of the biological properties
associated with polyphenolic compounds. With specific regard to the food sector, this phenomenon has
developed in response to the growing interest shown by consumers towards products accredited with
nutraceutical properties, and therefore functional in the prevention of various pathological conditions,
if regularly taken (Table 1).

Numerous classes of polyphenols isolated from GP have exhibited interesting biological properties
in both in vitro and in vivo studies. Procyanidins, particularly represented in grape seeds, have been
demonstrated to promote important antioxidant, anti-inflammatory and anti-carcinogenic activities.
Kulisic-Bilusic et al. [35] provided evidence of the antioxidant activity of these compounds in HT-29
human colon cancer cells, while Packer et al. [36] reported in their review their ability to act as
free radical scavengers, counteracting reactive oxygen and nitrogen species; furthermore, several
cardiovascular benefits have been described as a consequence of vasorelaxant activity [37], inhibition
of the activity of angiotensin-converting enzyme, and the ability to improve the capillary permeability,
enhancing microcirculation. In addition to this, Bak et al. [38] reported an in vitro study conducted on
lipopolysaccharide-stimulated RAW 264.7 murine cells, in which procyanidins showed the ability to
exert a potent anti-inflammatory activity through the regulation of the NFκB and p38 MAPK pathways,
resulting in a decreased expression of inflammatory mediators, such as an inducible nitric oxide
synthase and cyclooxygenase-2. Further studies on cell models characterized by neoplastic potential,
also made it possible to highlight the cytotoxicity of these compounds towards human breast, lung,
gastric adenocarcinoma cells, at the same time improving growth and viability of gastric mucosal
cells [39].

It has been reported that phenolic compounds obtained both from grape skin and seeds are also
able to modulate the function of several matrix metalloproteinases (MMPs), zinc-dependent enzymes
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with endopeptidase activity which are involved in a wide range of physiological and pathological events
associated with the turnover of the extracellular matrix [40]. La et al. [41] showed a grape seed extract to
reduce the secretion and extracellular activity of MMP-1 and MMP-9 in lipopolysaccharide-stimulated
macrophages, presumably as a consequence of the inactivation of NF-κB p65 and AP-1 pathway.
Tyagi et al. [42] also reported decreased secretion of MMP-2 and MMP-9 after treating human prostate
carcinoma DU145 cells with a grape seed extract. The anti-carcinogenic effect was explained by
advancing the hypothesis of a direct role of the treatment in inhibiting the phosphorylation of proteins
belonging to the MAPK family and consequently the NFκB activation.

Grape seed proanthocyanidins have also been reported to promote apoptosis in in vitro studies
conducted on non-small cell lung cancer A549 and H1299 cells. This finding has been explained by
assuming an increase in the expression of Bax, a proapoptotic factor, and a decrease in expression of
antiapoptotic mediators belonging to the Bcl family, with the consequent alteration of mitochondrial
membrane potential and activation of caspases 3 and 9 [43].

One important bioactive compound, particularly represented in GP and to which have been
attributed numerous functions from a biochemical point of view, is certainly resveratrol. Overall,
voluminous evidence has been collected regarding the ability of this compound to prevent or slow down
the onset and progression of several pathological events, such as neoplastic conditions, cardiovascular
diseases, ischemic injuries, chronic inflammations, and infections [44]. In light of all this, and as also
reported in the review of Shukla and Singh [45], all the collected preclinical findings have been helpful
in characterizing the chemopreventive function of resveratrol, which can therefore be considered to be
an effective tool in countering cancer. In addition to this, resveratrol, in the same way as quercetin and
catechin, has been reported to reduce plasma cholesterol in hamsters, in which was also observed the
development of several mechanisms effective in preventing atherosclerosis [46].

