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Abstract

Background: Previous human studies reported inconsistent effects of dietary protein and branched-chain amino acids

(BCAAs) on insulin action and glucose metabolism. Similarly, it is unclear whether saturated fat (SF) intake influences

these metabolic variables.

Objective: The objective of this study was to test the effects of high [30% of energy (%E)] vs. moderate (20%E) intakes of

protein (primarily whey) on insulin action and lipid and lipoprotein concentrations in the context of both high (15%E) and

low (7%E) SF diets.

Methods: The study was conducted as a randomized controlled trial in 158 overweight and obese men and women. After

a 4-wk baseline diet [55%E carbohydrate, 15%E protein, 30%E fat (7%E SF)], participants were randomly assigned to

4 wk of either the baseline diet or 1 of 4 test diets containing 35%E carbohydrate and either 20%E or 30%E protein and

either 7%E or 15%E SF. Frequently sampled i.v. glucose tolerance tests were administered after each dietary period.

Results:Other than significantly higher fasting glucose concentrations for high vs. moderate protein intakes with a low-fat

diet (difference6 SE: 0.476 0.14 mmol/L; P = 0.001), there were no significant effects of dietary protein or SF on glucose

metabolism, plasma insulin, or concentrations of lipids and lipoproteins. Changes in plasma BCAAs across all diets were

negatively correlated with changes in the metabolic clearance rate of insulin (r =20.18, P = 0.03) and positively correlated

with changes in the acute insulin response to glucose (r = 0.15, P = 0.05).

Conclusions: These findings suggest that short-term intake of BCAAs can influence insulin dynamics. However, in this group

of overweight and obese individuals, neither high protein nor SF intake affected insulin sensitivity or plasma concentrations of

lipids and lipoproteins. This trial was registered at clinicaltrials.gov as NCT00508937. J. Nutr. 144: 1753–1759, 2014.

Introduction

Insulin resistance increases the risk of developing type 2
diabetes. High-protein diets have been hypothesized to improve
insulin resistance, but such diets may also promote weight loss,
and weight loss, even if modest, can improve insulin sensitivity.

Whether high-protein diets can improve glucose tolerance and

insulin sensitivity independent of weight loss remains unclear.

Although some studies showed improved glucose homeostasis

with high-protein vs. conventional hypocaloric diets with similar

weight loss (1–3), others showed that high protein intake

produced either no improvement in (4–7) or worsening of (8,9)

glucose homeostasis. The few trials that directly tested the

effects of higher protein diets on insulin sensitivity in the absence

of weight loss also produced mixed results (9–11).
These discrepancies may be due in part to different protein

sources used in the studies, which can differ in their effects on

glucose homeostasis (12). Higher intakes of dairy products have

been associated with lower diabetes risk (13–15). Although it is

not knownwhich component of dairy confers reduced risk, there

is evidence that dairy protein, especially whey, may improve

glucose homeostasis by stimulating insulin secretion (16,17). On
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the other hand, metabolomic studies found that high plasma
concentrations of BCAAs, which are abundant in whey, are
associated with insulin resistance and obesity (18–20); and in
mice, BCAA feeding induces insulin resistance (19).

High-protein diets, particularly those enriched with animal
protein, typically are high in saturated fat (SF)8. There is,
however, no compelling evidence that dietary SF influences
insulin sensitivity in humans. Specifically, several large interven-
tion trials produced no difference in insulin sensitivity with
isocaloric replacement of SF with monounsaturated fat when
total fat remained high [>37% of energy (%E)] (21–23).

We therefore conducted a randomized controlled trial to
determine whether a high-protein weight-maintenance diet altered
insulin sensitivity and/or cardiovascular disease risk factors com-
pared with a lower protein weight-maintenance diet at 2 amounts
of SF intake (7% vs. 15%E). We also tested whether plasma
biomarkers of protein and SF intake were associated with measures
of insulin sensitivity and dynamics.

Participants and Methods

Study population. Participants were recruited through Internet and

direct mail solicitations. Eligibility criteria were as follows: age$18 y, no

present use of tobacco products, BMI of 25–40 kg/m2, HOMA-IR
(glucose 3 insulin/22.5) $2.5, fasting blood glucose <7.0 mmol/L,

plasma TGs <5.65 mmol/L, and total and LDL cholesterol (LDL-C)

#95th percentile for age and sex. Exclusion criteria were history of
diabetes, cardiovascular disease, or other chronic disease or taking drugs

known to affect glucose or lipid metabolism, blood thinning agents,

dietary supplements, or hormones. Participants� characteristics at

screening are presented in Supplemental Table 1.
All participants provided written informed consent. The protocol

was reviewed and approved by the institutional review boards of

Children�s Hospital and Research Center Oakland and the University of

California, San Francisco.

