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Abstract

Background: Excess iron has been shown to induce diabetes in animal models. However, the results from human

epidemiologic studies linking body iron stores and iron intake to the risk of type 2 diabetes mellitus (T2DM) are

conflicting. In this study, we aimed to systematically evaluate the available evidence for associations between iron

intake, body iron stores, and the risk of T2DM.

Methods: A systematic search of the PubMed/MEDLINE and EMBASE databases to the end of 22 April 2012 was

performed, and reference lists of retrieved articles were screened. Two reviewers independently evaluated the

eligibility of inclusion and extracted the data. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were

calculated using random-effects models.

Results: We reviewed 449 potentially relevant articles, and 11 prospective studies were included in the analysis. A

meta-analysis of five studies gave a pooled RR for T2DM of 1.33 (95% CI 1.19 to 1.48; P<0.001) in individuals with

the highest level of heme iron intake, compared with those with the lowest level. The pooled RR for T2DM for a

daily increment of 1 mg of heme iron intake was 1.16 (1.09 to 1.23, P<0.001). Body iron stores, as measured by

ferritin, soluble transferrin receptor (sTfR) and the sTfR:ferritin ratio, were significantly associated with the risk of

T2DM. The pooled RRs for T2DM in individuals with the highest versus the lowest intake of ferritin levels was 1.70

(1.27-2.27, P<0.001) before adjustment for inflammatory markers and 1.63 (1.03-2.56, P = 0.036) after adjustment. We

did not find any significant association of dietary intakes of total iron, non-heme, or supplemental iron intake with

T2DM risk.

Conclusion: Higher heme iron intake and increased body iron stores were significantly associated with a greater

risk of T2DM. Dietary total iron, non-heme iron, or supplemental iron intakes were not significantly associated with

T2DM risk.

Background
Iron is an essential nutrient for humans, and has impor-

tant metabolic functions as a cofactor for several enzymes

and a major component of oxygen transporters in body.

However, as a redox-active transitional metal, iron is

potentially hazardous when present in excess amounts,

because it catalyses several cellular reactions that result in

the production of reactive oxygen species [1,2]. The

pancreatic beta cells are particularly susceptible to oxida-

tive stress because of their weak antioxidant defense [3].

Previous studies have shown that parenterally adminis-

tered iron is able to induce diabetes in animals [4]. More-

over, dietary iron restriction or iron chelation has been

shown to protect against developing diabetes or to attenu-

ate the pathologic changes in diabetic models [5,6].

The association between inherited iron overload disor-

ders and risk of type 2 diabetes mellitus (T2DM) has long

been recognized in humans, based on the observation that

‘secondary’ T2DM is commonly (25 to 60%) complicated

in patients with hereditary hemochromatosis (HH), which

is characterized by progressive iron accumulation in the

heart, liver, pancreas, and other organs, and by extremely
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high levels of circulating ferritin (typically 1000 to 10,000

ng/ml) [2]. Several recent studies indicated that moderate

increases in iron stores below the levels found in patients

with HH were associated with significant elevations in

blood glucose and insulin levels [7,8]. Furthermore, mod-

erately increased body iron stores at baseline were found

to be significantly associated with an increased risk of

future T2DM in both men [9] and women [10] in two

prospective cohort studies. However, mixed findings were

reported in other populations [11-19]. For instance, a

more recent prospective study found no association

between ferritin levels and risk of T2DM in the multivari-

ate-adjusted models [15].

For most people, iron is obtained mainly from dietary

sources and then stored in the body [2]. A cross-sectional

study reported a significant association between total diet-

ary iron intake and prevalent T2DM [18], but no such

positive association was found in several other studies

[20-23]. In addition, the available evidence suggests that

the association between heme iron intake and risk of

T2DM may be distinct from the association between non-

heme iron intake and risk of T2DM [20,24].

In this study, we aimed to systematically evaluate the

available evidence for associations between iron intake,

body iron stores, and risk of T2DM in prospective studies,

and to quantitatively summarize the data in a meta-analy-

sis. We included only prospective studies, given the likeli-

hood of reverse causality (possible effects of prevalent

T2DM on iron intakes or measures of body iron stores) in

cross-sectional or case-control studies.

Methods
We adhered to the Meta-analysis Of Observational Studies

in Epidemiology (MOOSE) guidelines [25] when undertak-

ing this study.

