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Abstract: Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health 
effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal 
toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown 
that dietary supplements play important roles in protecting against Cd and Pb toxicity.  
This paper reviews the evidence for protective effects of essential metals, vitamins, edible 
plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity 
and describes the proposed possible mechanisms. Based on these findings, dietary strategies 
are recommended for people at risk of Cd and Pb exposure. The application of these 
strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity,  
as such supplements can be added easily and affordably to the daily diet and are expected to 
have very few side effects compared to the chelation therapy. 
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1. Introduction 

Heavy metal toxicity is one of the oldest environmental problems and remains a serious health 
concern today. Cadmium (Cd) and lead (Pb) are common toxic heavy metals in the environment. The 
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general public is exposed to Cd and Pb through the ambient air, drinking water, food, industrial materials 
and consumer products [1,2]. Today, it is the developing countries that are facing the most serious Cd 
and Pb pollution problems. The threshold for blood lead level (BLL) thought to cause toxicity in children 
was 60 μg/dL in 1960s but this value was lowered to 10 μg/dL in 1991, subsequently the Centers for 
Disease Control and Prevention in US reported that they no longer consider any blood lead level to be 
safe for children [3]. As a consequence of pollution, the blood lead analyses of 15,727, 14,737 and 
13,584 Chinese children in 2004, 2005, and 2006, respectively, showed 10.10%, 7.78% and 7.30% of 
children had BLL above 10 μg/dL [4]. A study conducted in Pb polluted areas of Egypt between 2007 
and 2008 indicated that 44% of tested children had BLL above 10 μg/dL, and 37% of these had cognitive 
dysfunction [5]. As reported in 2010, the average BLL of Indian children from a polluted village was 
15.11 ± 5.62 μg/dL [6]. The average Cd concentration of rice from polluted areas in Jiangxi Province of 
China was 0.59 mg/kg in 2006, which is 2.5 times higher than it was in 1987 and significantly higher 
than the Chinese Hygienic Standard for rice (0.20 mg/kg) [7]. A study conducted in a heavy metal 
polluted village in Vietnam in 2007 showed that the Cd concentration of rice was 0.31 mg/kg, 
significantly higher than the maximum allowable concentration for Cd in rice (0.20 mg/kg), as published 
by the Vietnamese Ministry of Health [8]. 

Cd and Pb exposure cause a broad range of adverse health effects in humans and animals. Cd toxicity 
is associated with pulmonary [9], renal [10], hepatic [11], skeletal [12], reproductive [13] and cardiovascular 
dysfunctions [14]. This non-essential metal is also classified as a group I human carcinogen by the 
International Agency for Research on Cancer [15]. Pb exposure induces neurologic and haematological 
dysfunctions [16,17], renal and hepatic damage [18,19] as well as reproductive disorders [20] in the 
human body. Children are especially at greater risk because they have higher intestinal Pb absorption and 
more vulnerable nervous systems which are still under development [16,21,22]. Although a number of 
different routes by which Cd and Pb cause toxicity have been reported, the underlying basic mechanisms 
can be summarized as the interactions between Cd/Pb and essential metals [22,23] and the oxidative 
stress caused by Cd/Pb exposure [24,25]. To some extent these two mechanisms are still interrelated 
because the metabolic disorder of essential metals such as zinc and selenium also induces adverse effects 
in the oxidative and antioxidative systems [26,27]. 

The most commonly used therapeutic strategy for heavy metal poisoning is chelation therapy to 
promote metal excretion. However, chelators for Cd and Pb toxicity are themselves reported to have  
a number of different safety and efficacy concerns. None of the chelation therapies for Cd toxicity  
have yet been approved for clinical use thus far [2,28]. Chelators such as CaNa2EDTA and  
meso-2,3-dimercaptosuccinic acid (DMSA) have been reported to have protective effects against  
Pb toxicity. However, CaNa2EDTA can cause renal toxicity (at the proximal tubule particularly), 
especially during repeated high doses treatment (above 75 mg/kg) and in subjects with previous history 
of kidney damage [29]. Because of its relative lack of specificity, other essential metals such as zinc, iron 
and manganese are also reported to be excreted and depleted following CaNa2EDTA therapy [30]. 
DMSA also has side effects such as appetite loss, nausea and diarrhea [31]. A study of children being 
treated with DMSA showed that 12% had mild gastrointestinal symptoms and 5% experienced general 
malaise [32]. The development of safe and efficient strategies against Cd and Pb toxicity is therefore an 
area of ongoing research. Dietary supplements have been reported to play important roles in the 
alleviation or prevention of Cd and Pb toxicity. Dietary strategies are advantageous, as nutritional 
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ingredients can easily and affordably be added to the daily diet and can overcome the negative side 
effects of the chelation therapy.  

