NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE :
has been reproduced from the bent avaliable copy to permit the broadest messinto ayaitability.

Distribution Category:
LMFBR-Physics: Base
Technology (UC-79d)

ANL--82-64
DE84 012678

ARCONNE NATIONAL LABORATORY

9700 South Cass Avenue
Argonne, Illinois 60439

DIF3D: A CODE TO SOLVE ONE-, TWO-, AND THREE-DIMENSIONAL FINITE-DIFFERENCE DIFFUSION THEORY PROBLEMS by
K. L. Derstine

Applied Physics Division

April 1984

A major purpose of the Techni-

 cal Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.
Although a small portion of this

 report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.Page
PROGRAM ABSTRACT xii
ABSTRACT 1

1. INTRODUCTION 2
2. NEUTRONICS EQUATIONS AND SOLUTION METHODS 5
2.1 Derivation of the Mesh-Centered Finite-Difference Equations 5
2.1.1 The Multidimensional Multigroup Neutron Diffusion Equations 5
2.1.2 The Orthogonal XYZ Geometry Derivation 6
2.1.3 Comments Regarding All Geometry Options 10
2.1.4 The Matrix Equations and Their Properties 16
2.2 Solution Strategies 19
2.2.1 The Chebyshev Accelerated Outer (Fission Source) Iterations 20
2.2.2 The Line Successive Overrelaxation of the Inner Iterations 25
2.2.3 Outer Iteration Computational Considerations 28
2.2.4 Inner Iteration Computational Considerations 30
2.2.5 Data Management Considerations 38
2.2.6 Adjoint Solution Strategy 39
2.2.7 Upscatter Iteration Strategy 40
2.2.8 The Inhomogeneous Problem 41
2.3 The Criticality Search Option 43
2.3.1 Statement of the Problem 43
2.3.2 Method of Solution 44
2.3.3 Comments on the Concentration Search Option 45
2.4 Summary 47
3. A GUIDE FOR USER APPLICATIONS 48
3.1 Setting Up a DIF3D Job - An Overview 48
3.1.1 Input Binary Files 48
3.1.2 BCD Card-Image Model Input 48
3.1.3 BCD Card-Image Calculation Parameter Input 49
3.1.4 Edits 49
3.2 BCD Input Conventions 49
3.2.1 BLOCK= 50
3.2.2 DATASET=, UNFORM=, NOSORT= 50
3.2.3 BLOCK=OLD. 52
3.2.4 MODIFY=, REMOVE=, nn-DELETE 52
3.2.5 Sample Input 53
3.2.6 Output from BCD Input Card Preprocessors 53

TABLE OF CONTENTS (cont.)

Page
3.3 General Philosophy on Input Data 53
3.4 Free-Format (FFORM) Syntax Rules 55
3.4.1 Delimiters 55
3.4.2 Data Forms 55
3.4.3 Implied Blanks and Zeroes 56
3.4.4 nR, the Repeat Option 56
3.4 .5 S, End of Card 56
3.4.6 UNFORM and Card Type Numbers 57
3.5 Microscopic Cross Sections - ISOTXS, XS.ISO and A.ISO 57
3.5.1 Reaction Versus Production Based ($n, 2 n$) Cross Sections 57
3.6 Number Densities, Cross Section Homogenization and Edits 58
3.6.1 Compositions, Zones and Subzones - A.NIP3 13 and 14 Cards 58
3.6.2 Isotope Sets - A.NIP3 39 Cards 59
3.6.3 Homogenization of Principai Cross Sections 59
3.6.4 Homogenization of the Scat:tering Cross Section 60
3.6.5 Discussion of the Removal Cross Section 62
3.6.6 Homogenization Options for the Fission Spectrum - A. HMG4C 02 Card 62
3.6.7 Edit Options and Container Storage - A.HMG4C 02 Card 63
3.6.8 Directional Diffusion Coefficient Factors - A. NIP3 35 and 36 Cards 64
3.6.9 Fission and Capture Energy Conversion Factor Data - A.NIP3 37 and 38 Cards 64
3.7 Geometry Input and Edits - A.NIP3 and GEODST 64
3.7.1 Geometry Types - A.NIP3 03 Card 65
3.7.2 Boundary Conditions - A.NIP3 04, 05, 10, 11 and 31 Cards 65
3.7.3 Regions and Areas - A.NIP3 06, 07, 15, 30 and
31 Cards 66
3.7.4 Mesh-Spacing - A.NIP3 06, 09 and 29 Cards 66
3.7.5 Bucklings - A.NIP3 12 and 34 Cards 66
3.7.6 Geometry Edits - A.NIP3 02 and 43, A.DLF3D 04 Cards 67
3.8 Distributed, Inhomogenecus Sources - A.NIP3, FIXSRC and A.DIF3D 67
3.8.1 By Group, By Region or Mesh - A.NIP3 19 Cards 67
3.8.2 Synthesis Trial Function Source - A.NIP3 40 Card 67
3.8.3 Natural Decay Source - A.NIP3 41 and 42 Cards 67
3.8.4 Source Edits - A.NIP3 40 Card 68
3.9 Code Dependent Input - A.DIF3D 68
3.9.1 Data danagement Options and Container Sizes -
A.DI'3D 02 Card 68

Page

3.9.2 Solution Options and Control Parameters - A. DIF3D 03 Card 72
3.9.3 Convergence Criteria - A.DIF3D 05 and 06 Cards 72
3.9.4 Edit Options and Interface File Output - A. DIF3D 04 Card 73
3.9.5 Restart Option - A.DIF3C 03, 06 and 07 Cards 75
3.9.6 Acceleration of Near-Critical Source Problems - A. DIF3D 08 Card 75
3.9.7 Neutron Transport Option - A.DIF3D 09 Card 75
3.10 Guidelines for the Efficient Use of the CIIS 75
3.10.1 Optimal ECM Size Estimation - A.DIF3D 02 Card 76
3.11 Criticality Search Input and Edits 79
3.11.1 Parametric Modifiers M - A.NIP3 23-26 Cards. 80
3.11.2 Search Parameter Estimates x - A.NIP3 22 Card 80
3.11.3 Search Pass Control Parameters - A.NIP3 21 Card 80
3.11.4 Search Restarts - A.NIP3 21 and 22 Cards 81
3.11.5 Search Edits - A.NIP3 21 Card 81
3.12 Running DIF3D 81
3.12.1 Input and Output Interface Datasets 81
3.12 .2 Sample Input 81
3.12.3 IBM Considerations - ARCSP021 Symbolic Parameters 83
3.12.4 CDC 7600 Considerations. 87
3.12.5 Multiple Problems and Restarts - RTFLUX and DIF3D 89
3.13 LASIP3 CCCC Standard Interface File Processor 90
3.14 Definitions of Output Integral Quantities 90
3.14.1 Iteration History Quantities 90
3.14.2 Preliminary Definitions of Integral Forms 92
3.14.3 Region and Mesh Cell Flux Integrals 95
3.14.4 Region-Averaged Flux Integrals 97
3.14.5 Zone-Averaged Flux Integrals (RZFLUX) 97
3.14.6 Region and Mesh Power Density Integrals (PWDINT) 98
3.14.7 Region and Group Balance Integral Components 99
3.15 Signs of Trouble 103
3.15.1 Error Messages 103
3.15.2 Non-monotonic Convergence 103
3.16 Special DIF 3D Applications 107
3.16.1 Perturuation Theory - VARI3D 107
3.16.2 Fuel Cycle Analysis - REBUS-3 107
3.16.3 Calculating Higher Harmonics 107
3.16.4 Calculating Electrostatic Potential Distributions 108
3.16.5 Neutron Transport with Isotropic Scattering 108
Page
4. PROGRAMMING INFORMATION 109
4.1 Role and Function of Subprograms 109
4.1.1 Module and Overlay Driver - STP021 (D3DRIV) 109
4.1.2 Input Preprocessors - SCAN and STUFF 110
4.1.3 CSE010 (ANL only) 112
4.1.4 LASIP3 (ANL only) 112
4.1.5 The General Input Processor - GNIP4C 113
4.1.6 Cross Section Homogenization - HMG4C 115
4.1.7 MODCXS 115
4.1.8 BCDINP 117
4.1.9 SRCH4C 117
4.1.10 DIF3D 118
4.1.11 Summary (ANL only) 124
4.1.12 UDOIT1-UDOIT3 124
4.2 Data Set Classification and Use by Code Block 124
4.3 Data Management Considerations 127
4.3.1 Data Management Concepts 127
4.3.2 Multilevel Data Management Strategy 128
4.3.2.1 The One-Group-Contained Strategy 131
4.3.2.2 Concurrent Inner Iteration Strategy 132
4.3.2.3 Two-Level Machine Data Management Considerations 135
4.3.3 DIF3D Data Management Routines 136
4.3.3.1 DEFICF 136
4.3.3.2 OPENCF 136
4.3.3.3 CLOSCF 137
4.3.3.4 PURGCF 137
4.3.3.5 BLKGET, FINGET, BLKPUT and FINPUT 137
4.3.3.6 DEFIDF 138
4.3.3.7 OPENDF and CLOSDF 138
4.3.3.8 PNTGET and IPTGET 139
4.3.3.9 PCRED, ICRED, PCRIT and ICRIT 139
4.3.3.10 STATCF 139
4.3.4 CCCC Utility Routines 139
4.3.4.1 SEEK 140
4.3.4.2 REED/RITE 141
4.3.4.3 DOPC and DRED/DRIT 142
4.3.4.4 CRED/CRIT 143
4.3.4.5 ECMV 144
4.3.5 BPOINTER, a Dynamic Storage Allocation Program 144
4.3.5.1 Programming Considerations 144
4.3.5.2 IGTLCM/IGTSCM/IGTXCM 147
4.3.5.3 IBM Ailicration 147
4.3.5.4 CDC Allocation 149
4.3.5.5 CRAY Allocation (CTSS) 149
4.3.5.6 CRAY Allocation (COS) 149

TABLE OF CONTENTS (cont.)

