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Abstract 28 

We investigated the effects of dietary nitrate (NO3
-) supplementation on the concentration of 29 

plasma nitrite ([NO2
-]), oxygen uptake ( O2) kinetics and exercise tolerance in normoxia (N) 30 

and hypoxia (H). In a double-blind, crossover study, twelve healthy subjects completed cycle 31 

exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 32 

ml·d-1 of NO3
--rich beetroot juice (8.4 mmol NO3; BR) or NO3

--depleted beetroot juice (PL) 33 

for 3-days prior to moderate-intensity and severe-intensity exercise tests in H and N. Pre- 34 

exercise plasma [NO2
-] was significantly elevated in H-BR and N-BR compared to H-PL (P 35 

= 0.00) and N-PL (P = 0.00). The rate of decline in plasma [NO2
-] was greater during severe-36 

intensity exercise in H-BR (-30±22 nM·min-1, 95% CI; -44, -16) compared to H-PL (-7±10 37 

nM·min-1, 95% CI; -13, -1; P = 0.00) and in N-BR (-26±19 nM· min-1, 95% CI; -38, -14) 38 

compared to N-PL (-1±6 nM· min-1, 95% CI; -5, 2; P = 0.00). During moderate-intensity 39 

exercise, steady-state pulmonary O2 was lower in H-BR (1.91±0.28 L·min-1, 95% CI; 1.77, 40 

2.13) compared to H-PL (2.05±0.25 L·min-1, 95% CI; 1.93, 2.26, P = 0.02) and O2 kinetics 41 

was faster in H-BR (τ: 24±13 s, 95% CI; 15, 32) compared to H-PL (31±11 s, 95% CI; 23, 42 

38; P = 0.04). NO3
- supplementation had no significant effect on O2 kinetics during severe-43 

intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in 44 

normoxia. Tolerance to severe-intensity exercise was improved by NO3
- in hypoxia (H-PL: 45 

197±28; 95% CI; 173, 220 vs. H-BR: 214±43 s, 95% CI; 177, 249; P = 0.04) but not 46 

normoxia. The metabolism of NO2
- during exercise is altered by NO3

- supplementation, 47 

exercise and to a lesser extent, hypoxia. In hypoxia, NO3
- supplementation enhances  O2 48 

kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. 49 

These findings may have important implications for individuals exercising at altitude. 50 

Key Words: hypoxia; beetroot juice; nitric oxide, efficiency, performance. 51 

52 
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Introduction 53 

Nitric oxide (NO) is a ubiquitous, water soluble, free radical gas which plays a crucial role in 54 

many biological processes. Effective NO production is important in normal physiological 55 

functioning, from the regulation of blood flow, muscle contractility and mitochondrial 56 

respiration, to host defence, neurotransmission and glucose and calcium homeostasis (11, 17, 57 

60). NO production via the oxidation of L-arginine, in a process catalysed by nitric oxide 58 

synthase (NOS), may be blunted in conditions of reduced O2 availability (52). It is now 59 

widely accepted that NO can also be generated via an alternative pathway, whereby inorganic 60 

nitrate (NO3
-) is reduced to nitrite (NO2

-) and further to NO. This NOS- and O2- independent 61 

NO3
- -NO2

- -NO pathway represents a complementary system for NO synthesis spanning a 62 

broad range of redox states (49). In addition to being produced endogenously, the body’s 63 

NO3
- stores can be increased via the diet, with green leafy vegetables and beetroot being 64 

particularly rich in NO3
-. Upon ingestion, inorganic NO3

- is absorbed from the gut and passes 65 

into the systemic circulation where ~25% of it is concentrated in the saliva (50). Commensal 66 

bacteria in the oral cavity then reduce the NO3
- to NO2

- (21). Some salivary NO2
- is converted 67 

into NO when swallowed into the acidic environment of the stomach (7), whilst the 68 

remainder is absorbed, increasing circulating plasma NO2
- concentration [NO2

-]. This NO2
- 69 

may be reduced to NO via a number of enzymatic and non-enzymatic pathways (e.g., 70 

xanthine oxidoreductase and deoxyhemoglobin), which are potentiated in hypoxic 71 

environments, such as may be evident in contracting skeletal muscle (55). 72 

NO plays a key role in the physiological response and adaptation to hypoxia. A reduced 73 

fraction of O2 in inspired air results in reductions in arterial O2 concentration and intracellular 74 

partial pressure of O2 (PO2). The development of muscle hypoxia leads to increased 75 

metabolic perturbation (46) and reduced functional capacity at altitude (2) and in several 76 

disease conditions (22, 34). In order to restore sufficient O2 supply, local blood flow is 77 

increased via hypoxia-induced vasodilatation with NO being implicated as a major mediator 78 

of this process (12). NO2
- may also promote hypoxic vasodilatation in an NO-independent 79 

manner (16).  80 

Dietary NO3
- supplementation, in the form of nitrate salts and nitrate-rich beetroot juice (BR), 81 

represents a practical method of increasing circulating plasma [NO3
-] (31, 42, 67) and [NO2

-] 82 

(4, 33, 62). NO3
- supplementation has been shown to reduce resting blood pressure (3, 33, 42) 83 

and oxygen uptake ( O2) during submaximal exercise (4, 39, 40, 41, 62, 67), and to improve 84 
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exercise performance in young, healthy individuals exercising in normoxic conditions (14, 85 

38), but not necessarily in well trained athletes (5-6, 66). These changes may be related to 86 

NO-mediated alterations in mitochondrial efficiency (39), muscle contractile function (3, 28) 87 

and enhanced muscle blood flow, with preferential distribution to type II fibers (23). These 88 

physiological alterations could be particularly beneficial when normal O2 availability (~21%) 89 

is reduced. Indeed, NO3
- supplementation in the form of BR has recently been shown to 90 

reduce muscle metabolic perturbation during exercise in hypoxia and to restore constant-91 

work-rate exercise tolerance and post-exercise indices of oxidative function to values 92 

observed in normoxia (64). BR supplementation has also been shown to extend incremental 93 

exercise tolerance, improve arterial and skeletal muscle oxygenation (50), and to enhance 94 

cycling economy and time-trial performance (51), in hypoxia.  However, while these studies 95 

suggest that BR can improve physiological responses and exercise performance in hypoxia, it 96 

has yet to be determined whether the effects BR are more pronounced in hypoxia relative to 97 

normoxia.  98 

The dose-response and pharmacodynamic relationships of BR supplementation have recently 99 

been investigated in normoxia (67) and provides a guide to enable optimal timing and dosing 100 

of BR intake to elicit peak circulating plasma [NO2
-] values. However, the kinetics of plasma 101 

[NO2
-] during hypoxic exercise and subsequent recovery, and possible changes elicited by 102 

BR supplementation, are presently not known. It was recently reported that during high-103 

intensity, intermittent running exercise, plasma [NO2
-] declined significantly during 104 

exhaustive exercise and showed a tendency to recover back to baseline following 15 min of 105 

passive rest (68). Previous research has reported increases (1, 54) but, more commonly, 106 

decreases (6, 19, 26, 42, 63) in plasma [NO2
-] during exercise. In addition to exercise, the 107 

metabolism of NO and its derivatives are known to be influenced by intracellular PO2 and the 108 

fraction of inspired oxygen (FIO2). In vitro, endothelial NOS (eNOS) expression and eNOS-109 

derived NO production in human endothelial cells are reduced in hypoxia (25, 53). However, 110 

in vivo, eNOS expression and activity can be up- or down-regulated by hypoxia, with both 111 

decreased (58) and increased (44, 48) NO bioavailability being reported in hypoxia. 112 