Literature search and data extraction

We identified relevant articles by a systematic search of

the MEDLINE/PubMed and EMBASE databases to the

end of 22 April 2012, using a combination of free text and

subheadings from MeSH or EMTREE terms. The follow-

ing terms were used for the MEDLINE search: ("Diabetes

Mellitus/epidemiology"[Mesh] or “Hyperglycemia/epide-

miology"[Mesh] or “Diabetes Mellitus, Type 2"[Mesh] or

type 2 diabet*[tiab] or non-insulin dependent diabet*[tiab])

and (iron intake or iron consumption or heme iron[tiab]

or iron store*[tiab] or iron status[tiab] or “Ferritins"[Mesh]

or ferritin[tiab]) not (review[pt] or editorial[pt]). Similar

search terms were used for the EMBASE database. In

addition, the references listed in any relevant original

papers and review articles were screened. No language

restriction was applied for searching or study inclusion.

Two investigators (WB and YR) independently evalu-

ated the eligibility of all retrieved studies and extracted

all relevant data using a standardized data extraction

form. Any discrepancies were reconciled by consensus.

A published article was included if it: 1) had a prospec-

tive cohort design, 2) evaluated the association between

iron intake or body iron stores and risk of T2DM, and

3) reported the risk estimates and corresponding 95%

confidence intervals (CIs) or standard errors. The pro-

cess of study selection is depicted in Figure 1.

During the screening steps, several types of articles

were excluded: review articles, editorials, or protocols;

studies on animals or cell lines; studies that did not

report iron intake or body iron stores as exposure; and

studies that did not include T2DM as the outcome. In

addition, studies that did not reported risk estimates or

95% CIs for the relationships between iron intake or

body iron stores and risk of T2DM were excluded. One

study was further excluded because data were not sepa-

rately reported for T2DM [12].

For each included article, we extracted the following

data: basic information (title, author, publication year,

journal name), study characteristics (name of the study,

study design, country, duration of follow-up), participant

characteristics (sample size, number of T2DM cases,

age, gender, race/ethnicity), assessment of iron intakes

and body iron stores, ascertainment of T2DM, statistical

methods used for the analysis, comparison, risk esti-

mates and 95% CIs, and any covariates that were

matched or adjusted for in the multivariate analysis.

If risk estimates were reported in several multivariate-

adjusted models in the original studies, the one reported

in the most fully-adjusted model (for example, for stu-

dies using iron intake as the exposure, we picked the

model including other dietary factors as covariates) were

extracted. Because circulating ferritin may be influenced

by inflammation [26], we used a slightly different

approach for studies that used ferritin as the indicator

of body iron stores; we separately extracted the risk esti-

mates from the most fully-adjusted models except for

other biomarkers, and the models with additional

adjustment for inflammation markers (such as C-reac-

tive protein, interleukin-6, or fibrinogen). If available, we

also extracted risk estimates from the models that also

adjusted for other metabolic biomarkers (such as high-

density lipoprotein cholesterol, triglycerides, fasting

plasma glucose, fasting plasma insulin, glycated hemo-

globin, homeostasis model assessment of insulin resis-

tance, alanine aminotransferase, g-glutamyltransferase,

and adiponectin).

Statistical analysis

Relative risk (RR), odds ratio (OR) and hazard ratio (HR)

were reported as the measures of association in the

included studies. Because the incidence of T2DM was suf-

ficiently low for the rare disease assumption (<10%) to
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apply, the OR was assumed to approximate the RR in each

case, and thus we combined the ORs with the HRs and

RRs in the meta-analysis.

The RRs and corresponding 95% CIs were pooled using

the random-effects model (DerSimonian-Laird method),

which incorporates between-study heterogeneity in addi-

tion to sampling variation [27]. To model a dose-response

trend over dietary iron intakes in association with T2DM

risk, we used the method proposed by Greenland and

Longnecker [28] and the publicly available Stata code writ-

ten by Orsini et al. [29]. The dose-response results in the

forest plots are presented for a daily increment of 5 mg of

dietary total iron intake and a daily increment of 1 mg

of heme iron intake. Because the required data for a dose-

Figure 1 Flow chart for study selection (through April 22, 2012).
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response analysis were not available in most studies of

body iron stores, we did not model a dose-response trend

for the association between body iron stores and T2DM

risk.

Two methods were used to assess heterogeneity across

studies: the c
2-based Cochran’s Q statistic (P<0.10 was

considered to be significant heterogeneity), and the I2

metric (I2 values of 25%, 50%, and 75% were considered as

low, medium, and high heterogeneity, respectively) [30].

Funnel plots were used to assess small-study effects. The

possibility of publication bias was assessed using the Egger

regression asymmetry test [31]. For sensitivity analysis, we

also used the fixed-effects model for all the above analyses.

Additional sensitivity analyses were performed by omitting

one study at a time and calculating a pooled estimate for

the remainder of the studies to evaluate whether the

results were affected markedly by a single study.

All statistical analyses were performed using Stata soft-

ware (version 11.2; Stata Corp, College Station, TX,

USA). All P-values presented are two-tailed with a signif-

icance level of 0.05, except for the Cochran’s Q statistic

in the heterogeneity test, in which the significance level

was 0.10 [30].