Page
4.4 Machine Dependence, Hardware and Software Requirements 152
4.4.1 General Considerations 152
4.4.2 Storage Requirements 152
4.4.3 Data Access Modes 152
4.4.3.1 SIO, a random access, asynchronous I/0 package for IBM systems 153
4.4.3.2 Implementation Considerations on the CDC 7600 154
4.4.4 Vectorization on the CRAY-1 154
5. THE NATIONAL ENERGY SOFTWARE CENTER VERSIONS OF DIF3D 156
5.1 The DIF3D Package 156
5.1.1 File 1 - DIF3D FORTRAN Source Images 156
5.1.2 Machine Dependent Source Code 158
5.1.3 Loader Instructions 158
5.1.4 Sample Problem Input and Out put 159
5.1.5 ARCSP021, An Instreaw JCL Procedure for IBM 370 Systems 159
5.1.6 CCCC and Code-Dependent Interface File Descriptions 159
5.2 Implementation of the NESC DIF3D as a Stand-Alone Program 159
5.2.1 Code Structure and Loading Instructions 159
5.2.2 SIO 160
5.2.3 File Number Assignments 160
5.2.4 Running the NESC version of DIF3D 162
5.3 Sample Problems 163
5.3.1 The SNR Benchmark Problem 163
5.3.1.1 The Two-Dimensional Model 163
5.3.1.2 The Three-Dimensional Model 167
5.3.2 The IAEA Benchmark Problem 167
5.3.2.1 The Two-Dimensional Model 167
5.3.2.2 The Three-Dimensional Model 167
5.4 Suggested Local Modifications 167
5.4.1 SEEK Initialization 167
5.4.2 Storage Allocation Routines 170
5.4.3 TIMER 170
5.4.4 GNIP4C Graphics 170
5.4.5 Random Access I/O Routines DOPC, DRED and DRIT 170
ACKNOWLEDGEMENTS 171
REFERENCES 172

Page

APPENDIX

A. ARCSP021 INSTREAM JCL PROCEDURE FOR IBM 370 SYSTEMS A-1
B. DIF3D BCD INPUT FILE DESCRIPTIONS B. 1-1
B. 1 A.DIF3D B. 1-1
B. 2 A. HMG4C B. 2-1
B. 3 A.ISO (See ISOTXS File Description) B. 3-1
B. 4 A.NIP3 B. 4-1
C. DIF3D CCCC BINARY INTERFACE FILE DESCRIPTIONS C. 1-1
C. 1 ISOTXS C. 1-1
C. 2 GEODST C. 2-i
C. 3 NDXSRF C. 3-1
C. 4 2NATDN C. 4-1
C. 5 FIXSRC C. 5-1
C. 6 RTFLUX C. 6-1
C. 7 SEARCH C. $7-1$
C. 8 ATFLUX C. 8-1
C. 9 RZFLUX C. 9-1
C. 10 PWDINT C. 10-1
D. DIF3D CODE-DEPENDENT BINARY INTERFACE FILE DESCRIPTIONS D. 1-1
D. 1 COMPXS D. 1-1
D. 2 DIF3D D. 2-1
D. 3 LABELS D. 3-1
D. 4 NHFLUX D.4-1
D. 5 NAFLUX D.5-1
E. LINK EDIT INSTRUCTIONS FOR IBM 370 SYSTEMS E-1
F.1. SEGMENTED LOADER INSTRUCTIONS FOR SEGLINK ON THE CDC 7600 F.1-1
F.2. TYPE OJ OVERLAY DIRECTIVES FOR THE LDR LOADER ON THE CRAY-1 F.2-1
G. SAMPLE PROBLEM OUTPUT G. 1-1
G. 1 Sample Problem 1 (entire output) G.1-1
G. 2 Sample Problem 2 (selected pages) G. 2-1
G. 3 Sample Problem 3 (selected pages) G.3-1
G. 4 Sample Problem 4 (selected pages) 4-1
G. 5 Sample Problem 5 (selected pages) G. 5-1
G. 6 Sample Problem 6 (selected pages) G.6-1

LIST OF FIGURES

No. Page
1.1 Major Modules in the DIF3D Standard Path STP021 4
2.1 X-Y-Z Volume Element 13
2.2 - $2-\mathrm{R}$ Z Volume Element 13
2.3 Triangular-Z Volume Elements 14
2.4 Parallelogram Boundary Domain (120° planar symmetry) 14
2.5 Parallelogram Boundary Domain (60° planar symmetry) 15
2.6 Rectangular Boundary Domain (90°, 180° or 360° planar symmetry). 15
3.1 Illustration of Input Conventions 54
3.2 A Data Management Page Edit for Sample Problem 4 71
3.3 Iteration History Page Edit for Sample Problem 74
3.4 CIIS ECM Storage Requirements Guids. 78
3.5 ANL DIF3D Input Skeleton for Sample Problem 1 82
3.6 Minimal Input Data Example 84
3.7 LASIP-3 Input Skeleton 84
3.8 Structure of Job Deck for CDC 7600 at LBL 88
3.9 Structure of Job Deck for CDC 7600 at BNL 88
4.1 An Example of the Use of SCAN and STUFF 111
4.2 Subroutine Map for the GNIP4C Code Block 114
4.3 Subroutine Map for the HMG4C Code Block 116
4.4 Subroutine Map for the DIF3D Code Block 119
4.5 Multilevel Data Transfer Paths 129
4.6 Concurrent Inner Iteration Algorithm 133
4.7 Concurrent Inner Iteration I/O Cycle Description (L=3, U=2) 134
4.8 A BPOINTER Example 146
4.9 IGTSCM/FRESCM/LOCFWD Example 148

LIST OF FIGURES

No. Page
4.10 Fast-Core Allocation on IBM and CDC 7600 Machines 150
4.11 Fast-Core Allocation on a CRAY Mant.au 151
5.1 Input Data for the Four GNR Benchmark Problem Mociels 165
5.2 Input Data for the IAEA Benchmark Problem Models 168

LIST OF TABLES

No. Page
2.1 Mesh-Centered Finite-Difference Formulas 11
2.2 Areas and Volumes for Each Geometry Option 12
3.1 Microscopic Cross Section Assignments to Macroscopic Cross Sections. 61
3.2 A.DIF3D FCM and ECM Minimum Container Size Estimation 70
3.3 ECM Size Estimation for the CIIS 77
3.4 DIF3D Interface Files (CCCC and code dependent) 82
3.5 Job Region Size and Dataset Space Estimation for ARCSP021 85
3.6 Inner Iteration Error Reduction Effects for the SNR Benchmark Problem 104
3.7 Inner Iteration Error Reduction Effects for the LCCEWG Benchmark Problem 105
3.8 Inner Iteration Error Reduction Effects for a ZPPR 11(B) Model 106
4.1 Data Set Classification and Description 125
4. 2 Interface File Usage by Module 126
4.3 Random Access File Descriptions 130
4.4 Correspondence Between E.CM and Disk Files 130
4.5 Execution Rates for the 2D IAEA Benchmark 155
5.1 DIF3D Tape Characteristics and its BCD File Contents 156
5. 2a Contents of NESC Export Tape for IBM 370 Systems 157
5.2b Contents of NESC Export Tape for CDC 7600 Systems 157
5.2c Contents of NESC Export Tape for CRAY-1 Systems 157
5.3 DIF3D Code Blocks 158
5.4 Data Set Classification for the NESC DIF3D 161
5.5 Resource Estimates for Sample Problems 1-6 164

PROGRAM ABSTRACT

1. Name of Program: DIF3D 4.0

2. Computer for which Program is Designed and Other Machine Version Packages Available: IBM 370 series, CDC 7600 and CRAY-1 computers.
3. Description of Problem Solved: DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source and cricicality (concentration search) problems in 1-, 2- and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular and hexagonal geometries. Anisotropic diffusion coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.
4. Method of Solution: Mesh-centered finite-difference equations are solved by optimized iteration methods ${ }^{1,2}$. A variant of the Chebyshev semi-iterative acceleration technique is applied to outer (fissionsource) iterations and an optimized block-successive-overrelaxation method is applied to the within-group iterations. Optimum overrelaxation factors are precomputed for each energy group prior to the initiation of the outer iterations. The forward sweep of the LU decomposition algorithm for the resulting tridiagonal matrices is computed prior to outer iteration initiation in orthogonal non-periodic geometry cases.

In two- and three-dimensional hexagonal geometries the neutron diffusion equation is solved using a nodal scheme ${ }^{3-5}$ with one mesh cell (node) per hexagonal assembly. The nodal equations are derived using higher order polynomial approximations to the spatial dependence of the flux within the hexagonal node. The final equations, which are cast in response matrix form, involve spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a fission source iteration with coarse-mesh rebalance acceleration.
5. Restriction on the Complexity of the Problem: Problem dimensions are all variable. The number of mesh cells in a mesh plane is limited only by the available dynamic storage (see "Machine Requirements" below). In three-dimensional finite-difference problems a concurrent inner iteration strategy permits the specification of an unlimited number of mesh planes. Scattering is P_{0} only and only CHI vectors are permitted.

The nodal option does not permit fixed-source problems. Enough core must be available on IBM machines to contain all data for at least one energy group. On the CDC 7600 machine, problem size may be limited by the requirement that one-group data for a single axial mest. plane fit In the available fast core memory.
6. Typical Running Time: Running time for the finite-difference calculation is roughly proportional to: flux work unit's (FWU) $=$ number of space mesh cells x number of energy groups x number of iterations per group. Depending on the options selected, rates of 4 to 8 million FWU per minute on the IBM 370/195 are typical in three-dimensional problems. CPU times on the IBM 3033 are 35 to 50% greater than those obtasned on the IBM 370/195. CPU times on the CDC 7600 are 10 to 25% less than those obtained on the IBM 370/195. CPU times on the CRAY-1 with the non-vectorized SLOR algorithm are about one-third those on the IBM 370/195. The vectorized SLOR algorithm times are nearly one-fourth those on the IBM 370/195.