Study design. This outpatient study in free-living participants was

carried out at 2 research clinics: the Cholesterol Research Center
(Berkeley, CA) and San Francisco General Hospital (San Francisco, CA).

All participants consumed a baseline run-in diet for 4 wk, after which

they were randomly assigned to the baseline diet (control) or 1 of the

following 4 diets for 4 wk: 1) high protein, high SF; 2) high protein, low
SF; 3) moderate protein, high SF; or 4) moderate protein, low SF (Fig. 1).

They were monitored weekly to maintain a relatively stable weight

throughout the study [63% of initial weight up to 65 pounds (2.3 kg)]

and their usual level of physical activity as monitored by a pedometer
and activity log.

After each 4-wk dietary period, body weight was measured and

percentage body fat was assessed by bioimpedance (TBF 551 body

weight scale; Tanita) and a blood sample was collected after a 12- to 14-h
overnight fast. A frequently sampled i.v. glucose tolerance test was

performed as previously described (24). Briefly, an i.v. catheter was

inserted into each arm, and after 45 min of rest 2 baseline blood samples
were drawn (215 and 25 min). At time 0, a 0.3 g/kg bolus of 50%

dextrose was given; and blood samples were drawn at 2, 4, 6, 8, 14, and

19 min. At 20 min, an i.v. bolus of human insulin (0.03 U/kg) was

administered. Blood sampling continued at 22, 24, 30, 40, 60, 80, 100,
120, 140, 160, 180, 210, and 240 min. The insulin sensitivity index (SI)

was calculated by using minimal model analysis (25). The acute insulin

response to glucose (AIRg) was calculated as the AUC in the first 8 min

after infusing the dextrose. The disposition index (DI) was calculated as
the product of SI and AIRg, and the metabolic clearance rate of insulin

(MCRi) was calculated by dividing the dose of insulin normalized for

body weight by the AUC of insulin above basal, the latter estimated by
fitting an exponential decay curve to the insulin profile between t = 20

and 120 min (MLAB; Civilized Software) (26).

Dietary interventions. Table 1 presents the nutritional composition of
the prescribed study diets over their 7-d rotating menus. Participants

were provided with frozen entrées (Lifespring HomeNutrition) for lunch

and dinner and were required to purchase foods and prepare breakfast

and snacks according to menu instructions and shopping lists. Whey
protein isolate (Provon 290; Glanbia Nutritionals) was used to partially

meet the increased protein content of the moderate- and high-protein

diets. High-, low-, and nonfat dairy products (milk, cheese, yogurt,
butter) were primarily used to achieve differences in SF between the high-

and low-SF diets. Body weight was measured weekly and, if needed,

energy intake was adjusted to achieve stable weight. All diets met the

RDA for vitamins and minerals (27). A 5-point compliance score was
assigned by the dietitian using weekly interviews, menu checklists, and

grocery receipts.

Laboratory measurements. Insulin was measured by ELISA (Millipore).
Total cholesterol, HDL cholesterol (HDL-C), TGs, and glucose were

measured by enzymatic endpoint measurements by using enzyme

reagent kits (Ciba Corning Diagnostics) on a Ciba Corning Express

TABLE 1 Composition of baseline and experimental diets1

High protein Moderate protein

Baseline control High SF Low SF High SF Low SF

Carbohydrate, %E 55 35 35 35 35

GI 55 61 61 58 57

GL 213 146 144 138 136

Protein, %E 15 30 30 20 20

Whey isolate, g 0 51 51 15 9

Total fat, %E 30 35 35 45 45

SFAs 7 15 7 15 7

MUFAs 13 10 18 20 29

PUFAs 7 7 8 7 7

Cholesterol, mg 357 355 314 358 356

1 Values shown are for the 12,540-kJ menus. GI, glycemic index; GL, glycemic load;

SF, saturated fat; %E, percentage of energy.

FIGURE 1 Participant enrollment. SF, saturated fat.