Results
Characteristics of studies included in the meta-analysis

We identified 449 potentially relevant articles from

PubMed/MEDLINE and EMBASE databases, of which 11

prospective studies [9-11,15-17,20,21,23,24,32] that met

our inclusion criteria were finally included in this study.

Five studies examined iron intake and risk of T2DM,

while the other six assessed body iron stores and risk of

T2DM.

Of the five studies that assessed iron intake and risk of

T2DM [20,21,23,24,32], four were conducted in the USA

and one in China. Participants were women only in three

studies, men only in one study, and both women and men

in one study. For assessment of iron intake, previously

validated food frequency questionnaires were used in four

studies, and a 3-day weighed food record method was

used in the remaining study. Ascertainment of T2DM was

based on self-report, plasma glucose measurements, or a

combination of the two (Table 1).

Of the six studies that examined the association

between body iron stores and risk of T2DM [9-11,15-17],

four were undertaken in the USA, one in the UK, and

one in Finland. One was carried out with women only,

one with men only and four with both. The indicator for

body iron stores was ferritin in five studies, soluble trans-

ferrin receptor (sTfR) in one study, and the ratio of sTfR

to ferritin in two studies. T2DM was ascertained using

plasma glucose measurements in one study, and a combi-

nation of self-reported information and plasma glucose

measurements in the remaining five studies (Table 1).

Iron intake and risk of type 2 diabetes

Associations between dietary intakes of total iron, heme

iron, and non-heme iron and risk of T2DM were reported

in three studies [20,21,23], five studies [20,21,23,24,32] and

one study [24], respectively (Table 2). In the Iowa

Women’s Health Study [24], dietary total iron intake was

largely reflective of non-heme iron intake (r = 0.995) and

was not further analyzed, thus we derived the RR for asso-

ciation between dietary total iron intake and T2DM risk

by pooling RRs of non-heme iron intake and heme iron

intake in this study.

A meta-analysis of five studies showed that higher intake

of heme iron was associated with a significantly greater

risk of T2DM. The pooled RR (95% CI) in individuals with

the highest level of heme iron intake compared with those

with the lowest levels was 1.33 (1.19 to 1.48, P<0.001) for

T2DM (Figure 2). However, no significant association was

seen between dietary total iron intake and risk of T2DM;

the pooled RRs and 95% CIs comparing the highest with

the lowest levels of dietary total iron intake was 1.06 (0.98

to 1.14, P = 0.18) (Figure 2). There was no evidence for

significant heterogeneity (heme iron intake: P = 0.24

(Q statistic), I2 = 27%; dietary total iron intake: P = 0.68

(Q statistic), I2 = 0%) or publication bias (heme iron

intake, P = 0.08 (Egger test); dietary total iron intake, P =

0.06 (Egger test)) across the included studies (see Addi-

tional file 1, Figure S1).

In the dose-response analyses (Figure 3), the pooled RRs

of T2DM were 1.16 (1.09 to 1.23, P<0.001) for a 1 mg/day

increment of heme iron intake, with no evidence of het-

erogeneity (I2 = 36%, P = 0.21), and 1.01 (0.99 to 1.03) for

each 5 mg/day increment of dietary total iron intake, with

no evidence of heterogeneity (I2 = 0%, P = 0.90).

Sensitivity analyses using a fixed-effects model yielded

similar results, and omitting one study at a time did not

substantially alter the pooled results. In addition, two stu-

dies reported associations between supplemental iron

intake and risk of T2DM [21,24], and one study reported

an association between the sum of dietary iron intake

and supplemental iron intake and risk of T2DM [21].

However, neither of these studies found a significant

association between supplemental iron or the summed

iron intake and the risk of T2DM.

Body iron stores and risk of type 2 diabetes

A significant association between body iron stores and

risk of T2DM was seen in three [10,11,16] of the five

studies that used ferritin as the indicator, and in all stu-

dies that used the sTfR:ferritin atio [9,10] or the sTfR

[17] alone as the indicator (Table 3).

For the meta-analysis of studies using ferritin as the

indicator, the pooled RR (95% CI) for T2DM was 1.70

(1.27 o 2.27, P<0.001) for individuals with the highest

ferritin levels, compared with those with the lowest
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(Figure 4). In the heterogeneity test, there was greater

variation (moderate to high) in the study results than

would be expected as a result of chance (P = 0.06 (Q

statistic), I2 = 50%), which is not surprising given the

substantial differences in study populations and meth-

ods. No evidence of publication bias was found (see

Additional file 1, Figure S2A, P = 0.49 (Egger test)). Sen-

sitivity analyses using fixed-effect model or omitting one

study at a time did not substantially alter the pooled

results.