A three-dimensional nodal calculation with 4 energy groups and 14 axial mesh planes for a fast reactor model with sixth core planar symmetry and 17 rings of hexagons required approximately 1 CPU minute on an IBM 370/195 machine. The 6 triangle/hex finite-difference calculation for this same 14 -plane problem required almost 2 cpu minutes. For accuracy comparable to the nodal option, the finite-difference calculation requives 42 mesh planes and 10 cpu minutes.
7. Unusual Features: The DIF3D nodal option uses a single meshpoint per hexagon instead of the six triangular meshpoints per hexagon typically employed in fast reactor finite difference calculations. The higherorder axia? approximation ${ }^{4}, 5$ permits the use of coarse axial meshes without sacrificing accuracy. The nodal coupling coefficients are precomputed and stored only for unique nodes.

DIF3D strictly adheres to the CCCC (Ref. 6) code standards and reads and writes CCCC interface datasets. For the finite-difference option more accurate peak power and peak flux edits are obtained by optionally calculating average power and flux values on mesh cell surfaces. The surface fluxes are obtained in a manner consistent with the meshcentered finite-difference approximation.
8. Related or Auxiliary Programs: This is a stand-alone version of the DIF3D module described in Ref. 1-5. DIF3D is included in the REBUS-3 (Ref. 7) code package, and can thus be used to provide the neutronics solutions required in the REBUS-3 depletion calculations.
9. Status: The modular version of the conc is in production use at Argonne. The standalone CDC 7600 and CRAY-1 versions of DIF3D are in production use at other laboratories.

10. References:

1. D. R. Ferguson and K. L. Derstine, "Optimized Iteration Strategies and Data Management Considerations for Fast Reactor Finite Difference Diffusion Theory Codes," Nuc1. Sci. Eng., 64, 593 (1977).
2. K. L. Derstine,"DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite Difference Diffusion Theory Problems," ANL-82-64,Argonne National Laboratory, 1984.
3. R. D. Lawrence, "A Nodal Interface Current Method for Multigroup Diffusion Calculations in Hexagonal Geometry," Trans. Am. Nucl. Soc., 39, 461 (1981).
4. R. D. Lawrence, "A Nodal Method for Three-Dimensional Fast Reactor Calculations in Hexagonal Geometry," Proceedings of the Topical Meeting on Advances in Reactor Computations, Vol. II, p. 1030, Salt Lake City, American Nuclear Society, March, 1983.
5. R. D. Lawrence, "The DIF3D Nodal Neutronics Option for Two- and Three-Dimensional Diffusion Theory Calculations in Hexagonal Geometry," ANL-83-1, Argonne National Laboratory, 1983.
6. R. Douglas 0'Dell, "Standard Interface Files and Procedures for Reactor Physics Codes, Version IV," UC-32 Los Alamos Scientific Laboratory (September 1977).
7. B. J. Toppel, "The Fuel Cycle Analysis Capability, REBUS-3," ANL-83-2, Argonne National Laboratory, 1983.
8. Machine Requirements: At least 325 K -bytes of core storage are recommended for program and file buffer storage on the IBM 370 series. Between 30000 and 40000 words of SCM are required on the CDC 7600 depending upon the operating system employed. Additional (LCM on CDC) memory requirements expai!d linearly with the number of cells (N) in a mesh plane. The finite-difference option requires at least 9 N (8-byte) words in 2-D problems and at least 25 N words are required in 3-D problems. At least 19 mesh lines of data and one group of cross section data must be stored in SCM on the CDC 7600. External data storage must be available for approximately 40 scratch and interface files. Fourteen of these are random access scratch files (grouped into 6 file groups), the remainder are sequential access files w'th formatted or unformatted record types.
9. Programing Languages Used: The standard FORTKAN described in ANS Sid.3-1971 is used. The program can be executed entirely in FORTRAN, except for dynamic memory allocation routines on IBM and CDC computers, random access I/O routines on IBM computers, and LCM/SCM transfer routines on the CDC 7600. The exceptions noted above are either written in assembly language or supplied from the CDC or CRAY system libraries. Thus non-Fortran code is about 2% of the IBM package and about . 2% of the CDC and CRAY package.
10. Operating System: No special requirements are made of the operating system. The IBM linkage editor and the CDC or CRAY-1 overlay or segmented loading facilities may be used. Random access I/O data files should be supported for efficient oreration, but they are not necessary for correct operation.

DIF3D: A Code to Solve One-, Two-, and Three-dimensional Finite-difference Diffusion Theory Problems

by
K. L. Derstine

ABSTRACT
The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers.

Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimi:ed block successive overrelaxation method for the within-group iterations.

A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DJ.F3D package and is documented in a companion report, aNL-83-1.

1. INTRODUCTION

This report is a user's manual for DIF3D, a computer code which uses the mesh-centered finite-difference approximation to obtain numerical solutions of the multigroup diffusion equations in one-, two- or three-dimensions for fast reactor applications. Although two mesh-centered finite-difference codes 3DB (Ref. 8) and VENTURE (Ref. 9) were already in existence, DIF3D (Ref. 1) was written to employ the more rigorous strategies of the well-known PDQ-7 (Ref. 10) code. This decision was based on a thorough intercomparison of several iterative strategies, the results ${ }^{11}$ of which indicated the iterative method employed by PDQ-7 (Refs. 12 and 13), when modified to take advantage of several unique aspects of fast reactor diffusion theory calculations, is also highly efficient when applied to fast reactor calculations. Significant efforts were concurrently expended to provide efficient, yet flexible, data management and data structures in DIF3D. The numerical results in Ref. 1 demonstrate the effiriency achieved by these methods.

User interaction with the DIF3D acceleration and data management strategies principally involves only two parameters; $\varepsilon_{\text {in }}$, the inner iteration error reduction factor, and ECMSIZ, the ECM container size. For most problems the $\varepsilon_{i n}$ default is suitable and ECMSIZ is readily estimated. Optimizing the job cost for a class of similar problems involves only a simple adjustment to $\varepsilon_{1 n}$ and ECMSIZ.

Incorporated in DIF3D for the solution of two- and threc-dimensional hexagonal geometry problems is a nodal option that uses input data virtually identical to that of the finite-difference option. Reference 5 discusses the mathematical development and numerical solution of the nodal equations; some numerical comparisons between the nodal and finite-difference options for typical heterogeneous core LMFBR designs have shown that the accuracy of the nodal solution is superior to that of a standard (6 mesh cells per hexagon, 5 cm axial mesh) finite difference calculation, and that this improved accuracy is achieved with a potential order-of-magnitude reduction in computational cost for a three-dimensional calculation.

DIF3D was developed at Argonne National Laboratory and is operational on both the IBM $370 / 195$ and the IBM 3033 computers, and is a principal module in the ARC System providing eigenvalue and flux calculations for the burnup code REBUS-3 (Ref. 7), the perturbation theory code VARI3D ${ }^{14}$ and the flux synthesis code SYN3D ${ }^{15}$ in addition to performing standalone neutronics calculations including nuclide concentration searches. The programming adheres strictly to the conventions set forth by the Committee on Computer Code Coordination ${ }^{6}$ (CCCC). Most of the data for a calculation must be supplied in the format of the Standard Interface Files ${ }^{6}$ definet by the CCCC. BCD input data (when it is required) is limited to data that is essential for the problem (i.e. redundant information is not required), and this data may be readily specified in free format. Particular attention has been paid to maintaining a single unified source in which language flag comment cards segregate code by particular and generic machine environments. A simple preprocessor code activates or deactivates language flags appropriate to the target machine environment. The portability afforded by this approach is demonstrated by the relative ease to which DIF3D is now exported and currently operational in standalone form on IBM 370 series computers, on CDC 7600 computers and on CRAY-1 computers.

The computational efficiency and data management flexibility (achieved with minimal user control), the user-oriented input data philosophy and the highly portable export package combine to make DIF3D an efficient computational tool that is a standard for the LMFBR community. Thermal reactor applications are routinely solved with DIF3D, also.

An overview of the major code block (modules) in the DIF3D package is provided in Fig. 1.1. DIF3D features are sumarized in the code abstract on page xil. This report is organized into 5 sections. Section 2 provides users with the mathematical and computational aspects that strongly influenced the implementation of the optimized iteration strategies in DIF3D. Sections 3 and 4 respectively provide user and programmer information. Section 5 is intended for users who have just received DIF3D from the National Energy Software Center (NESC) and who are faced with the task of maicing the code operational on their machine; it describes the contents of the NESC tames and outlines the steps necessary to implement DIF3D in stand-alone form on i.e IBM 370 series, the CDC 7600 and the CRAY-1 computers.

Fig. 1.1. Major Modules in the
DIF3D Standard Path STPO21.

2. NEUTRONICS EQUATIONS AND SOLUTION METHODS

In this section, the "mesh-centered" finite-differenced form ${ }^{16,17}$ of the multigroup neution diffusion equations is presented and is accompanied by a review of the properties of these equations that permit the application of the iterative methods chosen to solve these equations. Theoretical aspects of the iterative methods are described and the computational and data management considerations that strongly influence the implementation of the iterative methods are discussed in turn. The equations which form the basis of the criticality search are also discussed.

2.1 Derivation of the Mesh-Centered Finite-Difference Equations

The mesh-centered form of the finite-difference equations rather than the mesh-edged form ${ }^{10,13,18}$ is traditionally used in fast-reactor analysis because of the computational savings afforded in the calculation oi the removal and source terms in Eqs. (2.1) and (2.2).

