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ABSTRACT

L ifespan can be extended by reduction of dietary
intake. This practice is referred to as dietary
restriction (DR), and extension of lifespan by DR is

evolutionarily conserved in taxonomically diverse organisms
including yeast, invertebrates, and mammals. Although these
two often-stated facts carry the implication that the
mechanisms of DR are also evolutionarily conserved,
extension of lifespan could be a case of evolutionary
convergence, with different underlying mechanisms in
different taxa. Furthermore, extension of lifespan by
different methods of DR in the same organism may operate
through different mechanisms. These topics remain
unresolved because of the very fact that the mechanisms of
DR are unknown. Given these uncertainties, it is essential that
work on the mechanisms of DR is not clouded by imprecise
descriptions of methods or by technical problems. Here we
review the recent literature on DR in Drosophila to point out
some methodological issues that can obscure mechanistic
interpretations. We also indicate some experiments that
could be performed to determine if DR in Drosophila operates
through similar mechanisms to the process in rodents.

Introduction

At the beginning of the 20th century, the first experiments
studying the effects of environmental interventions on
lifespan were undertaken using the fruit fly Drosophila
melanogaster [1]. Of particular note is the work of Loeb and
Northrop [2], which found that Drosophilamaintained at lower
temperatures were longer lived. Since metabolic rate in
poikilotherms is determined by ambient temperature, it was
proposed by Raymond Pearl that organisms have a genetically
predetermined amount of energy to expend in a lifetime and,
therefore, that the rate of its expenditure would determine
lifespan [3,4]. The central mechanism of this ‘‘rate of living’’
hypothesis is that aging and subsequent death are brought
about by an accumulation of the detrimental effects of the
products of normal metabolism that cannot be adequately
cleared.

At about the same time, Stefan Kope�c [5], working on the
causes of death by starvation, reached the conclusion that it
was brought about by ‘‘autointoxication’’ from products of
hunger metabolism. In addition, he proposed that starvation
provided ‘‘antitoxins’’ against those detrimental effects of
normal metabolism referred to by Pearl above and, likewise,
that normal feeding provided ‘‘antitoxins’’ against starvation.
He thus reasoned that balancing these effects might benefit
the organism and lead to prolonged lifespan. He tested this
hypothesis experimentally in 1928 using Drosophila
maintained on a regime of alternating periods of feeding and
fasting [5]. Interestingly, Kope�c reported that the ‘‘. . .results

pointed undoubtedly to the conclusion that periods of
intermittent starvation for six hours out of every 24 increases
longevity of the flies . . . ’’ [5]. However, examination of the
data in the paper shows the effect was less than convincing,
ranging from 16% shortening of mean lifespan to 17%
extension, with an average effect over ten trials of 2%
extension.
Seven years later, Clive McCay reported the effects of an

intermittent feeding regime on the lifespan of white rats [6].
This resulted in males achieving almost double the lifespan of
those fed ad libitum, an effect that has since been repeated in
rodents many times using a variety of different methods, and
now termed caloric restriction or dietary restriction (DR) [7].
We use the more general term ‘‘DR’’ in this review, because it
covers both cases where total caloric intake correlated with
extended lifespan and those where specific nutrients are of
importance, leaving open which of these mechanisms is
operative. Despite the initial lack of success that Kope�c [5] in
fact had with the intermittent feeding DR protocol in flies, it
has since been shown that it is possible, with appropriate
techniques, to extend the lifespan of many organisms,
including Drosophila, by reducing food intake (see Table S1 for
a summary of DR experiments with flies and the range of
techniques implemented). This has opened the way for the
use of short-lived, invertebrate model organisms such as
yeast, nematodes, and flies to investigate the mechanisms of
DR that could also be operative in mammals.
A potential problem of comparative DR studies using

distantly related species is that the mechanisms underlying
the prolongation of life may not be conserved between
different lineages during evolution, because the mechanisms
by which DR extends lifespan within each species are
unknown. To make progress with resolving the issue of
evolutionary conservation, it is essential that studies of DR
are reported in sufficient detail for the procedures to be
replicated and that any intervention described as ‘‘DR’’ does
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in fact operate through a reduction in the supply of nutrients,
rather than through the removal of some other detrimental
effect. Despite the simplicity of this point, it is overlooked
surprisingly frequently. Here, we consider how such technical
issues could have affected conclusions of studies of DR in
Drosophila. Resolving these issues are of central importance
for uncovering the mechanisms of DR through comparative
model organism studies.