Herein we review the potential dietary strategies for Cd and Pb toxicity of essential metal, vitamin, 
edible plant and dietary phytochemical supplementation and probiotics, among others.  

2. Essential Metals 

Many studies in both animals and humans have shown that a deficiency in essential metals such as 
zinc [33], calcium [34] or iron [35] can lead to greater absorption and toxicity of Cd and Pb. Therefore it 
is logical to suggest that the supplementation with essential metals can provide protective effects against 
Cd and Pb intoxication. A selection of such studies listed in Table 1 show the benefits of essential metals 
in this context. 

Zinc is one of the most well studied essential metals for the alleviation of heavy metal toxicity.  
As zinc has similar chemical and physical properties to Cd and Pb, it competes for the binding sites of 
metal absorptive and enzymatic proteins [36]. Intake of zinc also induces the synthesis of 
metallothionein (MT) [37], a low molecular weight protein that has a high affinity for Cd and causes 
detoxification by binding Cd [38]. Zinc supplementation effectively protects the activity of blood  
δ-aminolevulinic acid dehydratase (ALAD), a zinc-dependent enzyme that is very sensitive to Pb 
toxicity [39]. Moreover, zinc intake has been reported to alleviate the oxidative stress caused by Cd and 
Pb exposure [40,41], which may be due to zinc’s functionality as a cofactor of the antioxidant enzyme 
copper zinc-superoxide dismutase (Cu/Zn SOD).  

A considerable number of studies have shown that selenium administration is protective against Cd 
and Pb toxicity within a range of different organs of mice including the brain, lungs, liver, kidneys and 
blood. Selenium is a cofactor of the antioxidant enzyme glutathione peroxidase (GPx) and it contributes 
to the antioxidant defence system, which enables it to alleviate Cd and Pb toxicity by reducing the  
Cd/Pb-induced oxidative stress and enhancing the antioxidant capacity of the host [42,43]. It is also 
believed that selenium may form inactive complexes with heavy metals which can further enhance their 
detoxification [44]. 

Iron competes with Cd for access to intestinal metal uptake transporters including divalent metal 
transporter-1 (DMT1) and metal transporter protein 1 (MTP1), which may explain the decrease in 
intestinal Cd absorption after iron supplementation [45]. Moreover, the expression of these transporters 
is often modulated by nutritional status of essential minerals such as iron and zinc [28]. For instance 
iron deficiency has been reported to up-regulate the expression of DMT1 in intestinal epithelium [45,46]. 
Hence iron supplement can prevent or limit Cd absorption by reducing the expression of such 
transporters. On the other hand, as iron is a component of the heme complex, the deficiency of iron will 
enhance Pb toxicity to the heme synthesis system [47]. Other essential metals, such as calcium and 
magnesium, have also been reported to be effective against Cd and Pb toxicity (Table 1). These essential 
metals can reduce the heavy metal burden by competing with Pb or Cd for intestinal absorption and 
prevent heavy metal induced tissue damage by competitive binding to active sites of the enzymes [48,49]. 
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Table 1. Selected studies on the protective effects of essential metals against Cd and Pb toxicity. 

Essential 

Metal 
Administered Form Duration AnimalModel TargetSites ProtectiveEffects Ref. 

Zinc 

40 mg/L ZnCl2 in 

drinking water 
30 days 

Male rats exposed to 40 mg/L 

CdCl2 in drinking water 
Testes 

Zinc restored the activity of GPx and SOD in the testes 

and attenuated DNA oxidation in the gonads. 
[40] 

0.02% Zn2+ in drinking 

water 

PND 1 to PND 21, 

stop at weaning 

Pregnant mice exposed to 0.2%  

Pb-acetate in drinking water 
Brain 

Zinc restored the activity of SOD, XO and CAT, and 

decreased the LP levels in the pups’ brains. 
[41] 

Selenium 

20 μmol/kg b.w. 