8 Abbreviations used: AIRg, acute insulin response to glucose; DI, disposition

index; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; MCRi, metabolic

clearance rate of insulin; SF, saturated fat; SI, insulin sensitivity index; %E,

percentage of energy.
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Plus 550 analyzer. LDL-C was calculated by using the Friedewald

equation (28). apoB and apoAI were measured by immunoturbidimetric

assays (Bacton Assay Systems and Express Plus 550 analyzer) (29,30).
Lipoprotein(a) was measured by immunoassay (Myriad RBM). Lipopro-

tein subclass concentrations were measured by ion mobility, which uses

gas-phase differential electrophoretic macromolecular mobility to directly

measure lipoprotein particle concentration (31). Plasma concentrations of
SFAs (10:0, 12:0, 14:0, 15:0, 16:0, and 18:0) and BCAAs (isoleucine,

leucine, and valine) were quantified by Lipomics, as previously described

(32). FAs are expressed as mole percentages.

Statistical procedures. ANCOVA was used to compare the baseline

means when adjusted for sex, with Supplemental Table 2 presenting the

baseline means 6 SDs for each diet. ANCOVA was also used to test
whether the sex-adjustedmean 4-wk changes frombaseline differed across

diets. Those results are presented in Table 2 and Supplemental Table 3,

which include the adjusted means6 SEs for each diet. To assess the effect

of protein and SF, linear contrasts were used to estimate the mean (95%
CI) difference in 4-wk changes from baseline for the high- vs. moderate-

protein diets when averaged over the 2 amounts of SF to assess the effect

of protein and for the high- and low-SF diets when averaged over the

moderate- and high-protein diets to assess the effects of SF. Interactions
between SF and protein intake were compared by using linear contrast.

Differences between individual diets were tested by using the Tukey-

Kramer honestly significant difference test. The distributions of the
variables after the baseline diet and their changes after the experimental

diets were examined for departures from normality and log-transformed

as required. As expected, the differences during the dietary interventions

were more normally distributed than the cross-sectional measurements
and required fewer transformations. Spearman�s correlation coefficients

(r) were used to evaluate the relations between changes in BCAAs and

glucose metabolism. Baseline values in the text are presented as means 6
SDs, and changes in text and figures are presented as means 6 SEs.
A P value <0.05 was considered significant. All statistical procedures were

performed by using JMP 9.0 (SAS Institute).

Results

Study participants. One hundred fifty-nine participants com-
pleted the study. One participant who became diabetic during

the study was excluded from analysis. Figure 1 displays details of
participant recruitment and withdrawal. Age and BMI of
participants at baseline were 38 6 12 y and 33.9 6 3.8 kg/m2,
respectively, and did not differ between diet groups. Ninety-five
percent of participants had a dietary compliance score of at least
4 of 5 and the inclusion of compliance score as a covariate did
not significantly alter results.

Effects of the diets on glucose metabolism and plasma
lipid and lipoprotein concentrations. Other than a small
difference in total cholesterol, there were no significant differ-
ences in mean plasma glucose, lipid, or lipoprotein measure-
ments between the experimental groups after the 4-wk baseline
run-in diet (Supplemental Table 2). We used linear contrasts to
assess the effects of dietary protein and SF on outcome measures
(see Methods). Table 2 shows that fasting plasma glucose
concentrations increased significantly after consuming the high-
protein diets relative to the moderate-protein diets, with a
significant interaction between protein and SF intake (P = 0.001)
such that there was a significant increase in fasting glucose with
the high- vs. moderate-protein diet when SF intake was low.
There were no other significant effects of either protein or SF on
changes in glucose metabolism or plasma lipids (Table 2),
apolipoproteins, or lipoprotein subclass concentrations from the
baseline diet (Supplemental Table 3).

Verification of dietary compliance on the basis of plasma
amino and FA concentrations. Plasma BCAAs (sum of
leucine, isoleucine, and valine) were measured as biomarkers
of protein intake. Higher protein intake was associated with
a greater increase in plasma BCAAs from the baseline diet
(Fig. 2A).

Plasma concentrations of a panel of FAs were used as
biomarkers of dietary fat intake. Compared with participants
consuming the low-SF diets, participants consuming the high-SF
diets had significantly greater increases from the baseline run-in
diet in mean plasma concentrations of lauric (12:0), myristic

TABLE 2 Changes in body weight, waist circumference, glucose metabolism, and plasma lipid and lipoprotein concentrations in
overweight and obese adults after 4 wk of consuming diets containing different amounts of protein and SF1

High protein Moderate protein
Mean (95% CI) difference for

protein and SF effects2

Control (n = 31) High SF (n = 32) Low SF (n = 36) High SF (n = 29) Low SF (n = 30) High–moderate protein High–low SF