Taking into account the outcome of numerous epidemiological studies, the consumption of foods
particularly rich in phenolic compounds showed effective in breaking down the risk of the onset of
cardiovascular diseases, commonly associated with the alteration of fatty acid metabolism and the
increase of the lipid oxidative damage. Low concentrations of plasma antioxidants are generally
responsible for the increase of low-density lipoprotein (LDL) oxidation, whose products are implicated
in the biochemical mechanisms responsible for artery blockage and thrombosis. Polyphenols obtained
from grape seeds have been shown to be able to lower the risk of heart disease, specifically by inhibiting
the LDL oxidation [47]. The inhibition of LDL oxidation also represents one of the mechanisms
by which grape phenolic compounds can mitigate atherosclerosis, presumably as a consequence of
the inhibition of platelet aggregation, the reduction of inflammation and the expression of proteins
credited to slow down cell senescence [48]. Furthermore, research has been conducted over the
years on grape flavonoids as key elements in the development of nutraceuticals. In this regard,
the review of Georgiev et al. is very informative [49], discussing the scientific advances arising
from the research in the phytochemical field, leading to the identification of grape flavonoids as
ideal candidates for the production of nutraceuticals because of their marked and well-characterized
antioxidant, anti-inflammatory and antiproliferative properties. With specific regard to quercetin,
several studies have reported this compound to be effective in suppressing intracellular ROS formation,
MMP expression and activation, and cell motility in in vitro studies [50,51].

Other phenolic compounds credited with numerous biological functions, and highly represented
in grapes, are catechins (Table 1). Such compounds and their derivatives have been reported to act
in vitro as scavengers of reactive oxygen species, in addition to the well-characterized antioxidant
function, which is indirectly influenced through the regulation of transcription factors and enzyme
activities. In humans, only a modest and transient increase in plasma antioxidant potential has been
evidenced as a consequence of dietary catechins intake; however, promising results have been obtained
from studies on animal models in which the effects on biomarkers of oxidative stress were evaluated,
with specific regard to oxidative DNA damage [52]. To what has just been reported for catechins, can
be added antibacterial [53], anti-inflammatory [54] and antineoplastic effects [55].
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Table 1. Biological activities performed by phenolic compounds found in grape and its derivates.

Source/Compounds Biological Function References

Procyanidins Antioxidant activity [34]
Free radical scavenging [35]

Anti-inflammatory activity [37]
Anti-carcinogenic activity [38]

Vasorelaxant activity [36]
Proanthocyanidins Anti-carcinogenic activity [42]

Resveratrol Anti-inflammatory activity [43]
Anti-carcinogenic activity [43,44]
Cardiovascular protection [43]

Fungicidal activity [32]
Regulation of lipid metabolism [45]

Quercetin Antioxidant activity [48,49]
Anti-inflammatory activity [48–50]
Anti-carcinogenic activity [48–50]

Regulation of lipid metabolism [45]
Catechin Free radical scavenging [51]

Antioxidant activity [51]
Anti-inflammatory activity [53]
Anti-carcinogenic activity [54]

Antibacterial [52]
Regulation of lipid metabolism [45]

Gallic acid Antioxidant activity [48]
Anti-inflammatory activity [48]
Anti-carcinogenic activity [48]

Phenolic compounds (grape seed extract) Inhibition of MMP-1 and MMP-9 [40]
Inhibition of MMP-2 and MMP-2 [41]

MMP, matrix metallo-proteinase.

Tannins represent a large group of compounds conventionally classified into hydrolysable and
condensed. For a long time, tannins were considered to negatively influence the animal physiology. In
any case, their specific effect strongly depends on various factors, including the type of consumed
tannin, its chemical structure and molecular weight, the ingested amount, and the animal species
involved. Feeding strategies characterized by high concentrations of this compounds have been
reported to reduce the voluntary feed intake and nutrient digestibility, whereas moderate tannin intake
may improve feed utilization as a consequence of a decrease in ruminal protein degradation and
subsequent increase in concentration of amino acids in the small intestine.

These variations in nutrition have been clearly demonstrated to induce effects on animal
performances. Sczechowiak et al. [56] showed the ability of a diet rich in condensed tannins to
modify microbial population in rumen in lactating cows. This obviously had effects on rumen
fermentation and biohydrogenation, consequently inducing significant variations in the fatty acids
profile of milk. The authors specifically reported an increase in the concentration of C18:1 trans11
(vaccenic acid) as a consequence of the inhibition of the last steps of rumen biohydrogenation, thus
preventing reduction to C18:0. Furthermore, in a similar study was also reported an increase in
concentration of vaccenic acid and n-3 fatty acids in plasma, thus generating a favorable condition for
the accumulation of polyunsaturated fatty acids (PUFAs) in the mammary gland and consequently in
milk [57].