Characterizing the kinetic changes in [NO2
-] during exercise and recovery at different FIO2 113 

may offer insight into NO metabolism during exercise in normoxia and hypoxia. This 114 

understanding may have important implications for athletes exercising in hypoxic 115 

environments. 116 
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Considering that the NO3
--NO2

- -NO pathway is facilitated in hypoxic conditions (48), we 117 

reasoned that BR supplementation may modulate the changes in [NO2
-] during exercise and 118 

recovery and may help to ameliorate the negative effects of hypoxia on exercise tolerance. 119 

The primary aim of this study was to investigate the effects of BR supplementation on 120 

physiological responses (plasma [NO2
-] dynamics, pulmonary O2 and muscle oxygenation) 121 

and exercise tolerance, in both normoxia and hypoxia. We hypothesized that the reduction of 122 

[NO2
-] during exercise would be greater in hypoxia compared to normoxia but that [NO2

-] 123 

would be higher at the same iso-time during exercise following BR compared to PL 124 

supplementation. We also hypothesized that BR supplementation would improve moderate-125 

intensity exercise economy and severe-intensity exercise tolerance in both hypoxia and 126 

normoxia, with greater effects being evident in hypoxia.  127 

Methods 128 

Subjects 129 

Twelve physically active male subjects (mean ± SD; age = 22 ± 4 yr, height = 1.80 ± 0.06 m, 130 

body mass = 78 ± 6 kg, O2peak = 58.3 ± 6.3 mL·kg-1·min-1) volunteered to take part in this 131 

study. The protocol and procedures used in this study were approved by the Institutional 132 

Research Ethics Committee. All subjects gave written, fully informed consent prior to 133 

commencement of the study, once the experimental protocol, associated risks, and potential 134 

benefits of participation had been outlined. Subjects were instructed to arrive at the 135 

laboratory, at least 3 h postprandial, and to avoid strenuous exercise in the 24 h preceding 136 

each testing session. Subjects were asked to refrain from caffeine and alcohol intake 6 and 24 137 

h before each test, respectively, and to consume the same light pre-exercise meal of their 138 

choice 4-5 h before testing. In addition to this, subjects were asked to abstain from using 139 

antibacterial mouthwash and chewing gum for the duration of the study since this has been 140 

shown to blunt the conversion of NO3
- to NO2

- in the oral cavity (27). Subjects were also 141 

instructed to maintain their normal dietary intake for the duration of the study. All exercise 142 

tests were performed at the same time of day (± 1 h) for each subject. 143 

Procedures 144 

Subjects were required to attend the laboratory on six occasions over a 4-wk period. All 145 

exercise tests were performed using an electronically braked cycle ergometer (Lode 146 

Excalibur Sport, Groningen, the Netherlands). During visit 1, subjects completed a ramp 147 
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incremental test to exhaustion for the determination of the maximal O2 uptake ( O2peak) and 148 

the gas exchange threshold (GET). Subjects performed 3 min of baseline cycling at 20 W and 149 

80 rpm, after which the power output was increased at a rate of 30 W·min-1 in a linear fashion 150 

until volitional exhaustion. The height and configuration of the saddle and handlebars were 151 

recorded and reproduced in subsequent tests. The breath-by-breath pulmonary gas-exchange 152 

data were collected continuously during the incremental test and averaged over 10-s periods. 153 

O2peak was determined as the highest mean O2 during any 30-s period. The GET was 154 

determined from a number of measurements, including: 1) the first disproportionate increase 155 

in CO2 production ( cO2) from visual inspection of individual plots of cO2 and O2; and 2) 156 

an increase in expired ventilation ( E / O2) with no increase in E/ cO2.  Power outputs 157 

representing moderate- and severe-intensity exercise for each individual were calculated, 158 

with account taken of the mean response time for O2 during ramp exercise (i.e., two-thirds 159 

of the ramp rate was deducted from the power output at GET).  160 

All subjects were familiar with laboratory exercise testing procedures, having previously 161 

participated in studies employing cycle ergometry in our laboratory. Visit 2 served as a 162 

familiarization to exercising in normobaric hypoxia. Following completion of the 163 

familiarization session, subjects were randomly assigned to receive 3 days of dietary 164 

supplementation with 140 ml·d-1 of NO3
--rich BR or 140 ml·d-1 of NO3

--depleted BR 165 

concentrate as a placebo (PL), (see ‘Supplementation’ below), prior to the subsequent 166 

exercise trials.  167 

During visits 3-6, the subjects completed step-transition, cycling exercise for the 168 

determination of pulmonary O2 and plasma [NO2
-] kinetics. In total, there were four 169 

different experimental conditions: 1) Hypoxia-BR (H-BR); 2) Hypoxia-PL (H-PL); 3) 170 

Normoxia-BR (N-BR); and 4) Normoxia-PL (N-PL). Trial order was randomly assigned in a 171 

balanced fashion such that three subjects started on H-BR, three started on H-PL, three 172 

started on N-BR and three started on the N-PL condition. 173 

Upon arrival at the laboratory, a cannula (Insyte-W TM Becton-Dickinson, Madrid, Spain) 174 

was inserted into the subject’s antecubital vein to enable frequent blood sampling before, 175 

during and after the exercise protocol. Prior to the exercise protocol, subjects lay in a supine 176 

position for 10 min breathing normoxic inspirate. A further 10-min period elapsed with 177 

subjects breathing either the hypoxic or normoxic inspirate. The exercise protocol involved 178 

two 5-min bouts of moderate-intensity cycling at 80% GET, and one bout of severe-intensity 179 
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cycling at 75% Δ (a power output representing GET plus 75% of the difference between the 180 

power outputs at GET and O2peak) (65) which was continued to volitional exhaustion. Each 181 

exercise bout involved an abrupt transition to the target power output initiated from a 20 W 182 

baseline, with the three exercise bouts separated by 6 min of passive recovery. The severe-183 

intensity exercise bout was continued until task failure as a measure of exercise tolerance. 184 

The time to exhaustion was recorded when the pedal rate fell by > 10 rpm below the 80 rpm 185 

pedal rate. In these bouts, the subjects were verbally encouraged to continue for as long as 186 

possible. Following exhaustion, a further 10-min recovery period elapsed with subjects 187 

continuing to breathe either the hypoxic or normoxic inspirate. 188 

The O2 responses for the two moderate bouts were averaged before analysis to reduce 189 

breath-to-breath noise and enhance confidence in the parameters derived from the modelling 190 

process (36). Blood was sampled pre-exercise (prior to any exercise and breathing of 191 

experimental inspirate), then during the baseline 20 W cycling preceding the first moderate 192 

transition (ModBL) and at 1(Mod1), 3 (Mod3) and 5 (Mod5) min of the first moderate-193 

intensity exercise bout. Further samples were drawn during the 20 W baseline preceding the 194 

severe transition (SevBL) and after 1 (Sev1) and 3 (Sev3) min of severe-intensity exercise 195 

and at exhaustion (Exh). Finally, samples were drawn during recovery from the severe bout at 196 

1.5 (Rec1.5), 3 (Rec3) and 10 (Rec10) min. 197 

Inspirate 198 

The inspirate was generated using a Hypoxico HYP 100 filtration system (Sporting Edge UK 199 