Because measurement of circulating ferritin levels may

be confounded by inflammation [26], we performed

additional meta-analysis of the studies that reported RRs

in multivariate-adjusted models with additional adjust-

ment for inflammatory markers. The pooled RR (95%

CI) for T2DM was 1.63 (1.03 to 2.56, P = 0.04) compar-

ing individuals with the extreme categories (Figure 3).

The heterogeneity across studies was high (P = 0.01 (Q

statistic), I2 = 69%), which might be explained by the

inclusion of other metabolic markers that could be

biological intermediates in the multivariate models of

several studies [15,17]. A stratification analysis showed

that the pooled RRs (95% CI) for T2DM were 2.24 (1.63

to 3.09) and 1.07 (0.56 to 2.05) for studies without and

with other metabolic markers in the models, respec-

tively. No evidence of publication bias was seen (P =

0.93 (Egger test) (see Additional file 1, Figure S2B)).

Sensitivity analyses using a fixed-effects model yielded

similar results, and omitting one study at a time did not

substantially alter the magnitude of association, except

for the omission of the study by Jehn et al. [15] (the

pooled RR (95% CI) of the remaining studies was 2.06

(1.55 to 2.74)).

Discussion
Summary of main findings

In this study, we found that heme iron intake and body

iron stores were positively associated with an increased

risk of T2DM, after adjustment for known potential

confounders. Although dietary total iron intake has been

Table 1 Characteristics of the prospective studies (n = 11) regarding the associations between iron intake or body

iron stores and the risk of type 2 diabetes mellitus (T2DM)

Author, year [reference
number]

Country Study
name

Sample sizea Age,
years

Women,
%

Follow-
up,
years

Exposure
assessment

Ascertainment of T2DM

Iron intakes and T2DM (n = 5)

Jiang et al, 2004 [20] USA HPFS 1168/38,394 40 to 75 0 12 FFQ (validated) Symptoms plus fasting
glucose, OGTT, or use of anti-
diabetic medication

Lee et al, 2004 [24] USA IWHS 1921/35,698 55 to 69 100 11 FFQ (validated) Self-report

Song et al, 2004 [23] USA WHS 1558/37,309 ≥ 45 100 8.8 FFQ (validated) Self-report

Rajpathak et al, 2006 [21] USA NHS 4599/85,031 34 to 59 100 20 FFQ (validated) Symptoms plus fasting
glucose, OGTT, or use of anti-
diabetic medication

Shi et al, 2010 [30] China JIN 23/1,056 ≥ 20 57.9 5 3-day weighed
food records

Fasting glucose

Body iron stores and T2DM (n = 6)

Salonen et al, 1998 [9] Finland KIHD 41/82 42 to 60 0 4 sTfR (EIA) ferritin
(RIA)

Fasting glucose, OGTT, clinical
diagnosis of diabetes or use of
anti-diabetic treatment

Jiang et al, 2004 [10] USA NHS 698/716 56.5/56.4 100 10 sTfR (ITA); ferritin
(ITA)

Symptoms plus fasting
glucose, or use of anti-diabetic
medication

Forouhi et al, 2007 [11] UK EPIC-
Norfolk

360/758 62.4/62.1 42.0 5.1 Ferritin (FIA) Self-report, HbA1c

Jehn et al, 2007 [15] USA ARIC 599/690 53.5/52.8 60.4 7.9 Ferritin (ITA) Fasting or non-fasting glucose,
anti-diabetic medication use,
self-report

Le et al, 2009 [16] USA ACLS 220/5,292 NA 32.0 4.3-4.7 Ferritin (no details
of test available)

Fasting glucose, hypoglycemic
medication, or ever-diagnosed
T2DM

Rajpathak et al, 2009 [17] USA DPP 280/280 50.4/50.2 63.6 2.8 Ferritin (ITA) OGTT, fasting glucose

Abbreviations: ACLS, Aerobics Center Longitudinal Study; ARIC, Atherosclerosis Risk in Communities; DPP, Diabetes Prevention Program; EIA, enzyme

immunoassay; EPIC, European Prospective Investigation into Cancer and Nutrition; FFQ, food frequency questionnaire; FIA, fluoroimmunoassay; HbA1c, glycated

hemoglobin; HPFS, Health Professionals’ Follow-up Study; ITA, immunoturbidimetric assay; IWHS, Iowa Women’s Health Study; JIN, Jiangsu Nutrition Study; KIHD,

Kuopio Ischemic Heart Disease Risk Factor Study; NHS, Nurses’ Health Study; OGTT, oral glucose tolerance test; sTfR, soluble transferrin receptor; WHS, Women’s

Health Study.
a Sample sizes were incident cases/participants for iron intake and T2DM, and cases/controls for body iron stores and T2DM.
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associated with prevalent T2DM in a cross-sectional

study [18], our meta-analysis of prospective studies

found no significant association of dietary intakes of

total iron, non-heme, and supplemental iron intake with

the risk of T2DM. The positive association we found

between heme iron and T2DM was consistent with pre-

vious results from prospective studies evaluating the

relationships between red meat (the major source of

heme iron) and the risk of T2DM [33,34]. Because

heme iron intake was found to be associated with higher

body iron stores in previous studies [35,36], our results

suggest that high levels of body iron stores may mediate

the association of increased risk of T2DM with chroni-

cally high heme iron intake.