With specific regard to the GP effect on ruminal microbiota, the study of Biscarini et al. should be
mentioned [20], in which dairy calves received a diet enriched with 10% DM (dry matter) of red GP
for 75 days. The metagenomic approach on rumen liquor evidenced a taxonomic enrichment mainly
associated with Ruminiclostridium and Eubacterium sp., whose functions were related to degradation of
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GP constituents, such as flavonoids and xyloglucan. Interestingly, the authors also reported variations
in the lipopolysaccharide biosynthetic pathway, supposedly as a result of antimicrobial effects.

Despite the well-characterized antioxidant properties, phenolic compounds are credited also with
a pro-oxidant potential, which tends to occur in the presence of certain environmental conditions.
Castañeda-Arriaga et al. [58] discussed the key aspects involved in determining the balance between
antioxidant and pro-oxidant effects, and particular attention has been paid to pH, presence of redox
metals and the possibility of phenolic compounds to be converted into benzoquinones.

2.2. Fatty Acid Composition and Antioxidant Properties of Grape Seed Oil

As previously mentioned, grape seeds are characterized by an oil content approximately ranging
between 15% and 19% depending on grape variety and maturity. The specific fatty acids composition
of grape seed oil is also strongly influenced by variety and maturity. In a study conducted by
Lutterodt et al. [59], Chardonnay, Muscadine, Ruby red, and Concord grape seed oils were analyzed
for fatty acid composition. Linoleic acid (C18:2) was reported to be the major fatty acid (66.0–75.3%),
followed by oleic (C18:1; 13.9–21.9%), palmitic (C16:0; 7.05–7.75%) and stearic (C18:0; 2.52–4.72%) acids.
This finding is in agreement with most of the related literature. Beveridge et al. [60] reported a C18:2
concentration ranging from 66.8% to 73.6% in seven distinct seed oils obtained from as many grape
varieties. The authors also reported a C18:1 concentration ranging from 12% to 19%, with lower values
for C16:0 and C18:0. Similarly, Ianni et al. [61] evidenced a C18:2 concentration equal to 71.59% by
analyzing GP obtained from an Italian grape variety. Other authors, however, reported variable values
for the mentioned fatty acids, presumably as a direct consequence of grape origin and method applied
for the oil extraction. For instance, El-Shami et al. [62] reported higher values for C18:1 in Egyptian
grape seeds, whereas Crews et al. [63] evidenced variable fatty acid profiles in seed oils obtained from
Italian, French and Spanish varieties.

This matrix is therefore particularly rich in fatty acids that have been reported to induce several
benefits for human health. Extensive literature highlighted that diets rich in of monounsaturated fatty
acids (MUFA) is effective in promoting a healthy blood lipid profile, in modulating blood pressure, and
positively controlling insulin sensitivity and glycemic index. In the same way, detrimental effects of
dietary intake of saturated fatty acids (SFA) have been widely characterized [64]. With specific regard
to linoleic acid, it has been shown in lactating ruminants that feeding strategies rich in this compound
are effective in inducing an increase in concentration of conjugates of linoleic acid (CLA) in milk and
derived dairy products. CLA are endogenously produced in ruminants starting from trans-11 18:1
(vaccenic acid) through an enzymatic mechanism mediated by ∆

9-desaturase and, in addition to this,
CLA also represent intermediates of the ruminal biohydrogenation of C18:2 taken by diet [65]. These
compounds can be found almost exclusively in milk and dairy products and their beneficial properties
for consumers health have led over time to develop experimental feeding strategies for ruminants in
order to increase their concentration in animal productions [66].

In addition to the previously described phenolic antioxidants, grape seed oil is also characterized
by non-phenolic antioxidants such as tocopherols and β-carotene, both vitamins of extreme interest for
human health. In grape seed oil, α-tocopherol is generally the most abundant detected tocopherol, γ
and δ-tocopherols were found in low concentrations, while β-tocopherol was not detected [67].