Ltd, Basingstoke, UK), with the generator supplying the inspirate via an extension conduit to 200 

a 150 L Douglas Bag (Cranlea & Co., Birmingham, UK). This acted as a reservoir and 201 

mixing chamber, and had a separate outlet tube feeding into a two-way breathing valve 202 

system (Hans Rudolph, Cranlea & Co.). The two-way valve was connected to the mouthpiece 203 

which provided a constant, unidirectional flow rate and ensured that no re-breathing of 204 

expired air occurred. The O2 and CO2 concentration of the inspirate was monitored during 205 

each test using a Servomex 5200 High Accuracy Paramagnetic O2 and CO2 Analyzer 206 

(Servomex, Crowborough, UK). The gas analyzer was calibrated prior to each test with a 207 

16.0% O2, 8.0% CO2 and 76.0% N2 gas mix (BOC Special Gases, Guildford, UK). For the N-208 

PL and N-BR trials, the Hypoxico HYP-100 generator was switched to normoxic mode (i.e. 209 

all O2 filters were turned off so that no O2 was removed from the ambient air). However, 210 
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during the H-PL and H-BR trials, the generator was set to maximum O2 filtration, which 211 

supplied an FIO2 of 0.131 ± 0.02, and an FICO2 of 0.004 ± 0.00.  212 

Supplementation 213 

After completion of the non-supplemented visits 1 and 2, subjects were assigned in a double-214 

blind, randomized, crossover design to receive a course of dietary NO3
- supplementation 215 

before visits 3-6. The supplements were either concentrated, NO3
--rich BR (2 x 70 mL·d-1 of 216 

BR providing ~8.4 mmol NO3
- per day; Beet it, James White Drinks, Ipswich, UK) or 217 

concentrated, NO3
--depleted PL (2 x 70 ml·d-1 of PL providing ~0.006 mmol NO3

- per day; 218 

Beet it, James White Drinks, Ipswich, UK). The PL beverage was created by passing the 219 

juice, before pasteurization, through a column containing Purolite A520E ion exchange resin, 220 

which selectively removes nitrate ions. The PL was identical to the BR in appearance, taste 221 

and smell. Subjects were instructed to consume the beverages in the morning and afternoon 222 

of days 1 and 2 of supplementation, and then in the morning and 2.5 h before the exercise test 223 

on day 3. A washout period of at least 72 h separated each supplementation period. Subjects 224 

were instructed to follow their normal dietary habits throughout the testing period and to 225 

replicate their diet and timing of supplementation across conditions. Subjects were informed 226 

that the supplementation may cause beeturia (red urine) and red stools temporarily but that 227 

this side effect was harmless. 228 

Measurements 229 

Blood samples were drawn into 5-ml lithium-heparin tubes (Vacutainer, Becton-Dickinson, 230 

New Jersey, USA). 200 μl of blood was immediately hemolyzed in 200 μl of cold Triton X-231 

100 buffer solution (Triton X-100, Amresco, Salon, OH) and analyzed to determine blood 232 

[lactate] and [glucose] (YSI 2300, Yellow Springs Instruments, Yellow Springs, OH). Blood 233 

samples for the determination of plasma [NO2
-] and [NO3

-] were collected into lithium-234 

heparin tubes and immediately centrifuged at 4000 rpm and 4 °C for 8 min. Plasma was 235 

extracted and immediately frozen at -80 °C for later analysis of [NO2
-] and [NO3

-]. 236 

Prior to and regularly during analysis, all glassware, utensils, and surfaces were rinsed with 237 

deionized water to remove any residual NO2
-. Plasma [NO2

-] and [NO3
-] were analysed using 238 

gas phase chemiluminescence. This initially required NO2
- and NO3

- to be reduced to NO gas. 239 

For reduction of NO2
-, undiluted plasma was injected into a glass purge vessel containing 5 240 

ml glacial acetic acid and 1ml NaI solution. For NO3
- reduction, plasma samples were 241 
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deproteinized in an aqueous solution of zinc sulphate (10% w/v) and 1 M sodium hydroxide, 242 

prior to reduction to NO in a solution of vanadium (III) chloride in 1 M hydrochloric acid 243 

(0.8% w/v). Quantification of NO was enabled by the detection of light emitted during the 244 

production of nitrogen dioxide formed upon reaction of NO with ozone. Luminescence was 245 

detected by a thermoelectrically cooled, red-sensitive photomultiplier tube housed in a 246 

Sievers gas-phase chemiluminescence NO analyzer (Sievers NOA 280i, Analytix Ltd, 247 

Durham, UK). The concentrations of NO2
- and NO3

- were determined by plotting signal area 248 

(mV) against a calibration plot of 25nM to 1µM sodium nitrite and 100nM to 10µM sodium 249 

nitrate respectively.The rate of change in plasma [NO2
-] during the severe exercise bout was 250 

calculated as the difference between pre-exercise baseline and exercise [NO2
-] values relative 251 

to exercise duration. 252 

During all laboratory exercise tests, pulmonary gas exchange and ventilation were measured 253 

continuously with subjects wearing a nose clip and breathing through a mouthpiece and 254 

impeller turbine assembly (Triple V, Jaeger, Hoechburg, Germany). The inspired and expired 255 

gas volume and gas concentration signals were continuously sampled at 100 Hz, the latter 256 

using paramagnetic (O2) and infrared (CO2) analyzers (Oxycon Pro, Jaeger, Hoechburg, 257 

Germany) via a capillary line connected to the mouthpiece. Pulmonary gas exchange 258 

variables were calculated and displayed breath-by-breath. Heart rate (HR) and arterial oxygen 259 

saturation (SaO2) were continuously measured during the test protocol using a pulse oximeter 260 

device (Rad-87, Masimo, Irvine, CA), which was attached to the subject’s right index finger. 261 

The oxygenation status of the m. vastus lateralis of the right leg was monitored via near 262 

infrared spectroscopy (NIRS) (NIRO 200, Hamamatsu Photonics KK, Hamamatsu-City, 263 

Japan) during the exercise protocol, as described previously (4). Deoxyhemoglobin 264 

concentration ([HHb]), oxyhemoglobin concentration ([HbO2]), total hemoglobin 265 

concentration ([Hbtot]) and tissue oxygenation index (TOI) were measured. 266 

Data analysis 267 

The breath-by-breath O2 data from each exercise test were initially examined to exclude 268 

errant breaths caused by coughing and swallowing with those values lying more than four SD 269 

from the local mean being removed. The breath-by-breath data were subsequently linearly 270 

interpolated to provide second-by-second values, and, for each individual, identical 271 

moderate-intensity repetitions were time-aligned to the start of exercise and ensemble-272 

averaged. This approach enhances the signal-to-noise ratio and improves confidence in the 273 
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parameters derived from the modelling process. The first 20 s of data after the onset of 274 

exercise (the phase I response) were deleted, and a non-linear least squares algorithm was 275 

used to fit the data thereafter. A single-exponential model was used to characterize the phase 276 