Interpretation

The positive association between excess iron and risk of

T2DM is biologically plausible, although the underlying

mechanisms still remain to be fully determined. First of

all, iron is a powerful pro-oxidant and catalyst that pro-

motes the formation of hydroxyl radicals, which may

attack pancreatic beta cells through increasing oxidative

stress and thus result in impaired insulin synthesis and

excretion [37]. Antioxidant enzymes, such as superoxide

Table 2 Association between dietary and supplemental iron intakes and type 2 diabetes mellitus (T2DM) in the

included studies

Source Gender Comparison RRs (95% CI) Matched or adjusted covariates

Jiang et al, 2004,
USA [20]

Men Dietary total iron intake: highest
(median 34.2 mg/day) versus lowest
(median 11.1 mg/day) quintile

1.16 (0.92 to 1.47) Age, BMI, FH, PA, cigarette smoking, alcohol
consumption, TEI, intakes of trans fat, cereal fiber,
magnesium, whole grains, vegetables, fruit, ratio of
polyunsaturated fat to saturated fat intake, glycemic
load, and multivitamin use

Dietary heme iron intake: highest
(median 1.9 mg/day) versus lowest
(median 0.8 mg/day) quintile

1.28 (1.02 to 1.61)

Lee et al, 2004,
USA [24]

Women Dietary non-heme iron intake: highest
(median 20.8 mg/day) versus lowest
(median 6.5 mg/day) quintile

0.80 (0.64 to 1.01) Age, BMI, WHR, PA, cigarette smoking status, alcohol
consumption, education, marital status, residential area,
hormone replacement therapy, TEI, intakes of animal
fat, vegetable fat, cereal fiber, dietary magnesium,
dietary non-heme iron, dietary heme iron, and
supplemental iron

Dietary heme iron intake: highest
(median 2.2 mg/day) versus lowest
(median 0.5 mg/day) quintile

1.28 (1.04 to 1.58)

Supplemental iron: highest (≥30 mg/
day) versus lowest (0 mg/day) intake

1.16 (0.92 to 1.46)

Song et al, 2004,
USA [23]

Women Dietary total iron intake: highest
(median 33.8 mg/day) versus lowest
(median 10.0 mg/day) quintile

1.13 (0.93 to 1.37) Age, BMI, PA, FH, smoking status, alcohol consumption,
TEI, dietary intakes of fiber, magnesium, and total fat,
glycemic load

Dietary heme iron intake: highest
(median 1.55 mg/day) versus lowest
(median 0.59 mg/day) quintile

1.46 (1.20 to 1.78)

Rajpathak et al,
2006, USA [21]

Women Dietary total iron intake: highest
(median 14.0 mg/day) versus lowest
(median 8.0 mg/day) quintile

1.02 (0.91 to 1.15) Age, BMI, FH, PA, smoking status, alcohol consumption,
postmenopausal hormone use, multivitamin use, TEI,
intakes of cereal fiber and magnesium, caffeine, and
trans fat (total iron, ratio of polyunsaturated to
saturated fat, glycemic load, additional adjustment for
intakes of whole grains, fruits and vegetables (heme
iron), and additional adjustment for red meat intake
(supplemental iron)

Dietary heme iron intake: highest
(median 1.9 mg/day) versus lowest
(median 0.8 mg/day) quintile

1.28 (1.14 to 1.45)

Supplemental iron intake: highest
(median 22.0 mg/day) versus lowest
(median 0 mg/day) quintile

0.96 (0.84 to 1.10)

Shi et al, 2010,
China [30]

Both Dietary heme iron intake: highest
(median 4.4 mg/day) versus lowest
(median 0.1 mg/day) quartile

9.84 (1.41 to 68.75) Age, gender, BMI, central obesity, hypertension, FH, PA,
sedentary behavior, cigarette smoking, alcohol
consumption, TEI, intakes of fat, fiber and magnesium,
education, income, and job