2.3. Fiber Content

The term “dietary fiber” (DF) was introduced to describe remnants of plant origin, resistant to
hydrolysis by digestive enzymes [68]. DF is characterized by soluble and insoluble components, and
the induced physiological effects strongly depend on the relative amount of these fractions. These
compounds are mainly derived from the plant cell wall and among them, cellulose, hemicellulose and
lignin should be mentioned [69]. In humans, soluble fraction has been reported to induce a decrease
in plasma cholesterol and stem inflammatory diseases in gut; furthermore, a prebiotic function was
observed to be able to preserve host health [70].
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With regard to lactating ruminants, DF has a strong influence on ruminal activity, with direct
effects on the animals’ welfare and milk quality, since the chemical composition of milk has been
reported to be strongly influenced by the biochemical mechanism mediated by rumen microbiota.
Both soluble carbohydrates and pectins undergo rapid degradation in the rumen, and only a small
percentage of these compounds will be available for post-ruminal digestive mechanisms [71].

Non-extractable proanthocyanidins represent a not negligible partition of GP fiber. In a study
conducted on rats, these compounds, following the achievement of the intestinal environment have
been reported to be further hydrolyzed into smaller metabolites by the intestinal microbiota. This
event was responsible for the release of phenolic acids that have been detected in urine as both free
phenolic compounds and conjugates with glucuronate or sulphate residues. For that reason, authors
hypothesized non-extractable proanthocyanidins to serve as a carrier for the progressive release of
polyphenols which can be therefore absorbed in the distal portions of the intestine with an estimated
bioavailability not less than 24 h after ingestion [72].

3. Role of GP Constituents in Food Systems

3.1. Food and Beverages Fortification

Over the past two decades several studies have been conducted with a view to exploiting the
grape pomace constituents in the food sector. As previously reported, these compounds, especially
polyphenols, are credited of numerous and interesting biological properties, with potential positive
effects on consumer health [73]. In this regard, significant progress has been made in the direct inclusion
of GP constituents in food, with the aim of exploiting GP as a polyphenol carrier able to induce an
increase in concentration of phenolic compounds and an improvement of antioxidant potential, with
undoubted advantages not only for consumers’ health but even for aspects related to the preservation
of the food quality during storage.

GP constituents have been widely tested as fortifying agents in numerous and varied food
preparations. Walker et al. [74] used GP from Pinot Noir and Pinot Grigio as a source of antioxidant
dietary fiber to fortify baked goods, including breads, muffins, and brownies. The GP used to substitute
the wheat flour at different concentrations was effective in inducing in the finished products an increase
of total phenolic content, radical scavenging activity, and total dietary fiber, without any significant
variations in sensory evaluations. In a similar study, Hoye and Ross [75] used grape seed flour in bread
production. Against an increase in the total phenolic content, authors experienced a worsening of
consumer acceptability after the addition of the higher concentrations of grape seed flour; specifically,
a replacement of 100 g hard red spring wheat flour with 10 g of grape seed flour induced a decreased
acceptance in relation to bitterness, astringency and sweetness. In the study of Peng et al. [76], bread
was fortified with different amounts of grape seed extract (from 300 to 1000 mg per 500 g of bread)
and antioxidant activity, texture and color of products were evaluated. Additionally, in this case an
improvement of the antioxidant capacity in the experimental bread was reported, presumably as a
consequence of the increase of total phenols; however, no sensorial evaluation was performed.

Several studies have also been conducted on the characterization of chemical and nutritional
quality of fresh and ripened dairy products fortified with GP powders. Marchiani et al. [77] added
GP powders from three grape varieties to semi-hard (Italian Toma-like) and hard cheeses (Cheddar).
The authors evidenced no variations in proteolysis, microbial counts and physicochemical parameters;
however, an increase of total phenolic content and radical scavenging activity was observed in ripened
cheeses. Karaaslan et al. [78] prepared grape ethanol extracts which were used as functional ingredients
for yogurt production. The obtained products showed high phenolic-anthocyanin content and exhibited
an increased antioxidant power in comparison with control samples. Similarly, Tseng and Zhao [16]
performed evaluation on yogurt supplemented with GP stored for 3 weeks at 4 ◦C. With respect to the
control samples, the experimental yogurt showed an increase in pH and a decrease of viscosity, without
variations in lactose concentration. In addition to this, the GP supplementation was also effective in