II O2 responses to both moderate- and severe- intensity exercise, as described in following 277 

equation: 278 

O2(t) = O2 baseline + Ap [1 – e-(t-TDp/τp)]      Eqn.1 279 

Where O2(t) represents the absolute O2 at a given time t; O2 baseline represents the mean O2 280 

over the final 60 s of baseline cycling; Ap, TDp, and τp represent the amplitude, time delay 281 

and time constant, respectively, describing the phase II increase in O2 above baseline. An 282 

iterative process was used to minimize the sum of the squared errors between the fitted 283 

function and the observed values. The end-exercise O2 was defined as the mean O2 284 

measured over the final 30 s of exercise. 285 

The fitting strategy was subsequently used to identify the onset of any ‘slow component’ in 286 

the O2 response to severe-intensity exercise as previously described (56). The fitting window 287 

was lengthened iteratively until the exponential model-fit demonstrated a discernible 288 

departure from the measured response profile. Identification, via visual inspection, of the flat 289 

residual plot profile (signifying a good fit to measured data) systematically differing from 290 

zero, gave indication of the delayed slow component onset. The magnitude of the slow 291 

component for O2 was measured as the difference between the phase II steady state 292 

amplitude and the final O2 value, averaged over the last 30 s of exercise. 293 

To obtain information on muscle oxygenation, the [HHb] response to exercise was also 294 

modelled, as described previously (4). The [HHb] kinetics for moderate- and severe-intensity 295 

exercise were determined using a single-exponential model similar to that described above 296 

(Eqn. 1), with the exception that the fitting window commenced at the time at which the 297 

[HHb] signal increased 1 SD above the baseline mean (18). For moderate-intensity exercise, 298 

the fitting window was constrained to the point at which mono-exponentiality became 299 

distorted, consequent to a gradual fall in [HHb], as determined by visual inspection of the 300 

residual plots. For severe-intensity exercise, the [HHb] fast and slow phase responses were 301 

determined as described above for the O2. The [HbO2], [Hbtot] and TOI responses were not 302 

modelled as they do not approximate an exponential. Rather, the changes in these variables 303 

were assessed by determining the [HbO2], [Hbtot] and TOI at baseline (60 s preceding step 304 
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transition), at 120 s and at end-exercise during moderate exercise and at baseline, 60 s, 120 s 305 

and exhaustion for severe exercise.  306 

Statistical analyses 307 

Differences in the cardio-respiratory, NIRS-derived, pulse-oximetry and exercise tolerance 308 

variables between conditions were analyzed using two-way (supplement x FIO2) repeated 309 

measures ANOVA. Blood metabolites were analyzed via two-way (condition x time) 310 

repeated measures ANOVA, during moderate-, severe-intensity- and in recovery from- 311 

exercise (Condition refers to H-BR, H-PL, N-BR or N-PL). Significant effects were further 312 

explored using simple contrasts with Fisher’s LSD. One-tailed paired t-tests were used to 313 

compare differences in exercise tolerance between BR and PL treatments in hypoxia and 314 

normoxia. Correlations were assessed via Pearson’s product-moment correlation coefficient 315 

between physiological and performance variables. All data are presented as mean ± SD with 316 

statistical significance being accepted when P < 0.05. 317 

Results 318 

Self-reported compliance to the supplementation regimen was 100% and subjects’ food 319 

diaries confirmed that the timing of supplement taken on the morning of the laboratory tests 320 

was consistent across the experimental conditions. No deleterious side-effects were reported. 321 

Plasma [NO2
-] and [NO3

-] 322 

Pre-exercise, plasma [NO2
-] was significantly elevated in H-BR compared to H-PL (H-BR: 323 

301 ± 89 vs. H-PL: 88 ± 56 nM; P = 0.02) and N-BR relative to N-PL (N-BR: 401 ± 276 vs. 324 

N-PL: 61 ± 28 nM; P = 0.01) but did not differ between H-BR and N-BR (P = 0.54) or H-PL 325 

and N-PL (P = 0.66).  326 

Plasma [NO3
-] was significantly elevated at all time-points following BR compared to PL in 327 

both hypoxia and normoxia although no differences were evident in the kinetic response 328 

during exercise and recovery (data not shown). 329 

The group mean kinetic profiles of plasma [NO2
-] during moderate- and severe- intensity 330 

exercise and subsequent recovery are presented in Figure 1.  331 

Moderate exercise. ANOVA revealed there were significant main effects by condition and 332 

time on plasma [NO2
-] during moderate-intensity exercise. BR supplementation significantly 333 
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elevated plasma [NO2
-] across all time points compared to PL in both hypoxic and normoxic 334 

conditions (all P < 0.05). In N-BR, plasma [NO2
-] was significantly decreased after 5 min of 335 

moderate-intensity exercise (Mod5) compared to ModBL (ModBL: 332 ± 184 vs. Mod5: 290 336 

± 207 nM, P = 0.04). However, the decrease in plasma [NO2
-] in H-BR only showed a trend 337 

towards a reduction (ModBL: 306 ± 109 vs. Mod5: 270 ± 125 nM, P = 0.10). The rate of 338 

decline in plasma [NO2
-] from ModBL to Mod5 was not significantly different in H-BR (-7 ± 339 

11.7 nM·min-1) compared to N-BR (-10.6 ± 15.9 nM·min-1), H-PL (-3.9 ± 6.1 nM·min-1) 340 

compared to N-PL (-2.1 ± 4 nM·min-1), H-BR (-7 ± 11.7 nM·min-1) compared to N-PL (-2.1 ± 341 

4 nM·min-1) or N-BR (-10.6 ± 15.9 nM·min-1) compared to N-PL (-2.1 ± 4 nM·min-1).     342 

Severe exercise. There were significant main effects by condition and time and an interaction 343 

effect for plasma [NO2
-] during severe-intensity exercise to exhaustion. BR supplementation 344 

significantly elevated plasma [NO2
-] across all time points compared to PL in both hypoxic 345 

and normoxic conditions (all P < 0.05). In N-BR, plasma [NO2
-] significantly decreased after 346 

3 min of severe-intensity exercise (Sev3) and at exhaustion, compared to SevBL (SevBL: 271 347 

± 177; Sev3: 206 ± 129; P = 0.01; Exhaustion: 132 ± 117 nM, P = 0.00). In H-BR, plasma 348 

[NO2
-] decreased from SevBL (277 ± 142 nM) to Sev1 (229 ± 123 nM, P = 0.01), Sev3 349 

(n=10, 164 ± 64 nM, P = 0.03) and exhaustion (171 ± 115 nM, P = 0.00). The absolute 350 

decline in plasma [NO2
-] from SevBL to exhaustion showed a trend toward being smaller in 351 

H-BR (106 ± 60 nM) compared to N-BR (138 ± 79 nM, P = 0.10). In N-PL, plasma [NO2
-] 352 

decreased from SevBL (40 ± 23 nM) to exhaustion (22 ± 19 nM, P = 0.02). This decrease 353 

was not significant in H-PL (SevBL: 53 ± 65 vs. Exhaustion: 37 ± 45 nM, P = 0.52).  The 354 

rate of decline in plasma [NO2
-] was significantly greater from SevBL to exhaustion in H-BR 355 

compared to H-PL (H-BR: -30 ± 22 vs. H-PL: -7 ± 10 nM·min-1, P = 0.00) and in N-BR 356 

compared to N-PL (N-BR: -26 ± 19 vs. N-PL: -1 ± 6 nM· min-1, P = 0.00), but was not 357 

different  between N-BR and H-BR (P = 0.66) or N-PL and H-PL (P = 0.13), (Figure 1).   358 

Recovery. During the 10-min recovery from exhaustive exercise, ANOVA revealed 359 

significant main effects by condition and time and an interaction effect for plasma [NO2
-] 360 

(Figure 1). BR supplementation significantly elevated plasma [NO2
-] across all time points 361 

compared to PL in both hypoxic and normoxic conditions (all P < 0.05). In N-BR, plasma 362 

[NO2
-] was significantly lower at exhaustion compared to 3 min into the recovery period (P = 363 