Restricting Access to Nutrients

The most practical method for implementing DR in
Drosophila is by dilution of the food medium to which the flies
have ad libitum access [8]. In addition to the work by Kope�c [5]
cited above, several other laboratories have unsuccessfully
attempted to implement DR in a variety of fly species using
intermittent feeding regimes [9–12] (Table S1). This lack of
success has been interpreted by some to indicate that DR does
not work in flies [9,12,13]. An alternative explanation is that
there is a detrimental effect of daily periods of extended
starvation for flies that is not found for rodents when fed
intermittently. This detrimental effect could counter-act any
beneficial effects of underfeeding and so fail to extend
lifespan. This could occur if the intermittently fed animals
have specific nutritional needs during the starvation period
that must be met for lifespan to be extended by intermittent
feeding. Interestingly, Partridge et al. [14] found that when
they intermittently fed yeast to flies (every sixth day) that had
constant access to sugar-water, lifespan was extended by some
30% compared with flies fed yeast and sugar ad libitum. This
contrasts with the negative results from other intermittent
feeding studies, where the flies had constant access to water
that did not contain sucrose [5,12]. These data indicate that a
carbohydrate-enriched diet may be necessary to rescue a
detrimental effect of starvation periods for Drosophila. The
result also points to the specific nutritional effects of yeast
being important for lifespan-extension by DR in flies, which
has recently been confirmed [15].

Food Dilution—Toxicity versus Nutrient-Dependent
Lifespan Extension

As mentioned above, DR in flies can be achieved by diluting
the concentration of nutrients in their food medium, which is
always present in excess (Table S1). One food type for
Drosophila consists of an agar-gelled diet of dried autolysed
yeast and sucrose [16,17]. The effect of changing the
concentrations of these nutrients ranges from outright
starvation at the lowest food levels, through a lifespan peak
(DR), to a decrease in lifespan as nutrient concentration
becomes ‘‘high’’ (Figure 1). The increase in lifespan seen from
‘‘high’’ levels of nutrition to DR is generally interpreted as a
consequence of a positive effect of withdrawal of nutrients on
the systems that ensure longer life, perhaps via a reduction in
activities such as reproduction that may cause somatic
damage [18]. A risk of using food dilution to implement DR is
the possibility that flies compensate for lowered nutrient
levels by increasing their feeding behaviour. At this stage,
both evidence for [19] and against [15,20] compensatory
feeding has been published. This discrepancy needs to be
addressed with further work and may simply be due to the
technical difficulties in determining the feeding rate of such a
small organism (see Video S1 for an example of Drosophila

feeding). It is estimated that Drosophila only consume between
one and two microlitres of food per 24 hour period [19,21],
40-fold less than a blowfly for the same period of time [22].
Despite these difficulties, it is clear that egg-laying output,
which is known to be under nutrient control [23–25],
increases as food concentration increases [17,26]. Thus, if
compensatory feeding does occur, it is not sufficient to
overcome the degree of nutrient dilution in the diet, and the
lifespan increase seen under DR correlates with a decrease in
acquisition of biologically useful nutrients. However, this
correlation does not reveal causation and an alternative
explanation is that reduced food supply simply relieves
‘‘high’’-food flies from a non-nutritional, toxic effect of the
diet.
Dietary toxicity could occur from either the presence of a