(PhSe)2 by oral 

treatment 

4 weeks 
Male rats exposed to 10 μmol/kg 

b.w. CdCl2 (s.c.) 
Brain and lungs 

(PhSe)2 restored the activity of SOD and CAT, increased 

the vitamin C content and decreased the level of LP in the 

brain. It also decreased the Cd level in the lungs. 

[42] 

 
0.2 mg/L Na2SeO3 in 

drinking water 
21 days 

Lactating rats exposed to 100 mg/L 

Pb-acetate in drinking water 
Brain and nervous system 

Na2SeO3 improved the spatial memory and the level of 

LTP and decreased neuron apoptosis in the pups. 
[43] 

Iron 120 mg/kg b.w. Fe in diet 4 or 8 weeks 
Male rats exposed to 100 μg/kg b.w. 

CdCl2 by oral gavage 
Kidney, liver and intestinal tract 

An iron-sufficient diet decreased the Cd burden in the 

tissue and regulated intestinal Cd absorption through the 

iron transporters. 

[45] 

Calcium 
0.02% Ca2+ in  

drinking water 
GD 6 to PND 21 

Pregnant mice exposed to 0.2%  

Pb-acetate in drinking water 
Brain and nervous system 

Calcium decreased the synaptosomal AChE and 

mitochondrial MAO activity and improved the pups’ total 

locomotor activity and exploratory behaviour. 

[48] 

Magnesium 20 mg/kg b.w. Mg orally 1 or 2 weeks 
Male mice exposed to 10 mg/kg 

b.w. Cd 
Testes and kidneys 

Mg pre-treatment was efficient in restoring the renal and 

testis GSH levels. 
[49] 

AChE, acetylcholinesterase; b.w., body weight; CAT, catalase; GD, gestational day; GPx, glutathione peroxidase; GSH, glutathione; LTP, hippocampal long-term potentiation; LP, lipid peroxidation; MAO, 

monoamine oxidase; PND, postnatal day; s.c., subcutaneously; SOD, superoxide dismutase; XO, xanthine oxidase. 
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In summary, these essential metals decrease intestinal Cd and Pb absorption, recover the essential 
metal homeostasis and alleviate the oxidative stress caused by Cd and Pb toxicity. Diet associated 
essential metal supplementation should be regarded as important for essential metal-deficient people, 
such as children and pregnant women. Because without sufficient essential metal stores to prevent heavy 
metal absorption, these people are especially susceptible to heavy metal toxicity [16,21,50,51]. It should 
also be noted that Cd and Pb exposure cause the loss of essential metals, which leads to complications 
such as iron-deficiency anaemia and osteoporosis [52,53]. Appropriate concentrations of essential metal 
supplementation is therefore also beneficial for preventing these complications.  

3. Vitamins 

Vitamins are vital nutrients for humans and can easily be obtained from the diet. Vitamin C, B1 and B6 
deficiencies have been reported to enhance sensitivity towards Cd and Pb toxicity [54,55]. Vitamin 
supplementation has proved to be effective against Cd and Pb toxicity in both human and animal studies.  

Vitamins C and E are natural non-enzymatic antioxidants that are able to scavenge free radicals and 
decrease lipid peroxidation. Many studies on the effects of vitamins C and E on Cd and Pb intoxication 
have been performed. Vitamin C attenuates the oxidative damage and histopathological changes induced 
by CdCl2 in the lungs and brain of rats [56]. It has similar protective effects in the liver, kidney, brain and 
the testes of Pb-exposed rats [57]. Apart from its well-established antioxidant properties, vitamin C has 
been reported to act as a chelating agent of Pb, with a similar potency to that of EDTA [58]. Probably due 
to this chelating capacity, a decrease of blood Pb levels from 1.8 ± 0.05 μmol/L to 0.4 ± 0.05 μmol/L  
(p ≤ 0.01) was observed in a study of 75 adult smokers receiving 1 g vitamin C daily for one week [59]. 
However, it is noteworthy that very few animal studies can confirm the positive impact of vitamin C 
on reducing blood Pb levels. Indeed a human clinical study with 52 adult male subjects found that  
3 months of vitamin C supplementation had no impact on the levels of Pb in blood or hair [60]. 
Pre-treatment with vitamin E exhibits protective effects against Cd toxicity, as measured by the 
haematological values, lipid peroxide concentration and antioxidant defence system in the blood, liver 
and brain of rats [61,62]. The combination of vitamins C and E also resulted in reduction of oxidative 
stress-related damage to spermatogenesis in Cd-exposed mice [63] and protects steroid production in 
Cd-exposed rats [64]. In a recent study of workers exposed to Pb (73 μg Pb/dL blood), after one year of 
oral vitamin C and E supplementation (1 g daily vitamin C and 400 IU daily vitamin E), lipid 
peroxidation in erythrocytes was reduced to values between 47.1% and 69.4%, which were no longer 
statistically different to those of the non-Pb exposed workers. The total antioxidant capacity in 
erythrocytes was also reversed to values between 58.9% and 67.7% in Pb-exposed workers after 
treatment, a level that was similar to those in non-Pb exposed workers [65]. 