0.05), with a significant difference also evident between Rec1.5 and Rec3 (P = 0.01). Plasma 364 

[NO2
-] was significantly higher in H-BR compared to N-BR at Rec1.5 (P = 0.04). In N-PL, 365 

recovery of plasma [NO2
-] was evident between exhaustion and Rec10 (P = 0.04), with a 366 
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significant increase in [NO2
-] from Rec3 to Rec10 also evident (P = 0.04). In H-PL, plasma 367 

[NO2
-] tended to recover between Rec1.5 and Rec3 (P = 0.06), with a further increase evident 368 

between Rec3 and Rec10 (P < 0.00).  369 

Blood [glucose] was significantly reduced in H-BR compared to N-BR at Rec1.5 (H-BR: 4.3 370 

± 1.0 mmol·L vs. N-BR: 5.5 ± 1.2 mmol·L; P = 0.01), Rec3 (H-BR: 4.5 ± 1.1 mmol·L vs. N-371 

BR: 5.6 ± 1.3 mmol·L; P = 0.02) and Rec10 (H-BR: 4.7 ± 1.0 mmol·L vs. N-BR: 5.3 ± 1.0 372 

mmol·L; P = 0.03). No differences were evident between PL and BR conditions. 373 

 374 

Arterial O2 saturation and heart rate 375 

The SaO2 data at rest and during moderate- and severe-intensity exercise are reported in 376 

Table 1. Resting SaO2 and HR prior to the administration of inspirate were not significantly 377 

different between conditions. However, ANOVA revealed a significant main effect by FIO2 378 

following 10 min of breathing the hypoxic or normoxic inspirate, with SaO2 being 379 

significantly reduced in H-PL compared to N-PL (P = 0.00) and H-BR compared to N-BR (P 380 

= 0.00). HR was significantly elevated in H-PL compared to N-PL (P = 0.00) and H-BR 381 

compared to N-BR (P = 0.02) in the final 30 s of gas inspiration. 382 

Moderate exercise. During moderate-intensity exercise, SaO2 was significantly reduced in 383 

both hypoxic conditions compared to the normoxic conditions (both P = 0.00) (Table 1). HR 384 

was significantly elevated in both hypoxic conditions compared to the normoxic conditions in 385 

the final 30 s of exercise (both P = 0.00), with H-BR being lower than H-PL (P = 0.05) over 386 

the entire 6-min duration. 387 

Severe exercise. SaO2 was significantly lower in H-PL compared to N-PL (P = 0.00) and in 388 

H-BR compared to N-BR (P = 0.00) at exhaustion following severe-intensity exercise. There 389 

were no differences in SaO2 between BR and PL in either hypoxia or normoxia. Also, there 390 

were no differences in HR between conditions (Table 1).  391 

O2 kinetics  392 

Pulmonary O2 responses across the four experimental conditions are presented in Figures 2 393 

and 3, and the parameters derived from the model fits are summarized in Table 2.  394 

Moderate exercise. ANOVA revealed a significant main effect by supplement and an 395 

interaction effect on the O2 response to moderate-intensity exercise. The O2 in the final 30 s 396 



14

of exercise in H-BR was significantly lower compared to H-PL (P = 0.02) and N-PL (P = 397 

0.01). BR supplementation also resulted in a reduced O2 during baseline (20 W) exercise in 398 

hypoxia compared to PL (P = 0.02). The O2 phase II τ tended to be increased (i.e., slower 399 

kinetics) in hypoxia (P = 0.07). Post-hoc analyses revealed that the O2 phase II τ was smaller 400 

(i.e., faster kinetics) in H-BR compared to H-PL (P = 0.04).  401 

Severe exercise. During severe-intensity exercise, the O2 slow component amplitude (P = 402 

0.00) and O2 at exhaustion (P = 0.00) were significantly reduced as a result of the hypoxic 403 

inspirate in both PL and BR (Table 2). In hypoxia, BR tended to further reduce the end-404 

exercise O2 compared to H-PL (P = 0.07), while BR had no effect upon end-exercise O2 in 405 

normoxia. 406 

NIRS 407 

The [HHb], [HbO2], [Hbtot] and TOI values measured during moderate- and severe-intensity 408 

exercise are shown in Table 3.   409 

Moderate exercise. During moderate-intensity exercise, ANOVA revealed a significant main 410 

effect by FIO2. The modelled [HHb] amplitude was significantly greater in hypoxia 411 

compared to normoxia in both supplemented conditions across all time points (all P < 0.05). 412 

The end-exercise [HbO2] was lower in H-BR compared to N-BR (P = 0.02) and H-PL 413 

compared to N-PL (P = 0.01). TOI at baseline and throughout exercise was also significantly 414 

reduced in hypoxia compared to normoxia (P < 0.05). Post-hoc analyses revealed that BR 415 

tended to offset the negative effects of hypoxia on TOI when compared with PL (P = 0.08). 416 

Severe exercise. During severe-intensity exercise, ANOVA revealed a significant main effect 417 

by FIO2. [HHb] was significantly increased in H-BR and H-PL compared to N-BR and N-PL 418 

(P < 0.05), whereas the [HHb] slow phase amplitude was larger in normoxia compared to 419 

hypoxia (P < 0.05). [HbO2] was reduced in hypoxia compared to normoxia (P < 0.05) and 420 

TOI was lower as a result of hypoxia throughout exercise (P < 0.05). No differences in NIRS 421 

data between BR and PL were evident during severe-intensity exercise. 422 

Exercise tolerance 423 

ANOVA revealed that hypoxia resulted in a significant reduction in exercise tolerance when 424 

compared to normoxia in both PL (H-PL: 197 ± 28 vs. N-PL: 431 ± 124 s, P = 0.00) and BR 425 

conditions (H-BR: 214 ± 43 vs. N-BR 412 ± 139 s, P = 0.00). Although the unspecific F-test 426 
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for interaction effect across all four conditions did not attain significance at the 95% level, it 427 

should be noted that the specific test for a difference between exercise tolerance in H-BR and 428 

H-PL was significant (H-BR: 214 ± 43 vs. H-PL: 197 ± 28 s, P = 0.04), whereas the 429 

comparison between N-BR and N-PL was not (N-BR: 412 ± 139 vs. N-PL: 431 ± 124 s, P = 430 

0.50). The change in severe-intensity exercise tolerance was correlated with the change in 431 

moderate steady-state O2 following BR supplementation in hypoxia (r = -0.96; P = 0.00). 432 

Discussion 433 

Consistent with previous findings, the decline of plasma [NO2
-] during exercise was greater 434 

following BR compared to PL supplementation.  However, in contrast to our experimental 435 

hypothesis, the decline of plasma [NO2
-] during exercise was similar or slightly smaller in 436 

hypoxia compared to normoxia. Nonetheless, 3 days of BR supplementation significantly 437 

speeded O2 kinetics and lowered the steady-state O2 during moderate-intensity cycle 438 

exercise in hypoxia, but not normoxia. Furthermore, BR supplementation improved severe-439 

intensity exercise tolerance in hypoxia (P < 0.05), but not normoxia (P > 0.05).  These 440 

findings suggest that BR is more effective at improving exercise economy and exercise 441 

tolerance in hypoxia than normoxia.  442 

Effects of BR supplementation on the kinetic profile of plasma [NO2
-]  443 

Plasma [NO2
-] increased significantly following BR supplementation compared with PL, at 444 

rest and prior to administration of the inspirate. These findings are consistent with previous 445 

research which has consistently reported elevations in plasma [NO2
-] (3, 4, 33, 34, 51, 62, 446 