Foods 2020, 9, 168 10 of 20

reducing the peroxide values during storage, with advantages in oxidative stability. The production of
functional yogurts was also pursued by Chouchouli et al. [79] who experimented the addition of grape
seed extracts from two grape varieties (Moschofilero and Agiorgitiko). The fortification in the range of
5–10 mg of gallic acid equivalents for 100 g of yogurt did not affect pH and the count of Lactobacilli;
furthermore, no significant variations were observed in the consistency, color and flavor compared to
the control samples.

With specific regard to meat, the supplementation of 0.5–5% of grape seed flour in frankfurters
was effective in improving the oxidative stability of experimental samples. Interestingly, an increase in
concentration of protein, total dietary fiber and an improvement of water holding capacity was also
highlighted [80].

The addition of phenolic extract also represents a practice of interest for the fortification of
beverages. Aguilar et al. [81] proposed a study in which grape pomace, grape leaves and stems were
used as functional matrices in order to enrich the must with phenolic compounds. This work was
motivated by the consideration that, despite the relevant phenolic contents of grape, a major part
of these compounds is lost in by-products during the different stages of wine-making. Grape juice
enriched with extracts from pomace, leaves, and stems made it possible to obtain an antioxidant
capacity that was considered at least as efficient as other phenols fortified beverages. Furthermore, all
the selected by-products were effective in inducing an increase in concentration of polyphenols into
the must, resulting in a beverage with promising antioxidant activity and potential health benefits
for consumers.

Finally, the studies performed with the aim of characterizing grape pomace pigments with a view
to their possible use as food colorants should also be mentioned. Especially in red grape, anthocyanins
represent the phenolic compounds mainly responsible for the characteristic color of mature grapes.
During winemaking, anthocyanins are partly extracted from the grape skins, determining wine
pigmentation. Many of these compounds thus remain in the pomace, which may therefore represent a
matrix of great interest for the recovery of pigments of considerable interest for technological food
processes, in addition to the well-known nutraceutical properties [82,83].

3.2. Safety Issues Associated with GP Polyphenos Consumption

GP extracts are “Generally Recognized As Safe (GRAS)” matrices which can be used as colorants
and antioxidant additives in flavored beverages [84]. However, as for all compounds with the ability to
influence biological mechanisms, the pharmacological effects strictly depend on dose and are affected
by several factors including age of consumers and genotype.

Mennen et al. [85] reported in their review that companies which produce and distribute nutritional
supplements rich in phenolic compounds, recommend the consumption of 50 mg/day of isoflavones or
100–300 mg/day of grape seed extracts rich in proanthocyanidins. In addition to this, authors have also
reported a series of aspects regarding the fact that consumption of relatively higher concentrations
of these bioactive compounds can influence different biochemical processes, leading to undesirable
effects. For instance, some phenolic compounds have been reported to induce carcinogenic and
genotoxic effects, or may negatively influence the biosynthesis of the thyroid hormone. Consumption
of polyphenols has also been observed to inhibit the recruitment of non-heme iron, with consequent
depletion of the microelement in populations at risk. Furthermore, polyphenols may in some cases
enhance the effect of several pharmacological agents, by interfering with their mechanism of action.

With specific regard to the zootechnical sector, the dietary supplementation of grape seed extracts
in broiler chickens has been reported to induce a reduction of the intestinal length and an increase of
the ileal digestibility of crude protein at 21 days of age. At 42 days of age, an increase of spleen weight
was instead observed, without significant variations in animal performance and in the relative weights
of liver and pancreas [86]. In the case of ruminants, it is necessary to refer to tannins, whose effects
on animals can range from beneficial to toxicity and death. Tannins are commonly divided into two
groups, hydrolysable and condensed, and are reported to induce both positive and detrimental effects
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in livestock, as a direct consequence of their concentration in feed, in addition to other parameters
such as animal species, physiological state and composition of the whole diet. The observed negative
effects of a feeding strategy particularly rich in tannins do not necessarily reflect the toxic potential
of these compounds, but depend to toxicity resulting from remaining metabolized products, which
cannot be further degraded by the animals’ detoxification mechanisms [87,88].