Dietary vitamin B1 supplement has been reported to decrease Pb levels in the liver, kidneys, bone and 
blood, and recover ALAD activity in the blood in animal studies [66–68]. Vitamin B1 influences the 
absorption of Pb and its pyrimidine ring mediates its interaction with Pb, which may cause an increase in 
Pb excretion and the alleviation of its toxicity [68,69]. Vitamin B6 has also been found to be effective in 
reducing accumulation of Pb in tissues and in reduction of inhibition of ALAD activity. This function is 
likely to be attributed to the ring nitrogen atom in its structure, which can chelate Pb before it is  
absorbed [70]. 
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4. Edible Plants and Dietary Phytochemicals 

Vegetables, fruits and other edible plants are important dietary sources of vitamins and essential 
metals. Edible plant supplementation at sufficient levels can promote the levels of the vitamins and 
essential metals in the human body, which in turn can decrease the risks of Cd and Pb toxicity. 
Moreover, edible plants provide a great variety of other nutrients, such as dietary protein and 
phytochemicals, which have been reported to have beneficial effects against Cd and Pb toxicity  
(Tables 2 and 3). 

A selection of studies on the protective effects of edible plants against Cd and Pb toxicity is presented 
in Table 2. Soybean for example has been a part of the Southeast Asian diet for millennia. Two recent 
animal studies showed that dietary soybean supplementation helped to prevent arterial and cardiac injury 
by alleviating the oxidative stress induced by Cd toxicity [71,72]. The authors suggested that the 
soybean protein and soybean isoflavones provided the observed antioxidant effects.  

Garlic, ginger and onion are used as ingredients for flavour, aroma and taste enhancement all over the 
world. Garlic is also a well known medicinal plant. Garlic extract alleviates Pb-induced neural, hepatic, 
renal and haematic toxicity in rats and protects against Cd-induced mitochondrial injury and apoptosis in 
tissue culture models [73–76]. Based on these studies, garlic’s protective property against Cd and Pb 
toxicity can be attributed to (1) its antioxidative ability, provided by organo-sulphur compounds such as 
diallyl tetrasulfide; (2) its chelation ability, provided by sulphur-containing amino acids and compounds 
with free carboxyl and amino groups, which in turn promotes the excretion of Pb or Cd from the body; 
and (3) the prevention of Cd and Pb intestinal absorption, by its sulphur-containing amino acids such as 
S-allyl cysteine and S-allyl mercaptocysteine. Ginger and onion have similar antioxidant capacities to 
garlic, and supplementation with these food ingredients gave protection against Pb-induced renal and 
developmental toxicity and Cd-induced gonadotoxic and spermiotoxic effects in rats [77–79].  

Green tea and curry leaves are commonly used in Asian cooking and are endowed with numerous 
potential benefits to human health including alleviating the oxidative stress induced in diabetes [80] and 
protecting liver from ethanol induced toxicity [81]. These plants are also gaining popularity in the West. 
The protective effect of green tea against Cd and Pb toxicity is mainly due to its active constituent, 
catechins, which are discussed later in this section. The flavonoids and phenols in curry leaves can 
function as antioxidants and as potential chelators, which offer protection against Cd-induced cardiac 
toxicity [82]. Fruits such as grapes are also effective against Cd toxicity [83]. Besides the function of 
vitamins and essential metals in grapes, the abundant polyphenols such as anthocyanins may also 
alleviate the oxidative stress caused by Cd and Pb toxicity. Tomato is regarded as one of the most 
powerful natural antioxidants [84] and can prevent renal toxicity induced by Pb exposure in rats [85]. 
Moreover, tomato has been reported to produce metal chelating proteins and phytochelatins when 
exposed to heavy metal ions [86,87]. In fact the oral administration of tomato has been shown to 
significantly reduce the accumulation of heavy metals (Cd, Pb and Hg) in the liver of rats [88].
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Table 2. Selected studies on the protective effects of edible plants against Cd and Pb toxicity. 