67), following BR supplementation. 447 

Previous studies have suggested that baseline plasma [NO2
-] and/or the change in the 448 

concentrations of this metabolite during exercise may be associated with exercise 449 

performance (19, 53, 61, 68). This study is the first to characterise [NO2
-] dynamics during 450 

and following exercise of different intensities in hypoxia and normoxia with and without 451 

NO3
- supplementation. The results suggest that the metabolism of NO and its derivatives are 452 

altered by exercise and NO3
- supplementation and, to a lesser extent, FIO2 . The interpretation 453 

of these data is not straightforward, however. NO3
- can be reduced in vivo to bioactive NO2

- 454 

and further to NO (47) and this reduction of NO2
- to NO is expected to be facilitated in 455 

hypoxia (13). However, NO2
- is also an oxidation product of NO generation via the NOS 456 

pathway (30) with plasma [NO2
-] providing a sensitive marker of NO production through 457 
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NOS (43).  Therefore, the dynamics of plasma [NO2
-] over the exercise bouts is likely 458 

reflective of the dynamic balance between NOS-derived NO and NO2
- reduction to NO.  In 459 

the present study, plasma [NO2
-] declined during both moderate- and severe-intensity 460 

exercise (Figure 1) with the magnitude and rate of plasma [NO2
-] decline being significantly 461 

greater in the BR trials compared to PL trials, in both normoxia and hypoxia.  These findings 462 

suggest that the reduction of NO2
- to NO appeared to outweigh the synthesis of NO through 463 

NOS during exercise.  464 

The rate of plasma [NO2
-] decline over the 5-min moderate-intensity bout was not 465 

significantly different between N-BR and H-BR, and N-PL and H-PL.  However, following 466 

5-min of moderate-intensity exercise, plasma [NO2
-] had fallen significantly below ModBL in 467 

N-BR; whereas, there was only a trend for a lower plasma [NO2
-] in H-BR. Similarly, the rate 468 

of plasma [NO2
-] decline over the severe-intensity exercise bout was not significantly 469 

different between N-BR and H-BR or N-PL and H-PL, but the absolute fall in plasma [NO2
-] 470 

tended to be less in H-BR than in N-BR, in spite of a longer exercise duration in N-BR. These 471 

results are contrary to our hypothesis and suggest that, in hypoxia, the contribution of NOS to 472 

NO production (30), and subsequently to the regulation of muscle perfusion and matching of 473 

O2 supply, may be greater (12).  474 

During the 10-min passive recovery from exhaustive exercise, plasma [NO2
-] increased in a 475 

similar fashion in H-PL and N-PL. Specifically, plasma [NO2
-] increased after 3 min of 476 

recovery and plateaued after 10 min. The increases in plasma [NO2
-] may represent an 477 

increase in NO oxidation (as NO is continuing to contribute to muscle perfusion and 478 

matching of O2 supply and demand; 12) during recovery. Following BR supplementation, the 479 

recovery profile of plasma [NO2
-] was slightly different between normoxia and hypoxia. 480 

Plasma [NO2
-] was higher in H-BR than N-BR following 1.5 min of recovery, although the 481 

difference between Exh and 1.5Rec was not different between conditions. It is important to 482 

note that differences in plasma [NO2
-] dynamics between hypoxia and normoxia were not 483 

substantial either during exercise or in recovery.  484 

Effects of BR supplementation on the physiological response to moderate-intensity exercise 485 

BR supplementation significantly reduced the O2 cost of sub-maximal cycle exercise in 486 

hypoxia. O2 during baseline cycling in H-BR was reduced by 10% compared to H-PL and 487 

by 4% compared to N-PL. Furthermore, a 7% reduction in the end-exercise (steady-state) O2 488 

was found in H-BR compared to H-PL. These findings are consistent with previous studies 489 
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which have reported reductions in submaximal cycling O2 in varying severities of hypoxia. 490 

For example, Masschelein et al. (50) reported a 4% reduction in steady state O2 with an FIO2 491 

of 0.11 during cycle exercise at 45% peak O2 and Muggeridge et al. (51) reported a ~6-8% 492 

reduction in steady-state O2 at an FIO2 of 0.15 during cycle exercise at 60% of maximum 493 

work rate, following BR supplementation. A reduction in muscle metabolic perturbation (i.e. 494 

slower rates of change of muscle pH and phosphocreatine (PCr) and inorganic phosphate 495 

concentrations) during severe-intensity knee-extensor exercise in hypoxia has also been 496 

reported following BR supplementation (64).  497 

In the present study, the O2 phase II τ during moderate-intensity exercise was reduced by BR 498 

supplementation in hypoxia. This finding is consistent with a recent study in older 499 

individuals, where the O2 mean response time was speeded with BR supplementation (32). 500 

This may be related to the slower O2 kinetics that is typically found in older individuals and 501 

the potential to abate this through enhancing muscle O2 delivery (57), via increasing NO 502 

bioavailability. Similarly, hypoxia tended to slow O2 kinetics in the young healthy 503 

participants in the present study. Specifically, the phase II τ tended to be slowed in hypoxia 504 

compared to normoxia (from ~22 to ~ 31 s; Table 2). This observation is consistent with 505 

previous reports of slower O2 kinetics in hypoxia (29, 59). BR supplementation speeded the 506 

phase II τ in hypoxia toward values recorded in normoxia, thereby helping to reverse the 507 

detrimental effect of a reduced FIO2 on O2 kinetics. These findings are consistent with a 508 

recent study which showed that muscle PCr recovery kinetics, which reflects the maximal 509 

rate of mitochondrial ATP resynthesis and is influenced by O2 availability, were speeded by 510 

BR supplementation in hypoxia (64). These data suggest that, in addition to reducing O2 511 

demand during exercise (50, 51, present study), BR may enhance skeletal muscle O2 512 

availability in hypoxia.  513 

In contrast to some (3, 4, 14, 40, 41, 62), but not all (5, 8, 32, 65), previous studies, 3-days of 514 

BR supplementation did not significantly reduce O2 during sub-maximal exercise in 515 

normoxia. Previous studies have typically reported reductions in steady state O2 of ~3-5% 516 

following several days of NO3
- supplementation (4, 40, 62). The mechanistic bases for this 517 

lower O2 cost of exercise have been suggested to include improved mitochondrial efficiency 518 

(39) and/or reductions in the ATP cost of muscle force production (3) which may be linked to 519 

enhanced Ca2+-related muscle contractility (28). NO is involved in the regulation of 520 

mitochondrial O2 consumption and it is well established that NO has a strong affinity for 521 

cytochrome-c oxidase (COX) (9). It has been suggested that competition for the COX binding 522 
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site between NO and O2 may be responsible, in part, for the reduced O2 cost of exercise 523 

following NO3
- supplementation (4, 41), with this initiating a signalling cascade resulting in 524 

mitochondrial protein changes which collectively enhance respiratory chain efficiency (39). 525 

Interestingly, hypoxia, per se, may also result in an acute, reversible inhibition of COX (10). 526 

The combination of hypoxia and BR supplementation may therefore make it more likely for 527 

these effects to be manifest. It is also noteworthy that reductions in O2 during moderate-528 

intensity exercise were recently reported to be evident following acute supplementation with 529 