4. Grape Pomace as Feed Supplement in Dairy Cows: Main Properties of Derived Milk
and Cheese

4.1. Chemical Composition of Milk and Cheese

The dietary intake of GP in lactating dairy cows has been shown to be able to modify the chemical
properties of milk and its derived dairy products.

Chedea et al. [89] evaluated the effect of a diet supplemented with 15% GP on the health status
and milk composition of dairy cows. The experimental diet did not induce significant variations in
the total amount of milk fat and protein, important parameters for dairy products, but was effective
in increasing the lactose concentration, a disaccharide synthesized by the mammary gland cells
and commonly endowed with the ability to bind calcium, increasing its absorption. Regarding
the analysis of milk protein fractions, higher concentrations of β-lactoglobulin were evidenced, but
no effect was observed for α-lactalbumin, albumin and caseins. The β-lactoglobulin accounts for
approximatively 50% of total whey proteins in cow milk, while it cannot be traced in human milk [90].
This protein is involved in several biological mechanisms, for instance its proteolytic digestion by
trypsin has been reported to give origin to four peptides with low molecular weight credited of
bactericidal activity; furthermore, hypocholesterolemic, antiviral and anticarcinogenic effects have
been characterized [91]. The concomitant increase in concentration of lactose and β-lactoglobulin
therefore assumes considerable importance, above all for the fact that these compounds represent
the main constituents of the whey-derived powders, which have undergone widespread diffusion
worldwide due to the interesting food functional attributes. With respect to this, the strong heat-set
gelation properties of β-lactoglobulin should be mentioned, which is therefore widely used in the
preparation of food products in which water-binding and texturization are crucial. In addition to
this, the onset of specific interactions between β-lactoglobulin and lactose during whey powders
preparation was demonstrated to be effective in avoiding the lactose crystallization that generally leads
to detrimental events, mainly related to lipid oxidation [92].

In a study conducted by Ianni et al. [93], in which ten Friesian cows received for a dietary
supplementation of 10% GP (on a dry matter (DM) basis) 56 days, the milk collected at the end
of the trial did not show variations in chemical composition. This finding was also confirmed in
pasteurized milk cheeses that were analyzed after 3, 7, 15 and 30 days from the cheese-making. In that
case, slight modifications were observed only for proteolysis and were associated with the action of
proteinases and peptidases released by the cheese microbiota. During the cheese manufacturing, milk
was pasteurized, with the only microbial forms being represented by Lactococcus spp., Lactobacillus spp.
and S. thermophilus, which were used as starters. Such micro-organisms are reported to be responsible
for extensive proteolytic activity in cheese, with the consequent production of short peptides and free
amino acids. The authors discussed this finding by assuming a role of GP bioactive compounds in
favoring the metabolic pathways in lactic acid bacteria, leading to an increased function of proteolytic
enzymes. In this regard is relevant what was previously reported by Viveros et al. [94], who showed
the ability of a grape seed extract in increasing the growth of Lactobacillus at the expense of potentially
harmful microbial forms, such as Enterobacteriaceae and Clostridium.

In the study of Ianni et al. [93] another interesting variation was represented by the increase
in concentration of γ-aminobutyric acid (GABA) in cheese at the end of the ripening period. The
increased GABA concentration was associated with a role of GP constituents in promoting the selection
of specific species/strains, such as lactic acid bacteria, able to express several glutamate decarboxylases,
responsible for catalyzing the decarboxylation of l-glutamate to GABA. In this regard, it is useful
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to recall studies in which GP and grape seed extracts were shown to be effective in inducing the
growth of Lactobacillus acidophilus; furthermore, an environment rich in catechin and gallic acid was
demonstrated to enhance the development of Lactobacillus hilgardii [95,96]. The results concerning the
increase in concentration of GABA in dairy products, acquires particular relevance in consideration
of the numerous potential benefits for consumer health, mainly related to blood pressure lowering,
protection against chronic diseases, and immunity improvement under stress conditions [97,98].