Abbreviations: BMI, body mass index; FH, family history of diabetes; PA, physical activity; RR, relative risk; TEI, total energy intake; WHR, waist:hip ratio.
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dismutase, catalase, and glutathione peroxidase, are

expressed less in pancreatic islets than in other tissues,

thus pancreatic islets are particularly susceptible to oxi-

dative damage [3]. In a mouse model of hemochromato-

sis, excess iron resulted in beta-cell oxidant stress and

decreased insulin secretory capacity secondary to beta-

cell apoptosis and desensitization of glucose-induced

insulin secretion [38]. Another study showed that even

at ‘normal’ levels, iron exerted detrimental effects on

pancreatic beta-cell function, and that these effects were

reversible with dietary restriction or iron-chelation ther-

apy [5]. Second, excess iron may diminish glucose utili-

zation in muscle tissue and lead to a shift from glucose

to fatty acid oxidation, which may result in increased

insulin resistance. In a recent study using a mouse

model of hemochromatosis, although glucose uptake

was increased in skeletal muscle, glucose oxidation was

decreased and the ratio of fatty acid to glucose oxidation

was increased, as a result of decreased pyruvate dehy-

drogenase (PDH) enzyme activity and increased expres-

sion of PDH kinase 4 [39]. Third, increased substrate

recycling to the liver may contribute to the higher hepa-

tic glucose production [39].

Heme iron exists only in meat and meat products,

where it occurs in the form of hemoglobin and myoglo-

bin, whereas non-heme iron is present in both plant and

animal foods [40]. The regulation of the intestinal iron

absorption is crucial because there is no physiologic

mechanism for excretion of iron [1]. Although heme

iron is not the predominant form of dietary iron, it

more readily absorbed than non-heme iron [2]. In addi-

tion, absorption of heme iron does not change with

increasing dose, is less substantially affected by iron sta-

tus than non-heme iron, and is not greatly influenced

Figure 2 Associations between dietary total iron, heme iron intake and risk of type 2 diabetes mellitus (T2DM) in the included

studies, comparing the highest category with the lowest. The risk estimate of dietary total iron intake for T2DM risk in the Iowa Women’s

Health Study (Lee et al [24]) was not directly reported, and thus this was pooled from the results of dietary non-heme iron intake and heme iron

intake in this study. M, men; W, women.
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by other components in diet [35,40]. Therefore, heme

iron contributes about 50% of the total bioavailable iron

in the typical western diet [20]. In an elderly population

of the Framingham Heart Study, non-heme iron was the

major source (mean 93%) of iron, yet heme iron intake

was significantly and positively associated with serum

ferritin concentration, whereas non-heme iron intake

did not significantly influence serum ferritin concentra-

tion [35]. Similar positive association between heme

iron intake and serum ferritin concentration was

reported from the Health Professionals’ Follow-up Study

[41]. Therefore, the distinct effects of heme iron and

non-heme iron intake on risk of T2DM that we found

in the present study may be, at least partly, explained by

the differences in bioavailability of the different iron

types and their effects on body iron stores.

Circulating ferritin, a major iron storage protein in

body, has been widely used as an index of body iron

stores [26]. However, the specificity of high circulating

ferritin levels as a marker of increased body iron stores

is somewhat limited because ferritin is an acute-phase

reactant [2], and circulating ferritin is increased in the

presence of inflammation and other disorders [26,42]. In

addition, circulating ferritin is also increased with alco-

hol consumption and body mass index (BMI), and dif-

fers with gender [35,36]. In our meta-analysis, even

though we adjusted for alcohol consumption, BMI, gen-

der, inflammation and other factors, the association

between ferritin and risk of T2DM remained significant.

In addition, the sTfR:ferritin ratio has been found to dis-

tinguish between subjects with similarly high ferritin

levels, and sTfR is believed to be free of influence by

acute or chronic inflammation, therefore it has been

suggested that the sTfR:ferritin ratio is a better marker

than ferritin alone to measure a wide range of iron

levels [43]. Thus far, two prospective studies using the

sTfR:ferritin ratio as a marker of body iron stores found

similar significant associations [9,10]. Use of phlebotomy

Figure 3 Dose-response analyses of dietary intakes of total iron and heme iron in relation to risk of type 2 diabetes mellitus (T2DM)

in the included studies. The risk estimate of dietary total iron intake for T2DM risk in the Iowa Women’s Health Study (Lee et al [24])) was not

directly reported, and thus this was pooled from the results of dietary non-heme iron intake and heme iron intake in this study. W, women.
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Table 3 Association between body iron stores and type 2 diabetes mellitus (T2DM) in the included studies

Source Gender Comparison Models RR (95% CI) Matched or adjusted covariates

Ferritin as indicators of body iron stores (n = 5)

Jiang et al, 2004,
USA [10]

Women Highest (≥107.2 ng/ml) versus lowest (<21.1
ng/ml) quintile

Model 1a 2.68 (1.75 to
4.11)

Age, ethnicity, fasting status, BMI, FH, PA,
smoking, alcohol consumption,
menopausal status, glycemic load, intake of
total energy, cereal fiber, magnesium, and
trans fat, and ratio of polyunsaturated fat to
saturated fat