16.8 mmol NO3
- (4 x 70 ml BR shots), tended to be evident with 8.4 mmol NO3

- (2 x 70 ml 530 

BR shots), but were not evident with 4.2 mmol NO3
- (1  x 70 ml BR shot) (67). It is therefore 531 

possible that an insufficient NO3
- dose was consumed immediately prior to the tests to 532 

significantly influence the O2 response to exercise in normoxia in the present study. 533 

Furthermore, the inter-individual differences in the O2 response to exercise in normoxia 534 

evident in the current study, may have also contributed to the lack of statistically significant 535 

effects. It may be concluded that BR supplementation can (3, 4, 14, 40, 41, 62), but does not 536 

always (present study, 5, 8, 32, 66), alter the O2 cost of exercise in normoxia.   537 

Indices of muscle oxygenation measured with NIRS were altered as a result of the 538 

manipulation of FIO2 during moderate-intensity exercise but BR supplementation did not 539 

significantly influence this response. Consistent with a previous study (49), [HHb] was 540 

greater in hypoxia indicating that muscle fractional O2 extraction was increased, while 541 

[HbO2] and TOI were significantly reduced in hypoxia compared to normoxia. Although not 542 

significant, BR supplementation tended to ameliorate the negative effects of hypoxia upon 543 

TOI during moderate-intensity exercise in the current study (a 3.6% increase in TOI), in a 544 

similar fashion to that reported by Masschelein et al. (50) (a 4% increase in TOI). These 545 

effects are consistent with observations that the arterial-venous nitrite difference is associated 546 

with limb vasodilatation and increased skeletal muscle blood flow during exercise performed 547 

in hypoxia (20). The trend for an improved TOI with BR supplementation indicates better 548 

muscle oxygenation (24) which may have been responsible for the speeding of the O2 549 

kinetics observed in hypoxia. Consistent with a possible improvement in oxygenation status, 550 

the typical compensatory rise in HR in hypoxia was attenuated by BR compared to PL during 551 

moderate-intensity exercise. Specifically, HR was 5-6 b·min-1 lower in the H-BR compared to 552 

the H-PL condition. There were no differences between H-BR and H-PL in indices of muscle 553 

oxygenation or HR during severe-intensity exercise.  554 
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Whether the reduction in cardiac work (lower HR) and metabolic requirement (lower O2) 555 

with BR observed in the present study might translate into enhanced performance during 556 

prolonged low-intensity exercise at altitude remains to be determined. Furthermore, older age 557 

and a number of disease conditions including peripheral arterial disease, diabetes, COPD and 558 

anaemia are associated with tissue hypoxia. A reduced O2 cost of moderate-intensity exercise 559 

(i.e. walking) and reduced muscle metabolic perturbation during physical activity may 560 

improve the quality of life in individuals with these diseases (34, 64).  However, further 561 

research is required to explore the effects of BR supplementation on health and functional 562 

capacity in patient populations.  563 

Effects of BR supplementation on the physiological response to severe-intensity exercise 564 

The end-exercise O2 was significantly reduced in hypoxia compared to normoxia. Moreover, 565 

[HbO2] and TOI of the m. vastus lateralis were significantly reduced, while [HHb] and HR 566 

were significantly increased in hypoxia compared to normoxia, consistent with previous 567 

findings (50). There was a trend toward a reduction in end-exercise O2 with BR compared to 568 

PL supplementation in hypoxia of ~ 6%. This finding indicates the O2peak may be reduced by 569 

NO3
- supplementation and is consistent with some (6, 42) but not all previous studies (4, 33, 570 

62) conducted in normoxia.  571 

Tolerance to severe-intensity cycle exercise in hypoxia in the present study was significantly 572 

improved (9%, P < 0.05) following BR supplementation. This finding is consistent with 573 

earlier studies which reported that BR supplementation increased exercise tolerance during 574 

constant-work-rate (64) and incremental (50) exercise protocols and also enhanced cycling 575 

time-trial performance (51) in hypoxia. However, in contrast to previous findings (3, 4, 8, 33, 576 

37), we found no effect of BR supplementation on exercise tolerance in normoxia. An 577 

interesting observation in the present study was the significant correlation between the 578 

reduction in steady-state O2 and the improvement in exercise tolerance following BR 579 

supplementation in hypoxia (r = -0.96). Therefore, the lack of effect on O2 during sub-580 

maximal exercise in normoxia following BR supplementation may explain the lack of effect 581 

on exercise tolerance.  Further research is required to address the physiological bases for 582 

responders and non-responders to dietary nitrate supplementation.  583 

Perspectives 584 
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This study provides the first description of the influence of FIO2 and BR supplementation on 585 

plasma [NO2
-] dynamics during moderate- and severe-intensity exercise and subsequent 586 

recovery in humans. The greater rate of decline of plasma [NO2
-] during exercise following 587 

BR compared to PL supplementation suggests that elevating plasma [NO2
-] prior to exercise 588 

may promote NO production through the nitrate-nitrite-NO pathway. In hypoxia, but not 589 

normoxia, BR supplementation reduced the O2 cost of moderate-intensity exercise, speeded 590 

O2 kinetics, and improved severe-intensity exercise tolerance. These findings may have 591 

important implications for individuals exercising at altitude. 592 
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Figure Legends 598 

Figure 1. Plasma [NO2
-] response during moderate- and severe-intensity exercise and 599 

recovery following BR and PL, in normoxia and hypoxia. Error bars indicate SE. H-BR was 600 

greater than H-PL at each time point and N-BR was greater than N-PL at each time point. a = 601 

P < 0.05 for N-BR compared to H-BR; b = P < 0.05 compared to moderate baseline; c = P < 602 

0.05 compared to severe baseline. Where error bars are not visible, the size of the data point 603 

exceeds the error. 604 

Figure 2. Pulmonary O2 uptake ( O2) responses during a step increment to a moderate-605 

intensity work rate, following PL and BR supplementation. Responses following BR are 606 

represented as solid circles, with the PL responses being shown as open circles. The dotted 607 

vertical line denotes the abrupt ‘step’ transition from baseline to moderate-intensity cycling 608 

exercise. Error bars indicate the SE. A: Group mean response to moderate-intensity exercise 609 

in normoxia (~21% FIO2); B: Group mean response to moderate-intensity exercise in hypoxia 610 

(~13.2 FIO2); * = P < 0.05 compared to H-PL. 611 

Figure 3. Pulmonary O2 uptake ( O2) responses and time-to exhaustion during a step 612 

increment to a severe-intensity work rate, following PL and BR supplementation. Responses 613 

following BR are represented as solid circles, with the PL responses being shown as open 614 

circles. The dotted vertical line denotes the abrupt ‘step’ transition from baseline to moderate-615 

intensity cycling exercise. Error bars indicate the SE. A: Group mean response to severe-616 

intensity exercise in normoxia (~21% FIO2); B: Group mean response to severe-intensity 617 

exercise in hypoxia (~13.2 FIO2). * = Time to exhaustion greater in H-BR compared to H-PL 618 

(P < 0.05; one-tailed t-test). 619 
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Table 1. Arterial oxygen saturation and heart rate during rest and in response to moderate- and 
severe-intensity exercise.  