4.2. Fatty Acid Profile

It is widely known that by modifying the feeding strategy, it is possible to change, to a certain
extent, the relative fatty acids composition in milk and cheeses. This has also been shown to occur
through the administration to lactating ruminants of grape by-products which, as previously reported,
are particularly rich in linoleic acid. In a study conducted on ewes and goats, Tsiplakou and Zervas [99]
showed that the administration of diets enriched with linoleic acid led to a significant increase in milk
of fatty acids credited of greatest health benefits for humans, specifically vaccenic acid, linoleic acid,
and conjugated linoleic acid.

The supplementation of lactating dairy cows’ diet with 10% of dried GP resulted in the effective
induction of an increase in concentration of vaccenic acid (C18:1 trans-11) and linoleic acid (C18:2 cis-9,
cis-12) in milk. The fatty acid profile of the derived cheese showed the same variations as evidenced in
milk, with the addition of a significant increase in concentration of rumenic acid, a conjugated linoleic
acid (C18:2 cis-9, trans-11) [100]. These findings are in agreement with those obtained from similar
experiments in which grape by-products have been introduced in the diet of lactating ruminants.
Correddu et al. [101] evidenced in ewes milk an increase in concentration of n-6 PUFA, especially
linoleic acid, as a consequence of the addition of grape seed flour in the diet. Manso et al. [102] observed
the same behavior by feeding Churra ewes with diets containing linseed oil and supplemented with
increasing GP concentrations, 5 and 10 g/100 g of TMR respectively. Evaluations performed on milk did
not evidence GP effects on the relative percentages of SFA, MUFA and PUFA. The presence of linseed oil
determined for α-linolenic acid (C18:3 cis-9, cis-12, cis-15) a value close to 1% of total fatty acids, without
variations in milk samples obtained from animals fed the GP supplementations. GP was instead
effective in increasing the linoleic acid concentration, while no modifications have been registered for
vaccenic acid, contrary to the previously mentioned studies. Similarly, Correddu et al. [103] evaluated
the fatty acids profile of milk obtained from Sarda dairy ewes fed a dietary supplementation of grape
seeds, alone or in combination with linseed. The authors reported an increase in concentration of oleic
acid (C18:0) and linoleic acid in milk samples obtained from ewes which received only grape seed as
dietary supplement; furthermore, in the same samples was shown a tendency to accumulate vaccenic
acid and cis-9, trans-11 CLA in comparison with the control group. The increased concentration of
linoleic acid was correlated with a presumable reduction in odd- and branched-chain fatty acids. The
intake of polyphenols deriving from grape seeds may have contributed to this reduction, because
of the supposed effect of these compounds on growth and activity of rumen microbiota [104]. The
combined supplementation of grape seed and linseed was furthermore effective in improving the
indices of health functionality in milk. In fact, both atherogenic and thrombogenic indices lowered, as
evidence of a decreased potential risk of the onset of cardiovascular diseases in consumers following
the intake of this food product.

4.3. Oxidative Stability of Ripened Dairy Products

The tendency of PUFA to undergo oxidation it is a topic of significant importance for the food
industry, due to the fact that foods containing high concentrations of these compounds can undergo
deterioration with detrimental effects on nutritional quality as well as a cause of concern for food
safety [105]. The oxidative process has been suggested to start mainly as a result of the action of reactive
species able to directly interact with C=C double bonds, with consequent release of peroxides [106].
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As reported in the previous paragraph, the dietary intake of GP by lactating ruminants makes it
possible to obtain milk and cheeses naturally enriched with PUFA, especially linoleic acid. Beyond
the undoubted health benefits deriving from this finding, these food products should, however, be
exposed to a greater predisposition to oxidation.