Weight, kg 20.6 6 0.5 20.7 6 0.4 20.3 6 0.4 20.1 6 0.5 0.3 6 0.5 20.6 (21.4, 0.3) 20.4 (21.3, 0.5)

BMI, kg/m2 20.1 6 0.1 20.1 6 0.1 20.0 6 0.1 20.0 6 0.1 0.1 6 0.1 20.1 (20.2, 0.1) 20.1 (20.2, 0.1)

Body fat, % 20.6 6 0.3 20.2 6 0.3 0.4 6 0.3 20.4 6 0.3 20.3 6 0.3 0.3 (20.2, 0.9) 20.4 (20.9, 0.2)

Waist circumference, cm 0 6 1 22 6 1 22 6 1 22 6 1 0 6 1 21 (23, 1) 21 (22, 1)

Glucose, mmol/L 0.07 6 0.10a,b 20.17 6 0.10b,c 0.14 6 0.09a 0.01 6 0.10a,b 20.32 6 0.10c 0.14 (20.05, 0.34) 0.01 (20.18, 0.21)

Insulin, pmol/L 21.6 6 1.1 20.2 6 1.1 1.3 6 1.0 20.0 6 1.1 22.1 6 1.1 1.6 (20.5, 3.7) 0.3 (21.8, 2.5)

SI,
3 31025 min21 per pmol/L 0.2 6 0.3 20.2 6 0.3 20.1 6 0.5 20.5 6 0.3 20.7 6 0.4 0.5 (20.3, 1.1) 0.1 (20.5, 0.6)

AIRg,3 pmol/L 3 10 min 262 6 60 49 6 32 56 6 46 215 6 21 35 6 43 47 (255, 149) 236 (2140, 67)

DI3 4 6 193 272 6 190 227 6 181 295 6 201 276 6 196 163 (2213, 539) 2159 (2539, 222)

MCRi, L/min 0.5 6 0.6 20.2 6 0.6 0.3 6 0.6 0.3 6 0.6 0.6 6 0.6 20.4 (21.6, 0.8) 20.4 (21.6, 0.8)

TGs,3 mmol/L 20.11 6 0.10 20.12 6 0.10 20.31 6 0.10 20.26 6 0.11 20.21 6 0.10 0.02 (20.18, 0.22) 0.07 (20.13, 0.27)

TC, mmol/L 20.04 6 0.08 20.18 6 0.08 20.20 6 0.08 20.09 6 0.09 20.08 6 0.09 20.11 (20.27, 0.06) 0.00 (20.17, 0.17)

LDL-C, mmol/L 0.01 6 0.08 20.11 6 0.08 20.09 6 0.07 0.01 6 0.08 20.01 6 0.08 20.10 (20.25, 0.05) 0.00 (20.15, 0.15)

HDL-C, mmol/L 0.00 6 0.02 20.01 6 0.02 0.00 6 0.02 0.02 6 0.02 0.01 6 0.02 20.02 (20.06, 0.05) 20.01 (20.04, 0.03)

1 Values for diets are means6 SEs, adjusted for sex. Means within a row without a common letter are significantly different, P, 0.05. AIRg, acute insulin response to glucose; DI,

disposition index; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; MCRi, metabolic clearance rate of insulin; SF, saturated fat; SI, insulin sensitivity index; TC, total cholesterol.
2 For comparison of high- vs. moderate-protein and comparison of high- vs. low-SF diets.
3 ANCOVAs were repeated with the use of log-transformed data, and levels of significance only negligibly improved.
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(14:0), and pentadecanoic (15:0) acids, which are enriched in
dairy fat (Fig. 2B). Among these, 15:0 is a specific marker for
dairy fat intake (33). There was no significant effect of SF on
changes in other measured plasma SFAs (10:0, 16:0, and 18:0)
from the baseline diet. SFAs 16:0 and 18:0 were reported to have
weaker correlations with dietary intake, in part due to endog-
enous production (34,35). Mean 6 SE plasma total MUFAs
decreased after consumption of the high-SF diet in comparison
with the low-SF diet (high-SF diet:20.916 0.28 mol%; low-SF
diet: 0.23 6 0.32 mol%; P = 0.009). There were no significant
differences in changes in plasma total PUFA concentrations from
the baseline diet between the high-SF and low-SF groups.