2.1.1 The Multidimensional Multigroup Neutron Diffusion Equations

In the mesh-centered finite-difference approximation the problem domain R is subdivided into a regular array of mesh cells such that all material interfaces lie on mesh cell surfaces. Within any mesh cell, say R_{ℓ}, the material properties are assumed homogeneous and the time-independert multigroup neutron diffusion equation ${ }^{19}$ for mesh cell R_{ℓ} can then be written:
where
λ denntes an eigenvalue, $S_{\ell}^{g}(\underline{r})$ denotes an optional distributed source, and the remainder of the notation is standard. ${ }^{19, *}$

Equation (2.1) is solved subject to the conditions that the flux and surface-normal component of the net current be continuous across cell interfaces, i.e.

$$
\begin{gather*}
\phi_{\ell}^{g}(\underline{r})=\phi_{m}^{g}(\underline{r}) \tag{2.3}\\
\hat{n} \cdot D_{\ell}^{g_{V} \underline{\phi}_{\ell}}(\underline{r})=\hat{n} \cdot D_{m-}^{g_{m}}(\underline{r}) \tag{2.4}
\end{gather*}
$$

[^0]for $\underset{\sim}{r}$ on the interface between cells R_{ℓ} and R_{m}. Similar relations hold for the interfaces between R_{l} and its remaining adjoining mesh cells.

Boundary conditions of the general form

$$
\begin{equation*}
\alpha^{\mathrm{g}} \hat{\mathrm{n}} \cdot D_{\ell} \mathrm{g}_{\ell} \phi_{\ell}^{\mathrm{g}}(\underline{\mathrm{r}})+\beta_{\phi_{\ell}}^{\mathrm{g}}(\underline{\mathrm{r}})=0, \quad \underline{\mathrm{r}} \in \partial \mathrm{R} \tag{2.5}
\end{equation*}
$$

are specified on cell surfaces which form part of the external boundary ∂R of R. Standard boundary conditions (e.g. zero flux, zero incoming partial current and extrapolated) are obtained via appropriate specification of the surfacedependent boundary constants α^{g} and β^{g} in Eq. (2.5).

When $S_{\ell}^{g}(\underline{r}) \equiv 0$ for all ℓ and g, Eq. (2.1), Eq. (2.2) and Eq. (2.5) define the eigenvalue problem for which the fundamental eigenvalue (k-effective) and eigenvector (neutron flux) are sought. Fixed source problems arise when $s_{l}^{g} \neq 0$ and λ is fixed at a user specified value ensuring reactor subcriticality. The corresponding flux solution is then sought.

Adjoint eigenvalue and fixed source problems determine the solution to the adjoint system associated with Eq. (2.1), Eq. (2.2) and Eq. (2.5).

2.1.2 The Orthogonal XYZ Geometry Derivation

The mesh-centered finite-difference equations will be derived in XYZ geometry for R_{ℓ}, an arbitrary mesh cell chosen from the IxJxK parallelepiped mesh cells defined by the coordinates $x_{i}, i=1,2, \ldots, I+1, y_{j}, j=1,2, \ldots, J+1$ and $z_{k}, k=1,2, \ldots, k+1$. The dimensions of R_{l} are denoted by

$$
\begin{equation*}
\Delta s_{\ell}=s_{\ell+1}-s_{\ell} \text { for } s_{\ell} \equiv\left(x_{i}, y_{j} \text { or } z_{k}\right) \tag{2.6}
\end{equation*}
$$

Using a local coordinate system with the origin at the centroid of the mesh cell, R_{ℓ} is defined by

$$
R_{\ell} \equiv R_{i j k}=\left\{\underline{\underline{I}}=(x, y, z) \mid s=(x, y \text { or } z) \varepsilon\left[-\Delta s_{\ell} / 2, \Delta s_{\ell} / 2\right]\right\}
$$

The group index will be henceforth omitted and whenever possible the single subscript notation ℓ and m will denote $R_{1 j k}$ and adjacent cell, say, $R_{m} \equiv R_{i+l j k}$, respectively.

We start by integrating the neutron diffusion equation over the volume of R_{ℓ}, i.c. we operate on Eq. (2.1) with

$$
\begin{equation*}
\int_{r \in R_{\ell}} d^{3} r \cdot \equiv \int_{-\Delta z_{k} / 2}^{\Delta z_{k} / 2} d \int_{-\Delta y_{j} / 2}^{\Delta y_{j} / 2} \int_{-\Delta x_{i} / 2}^{\Delta x_{i} / 2} d x^{2} \tag{2.7}
\end{equation*}
$$

Application of Gauss' Theorem to the integrated leakage term yields

$$
\begin{equation*}
\int_{\underline{r} \in R_{\ell}} d^{3} r \underline{\nabla} \cdot D_{\ell} \underline{\nabla} \phi_{\ell}(\underline{r})=\sum_{p=1}^{6} \bar{J}^{P} A_{\ell}^{p} \tag{2.8}
\end{equation*}
$$

where A_{ℓ}^{p} denotes the surface areas of R_{λ} with outwardly directed surface normal \hat{n}_{p} (i.e. $\hat{n}_{1}=-\hat{u}_{x}, \hat{n}_{2}=\hat{u}_{x}, \ldots, \hat{n}_{6}=\hat{u}_{z}$) and \hat{u}_{s} denotes a unit vector in direc tion s. The resulting neutron balance equation may be written for each energy group in the form

$$
\begin{equation*}
\sum_{\mathrm{p}=1}^{6} \bar{J}_{\ell}^{\mathrm{p}_{\ell}}{ }_{\ell}^{\mathrm{p}}+\Sigma_{\ell}^{\mathrm{r}_{\ell}} \bar{\phi}_{\ell} \mathrm{V}_{\ell}=\bar{Q}_{\ell} \mathrm{v}_{\ell} \tag{2.9}
\end{equation*}
$$

where the cell-averaged values of the flux and nultigroup source terms are defined by

$$
\begin{equation*}
\bar{\phi}_{\ell} \equiv \frac{1}{\bar{V}_{\ell}} \int_{r € R_{\ell}} d^{3} r \phi_{\ell}(\underline{r}) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{Q}_{\ell} \equiv \frac{1}{V_{\ell}} \int_{r \in R_{\ell}} d^{3} r Q_{\ell}(\underline{r}) \tag{2.11}
\end{equation*}
$$

\bar{J}_{l}^{p}, the surface-averaged component of the net current in direction \hat{n}_{p} at surface A_{l}^{p} is defined by

$$
\begin{equation*}
\bar{J}_{\ell}^{p} \equiv-\frac{1}{A_{l}^{p}} \int_{A_{l}^{p}} d A_{\ell}^{p} \quad \hat{n}_{p} \cdot \underline{\nabla}_{\ell}(\underline{r}) \tag{2.12}
\end{equation*}
$$

The solution of Eq. (2.9) clearly requires additional relationships between the leakages and the cell-averaged fluxes in R_{l} and its six neighbors. Such relationships are obtained by assuming:
(1) the flux varies linearly from the center of the mesh cell to the midpoints of any of its $s t x$ surfaces;
(2) along each surface, A_{l}^{P}, variations in the normal derivative to the surface may be neglected.

These assumptions are equivalent to introducing a multidimensional Taylor serfes expansion of the flux about the cell midpoint and truncating terms of $O\left(h^{2}\right)$ and higher. ${ }^{20}$

Application of assumptions (1) and (2) to Eq. (2.10), Eq. (2.11) and Eq. (2.12) lead to the following approximations:

$$
\begin{align*}
& \bar{\phi}_{\ell} \boldsymbol{\propto} \quad \phi_{\ell} \equiv \phi_{\ell}(0,0,0), \tag{2.13}\\
& \bar{Q}_{\ell} \cong Q_{\ell} \equiv Q_{\ell}(0,0,0), \tag{2.14}\\
& \bar{J}_{\ell}^{\mathrm{P}} \cong \mathrm{~J}_{\ell}^{\mathrm{p}} \equiv \begin{cases}-\mathrm{J}_{\ell}^{\mathrm{x}}\left(-\Delta \mathrm{x}_{1} / 2\right) & \mathrm{p}=1 \\
\mathrm{~J}_{\ell}^{\mathrm{x}}\left(\Delta \mathrm{x}_{1} / 2\right) & \mathrm{p}=2\end{cases} \tag{2.15a}
\end{align*}
$$

where

$$
\begin{equation*}
J_{\ell}^{\mathrm{x}}\left(\Delta x_{i} / 2\right) \equiv J_{\ell}^{\mathrm{x}}\left(\Delta \mathrm{x}_{1} / 2,0,0\right)=-\left.\mathrm{D}_{\ell} \frac{\partial \phi_{\ell}}{\partial \mathrm{x}}(\mathrm{x}, 0,0)\right|_{x=\Delta x_{i} / 2} . \tag{2.16}
\end{equation*}
$$

Similar equations hold for the remaining directions y ($p=3$ or 4) and z ($p=5$ or 6). The derivative in Eq. (2.16) is approximated by using assumption (1). We obtain the following expression for the component of the net current in direction x at the boundary of cell R_{ℓ} :

$$
\begin{equation*}
\mathrm{J}_{\ell}^{\mathrm{x}}\left(\Delta \mathrm{x}_{1} / 2\right) \cong-\mathrm{D}_{\ell} \frac{\phi_{\ell}\left(\Delta x_{1} / 2,0,0\right)-\phi_{\ell}}{\Delta x_{i} / 2} \tag{2.17}
\end{equation*}
$$

Evaluating and equating two expressions for the x-directed current component across the interface between cells R_{ℓ} and $R_{m}\left(e . g . J_{\ell}^{X}\left(\Delta x_{i} / 2\right)\right.$ and $\left.J_{m}^{x}\left(-\Delta x_{1+1} / 2\right)\right)$ and then epplying the interface conditions, Eq. (2.3) and Eq. (2.4), leads to the following expression for the interface flux

$$
\begin{equation*}
\phi_{\ell}\left(\Delta x_{i} / 2,0,0\right)=\frac{D_{\ell} / \Delta x_{1}}{D_{\ell} / \Delta x_{i}+D_{m} / \Delta x_{1+1}} \phi_{\ell}+\frac{D_{m} / \Delta x_{1+1}}{D_{\ell} / \Delta x_{1}}+D_{m} / \Delta x_{1+1} \phi_{m} \tag{2.18}
\end{equation*}
$$