Model 2b 2.61 (1.68 to
4.07)

Additional adjustment for CRP

Forouhi et al,
2007, UKc [11]

Men Highest (≥135.7 ng/ml) versus lowest (<34.4
ng/ml) quintile

Model 1a 1.97 (1.12 to
3.45)

Age, sex, BMI, FH, PA, smoking, dietary
factors (TEI, alcohol consumption, intake of
dietary iron, magnesium, and red meat and
processed meat, plasma vitamin C)

Model 2b 1.78 (0.99 to
3.19)

Additional adjustment for CRP, fibrinogen,
and IL-6

Model 3 1.13 (0.58,
2.19)

Additional adjustment for ALT, GGT, and
adiponectin

Women Highest (≥71.7 ng/ml) versus lowest (<17.8
ng/ml) quintile

Model 1a 2.55 (1.22 to
5.34)

Age, sex, BMI, FH, PA, smoking, dietary
factors (TEI, alcohol consumption, intake of
dietary iron, magnesium, red meat and
processed meat and plasma vitamin C)

Model 2b 2.11 (0.98 to
4.56)

Additional adjustment for CRP, fibrinogen,
and IL-6

Model 3 1.08 (0.44,
2.62)

Additional adjustment for ALT, GGT, and
adiponectin

Jehn et al, 2007,
USA [15]

Both Highest (≥235.4 ng/ml; median, 354.5 ng/
ml) versus lowest (<40.0 ng/ml; median,
20.0 ng/ml)quintile

Model 1a 1.51 (0.98 to
2.31)

Age, study center, ethnicity, smoking,
alcohol consumption, and BMI

Model 2 0.81 (0.49 to
1.34)

Additional adjustment for metabolic
syndrome components (HDL-C, WC,
hypertension, FPG, and TG)

Model 3b 0.79 (0.48 to
1.32)

Additional adjustment for FPI and
inflammation score

Le et al, 2009,
USA [16]

Men Highest (>188 ng/ml) versus lowest (<80
ng/ml) quartile

Model 1a 1.79 (1.13 to
2.82)

Age, ethnicity, and BMI

Women Highest (premenopausal, >60 ng/ml,
postmenopausal, >90 ng/ml) versus lowest
(premenopausal,<21 ng/ml,
postmenopausal,<37 ng/ml) quartile

Model 1a 0.87 (0.37 to
2.03)

Age, ethnicity, and BMI

Rajpathak et al,
2009, USA [17]

Both Highest (median, 203.7 ng/ml) versus
lowest (median, 20.1 ng/ ml) quartile

Model 1a 1.02 (0.60 to
1.74)

Age, sex, ethnicity, and BMI

Model 2 1.65 (0.90 to
3.02)

Additional adjustment for FH, PA, HbA1c,
and sTfR

Model 3b 1.53 (0.83 to
2.82)

Additional adjustment for CRP

Model 4 1.61 (0.85 to
3.02)

Additional adjustment for HOMA-IR

Ratio of sTfR to ferritin as indicators of body iron stores (n = 2)

Salonen et al,
1998, Finland [9]

Men Highest (< 9.4) versus quartile (no data
available)

Model 1 2.40 (1.03 to
5.50)

Age, time of examination, place of
residence, cigarette smoking, exercise,
maximal oxygen uptake, socioeconomic
status, height, weight, hip and waist
circumferences, glucose, insulin, vitamin E,
and serum SFA to (PUFA + MUFA) ratio

Jiang et al, 2004,
USA [10]

Women Highest (<26.7) versus lowest (≥149.4)
quintile

Model 1 2.44 (1.61 to
3.71)

Age, ethnicity, fasting status, BMI, FH, PA,
smoking, alcohol consumption,
menopausal status, glycemic load, intake of
total energy, cereal fiber, magnesium, and
trans fat, ratio of polyunsaturated fat to
saturated fat
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Table 3 Association between body iron stores and type 2 diabetes mellitus (T2DM) in the included studies (Continued)

Model 2 2.40 (1.55 to
3.71)

Additional adjustment for CRP

sTfR as indicators of body iron stores (n = 1)

Rajpathak et al,
2009, USA [17]

Both Highest (median, 4.4 mg/l) versus lowest
(median, 2.3 mg/l) quartile

Model 1 1.55 (0.93 to
2.57)

Age, sex, ethnicity, and BMI

Model 2 2.26 (1.27 to
4.01)

Additional adjustment for FH, PA, HbA1c,
and sTfR

Model 3 2.39 (1.34 to
4.28)

Additional adjustment for CRP

Model 4 2.23 (1.22 to
4.06)