Relations of plasma BCAAs to measures of glucose
metabolism. Despite overall increases in mean plasma BCAA
concentrations from the baseline diet with increasing protein
amount in the experimental diets, there was considerable individ-
ual variation in the response. We used this variation to explore the
relation of changes in plasma BCAAs and changes in measures of
glucose metabolism independent of the experimental diets. In
cross-sectional analysis, BCAAs measured after the baseline diet
were positively correlated with fasting plasma concentrations of
insulin (r = 0.26, P = 0.001) and glucose (r = 0.26, P = 0.001)
and with HOMA-IR (r = 0.30, P = 0.0001) and were negatively
correlated with AIRg (r = 20.17, P = 0.03) and DI (r = 20.25,
P = 0.002) but not SI (r = 20.06, P = 0.42) or MCRi (r = 20.1,
P = 0.19). Changes in BCAAs were inversely correlated with
changes in MCRi (r =20.18, P = 0.03) and positively correlated
with changes in AIRg (r = 0.15, P = 0.05) (Supplemental Fig. 1).
Notably, the inverse correlation between changes in MCRi and
plasma BCAAs was driven by the individuals who consumed the
high-SF diet (P–interaction = 0.05). BCAA response was not
significantly correlated with changes in fasting glucose (r = 0.08,
P = 0.32), insulin (r = 0.05, P = 0.52), SI (r =20.10, P = 0.20), or
DI (r = 20.06, P = 0.45).

Discussion

Epidemiologic studies suggest that high protein intake may be
associated with increased risk of developing type 2 diabetes, a
condition usually characterized by insulin resistance (36,37).
Further studies indicated that the protein source may be an
important determinant, with red and processed meat conferring
greater risk (38–40). Although a high intake of dairy products
has been associated with reduced risk of diabetes (13–15), and
dairy products are a major source of protein, less is known about
the relation of dairy protein to diabetes risk.

There have been few intervention studies that tested the
effects of isocaloric substitution of protein for carbohydrate, or

protein for fat, on measurements of glucose homeostasis in
nondiabetic individuals. Long-term consumers of high-protein
diets were reported to have greater glucose-stimulated insulin
secretion and slightly lower insulin sensitivity (8) than that
observed in individuals with lower protein intake. In a study
comparing an isoenergetic high-protein diet (25–30%E) with a
conventional-protein (15%E) control diet and 2 high-cereal-
fiber diets with conventional (15%E) or moderate protein (20–
25%E), there was a decrease in insulin sensitivity as measured by
euglycemic hyperinsulinemic clamp when compared with either
baseline or the high-cereal-fiber diets. However, changes in
insulin sensitivity from baseline in the high-protein diet vs. the
conventional-protein control diet were not different, suggesting
that protein content per se was not the causative factor (9).

In the present study we found no significant effects on insulin
sensitivity of short-term increases in intake of protein, in
conjunction with reduced dietary carbohydrate, in nondiabetic
overweight and obese individuals. We used whey protein isolate
to partially meet the increased protein content of the moderate-
and high-protein diets. Acutely, milk proteins, specifically whey,
consumed with glucose or standardized meals increase post-
prandial insulin response, resulting in improved glucose excur-
sion (12,16,41,42), with reported effects on both markers of
insulin secretion (12) and hepatic extraction of insulin (42).
Whey protein is rich in BCAAs, which appear in the plasma
postprandially (12). Recently, metabolomic profiling showed
that elevated basal concentrations of BCAAs are associated with
obesity and surrogate measures of insulin resistance such as
HOMA-IR (19,20). In cross-sectional analysis, a cluster of
amino acids including BCAAs was inversely related to more
specific measures of insulin action, including SI and DI (18). In
prospective studies, baseline BCAA concentrations predicted
;6-y HOMA-IR (43) and 2-h glucose (44) values and diabetes
incidence (45). Moreover, skeletal insulin resistance can be
induced by acute amino acid infusion in humans (46) and by
BCAA feeding in mice (19). Although we observed cross-
sectional relations of BCAAs with fasting glucose, insulin,
HOMA-IR, AIRg, and DI, changes in BCAA concentrations
were not associated with changes in fasting glucose, insulin
sensitivity (SI), or DI. Rather, we found that increases in BCAAs
over the 4-wk diet intervention were correlated with decreased
insulin clearance (MCRi) and increased secretion (AIRg).
Notably, reduced insulin clearance was reported to predict the
incidence of type 2 diabetes (47) and was associated with glucose
intolerance, abdominal obesity, and nonalcoholic fatty liver
disease. Thus, it is possible that BCAA effects on insulin
dynamics may precede the development of insulin resistance and
type 2 diabetes. We also observed that the relation between
plasma BCAAs and insulin clearance was attenuated with the