Substitution of Eq. (2.18) into Eq. (2.17) leads to the desired expression for the net current component:

$$
\begin{equation*}
J_{\ell}^{x}\left(\Delta x_{1} / 2\right)=\gamma_{\ell m}^{x}\left(\phi_{\ell}-\phi_{m}\right) \tag{2.19a}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{m}^{x}\left(-\Delta x_{1+1} / 2\right)=-\gamma_{m!}^{x}\left(\phi_{m}-\phi_{\ell}\right) \tag{2.19b}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{\ell m}^{x}=\gamma_{m \ell}^{x} \equiv \frac{1}{\frac{\Delta x_{i}}{2 D_{\ell}}+\frac{\Delta x_{i+1}}{2 D_{m}}} \tag{2.20}
\end{equation*}
$$

Similar equations are obtained for directions y and z.
When $\Delta x_{1} / 2$ corresponds to an external boundary in cell R_{ℓ} or if cell $R_{m}=R_{1+1 j k}$ is a blackness theory region, then Eq. (2.5) provides the relation needed for determining the boundary coupling coefficient $\gamma_{\ell b}^{x} \cong \gamma_{\ell m}^{x}$. Rewriting Eq. (2.5) in terms of the net current we obtain

$$
\begin{equation*}
\pm \mathrm{J}_{\ell}^{\mathrm{x}}\left(\pm \Delta \mathrm{x}_{1} / 2\right)=\left(\frac{\beta}{\alpha}\right) \phi_{\ell}\left(\pm \Delta \mathrm{x}_{1} / 2,0,0\right) . \tag{2.21}
\end{equation*}
$$

The flux at the cell boundary is obtained by eliminating $J_{l}^{x}\left(\pm \Delta x_{i} / 2\right)$ from Eq. (2.17) and Eq. (2.21), and solving for $\phi_{\ell}\left(\pm \Delta x_{1} / 2,0,0\right)$:

$$
\begin{equation*}
\phi_{\ell}\left(\pm \Delta x_{i} / 2,0,0\right)=\frac{D_{\ell} / \Delta x_{1}}{D_{\ell} / \Delta x_{i}+(\beta / \alpha) / 2} \phi_{\ell} . \tag{2.22}
\end{equation*}
$$

The general expression for the leakage term at the boundary is obtained by substituting Eq. (2.22) into Eq. (2.21), e.g.

$$
\left.\begin{array}{l}
\mathrm{J}_{\ell}^{\mathrm{x}}\left(\Delta \mathrm{x}_{1} / 2\right)=\gamma_{\ell \mathrm{b}}^{\mathrm{x}} \phi_{\ell} \tag{2.23}\\
\mathrm{J}_{\ell}^{\mathrm{x}_{(}\left(-\Delta \mathrm{x}_{1} / 2\right)}=--\gamma_{b \ell{ }^{\mathrm{x}} \phi_{\ell}}
\end{array}\right\}
$$

where

$$
\begin{equation*}
\gamma_{l b}^{x}=\gamma_{b l}^{x} \equiv \frac{1}{\frac{\Delta x_{1}}{\frac{2 D_{l}}{{ }_{l}}}+\frac{1}{(\beta / \alpha)}} \tag{2.24a}
\end{equation*}
$$

Rearrangement of terms β and α permit evaluation of Eq. (2.24a) when $\alpha=0$ or $\beta=0$, i.e.

$$
\begin{equation*}
r_{\ell b}^{x} \equiv \frac{2 \beta D_{l}}{\beta \Delta x_{i}}+2 \alpha D_{\ell} . \tag{2.24b}
\end{equation*}
$$

Equation (2.13), Eq. (2.14), Eq. (2.19) and Eq. (2.23) can now be combined to form the mesh-centered finite difference approximation to Eq. (2.9), i.e.

$$
\begin{equation*}
-\sum_{\substack{p=1 \\ m_{p} \neq b}}^{6} a_{\ell m_{p}} \phi_{m_{p}}+b_{\ell} \phi_{\ell}=q_{\ell} \tag{2.25}
\end{equation*}
$$

where $R_{m_{p}}$ is the cell adjacent to R_{ℓ} at surface A_{ℓ}^{p} and

$$
\begin{equation*}
a_{\ell m_{p}}=A_{\ell}^{p_{\ell} \gamma_{\ell m_{p}}^{s}} \tag{2.26}
\end{equation*}
$$

$$
\begin{equation*}
b_{\ell}=\Sigma_{\ell}^{r_{\ell}} v_{\ell}+\sum_{p=1}^{6} a_{\ell m_{p}} \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{q}_{\ell}=\mathrm{Q}_{\ell} \mathrm{V}_{\ell} . \tag{2.28}
\end{equation*}
$$

2.1.3 Comments Regarding All Geometry Options

The terms $\gamma_{\ell m}^{s}$ and the formulas for calculating the indices m_{p} of the p cells $R_{m_{p}}$ adjacent to R_{ℓ} are tabulated in Table 2.1 for all geometry options in DIF3D. Table 2.2 tabulates the corresponding area and volume elements that are illustrated in Figs. 2.1-2.3. Not included here are the twn- and threedimensional hexogonal geometry options associated with the DIF3D nodal option. 5

Mesh cell numbering proceeds in a point by point, row by row and plane by plane fashion for both orthogonal and triangular geometries. Figures 2.4-2.6 illustrate the mesh cell numbering for the two basic triangular geometry options (i.e. parallelogram or rectangular boundary domains). Including alternately upward and downward pointing triangles in a single row, permits the same data structure to be used for both rectangular and triangular geometry.

The periodic boundary conditions offered by DIF3D are limited. The opposite face periodicity option, models a repeating lattice in the "X"-direction in orthogonal geometries (i.e. $R_{I j k}$ is coupled to $R_{1 j k}$). The periodic coupling in the θ-direction of $\theta-R-Z$ geometry also fits this model.

The rotational periodicity option applies to only the lower x - and lower y-face combination which intersect at the origin in either the orthogonal or the triangular (parallelogram boundary domain only) geometry options. This option models the case in which the A_{l}^{3} surface of cells $R_{1 l k}$ are connected to the A_{m}^{l} surface of $R_{1 j k}$ where

Table 2.1 Mesin-Centered Finite-Difference Formulas

Table 2.2 Areas and Volumes for Each Geometry Option ${ }^{\text {a }}$

Geometry	$\begin{gathered} A_{\ell}^{1}=A_{i j k}^{X} \\ i=1,2, \ldots, I+1 \end{gathered}$	$\begin{gathered} A_{\ell}^{3}=A_{i j k}^{y} \\ j=1,2, \ldots, j+1 \end{gathered}$	$\begin{gathered} A_{\ell}^{5}=A_{1 j k}^{2} \\ K=1,2, \ldots, K+1 \end{gathered}$	$\mathrm{v}_{\mathbf{i j k}}$
X	1			Δx_{i}
XY	Δy_{j}	Δx_{1}		$\Delta x_{i} \Delta y_{j}$
XYZ	$\Delta y_{j} \Delta z_{k}$	$\Delta x_{i} \Delta z_{k}$	$\Delta x_{i} \Delta y_{j}$	$\Delta x_{1} \Delta y_{j} \Delta z_{k}$
R	$2 \pi r_{i}$			$\left(r_{i+1}^{2}-r_{i}^{2}\right) \pi$
RZ	$2 \pi r_{1} \Delta z_{j}$	$\pi\left(r_{1+1}^{2}-r_{1}^{2}\right)$		$\left(\mathrm{r}_{1+1}^{2}-\mathrm{r}_{1}^{2}\right) \pi \Delta \mathrm{z}_{j}$
OR	Δr_{j}	$r_{j} \Delta \theta_{i}$		$\frac{1}{2}\left(r_{j+1}^{2}-r_{j}^{2}\right) \Delta \theta_{i}$
QRZ	$\Delta r_{j} \Delta z_{k}$	$r_{j} \Delta \theta_{i} \Delta z_{k}$	$\frac{1}{2}\left(r_{j+1}^{2}-r_{j}^{2}\right) \Delta \theta_{i}$	$\frac{1}{2}\left(r_{j+1}^{2}-r_{j}^{2}\right) \Delta \theta_{i} \Delta z_{k}$
$\mathrm{T}^{\text {bc }}$	$2 \Delta x$	$n(t) 2 \Delta x$		$\sqrt{3} \Delta x^{2}$
TZ ${ }^{\text {bc }}$	$2 \Delta x \Delta z_{k}$	$n(t) 2 \Delta x \Delta z k$	$\sqrt{3} \Delta x^{2}$	$\sqrt{3} \Delta x^{2} \Delta z_{k}$
$T^{\text {bd }}$	$\mu(1) 2 \Delta x$	$n(t+j-1) \xi(1) 2 \Delta x$		E(1) $\sqrt{3} \Delta x^{2}$
TZ ${ }^{\text {bd }}$	$\mu(1) 2 \Delta x \Delta z_{k}$	$\eta(t+j-1) \xi(1) 2 \Delta x \Delta z_{k}$	$\xi(1) \sqrt{3} \Delta x^{2}$.	$\xi(1) \sqrt{3} \Delta x^{2} \Delta z_{k}$

${ }^{\text {a }}$ Unless otherwise noted, indices ($1, j, k$) take the values $1=1,2, \ldots, I$, $j=1,2, \ldots, J$ and $k=1,2, \ldots K$. Note that $A_{m_{p}}^{p+1}=A_{\ell}^{p}, p=1,3,5$ where m_{p} is given in Table 2.1.
b"T" denotes the triangular geometry option. $\eta(t)=\bmod (t, 2)$ accounts for the fact that alternate " y-direction" surface areas are non-existant.