Edible Plant Administered Form Duration Animal Model Target Sites Protective Effects Ref. 

Soybean 
Diet containing soybean as  

a protein source 
60 days 

Male rats exposed to 100 mg/L 

CdCl2 in drinking water 
Heart and aorta 

A soybean-based diet ameliorated cardiac and aorta oxidative 

stress and recovered morphological alterations in the aorta. 
[71,72] 

Garlic  

(Allium sativum) 

250 or 500 mg/kg b.w. 

garlic extract orally 
30 days 

Male mice exposed to 50 mg/kg 

b.w. Pb-nitrate orally 

Blood, kidneys 

and brain 

Garlic decreased the Pb burden and recovered immunological 

parameters in the blood and tissues. 
[73] 

Ginger  

(Zingiber officinale) 

150 mg/kg b.w. ginger 

extract by oral gavage 
1 or 3 weeks 

Male rats exposed to 300 mg/kg 

b.w. Pb-nitrate by oral gavage 
Kidneys 

Ginger recovered the GSH level and the activity of antioxidant 

enzymes and alleviated renal histological changes. 
[77] 

Onion  

(Allium cepa) 

5 mL/kg b.w. onion extract 

by oral gavage 
4 weeks 

Male rats exposed to 15 mg/kg 

b.w. Cd 
Testis 

Onion reduced testicular oxidative damage and  

alleviated spermiotoxicity. 
[78] 

Green tea 
1.5% w/v green tea extract 

in drinking water 
8 weeks 

Male rats exposed to 0.4%  

Pb-acetate in drinking water 
Liver 

Green tea recovered hepatic function and alleviated histological 

changes in the liver. 
[89] 

Curry leaf  

(Murraya koenigii) 

100 mg/kg b.w. curry leaf 

extract orally 
15 days 

Male rats exposed to 0.44 mg/kg 

b.w. CdCl2 s.c. 
Heart 

Curry leaf increased the activity of cardiac antioxidant enzymes 

and decreased the cardiac LP and Cd levels. 
[82] 

Grape 
1.18 or 2.36 g/kg b.w. grape 

juice concentrate orally 
56 days 

Male rats exposed to 1.2 mg/kg 

b.w. CdCl2 i.p. 
Testis 

Grape improved serum testosterone levels, the relative weight of 

the epididymis and the percentage of normal sperm. 
[83] 

Tomato 1.5 mL tomato paste orally 8 weeks 
Male rats exposed to 1%  

Pb-acetate in drinking water 
Kidney 

Tomato intake recovered renal function and prevented the 

alterations of antioxidant enzymes activities in blood plasma. 
[85] 

b.w., body weight; GSH, glutathione; i.p., intraperitoneally; LP, lipid peroxidation; s.c., subcutaneously. 

 

 



Nutrients 2015, 7 559 
 
Table 3. Protective mechanisms of phytochemicals against Cd and Pb toxicity and their food sources. 

Phytochemical Toxic Metal Protective Mechanisms Ref. Food Sources 

Quercetin Cd Quercetin induces eNOS, iNOS, COX-2 and MT expression. [90,91] 
Onion, tomato, 

capers and radish 

 Pb 
Quercetin modulates the MAPKs and NF-κB signalling 

pathway and forms excretable complex with Pb. 
[92–94]  

Catechin Cd 

Catechin inhibits Cd absorption and normalises bone metabolic 

disorders through the bone mineral density, bone mineral 

content and bone calcium content. 

[95] 
Tea, cocoa, peach 

and berries. 

 Pb 
Catechin protects hepatic cell membrane fluidity, increases cell 

viability and modulates oxidative stress. 
[96]  

Anthocyanin Cd Anthocyanin protects against Cd-induced oxidative stress. [97] 
Cherry, grape  

and berries. 