poisonous element in the food, or via an indirect effect of the
food being nutritionally inadequate or unbalanced, or
physically dangerous, or a source of infection. Whatever the
precise mechanism, if toxicity increases as the food
concentration increases, the effect is indistinguishable from
DR, since lifespan is shortened as food concentration
increases. For Drosophila, where the food is the nutrient and
water supply as well as a large part of the physical
environment, increasing the nutritional value of the food also
results in an increase in the ratio of dissolved nutrients to
water. This could therefore cause flies to suffer shortened
lifespan due to increased food hardness or water stress. We
have recently tested this possibility and shown that when
experiments are carefully performed, neither food hardness
nor water shortage account for the life-shortening effects of
high-nutrient food [27]. It has also been suggested that
increased nutrient content may enhance microbial growth,
which could shorten fly lifespan by making the food more
sticky or by encouraging a greater chance of lethal infection.
Where these two factors have been tested, they have been
shown not to affect lifespan [15,26]. For C. elegans, recent work
has indicated that its commonly used laboratory feedstock, E.
coli, has a toxic effect that shortens worm lifespan. In addition
to worms surviving longer on killed E. coli media or in its
complete absence [28–31], when worms were fed the soil
bacterium B. subtilis instead of E. coli they were much longer
lived [32,33]. This means that studies of ‘‘DR’’ in worms that
rely on dilution of an E. coli food supply report the combined
effects of reduced toxicity as well as reduced nutrient supply.
In a more general sense, any natural food supply could
contain toxins as well as nutrients, and therefore it is
important to establish that any ‘‘DR’’ effect is in fact due to
reduced intake of nutrients and not any direct or indirect
toxicity effect of the food.
For flies, the problem of food toxicity is to some extent

countered by using female egg-laying as a biologically
relevant read-out of nutritional quality. If egg-laying
increases with food supply, then it is reasonable to deduce
that nutrient intake is increased. In combination with
lifespan, egg-laying can indicate if food toxicity might be the
cause of lifespan shortening, the argument being that if a fly
does not increase its egg-laying for nutrient level increases
that decrease lifespan, the food may be having a general toxic
effect. For DR therefore, each increase in nutrient
concentration that leads to a reduction in lifespan should be
accompanied by an elevation in daily and lifetime fecundity
(Figure 1). At the very least, this ensures that dietary types
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that are used for DR do result in increased nutrition over the
range tested. A further test for food toxicity could be made
using behaviour assays such as negative geotaxis [34] on young
flies. Since the quality of industrially produced yeasts is
dependent on the production method and seasonal quality of
the feedstock, it is important that laboratories empirically
determine whether they are working with yeast that is not
toxic to flies. Unfortunately, not all studies have taken this
precaution (Table S1). For instance, some work on the effects
of dietary lipids on lifespan was performed without any
simultaneous measure of egg laying or activity, thus making it
impossible to know if increased food supply was in fact
associated with increased nutrition, or if the short lifespans
associated with elevated lipid supply were due to a nutritional
effect or instead due to toxicity of the lipid sources added
[35–37]. In some cases, such as experiments with males or
sterile females, egg laying cannot be used to indicate the food
quality. In these instances, informed choices can be made
using data from fertile females of the same genetic stock or,

as mentioned above, by the use of behavioural assays such as
climbing ability. A biological indicator of nutrient quality
other than lifespan is essential, because inter-species
comparisons of the mechanisms of DR rely on the fact that
DR is actually being studied in each organism.
One important line of work to uncover the mechanisms of

DR has focussed on isolating the specific nutritional
requirements for the effect on lifespan. The community
working on DR in rodents has generally taken the view that
reduced calorie intake is critical for the lifespan-extension
associated with food reduction and has therefore adopted the
term caloric restriction [7,38]. However, it is also
acknowledged that other types of food restriction that do not
affect calorie intake can also extend lifespan [7,39–46]. Each
of these interventions may or may not lead to lifespan-
extension through the same mechanisms. For instance,
dietary restriction for a particular nutrient such as
methionine [42,45] may in fact affect the utilization of other
dietary components such that the organism ultimately

doi:10.1371/journal.pgen.0030057.g001

Figure 1. The Responses of Lifespan and Fecundity to Food Concentration That Is Required for DR Studies in Drosophila