 ($\mathrm{t}=1+\mathrm{NTHPT}$) or full core option ($\mathrm{m}=1+\mathrm{NTHPT}$) where NTHPT = (1 or 2) is defined in the GEODST description (Appendix C). The functions $\mu(1)=\left\{\begin{array}{ll}1 & 1<1<I+1 \\ \sqrt{3 / 2} & 1=1 \text { or } 1 * I+1\end{array}\right\}$ and $\xi(1)=\left\{\begin{array}{ll}1 & 1<1<I+1 \\ 1 / 2 & 1=1 \text { or } 1=I+1\end{array}\right\}$ account for the fact that $R_{1 j k}$ and $R_{I j k}$ are always half triangles.

Fig. 2.i. $X-Y-Z$ Volume Element

Fig. 2.2. $\theta-\mathrm{R}-\mathrm{Z}$ Volume Element

Fig. 2.3. Triangular-Z Volume Elements

Fig. 2.4. Parallelogram Boundary Domain (120° planar symmetry)

Fig. 2.5. Parallelogram Boundary Domain (60° planar symmetry)

Fig. 2.6. Rectangular Boundary Domain $\left(90^{\circ}, 180^{\circ}\right.$ or 360° planar symmetry)

```
j=1, i=1,?,\ldots..,I in orthogonal geometry;
j=(i+1)/2, i=1,3,5,\ldots. in triangular geometry ( }6\mp@subsup{0}{}{\circ}\mathrm{ symmetry);
j=i/2, i=2,4,6,\ldots in triangular geometry (120' symmetry).
```

Conversely, cells $R_{1 j k}$ are connected to $R_{11 k}$ where

```
i=j, j=1,2,\ldots,J in orthogonal geometry;
i=2j-1, fml,2,\ldots..,J in triangular geometry ( }6\mp@subsup{0}{}{\circ}\mathrm{ symmetry);
i=2j, j=1,2,\ldots.,J in triangular geometry ( }12\mp@subsup{0}{}{\circ}\mathrm{ symmetry).
```


2.1.4 The Matrix Equations and Their Properties

The mesh-centered finite-difference equations (Eq. (2.25) in eigenvalue form) for the cell-averaged fluxes can be written in matrix form as

$$
\begin{equation*}
\left(\left[D_{g}\right]+\left[\varepsilon_{g}\right]\right) \Phi_{g}-\sum_{g^{\prime} \neq g}\left[T_{g g^{\prime}}\right] \Phi_{g},=\frac{1}{\lambda}\left[x_{g}\right] \sum_{g^{\prime}=1}^{G}\left[F_{g^{\prime}}\right] \Phi_{g} \tag{2.29}
\end{equation*}
$$

where Φ_{g} is the N-dimensional vector of (approximate) fluxes on the finite difference mesh. The matrices [$\left.\Sigma_{g}\right],\left[T_{g g}\right],\left[F_{g}\right]$ and $\left[X_{g}\right]$ are $N \times N$ diagonal matrices defined by

$$
\begin{align*}
& {\left[\Sigma_{g}\right]=\operatorname{diag}\left(\Sigma_{\ell}^{r}, g_{V_{\ell}}\right)} \tag{2.30}\\
& {\left[T_{g g}\right]=\operatorname{diag}\left(\varepsilon_{\ell}^{s, g g} v_{\ell}\right)} \tag{2.31}\\
& {\left[F_{g}\right]=\operatorname{diag}\left(\nu \Sigma_{\ell}^{f, g} V_{\ell}\right)} \tag{2.32}\\
& {\left[x_{g}\right]=\operatorname{diag}\left(x_{\ell}^{g}\right)} \tag{2.33}
\end{align*}
$$

where N is the number of cells in the finite-difference mesh. The unknowns in Φ_{g} are ordered in a linear fashion, row by row and plane by plane. Given this linear ordering, the $N \times N$ matrix [$\left.D_{g}\right]$ contains :hree, five or seven nonzero stripes for one-, two- or three ${ }^{-}$dimensional geometries, respectively. It operates on Φ_{g} to yield the net leakage across the faces of each mesh cell.

The G Eqs. (2.29) can be condensed into the single matrix equation

$$
\begin{equation*}
[M] \Phi=\frac{1}{\lambda}[B] \Phi . \tag{2.34}
\end{equation*}
$$

where $[M]$ and $[B]$ are square and of order $N^{*} G$ and $\Phi=\operatorname{col}\left[\Phi_{1}, \Phi_{2}, \ldots, \Phi_{G}\right]$. The matrix [M] is given by
where $\left[A_{g}\right]\left(\equiv\left[D_{g}\right]+\left[\Sigma_{g}\right]\right)$ is the leakage-plus-removal matrix operator and [0] is the null matrix. As fhown in Eq. (2.35), the in-group scatter term is ignored in DIF3D. The symmetric matrix A_{g} is defined by
where the submatrices in Eq. (2.36) are defined in terms of coefficients $a_{i j k}^{s}={ }_{a_{\ell m_{p}}}, p=1,3$ or 5 and $b_{i j k}=b_{\ell}$ from Eqs. (2.26) and (2.27):

$$
\begin{align*}
& {\left[A_{j k}^{g y}\right]=\operatorname{diag}\left(a_{i}^{y}\right)_{j k g}} \tag{2.38}
\end{align*}
$$

$$
\begin{equation*}
\left[A_{j k}^{g z}\right]=\operatorname{diag}\left(a_{i}^{z}\right)_{j k g} . \tag{2.39}
\end{equation*}
$$

By defining the $N^{*} G$ by N matrices

$$
\begin{equation*}
[F]=\operatorname{col}\left[\left[F_{1}\right],\left[F_{2}\right], \ldots,\left[F_{G}\right]\right] \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
[x]=\cos \left[\left[x_{1}\right],\left[x_{2}\right], \ldots,\left[x_{G}\right]\right] \tag{2.41}
\end{equation*}
$$

the matrix [B] can be written as

$$
\begin{equation*}
[B]=[X][F]^{T}, \tag{2.42}
\end{equation*}
$$

where T denotes the transpose of a matrix.
The matrices used in Eqs. (2.34)-(2.42) possess a number of properties which provide a sound theoretical basis for the iteration methods which are discussed in Sec. 2.2. For any physically realistic set of assumptions, the diagonal matrices [$\left.\mathrm{T}_{\mathrm{gg}},\right],\left[\mathrm{X}_{\mathrm{g}}\right]$ and $\left[\mathrm{F}_{\mathrm{g}}\right]$ are non-negative matrices. It has been shown ${ }^{2 l}$ that the matrices [A_{g}] are irreducible Stieltjes matrices and that the inverse of each $\left[A_{g}\right]$ has all positive entries, i.e., $\left[A_{g}\right]^{-1}>0$. Because of these properties, the matrix [M] is nonsingular ${ }^{22}$ and the efgenvalue problem Eq. (2.34) can be written as

$$
\begin{equation*}
\lambda \Phi=[M]^{-1}[B] \Phi . \tag{2.43}
\end{equation*}
$$

Under quite general conditions, Froehlich ${ }^{23}$ has shown that Eq. (2.43) has a unique positive eigenvector Φ_{0} and a corresponding single positive eigenvalue λ_{0} greater than the absolute value of any other eigenvalue of Eq . (2.43). Furthermore any positive eigenvector of $[A]^{-1}[B]$ is a scalar multiple of [Φ].

The properties of [B] permit a reduction of the matrix eigenvalue problem which must be solved to ottain λ_{0} from one of order $N * C$ (Eq. (2.43)) to one of only order $\mathrm{N} .{ }^{12}$ Advantage is taken of this fact in obtaining the outer iteration method presented in Sec. 2.2 which is used to obtain λ_{0} and Φ_{0}. This reduction is accomplished by first noting that $[M]^{-1}[B]$ is of order $N^{*} G$ and therefore has $N \star G$ eigenvalues. However, the rank of [F] is only N, thus making the rank of $[M]^{-1}[B]$ only N. Hence, (G-1)*N of its eigenvalues are zero. The nonzero eigenvalues can be determined by considering the reduced but equivalent problem of order N .

Following Ref. 12, but considering a full scattering matrix, this reduction is accomplished by first defining the fission source vector, ψ, as

$$
\begin{equation*}
\Psi \equiv[F]^{T} \Phi-\sum_{g=1}^{G}\left[F_{g}\right] \Phi_{g} \tag{2.44}
\end{equation*}
$$

and the $N * G \times N$ matrix [L] as

$$
\begin{equation*}
[L]=\cos \left[L_{1}\right],\left[L_{2}\right], \ldots,\left[L_{G}\right]=[M]^{-1}[X] \tag{2.45}
\end{equation*}
$$

where the $\mathrm{N} \times \mathrm{N}$ matrices $\left[\mathrm{L}_{\mathrm{g}}\right]$ are defined as

$$
\begin{equation*}
\left[L_{g}\right] \equiv\left[A_{g}\right]\left(\left[x_{g}\right]+\sum_{g^{\prime} \neq g}\left[T_{g g},\right]\left[L_{g},\right]\right) \tag{2.46}
\end{equation*}
$$

These definitions plus Eq. (2.34) permit the group g flux vector Φ_{g}, to be
written as

$$
\begin{equation*}
\Phi_{g}=\frac{1}{\lambda}\left[L_{g}\right] \psi . \tag{2.47}
\end{equation*}
$$

Premultiplying Eq. (2.43) by [F] ${ }^{T}$ and using Eqs. (2.42) and (2.44) yields the reduced problem

$$
\begin{equation*}
\lambda \psi=[Q]_{\psi}, \tag{2.48}
\end{equation*}
$$

where

$$
\begin{equation*}
[Q]=[F]^{T}[L]=\sum_{g=1}^{G}\left[F_{g}\right]\left[L_{g}\right] \tag{2.49}
\end{equation*}
$$

If Φ and λ are an eigenvector and corresponding nonzero eigenvalue of $[M]^{-1}[B]$, then Ψ and λ must be an eigenvector and eigenvalue of $[0]$ and vice versa. Furthermore, by making use of a similarity transformation, it has been shown ${ }^{12}$ that the nonzero eigenvalue spectrum of $[0]$ is identical to the nonzero spectrum of $[M]^{-1}[B]$ and that any non-negative eigenvector of $[Q]$ is either a scalar multiple of Ψ_{0} or else corresponds to a zero eigenvalue, where Ψ_{0} corresponds to λ_{0}. Thus the two eigenvalue problems, Eq. (2.43) and Eq. (2.48), are equivalent.