 N-PL N-BR H-PL H-BR 

Resting without inspirate 
SaO2 (%) 
10 min period 
End 
HR (b/min) 
10 min period 
End 
 
Resting with inspirate 
SaO2 (%) 
10 min period 
End 
HR (b/min) 
10 min period 
End 
 
Moderate-intensity exercise  
SaO2 (%) 
Baseline 
6 min period 
End 
HR (b/min) 
Baseline 
6 min period 
End 
 
Severe-intensity exercise   
SaO2 (%) 
Baseline 
Exhaustion 
HR (b/min) 
Baseline 
Exhaustion 

 
 

99 ± 1 
99 ± 1 

 
59 ± 9 
60 ± 9 

 
 
 

99 ± 1 
99 ± 1 

 
58 ± 9 
60 ± 8 

 
 
 

97 ± 3 
97 ± 3 
97 ± 3 

 
  82 ± 10 
102 ± 15 
105 ± 16 

 
 
 

98 ± 2 
94 ± 4 

 
 97 ± 9 
179 ± 4 

 
 

99 ± 1 
99 ± 1 

 
61 ± 10 

     61 ± 9 
 
 
 

99 ± 1 
99 ± 1 

 
60 ± 11 
60 ± 11 

 
 
 

98 ± 2 
98 ± 2 
97 ± 3 

 
  86 ± 12 
107 ± 15 
111 ± 17 

 
 
 

     97 ± 3 
94 ± 4 

 
  103 ± 12 

180 ± 5 

 
 

99 ± 1 
99 ± 1 

 
61 ± 10 
61 ± 10 

 
 
 

93 ± 2† 
90 ± 3† 

 
68 ± 11 

68 ± 11† 
 
 
 

     87 ± 4 
83 ± 3† 
81 ± 4† 

 
101 ± 16 
122 ± 15 

130 ± 15† 
 
 
 

86 ± 4 
 80 ± 3† 

 
113 ± 9 
172 ± 6 

 
 

99 ± 1 
99 ± 1 

 
61 ± 9 
61 ± 9 

 
 
 

93 ± 2* 
91 ± 1* 

 
66 ± 10# 
66 ± 10* 

 
 
 

       85 ± 4  
84 ± 4* 
82 ± 5* 

 
  94 ± 13 
117 ± 19# 
124 ± 19* 

 
 
 

87 ± 4 
  80 ± 4* 

 
  114 ± 12 

171 ± 6 

# P < 0.05 compared to H-PL; * P < 0.05 compared to N-BR; † P < 0.05 compared to N-PL. 

 



Table 2. Oxygen uptake kinetics in response to moderate- and severe-intensity exercise in 
hypoxic and normoxic conditions.  

 N-PL N-BR H-PL H-BR 

Moderate-intensity exercise  
V̇O2 (ml/min) 
Baseline  
End Exercise  
Phase II τ, (s) 
Primary amplitude 
 
Severe-intensity exercise   
V̇O2 (ml/min) 
Baseline 
End Exercise 
Phase II τ, (s) 
Primary amplitude  
Slow Component Amplitude 

 
 

1102 ± 156 
1970 ± 251 
  22 ± 10 

  868 ± 210 
 
 
 

1212 ± 179 
4814 ± 470 

30 ± 6 
2716 ± 398 
  886 ± 235 

 
 

1010 ± 343 
1908 ± 340 

17 ± 4# 
  899 ± 256 

 
 
 

1205 ± 158 
4721 ± 434 

28 ± 9 
2636 ± 486 
  881 ± 259 

 
 

1167 ± 123 
2049 ± 247 

  31 ± 11 
  882 ± 214 

 
 
 

1244 ± 175 
 3986 ± 300† 

 35 ± 14 
2450 ± 497 

   302 ± 290† 

 
 

  1056 ± 133# 
  1905 ± 275# 
     24 ± 13# 
   849 ± 208 

 
 
 

1193 ± 177 
  3751 ± 249* 

  31 ± 11 
2264 ± 386 

    301 ± 274* 

# P < 0.05 compared to H-PL; * P < 0.05 compared to N-BR; † P < 0.05 compared to N-PL. 

 



1 
 

Table 3. Near-infrared spectroscopy- derived HHb, HbO2, Hbtot and TOI dynamics during 
moderate- and severe-intensity exercise.  

 N-PL N-BR H-PL H-BR 

Moderate-intensity exercise  
[HHb] (AU) 
Baseline 
120 s 
End Exercise 
Time Constant, (s) 
Amplitude 
 
 
[HbO2] (AU) 
Baseline 
120 s 
End Exercise 
 
[Hbtot] (AU) 
Baseline 
120 s 
End Exercise 
 
TOI (AU) 
Baseline 
120 s 
End Exercise 
 
Severe-intensity exercise 
[HHb] (AU) 
Baseline 
120 s 
End Exercise 
Time Constant, (s) 
Primary amplitude 
Slow phase amplitude 
 
[HbO2] (AU) 
Baseline 
120 s 
End Exercise 
 
[Hbtot] (AU) 
Baseline 
120 s 
End Exercise 
 
TOI (AU) 
Baseline 
120 s 
End Exercise 

 
 

7 ± 5 
     11 ± 8   
     12 ± 8 
     23 ± 7 
       5 ± 4 

 
 
 

2 ± 6 
1 ± 6 
4 ± 5 

 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

65 ± 3 
61 ± 5 
62 ± 7 

 
 

 
5 ± 5 

19 ± 13 
22 ± 14 

     13 ± 5 
     14 ± 10 

3 ± 2 
 
 

7 ± 7 
      -4 ± 7 
      -7 ± 9 

 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

     70 ± 5 
52 ± 12 
48 ± 11 

 
 

6 ± 5 
     11 ± 7 
     11 ± 7 
     19 ± 6 

 6 ± 4 
 
 
 

3 ± 6 
2 ± 6 
5 ± 5 

 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

65 ± 4 
60 ± 6 
61 ± 7 

 
 
 

5 ± 5 
18 ± 11 
21 ± 12 

     11 ± 5 
     14 ± 8 

 3 ± 2 
 
 

8 ± 7 
     -3 ± 7 
     -7 ± 7 

 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

69 ± 4 
  51 ± 10 

47 ± 9 

 
 

11 ± 5† 
18 ± 8† 
20 ± 8† 

      22 ± 9 
        8 ± 5† 

 
 
 

2 ± 5 
       -2 ± 4 

   0 ± 3† 
 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

  61 ± 4† 
  52 ± 5† 
  52 ± 6† 

 
 
 

10 ± 6† 
  25 ± 12† 
  26 ± 12† 

      11 ± 3 
      14 ± 9 

   2 ± 2† 
 
 

6 ± 5† 
-9 ± 4 † 

    -11 ± 5† 
 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

64 ± 4 
44 ± 9 

  41 ± 9† 

 
 

10 ± 5* 
  17 ± 10* 
  18 ± 10* 

      23 ± 7  
   7 ± 6* 

 
 
  

 2 ± 7 
       -2 ± 8 

   -2 ± 9* 
 

 
1 ± 0 
1 ± 0 
1 ± 0 

 
 

  63 ± 4* 
   54 ± 6* 
    54 ± 6* 

 
 
 

10 ± 6* 
  24 ± 14* 
  26 ± 14* 

      12 ± 6 
 14 ± 10 
   2 ± 2* 

 
 

 5 ± 8* 
    -10 ± 8* 

-12 ± 7 * 
 
 

1 ± 0 
1 ± 0 
1 ± 0 

 
 

64 ± 4 
   44 ± 10 
   41 ± 8* 

Deoxygenated hemoglobin concentration ([HHb]), oxygenated hemoglobin concentration ([HbO2]), 
total hemoglobin concentration ([Hbtot]) and total oxygenation index (TOI) are shown. * P < 0.05 
compared to N-BR; † P < 0.05 compared to N-PL. AU = arbitrary units. 
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