 Pb Anthocyanin appears to effectively diminish oxidative stress. [98,99]  

Curcumin Cd Curcumin protects against Cd-induced lipid peroxidation. [100,101] Turmeric 

 Pb 
Curcumin binds Pb to form an excretable complex,  

reducing neurotoxicity. 
[102]  

Naringenin Cd 
Naringenin quenches free radicals, recovers antioxidant 

enzyme activity and chelates Cd. 
[103] 

Orange, grapefruit 

and tomato 

γ-Oryzanol Cd 
γ-Oryzanol reduces the testicular Cd concentration, improves 

ALAD activity and prevents lipid peroxidation. 
[104] Rice 

Puerarin Pb 
Puerarin modulates the PI3K/Akt/eNOS pathway, reduces reactive 

oxygen species and protects against DNA damage and apoptosis. 
[105,106] Pueraria 

ALAD, δ-aminolevulinic acid dehydratase; Akt, protein kinase B; COX-2, cyclooxygenase-2; eNOS, endothelial nitric oxide synthase; 

iNOS, inducible nitric oxide synthase; MAPKs, mitogen-activated protein kinases; MT, metallothionein; NF-κB, nuclear factor kappa B; 

PI3K, phosphoinositide-3-kinase. 

Other plants, such as ginseng (Panax ginseng Meyer) [107], liquorice (Glycyrrhizae radix) [108], 
torch ginger (Etlingera elatior) [109] and tossa jute (Corchorus olitorius) [110] are also reported to have 
protective effects against Cd and Pb toxicity. Some of these plants such as tossa jute (used as a vegetable 
and food ingredient common to the people of Eastern Asia and Africa) or torch ginger (used in 
Malaysian local dishes) are popular dietary components in certain areas, whereas the others are routinely 
added in in candies and beverages (such as liquorice). They can therefore be recommended as dietary 
supplements for the prevention and alleviation of heavy metal intoxication to populations that are at risk 
of heavy metal exposure and who regularly consume these plants.  

Some studies designed to explore the protective mechanisms have investigated the effects of specific 
plant-derived phytochemicals against Cd and Pb toxicity, rather than the intact plant itself. Table 3 
presents a selection of related phytochemicals, their protective mechanisms and their food sources.  
Most of these phytochemicals are phenolic or isoflavone in nature and are found in commonly consumed 
fruit and vegetables. These bioactive compounds can act as oxygen free radical scavengers or metal 
chelators, which enables them to be used as natural antagonists to Cd and Pb toxicity. 
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5. Probiotics as Functional Food Supplements 

Probiotics are defined as “live micro-organisms which, when administered in adequate amounts, 
confer a health benefit on the host” (WHO 2001). Most commercial probiotics contain species of 
Bifidobacterium, Bacillus, Lactobacillus as well as the yeast Saccharomyces boulardii [111]. Probiotics 
is now a multibillion dollar industry. There is significant number of studies indicating the benefits of 
probiotics in relation to antibiotic associated diarrhoea, allegy, lactose intolerance, reduction of 
cholesterol as well as development of immune system and protection against gut pathogens [112,113]. 
Some species of lactic acid bacteria (LAB) including Lactobacillus rhamnosus, L. plantarum, and 
Bifidobacterium longum are capable of binding heavy metals in vitro [114,115]. Moreover, LAB are 
known to have antioxidative properties in human subjects [116,117], which may be another important 
characteristic for heavy metal toxicity protection. On the basis of these functions, specific LAB have the 
potential to be developed as probiotics for alleviation and treatment of heavy metal toxicity. This 
hypothesis was also proposed in a recent review by Monachese et al. [118].  

Our work has demonstrated that two lactobacilli strains exhibit protective effects against Cd and Pb 
toxicity in mice. L. plantarum CCFM8610, a probiotic with a good Cd binding capacity, is able to protect 
mice from acute and chronic Cd toxicity via its intestinal sequestration and antioxidant effects [119,120]. 
The oral administration of this strain effectively decreased intestinal Cd absorption, reduced Cd 
accumulation in tissue, alleviated tissue oxidative stress, reversed hepatic and renal damage, and 
ameliorated the corresponding histopathological changes of Cd-exposed mice. L. plantarum CCFM8661 
protects against Pb toxicity by recovering the blood ALAD activity, decreasing the Pb levels in the blood 
and tissues and preventing Pb-induced oxidative stress [121]. Several recent reports confirmed that 
other probiotics may also be protective against heavy metal toxicity. A mixture of L. rhamnosus 
Rosell-11, L. acidophilus Rosell-52 and B. longum Rosell-175 significantly reduced Cd-induced 
genotoxicity both in vitro using liver tissue culture and in rats [122]. Another study investigated the 
potential of L. rhamnosus GR-1 supplemented yogurt to lower heavy metal levels in at-risk 
populations of pregnant women and in children in Tanzania [123]. Their results showed that blood 
levels of mercury and arsenic of pregnant women increased in the control groups (p < 0.05) but 
remained stable in the probiotic group, indicating a protective effect of L. rhamnosus GR-1 
consumption. This means that with confirmed protection against heavy metal toxicity in animal 
studies, probiotics also have the potential to prevent or treat heavy metal toxicity in humans. However, 
it is worth pointing out that the strain L. rhamnosus GR-1 does not significantly reduce blood levels of 
Pb and Cd in pregnant women or children. These studies indicate that specific probiotic or cocktails of 
probiotic mixes may be required for protection against different types of heavy metal toxicity. 