2.2 Solution Strategies

The finite-difference equations are solved by the well-known fission source iteration method ${ }^{24}$ accelerated by the Chebyshev semi-iterative method. 25,26 At each fission source (or "outer") iteration, the vector of neutron fluxes for each group is computed by solving the finite-difference equations with a known group-dependent source term. This solution is accomplished via sucessive sweeps through the spatial mesh. Each such inner iteration sweep iteratively inverts the leakage-plus-removal matrix operator using the line-successiveoverelaxation procedure. ${ }^{27}$

The acceleration strategies for DIF3D are linear, well-founded and proven, and they relieve users of the burden of specifying optimum parameters for large classes of reactor models. Theoretical aspects of the two acceleration methods are presented in Sections 2.2.1 and 2.2.2, respectively. Computational and data management aspects of each method are described in Sections 2.2.3-2.2.5. The adjoint problem is discussed in Section 2.2.6. Problems with upscattering are solved using the iteration strategy reported in Section 2.2.7. Section 2.2 .8 describes aspects of the inhomogeneous problem.

2.2.1 The Chebyshev Accelerated Outer (Fission Source) Iterations

The cuter iterations seek to determine the fundamental eigenvector, Ψ_{0}. and corresponding eigenvalue, λ_{0}, of Eq. (2.48) or the fundamental eigenvector, Φ_{0}, and λ_{0} of Eq. (2.43). Most few-group codes, such as PDO-7, treat the flux problem, Eq. (2.43). This is due to two factors. First, most thermal power reactors of interest have large reflecting regions which contain no fissionable materials. For any outer iteration method which utilizes an outer iteration acceleration procedure such as the one described in this report, acceleration of the fission source does not markediy improve acceleration of the solution in these reflecting regions unless much additional effort is invested in the inner iterations. This point is elaborated in Sec. 2.2.4. Second, for the two to four energy group structures which are typically used for thermal reactor calculations, the data storage and transfer requirements associated with acceleration procedures based on the fluxes are not prohibitively larger than if the fission source were used.

In fast reactors, on the other hand, the data management requirements associated with accelerating the flux vector are at least an order of magnitude greater than those associated with the fission source for the ten to thirty energy groups which are typically used for fast reactor calculation. In addition, the fast reactor cores under consideration at the time of DIF3D's development tended to be more tightly coupled with relatively small nonfissionable regions. Consequently, the cost of the increased number of outer iterations resulting from the fission source acceleration is more than compensated by the savings 1 n I/O resources. These conclusions are borne out by the numerical results presented in Ref. (1). Later, application to largescale heterogeneous fast reactor core designs ${ }^{28}$ also proved highly efficient.

In the method reported here, approximations to λ_{0} and Ψ_{0}, the fundamental eigenvalue and eigenvector of $[Q]$, are obtained by the well-known power iteration method. It is assumed that the eigenvalue spectrum of $[Q]$ satisfies $\lambda_{0}>\left|\lambda_{1}>\left|\lambda_{2}\right|>\ldots\right\rangle\left|\lambda_{N-1}\right|$ and that Ψ_{1} is the efgenvector associated with λ_{1}. The power method proceeds as

$$
\begin{equation*}
\psi^{(n)}=\frac{1}{\lambda^{(n-1)}}[0] \psi^{(n-1)} \tag{2.50a}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{(n)}=\lambda^{(n-1)} \frac{\left\|\Psi^{(n)}\right\|_{1}}{\left\|\Psi^{(n-1)}\right\|_{1}} \tag{2.50b}
\end{equation*}
$$

where n is the outer iteration index and $\|\cdot\|_{1}$ denotes the L_{1} norm. The actual computation of the product $[Q] \psi^{(n-1)}$ in Eq. (2.50a) involves another level of iteration, the inner iteration, and is discussed in the next section. A later section describes a third level of iteration, the upscatter iteration which occurs outside the inner iteration for all groups when upscattering source terms are present.

Because the largest (in modulus) eigenvalue of $[Q]$ is real and simple, the power method is guaranteed to converge for any arbitrary non-negative initial vector $\psi^{(0)}$ to λ_{0} and $c \psi_{0}$, where $c\left(\begin{array}{l}i s \\ (\pi)\end{array}\right.$ some positive constant. If it is assumed that the eigenvalue estimates $\lambda^{(n)}$ are sufficiently well converged to λ_{0} and that $\psi^{(0)}$ can be expanded in terms of the ψ_{1}, the eigenvectors of [Q], then the rate at which $\psi^{(n)}$ converges to ψ_{0} depends on the separation of λ_{0} from the orner eigenvalues of $[Q] .{ }^{12}$ This convergence rate depends on the dominance ratio, $\bar{\sigma}$, given by

$$
\begin{equation*}
\bar{\sigma}=\max _{i \neq 0} \frac{\left|\lambda_{i}\right|}{\lambda_{0}} \tag{2.51}
\end{equation*}
$$

with the convergence rate ultimately being controlled by $(\bar{\sigma})^{n}$.
The dominance ratios of large thermal power reactors typically are of the order of 0.95 or larger, implying relatively slow convergence of the iterative process given by Eq. (2.50). This fact led to the search for methods to accelerate this convergence for thermal reactor codes, of which the acceleration method based on Chebyshev polynomials used by PDQ-712,13 and the class of methods known as coarse-mesh rebalance ${ }^{23,24}$ methods are the best known. Dominance ratios for large heterogeneous fast reactors can also be as large as 0.95 . In addition, typical fast reactor multigroup energy structures are characterized by nearly full downscattering matrices. The group-by-group calculation of the scattering source required for each outer iteration becomes a costly, input/output-bound calculation when such energy structures are used in large multidimensional calculations. Both of these factors motivate the use of an efficient outer iteration acceleration technique in fast reactor diffusion theory calculations.

A Chebyshev acceleration strategy similar to that used in PDQ-7 is utilized in the solution method presented here. The primary difference is that while PDQ-7 accelerates the flux vector, Φ, DIF3D accelerates the fission source, ψ. The motivations for this have been presented above. Its application is based on the assumptions that the eigenvalues of $[Q]$ are real and nonnegative and are ordered as $\lambda_{0}>\lambda_{1}>\lambda_{2}>\ldots>\lambda_{\mathrm{N}-1}>0$ and that the eigenvectors Ψ_{1} of $[Q]$ form a basis for the $N-$ dimensional vector space. Following the derivations in Refs. 12 and 13, the basic power iteration is accelerated by choosing a linear combination of the eigenvector iterates $\Psi^{(n)}$ such that

$$
\begin{equation*}
\tilde{\Psi}^{\left(n^{\star}+p\right)}-\sum_{j=0}^{p} a_{j p} \psi^{\left(n^{\star}+j\right)}, \tag{2.52}
\end{equation*}
$$

where n^{*} is the outer index where this acceleration begins and p successive fission source iterates are employed. The objective is to choose the coefficients such that $\tilde{\Psi}^{\left(n^{\star}+p\right)}$ approximates ψ_{0} more closely than does $\psi^{\left(n^{\star}+p\right)}$.

Based on the assumption of completeness, $\Psi^{\left(n^{*}\right)}$ can be written as

$$
\begin{equation*}
\psi^{(n \star)}=\sum_{i=0}^{N-1} c_{i} \Psi_{i} . \tag{2.53}
\end{equation*}
$$

For a sufficiently converged eigenvalue estimate $\underline{\lambda}^{\left(n^{*}\right)}$, Eqs. (2.50a) and (2.53) imply that Eq. (2.52) can be written as

$$
\begin{equation*}
\tilde{\psi}^{\left(n^{\star}+p\right)} \approx \sum_{i=0}^{N-1} c_{i} \sum_{j=0}^{p} a_{j p}\left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{p} \underline{\psi}_{1} . \tag{2.54}
\end{equation*}
$$

Letting $P_{p}(x) \equiv \sum_{j=0}^{p} a_{j p} x^{p}$, Eq. (2.54) becomes

$$
\begin{equation*}
\tilde{\psi}^{(n *+p)} \approx P_{p}\left(\frac{1}{\lambda_{0}}[Q]\right) \Psi^{(n *)}=c_{0} P_{p}(1) \Psi_{0}+\sum_{i=1}^{N-1} c_{1} P_{p}\left(\frac{\lambda_{1}}{\lambda_{0}}\right) \Psi_{i} \tag{2.55}
\end{equation*}
$$

The sum on the R.H.S. of Eq. (2.55) is the error. This error is minimized in a practical sense by choosing $P_{p}(x)$ such that $P_{p}(1)=1$ and $\max _{0<x<0} P_{p}(x)$ is minimized. This is accomplished by choosing $P_{p}(x)$ in terms of Chebyshev polynomials as ${ }^{25}$

$$
\begin{equation*}
P_{p}(x)=\frac{C_{p}\left(\frac{2 x}{\bar{\sigma}}-1\right)}{C_{p}\left(\frac{2}{\bar{\delta}}-1\right)} \tag{2.56}
\end{equation*}
$$

where the $C_{p}(y)=\cosh \left(p \cosh ^{-1} y\right), y>1$. Given the well known recurrence relationships for Chebyshev polynomials, the recursion relationship for $P_{p}(x)$ is

$$
\begin{align*}
P_{p+1}(x) & =2\left(\frac{2 x}{\sigma}-1\right)\left(\frac{\cosh [p \gamma]}{\cosh [(p+1) \gamma]}\right) P_{p}(x) \\
& -\left(\frac{\cosh [(p-1) \gamma]}{\cosh [(p+1) \gamma]}\right) P_{p-1}(x), \quad p \geqslant 1, \tag{2.57}
\end{align*}
$$

where

$$
\begin{align*}
& P_{0}(x)=1 \\
& P_{1}(x)=\frac{\left(\frac{2 x}{\bar{\sigma}}-1\right)}{\left(\frac{2}{\bar{\sigma}}-1\right)}, \tag{2.58}
\end{align*}
$$

and

$$
\begin{equation*}
\gamma=\cosh ^{-1}\left(\frac{2}{\bar{\sigma}}-1\right) \tag{2.59}
\end{equation*}
$$