As food concentration increases from starvation, lifespan should increase to a peak at DR, from which it declines due to a nutrient-dependent effect of
‘‘high’’ food. If fecundity decreases (A) or is unchanged (B) by the nutrient increase that decreases lifespan, the most likely explanation for shortened
lifespan is toxicity. To minimise the possibility that food toxicity is the explanation for the lifespan shortening at high food concentrations, it is
important that daily and lifetime fecundity increase for the increases in food concentrations that decrease lifespan (C).
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experiences physiological energy restriction. Studies of the
effect of exposure to diets of varying composition on food
intake, and of the effects diet composition has on absorption
of specific nutrients are needed to resolve these issues. In
addition to these effects, there is evidence in worms and flies
that olfaction of food, as well as food intake, can shorten
lifespan [47,48]. One clear fact to emerge from the body of
work on rodents is that, in addition to the data implicating
reduced calorie intake as sufficient for lifespan extension,
changes to either the quality or quantity of the protein
component of the diet has the capacity to alter lifespan, even
when caloric intake is equivalent between cohorts
[39,40,44,45,49]. Recently, work on Drosophila has reached a
similar conclusion, by showing that specific reduction of the
yeast component in an otherwise isocaloric diet can extend
lifespan to a similar degree as whole-food (yeast and sucrose)
reduction, which also has lower caloric content [15]. Even
more recently, an attempt has been made to use semi-defined
media to study DR in flies [50]. This paper concluded that the
protein component of the diet was critical for the effect.
However, the flies on the semi-defined diet had dramatically
reduced daily and lifetime fecundity and were not longer-
lived than fully fed controls, indicating a toxic effect of the
protein source (casein) being used. Thus it is important that
future work focuses on developing appropriate semi- and
fully-defined diets that avoid complications from toxicity.

An attractive candidate mechanism for the prolongation of
life in response to food reduction, and more specifically
protein shortage, is the activation of autophagy [51–53]. This
process turns over subcellular material in response to low
nutrients and is as evolutionarily conserved as the DR effect
itself [54]. Autophagy is activated by reduced insulin and TOR
(Target Of Rapamycin) signaling and is therefore enhanced
when both the energy and amino acid status of the organism
are lowered [55–57]. Autophagy acts to recycle damaged/
malfunctioning proteins and organelles from the cell and
may, therefore, as a by-product of this action, clear out
damaged macromolecules that contribute to aging. While
there is currently no direct evidence that increased
autophagy in older individuals can delay aging, it has been
shown in C. elegans that autophagy is required for the lifespan
extension of worms mutant for the insulin receptor daf-2 [58].
In addition, a rodent study reporting the effects of every-
other-day feeding on lifespan [41,43] is also compatible with
an autophagy-based mechanism. In this experiment, rodents
were dietarily restricted by allowing them to feed ad libitum
during restricted hours. During the periods of feeding, the
restricted cohort consumed almost the same quantity as
rodents fed ad libitum all the time. These ‘‘restricted’’ animals
were long-lived despite consuming almost the same diet as
those fed ad libitum and achieved a very similar body weight.
Thus, for this intervention at least, the advantage gained by
the long-lived animals was not due to reduced calorie or food
intake, but was acquired by periods of fasting—a concept
remarkably similar to Kope�c’s ‘‘antitoxins’’ furnished by
periods of starvation [5], and compatible with an autophagy-
like process acting to recycle cellular material to scavenge
resources. Clearly, there is a need for further work to
determine if an organism’s response to DR is autophagy-
dependent and if maintaining autophagy in an active state for
longer can prolong lifespan.