Lactobacilli are widely used in the food industry and are generally regarded as safe. The use of these 
probiotic lactobacilli can be considered a new dietary therapeutic strategy against heavy metal toxicity.  

6. Other Dietary Supplements 

Other nutrients also have the potential to alleviate Cd and Pb-induced pathogenic effects. For example, 
royal jelly protects against Cd-induced genotoxicity and oxidative stress in mice, due to its antioxidant 
effects. Algae such as Spirulina and Chlorella can attenuate Cd or Pb toxicity in the liver, kidneys and 
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brain of animals [124–127]. Spirulina also has marked anti-teratogenic effects in Cd-injected pregnant 
mice. Oral administration of a high dose of Spirulina significantly decreased the frequency of foetuses 
with exencephaly, micrognathia, and skeletal abnormalities induced by Cd [128]. Moreover, Spirulina 
has been reported to reduce the quantity of micronucleated polychromatic erythrocytes and 
micronucleated normochromatic erythrocytes in blood cells of Cd-exposed mice (both the mother and 
the foetus) [129]. These algae possess many dietary antioxidants, such as vitamin C, vitamin E, 
phycocyanobilin and carotenes, which enable them to alleviate toxic metal-induced oxidative stress [130].  

7. Conclusions and Perspectives 

We have summarised the literature on potential dietary supplements for Cd and Pb toxicity. Based on 
these published reports, we recommend that people who are at risk of exposure to toxic metals ensure a 
sufficient intake of essential elements and vitamins and enhance their consumption of vegetables and 
fruit (Figure 1). Some edible plants, such as tomatoes (rich in iron, calcium, selenium, zinc, vitamins B 
and C, quercetin and naringenin), berries (rich in essential elements, vitamin C, anthocyanin and 
catechin), onions (rich in selenium, quercetin and vitamins B and C), garlics (rich in sulphur-containing 
compounds, essential elements and vitamins C and E) and grapes (rich in vitamins, essential elements 
and anthocyanin) are of special importance as natural antagonists to Cd and Pb toxicity and should be 
consumed on a regular basis. These dietary supplements are an affordable option, with fewer side effects 
than chelation therapy, for the billions of people around the world who are inadvertently exposed to toxic 
metals on a daily basis [118]. In addition, with the increasing contamination of the food chain, the 
accumulation of Cd and Pb in edible animals can present an indirect route of heavy metal poisoning in 
humans [1]. Therefore, providing livestock and farmed fish with the above-mentioned food 
interventions may also be helpful to reduce Cd and Pb exposure in humans. 

 

Figure 1. Dietary supplements and recommended strategy against cadmium and lead toxicity. 
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While we have focused on the dietary strategies for treatment of heavy metal toxicity, intake of the 
suggested dietary regimes in people that are at high risk of Cd and Pb toxicity may be helpful in 
preventing these heavy metals from being absorbed in the body in the first place thus limiting or entirely 
preventing the exposure of these metals to body tissues. We need to mention that although the 
protective effects of essential elements, vitamins and probiotics have already been investigated in 
human trials, further confirmation is still necessary. It should be also noted that the studies mentioned 
above do not provide sufficient information on the appropriate doses of the dietary supplements in 
humans. It is possible that excessive consumption of essential metals, vitamins or phytochemicals may 
cause adverse effects in humans [65,131–133]. Long-duration epidemiological studies are required to 
determine the optimal doses of the dietary supplements, singly and in combination, to provide safe and 
effective dietary strategies against Cd and Pb toxicity. 
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