Ianni et al. [93] investigated this aspect by monitoring the extent of the oxidative damage in
fresh and ripened cheeses through the evaluation thiobarbituric acid-reactive substances (TBARS),
a method that uses the malondialdehyde (MDA) as marker of oxidative damage [107–109]. After 3
days from the cheese-making, the cheese obtained from cows fed the GP supplementation showed
similar MDA values in comparison with cheese samples deriving from the control group. At the end of
ripening (30 days) a very different picture was found, in which the cheese from the control group went
through oxidation, whereas in the experimental cheese were defined MDA values similar with respect
to those observed at the beginning of the ripening, despite the presence of greater concentrations
of PUFA. This finding was attributed by authors to the presumable antioxidant action of phenolic
compounds deriving from the GP supplemented to cows’ diet. In this regard, Santos et al. [110]
reported a significant improvement of the reducing potential of milk obtained from lactating cows
fed a dietary supplementation with ensiled GP. In addition to this, Correddu et al. [101] evidenced a
significant reduction of the ratio between hydroperoxides and PUFA in milk collected from ewes that
received a diet enriched with grape seeds.

There is no extensive literature on the evaluation of the oxidative state of dairy products obtained
by feeding lactating ruminants with GP. However, in order to support the just-mentioned studies,
it might be useful to focus attention also on the improvements in the oxidative stability of those
cheeses produced by supplementing animals diet with matrices of vegetable origin, rich in bioactive
compounds, especially polyphenols, credited of antioxidant properties [111].

4.4. Volatile Flavor Compounds and Sensorial Evaluations

The biochemical mechanisms that characterize cheese ripening have been widely treated and
largely characterized. Briefly, such mechanisms can be divided into primary and secondary events.
Primary events involve the metabolism of residual lactose, lactate and citrate, lipolysis and proteolysis,
while secondary events are based on the metabolism of fatty acids and amino acids and directly
contribute to the release of many volatile compounds (VOC), credited of high capacity to influence the
cheese flavor [112].

It has been widely observed that the diet administered to lactating ruminants is commonly
responsible for changes in the volatile profile of dairy products, both fresh and ripened [113–116]. It is,
therefore, conceivable that compounds present in the diet, or secondary metabolites of the same, can be
absorbed by the animal following digestion and then reach the mammary gland and be released into
the milk. Following cheese manufacturing, some of these compounds could influence the biochemical
mechanisms described above, both directly interacting with the enzymatic forms responsible for these
events, or indirectly through the regulation of bacterial gene expression.

In this case, the literature includes sparse references regarding the effect of dietary GP intake
on the VOC production in dairy products. In our knowledge, the only study of this type is the one
conducted by Ianni et al. [100], in which lactating Friesian cows were fed for 60 days with a dietary
supplementation of 10% of dried GP. The analysis of the VOC profile has been performed in fresh
cheese (samples collected after 24 h form the cheese-making) and after 28 days of ripening. The most
represented class of identified compounds was that of carboxylic acids, indicating the prevalence of
the lipolytic process compared to the proteolytic one. The experimental feeding strategy was effective
in reducing the concentrations of butanoic and hexanoic acids both in fresh and in ripened cheese
samples. These compounds have been reported to significantly affect flavor formation in cheese,
being associated with strong notes defined as sweaty, cheesy and rancid. This result was discussed
by assuming a reduction of triglycerides degradation by microbial and endogenous milk enzymes,
resulting in a limited production of free fatty acids (FFA) [117]. The second class of VOCs in order of
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abundance is represented by ethyl esters, which are associated with pleasant fruity, and floral notes
with a low odor threshold. For that reason, their increase in concentration during ripening (from 4%
at day 1 to 28% at the end of ripening) in cheese samples obtained as a consequence of the dietary
GP supplementation is very interesting. In this study, a sensory analysis was also conducted. In
fresh cheese, the dietary GP intake resulted effective in inducing a slightly darker coloring, a harder
consistency, and a less sweet taste. No significant variations in terms of appearance, consistency, and
taste were instead evidenced in ripened cheese samples.

5. Conclusions

As a result of what has been reported, the use of plant matrices as dietary supplements for lactating
dairy ruminants seems to be desirable. Specifically, the development of feeding strategies based on
the use of grape by-products has proven to be effective in the production of milk and dairy products
characterized by implemented nutritional properties and improved oxidative stability, with several
health benefits for consumers due to the presence of compounds credited of high biological value. In
addition to this, the use of GP for enriching the livestock diet represents a viable way of recovering and
valorizing the main by-product of the oenological industry, with undoubted environmental advantages.
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