Additional adjustment for HOMA-IR

Abbreviations: ALT, alanine aminotransferase; BMI, body mass index; CRP, C-reactive protein; FH, family history; FPG, fasting plasma glucose; FPI, fasting plasma

insulin; GGT, g-glutamyltransferase; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment for insulin

resistance; IL-6, interleukin-6; MUFA, monounsaturated fatty acids; PA, physical activity; PUFA, polyunsaturated fatty acids; RR, relative risk; SFA, saturated fatty

acids; sTfR, soluble transferrin receptor; TEI, total energy intake; TG, triglycerides; WC, waist circumference.
a Estimates used in the meta-analysis of ferritin and T2DM risk in multivariate-adjusted models.
b Estimates used in the meta-analysis of ferritin and T2DM risk in multivariate-adjusted models including inflammatory markers.
c From an ad hoc analysis by Forouhi et al. [11], which used quintiles of ferritin levels as exposure and separately reported for men and women.

Figure 4 Associations between circulating ferritin levels and risk of type 2 diabetes mellitus (T2DM) in the included studies. M

indicates men and W for women. The data in the EPIC-Norfolk study [11] were the results of an ad hoc analysis by the original authors, which

used quintiles of ferritin levels as exposure and separately reported for men and women. M, men; W, women.
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or iron-chelation therapy to reduce ferritin levels was asso-

ciated with improved glucose tolerance in patients with

HH [44,45], healthy blood donors [46], patients with meta-

bolic syndrome [47], and patients with T2DM [48]. These

studies support our findings of a significant association

between increased body iron stores and T2DM risk.

Strengths and limitations

The strengths of our study include the use of prospective

studies with long-term follow-up, large sample size, and

extensive adjustment for potential confounders, which

together reduce the possibility of selection bias and reverse

causation. However, several limitations need to be

addressed. First, genetic polymorphisms (for example,

H63D and C282Y variants in the HFE gene, which contri-

butes to the development of HH) may affect the efficiency

of iron absorption and body iron stores [40]. A potential

interaction between HFE genotypes and heme iron intake

in relation to the risk of T2DM has been reported in a

previous study [49]. However, the allele frequencies of

HFE variants are very low in the general population [49]

and thus there is a low likelihood that they would have

substantially affected the observed associations in the pre-

sent study. In addition, our previous studies found that

microsatellite polymorphism in the heme oxygenase-1

gene (HO-1), which encodes the rate-limiting enzyme in

heme iron catabolism, was associated with a higher risk of

T2DM [50,51]. The possible interaction between heme

iron intake and HO-1 gene polymorphisms and their com-

bined effects in the pathogenesis of T2DM remain

unknown. Second, a high correlation between intake of

heme iron and red meat (the latter as a major contributor

to heme iron intake that has been associated with higher

risk of T2DM [34]) was found in the included study [23].

Because of a high degree of statistical collinearity, we were

unable to reliably separate the independent effect of heme

iron per se from other components of red meat. However,

the potential link of T2DM risk to heme iron cannot be

excluded because it is biologically plausible. Third, com-

paring the highest category of exposure with the lowest

for each study cannot fully quantify the association. The

dose-response trend of body iron stores in relation to

T2DM risk should be evaluated in future when more stu-

dies are available. Fourth, the number of studies was not

sufficient to allow us to conduct a formal meta-regression

analysis for identifying potential sources of heterogeneity,

and this also limited an adequate assessment of small-

study effects. Fifth, most of the included studies were con-

ducted in western populations, which limits the direct

generalization of the findings. Although Asia has the lar-

gest number of patients with diabetes in the world [52,53],

and several studies in East Asian populations have sug-

gested that T2DM were more prevalent among people

with higher heme iron intakes [22,32] and body iron stores

[14,19,22], more studies, in particular prospective cohort

studies, are still required in this population of high dia-

betes prevalence. Finally, although many potential con-

founders have been adjusted for in the included studies,

we cannot completely exclude the possibilities of residual

confounding from unmeasured or incompletely measured

factors.

Conclusions
In conclusion, higher heme iron intake and higher body

iron stores were significantly associated with a greater risk

of T2DM in this meta-analysis of prospective studies. It

may therefore be necessary to reconsider the dietary refer-

ence values for iron [40], in particular in countries where

most of the population ingest sufficient iron and/or are at

risk of iron overload. Dietary total iron, non-heme iron, or

supplemental iron intakes were not significantly associated

with T2DM risk. Moderately increased ferritin levels may

be useful for clinical and public health identification of

high-risk groups for T2DM; however, further studies are

warranted.

Additional material

Additional file 1: Funnel plots. Associations between (S1) intakes of

total iron, heme iron, and risk of type 2 diabetes mellitus (T2DM) and

(S2) associations between ferritin levels and risk of T2DM before and

after adjusting for inflammatory markers.
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