FIGURE 2 Changes in plasma concentra-

tions of BCAAs (A) and SFAs (B) in over-

weight and obese adults after 4 wk of

consuming diets containing different

amounts of protein and SF. Data from high-

SF and low-SF diets were combined for each

protein group (control: n = 31; moderate: n =

59; high: n = 68), and data from moderate-

and high-protein diets were combined for

each SF group (low SF: n = 66; high SF: n =

61). Values are means 6 SEs. Groups with-

out a common letter are significantly differ-

ent, P , 0.05 (A). *Different from low-SF

diet, P , 0.05 (B). SF, saturated fat.
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low-SF diet, suggesting that either low SF or high monounsat-
urated fat intake blunts the association of BCAAs and insulin
action. In this regard, Newgard et al. (19) found that in mice
dietary BCAAs reduced insulin sensitivity only on the back-
ground of a diet high in total and SF and not when fed a standard
chow diet. Greater BCAA flux and catabolism in muscle and
liver are postulated to contribute to incomplete FA oxidation
(48), which is associated with reduced insulin action (49). This
may be exacerbated by the increase in FA oxidation with a high-
fat diet (50); however, it unknownwhether SF may preferentially
promote this process.

Studies in animal models indicated that insulin sensitivity is
impaired by diets high in SF [reviewed in (51–53)], and some
human observational studies reported positive associations
between SF intake and hyperinsulinemia, independent of body
fat (54–58). However, in the majority of human intervention
studies, changes in dietary fat quality had no effects on insulin
sensitivity (52,53,59), including several large trials comparing
replacement of monounsaturated fat for SF in the context of a
higher fat diet. Our data support the evidence that high SF intake
does not have a major impact on insulin sensitivity.

Measures of biomarkers of SF and protein intake suggest that
our results are not due to poor dietary compliance. Plasma
concentrations of pentadecanoic acid (15:0), a specific marker of
intake of dairy fat (33,60), the primary source of added SF in the
high-SF diet, were significantly higher in the high-SF group; and
plasma concentrations of BCAAs were correlated with protein
content of the prescribed diets.

Replacement of monounsaturated fat by SF is known to
increase plasma LDL-C and often HDL-C (61,62). However, we
observed no difference in these measurements between the high-
SF and low-SF diets. It is possible that this is related to the
selection of overweight and obese individuals for this study.
There are reports that individuals with higher BMI values
exhibit smaller than expected reductions in LDL-C in response
to reductions in dietary SF compared with those with lower BMI
values (63–66), as well as those with evidence for insulin
resistance (67). Attenuated LDL-C lowering with reduction in
dietary SF is particularly evident in women (65,66), who made
up the majority of our population. Moreover, in the recent
LIPGENE study, an;7%E substitution of monounsaturated fat
for SF in individuals with the metabolic syndrome (mean BMI:
;32 kg/m2) resulted in no significant changes in total choles-
terol, LDL-C, or HDL-C, despite evidence for dietary compli-
ance as assessed by plasma FAs (22). Although there is no known
basis for reduced responsiveness of obese individuals to changes
in dietary SF, it may be that very high tissue concentrations of
SFAs or cholesterol dampen the effect of exogenous FAs on
hepatic cholesterol content (63,65,67).

Strengths of our study include a comprehensive design for
testing effects of changes in both protein and SF intake, lack of
potential confounding by weight loss, detailed measurements of
insulin action, and demonstration of dietary compliance by
plasma biomarkers of both protein and SF intake. Limitations
include the short-term dietary intervention and the restriction of
the study population to overweight and obese individuals. In
addition, because higher protein intake was achieved with the
addition of whey protein to a mixed-protein diet, and higher SF
intake was achieved primarily by using whole-fat dairy pro-
ducts, it is possible that the present findings would not apply to
comparable dietary amounts of protein and SF from other food
sources. Finally, physiologically meaningful effects of the diets
may have been smaller than those that the study was statistically
powered to detect.

In conclusion, our results show that, in the absence of weight
loss, increased consumption of protein or SF primarily from
dairy sources does not significantly alter insulin sensitivity or
insulin action in nondiabetic overweight and obese individuals.
However, we found that diet-induced increases in plasma
BCAAs correlate with increased insulin secretion and reduced
insulin clearance, with the latter relation being influenced by the
type of fat. Additional studies are warranted to better under-
stand how BCAA metabolism influences insulin dynamics in
humans.
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