The Consequences of Sex during DR

One of the long-known features of DR animals is that they
have compromised reproductive capacity. Indeed, this
feature of DR has been used to form hypotheses about the
evolutionary significance of the response to DR, based on the
concept of allocation of limiting resources between somatic
maintenance and reproduction [59–62]. For many organisms,
it could be beneficial during lean times to increase allocation
of nutritional resources into maintaining the adult, to
increase the chance of survival to a time when the food supply
is restored. In Drosophila, high levels of nutrition increase
female egg production. This leads them to use up their
supplies of stored sperm more rapidly [63] and to re-mate
more frequently than those with poorer nourishment [17].
Sexual activity has been shown to shorten the lifespan of both
male and female flies [14,64–66]. Thus, flies that are allowed
to mate freely throughout life maintained on high-nutrient
food will be shorter lived than those on low-nutrient food,
due to differences in sexual activity, as well as differences
caused by direct nutritional effects of DR. For this reason, it is
essential for any study investigating the effects of DR on fly
lifespan to control mating status; for instance, by using single-
sex cohorts. At this stage it is unknown whether male–male or
female–female interactions such as fighting [67] also affect
lifespan in a nutrient-level-dependent manner. While the
effect of adult density on lifespan is already known [68], the
difference in longevity between individually and group-
housed flies at different food levels remains untested.
Many studies that have used Drosophila to investigate the

mechanisms of DR have done so using mixed-sex groups
[20,26,50,69–77] (Table S1). From this body of work, it has
been concluded that p53, SIR2, and resveratrol function in
the same pathway, which is essential for DR’s lifespan-
extending effects [73–75]. However, the use of mixed-sex
groups without controlling for mating status in these
experiments means it is impossible to discern the interaction
between genotype or drug treatment and diet on lifespan,
because sexual activity will act as a confounding variable.
Thus, it is important for future work on flies, as well as
comparative mechanistic studies of DR that flies are housed
in single-sex cohorts, or even singly, for experiments.

Aging, Diseases, and Death

The long history of DR studies in rodents has provided us
with a great deal of data that show that, with few exceptions,
DR extends the lifespan of a variety of lab-maintained strains
of rats and mice [7]. Many of these are inbred strains that are
theoretically genetically homogenous and homozygous at
almost all loci. Inevitably, different inbred lines become
prone to different aging-related disorders [78], and yet they
generally respond to DR with extended lifespan and a delay in
a host of aging related diseases [7,39,40,79–81]. What is more,
rodent models of specific diseases that are associated with
aging, such as Alzheimer disease, appear to respond
favourably to DR, with a delay in disease [82,83]. These
observations and DR’s ability to slow a wide array of aging-
related disorders, as well as the evolutionary conservation of
its lifespan-extending effect, can be interpreted to indicate
that DR affects the root of aging itself and is not just reducing
a specific disease by diet interaction [7]. If a similarly deep-
rooted mechanism is at work in flies, a direct comparison of a
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variety of inbred laboratory lines of Drosophila should reveal
that most respond to DR. This should also be true of flies
affected by specific aging-related disorders, such as the fly
model of Alzheimer disease [84]. As a by-product of this work,
any mutants or inbred lines that do not respond to DR will be
important tools in future work to uncover the mechanisms of
lifespan extension.

Conclusions

Despite many years of work, the mechanisms that underlie
the effect of DR on lifespan remain unknown. Although
historically much of the work has been performed with
rodents, large-scale lifespan experiments under many
conditions and genetic analysis are better suited to shorter-
lived, and more easily housed, model organisms such as the
invertebrates. However, if work in invertebrates is to be of
any relevance to the study of aging in higher organisms, it is
important to establish techniques that eliminate the
confounding effects of nonaging-related causes of death, such
as food toxicity and altered sexual activity. Only then can the
mechanistic relationship between diet and death be
established, providing modes of action to be tested in the
longer-lived models. To test whether the mechanisms of DR
are likely to be conserved from flies to mice, it will be
interesting to see if Drosophila of different inbred lines or
disease models respond to DR in a manner similar to their
rodent counterparts. These studies are likely to be further
refined by dietary interventions that focus on altering specific
nutrients and on discovering mutations that block or alter
the response to DR. What is exciting about studying DR in
Drosophila is that each of the tools to perform these
investigations are currently available or within close reach,
meaning that characterisation of DR in Drosophila is likely to
continue to be a fertile ground for research.

Supporting Information
Table S1. Summary of Various DR Experiments Performed with Flies

Found at doi:10.1371/journal.pgen.0030057.st001 (96 KB DOC).

Video S1. Female Drosophila Feeding on DR and Control Media

Found at doi:10.1371/journal.pgen.0030057.sv001 (9.2 MB WMV).
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