This leads to the accelerated iterative procedure for $p \geqslant 1$:

$$
\begin{align*}
& \psi^{\left(n^{\star}+p\right)}=\frac{1}{\lambda^{\left(n^{\star}+p-1\right)}}[Q] \tilde{\Psi}^{\left(n^{\star}+p-1\right)}, \tag{2.60a}\\
& \tilde{\Psi}^{\left(n^{*}+p\right)}=\tilde{\Psi}^{\left(n^{*}+p-1\right)}+\alpha_{p}\left[\psi^{(n \star+p)}-\tilde{\psi}^{\left(n^{*}+p-1\right)}\right] \\
& +\beta_{p}\left[\tilde{\Psi}^{\left(n^{\star}+p-1\right)}-\tilde{\Psi}^{\left(n^{*}+p \cdot 2\right)}\right], \tag{2.60b}\\
& \lambda^{\left(n^{\star}+p\right)}=\lambda^{\left(n^{\star+p-1)}\right.} \frac{\left\|\tilde{\Psi}^{\left(n^{\star}+p\right)}\right\|_{1}}{\| \tilde{\Psi}^{\left(n^{\star+p-1)} \|_{1}\right.},} \tag{2.60c}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha_{1}=\frac{2}{2-\bar{\sigma}}, \beta_{1}=0, \\
& \alpha_{p}=\frac{4}{\bar{\sigma}}\left(\frac{\cosh [(p-1) \gamma]}{\cosh [p \gamma]}\right), \\
& \beta_{p}=\left(1-\frac{\bar{\sigma}}{2}\right) \alpha_{p}-1
\end{aligned}
$$

To apply the iteration schemes given by Eqs. (2.50) and (2.60), the dominance ratio $\bar{\sigma}$ must be obtained and a suitable convergence criterion must be applied to measure convergence. It has been shown ${ }^{21}$ that if $\psi^{(0)}$ is a nonnegative vector, then $\lim _{n \rightarrow \infty} \lambda^{(n)}=\lambda_{0}$ and $\lim _{n+\infty} \psi^{(n)}=c \Psi_{0}$. In addition, if the 1-th components of $\psi^{\left(n^{n-1)}\right.}$ and $\psi^{(n)}$ are written as $\psi_{1}^{(n-1)}$ and $\psi_{1}^{(n)}$ and if $\bar{\lambda}^{(n)}$ and $\underline{\lambda}^{(n)}$ are defined as

$$
\begin{equation*}
\bar{\lambda}^{(n)} \equiv \max _{1} \frac{\psi_{1}^{(n)}}{\psi_{1}^{(n-1)}}, \underline{\lambda}^{(n)} \equiv \min _{1} \frac{\psi_{1}^{(n)}}{\psi_{1}^{(n-1)}}, \tag{2.62}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{\lambda}^{(n)}>\lambda_{0} \geqslant \underline{\lambda}^{(n)}, \bar{\lambda}^{(n)} \geqslant \lambda^{(n)} \geqslant \underline{\lambda}^{(n)}, \tag{2.63}
\end{equation*}
$$

and

$$
\lim _{n+\infty} \bar{\lambda}^{(n)}=\lim _{n+\infty} \underline{\lambda}^{(n)}=\lambda_{0}
$$

Thus, $\bar{\lambda}^{(n)}$ and $\underline{\lambda}^{(n)}$ provide upper and lower bounds on the eigenvalue estimate based on the behavior of the cellwise fission source crimponents. Because they are related to the behavior of the individual components; they also provide insight into how well the individual components of $\Psi^{(n)}$ are converged. By defining the relative point error, $\varepsilon_{p t}^{(n)}$, as

$$
\begin{equation*}
\varepsilon_{p t}^{(n)} \equiv \max _{i}\left|\frac{\psi_{i}^{(n)}-\psi_{01}}{\psi_{01}}\right| \tag{2.64}
\end{equation*}
$$

where ψ_{01} is the $1-$ th component of ψ_{0}, the true result, and

$$
\begin{equation*}
\varepsilon^{(n)} \equiv \frac{\bar{\lambda}^{(n)}-\underline{\lambda}^{(n)}}{2} \tag{2.65}
\end{equation*}
$$

it has been shown ${ }^{13}$ that, for n sufficiently large, in_{i} is approximately bounded as

$$
\begin{equation*}
\frac{\varepsilon^{(n+1)}}{1-\bar{\sigma}+\varepsilon^{(n+1)}} \lesssim \varepsilon_{p t}^{(n)} \lesssim \frac{2 \varepsilon^{(n+1)}}{1-\bar{\sigma}-2 \varepsilon^{(n+1)}} \tag{2.66}
\end{equation*}
$$

This relationship provides a measure of maximum relative error in any of the components of $\psi^{(n)}$. The precise manner in which this measure is applied to check fission sourco convergence here is discussed in Sec. 2.2.4.

An estimate of the dominance ratio δ is required both in the fission source extrapolation process given in Eq. (2.60b) and in Eq. (2.66) above. One such estimate can be determined by defining the error vector $\underline{R}^{(n)}$ as

$$
\begin{equation*}
\underline{R}^{(n)} \equiv \psi^{(n)}-\psi^{(n-1)} \tag{2.67}
\end{equation*}
$$

and the decay rate of the error, $E^{(n)}$, as

$$
\begin{equation*}
E^{(n)}=\left[\frac{\left.\frac{R}{R}^{(n)}, \underline{R}^{(n)}\right\rangle}{\left\langle\underline{R}^{(n-1)}, \underline{R}^{(n-1)}\right\rangle}\right]^{1 / 2} \tag{2.68}
\end{equation*}
$$

where <,> denotes an inner product.
For the power method of iteration, ${ }^{3}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E^{(n)}=\sigma \tag{2.69}
\end{equation*}
$$

Several key algorithmic details associated with the application of the power iteration and Chebyshev acceleration procedures remain to be discussed. These include (a) determining when to start the first acceleration cycle, (b) obtaining improved estimates of the dominance ratio as the acceleration cycles proceed and (c) determining when to start a new acceleration cycle. These are discussed in Sec. 2.2.3.

2.2.2 The Line Successive Overrelaxation of the Inner Iterations

The inner iterations are required in carrying out the operation $[Q] \psi^{(n-1)}$ on the R.H.S. of Eq. (2.50a) and (2.60a). From Eqs. (2.46) and (2.47), $[Q] \psi^{(n-1)}$ can be written as

$$
\begin{equation*}
[Q] \psi^{(n-1)}=\sum_{g=1}^{G}\left[F_{g}\right]\left[L_{g}\right] \psi^{(n-1)}=\lambda^{(n-1)} \sum_{g=1}^{G}\left[F_{g}\right] \phi_{g}^{(n)} \tag{2.70}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{g}^{(n)} \equiv \frac{1}{\lambda^{(n-1)}}\left[L_{g}\right] \Psi^{(n-1)} \tag{2.71}
\end{equation*}
$$

Given the $\phi_{g}^{(n)},[Q] \psi^{(n-1)}$ and hence $\psi^{(n)}$ can be easily obtained. The definition of $\left[\mathrm{L}_{\mathrm{g}}\right]$, Eq. (2.46), defines a series of 1 inear equations

$$
\begin{equation*}
\left[A_{g}\right]_{\underline{g}}^{(n)}=\underline{b}_{g}^{(n)}, g=1,2, \ldots, G \tag{2.72}
\end{equation*}
$$

which can be solved for the group flux vectors $\Phi_{g}^{(n)}$.

The source ${\underset{g}{g}}_{(n)}^{(n)}$ is given by (see Eq. (2.112b) for the upscatter problem)

$$
\begin{equation*}
\underline{b}_{g}^{(n)}=\sum_{g^{\prime}<g}\left[T_{g g},\right] \phi_{g}^{(n)} \dot{+} \frac{1}{\lambda^{(n-1)}}\left[x_{g}\right] \psi^{(n-1)} \tag{2.73}
\end{equation*}
$$

For multidimensional problems, the direct inversion of $\left[A_{g}\right]$ matrices in Eq. (2.72) is not practical. The iterative inversion of $\left[A_{g}\right]$ for each group comprise the inner iterations.

Because of its sound theoretical basis and computational simplicity (see Sec. 2.2.4), the line successive overrelaxation method has been chosen for the solution strategy reported here. The matrix [A] in Eq. (2.72) (dropping the group subscript) is split as ${ }^{27}$

$$
\begin{equation*}
[A]=[D]-[E]-[F] \tag{2.74}
\end{equation*}
$$

where [D] contains the diagonal of [A g] plus those off-diagonal coefficients which represent coupling between cell fluxes in each row, [E] contains those blocks of [A] which lie below the diagonal blocks placed in [D], and [F] contains those blocks which lie above the blocks in [D]. The line successive overrelaxation procedure is then given by

$$
\begin{equation*}
\phi_{g}^{(m+1)}=\left[L_{\omega}\right] \Phi_{g}^{(n)}+\underline{k}_{g} \tag{2.75}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[L_{\omega}\right]=([D]-\omega[E])^{-1}(\omega[P]+(1-\omega)[D]) \tag{2.76}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{k}_{g}=([D]-\omega[E])^{-1} \omega \underline{b}_{g} . \tag{2.77}
\end{equation*}
$$

The matrix [L_{ω}] is the ine successive overrelaxation iteration matrix and ω is the overrelaxation factor; both are group-dependent. Because [A] (for each group) is an irreducible consistently-ordered 2-cyclic Stieltjes matrix for the finite differencing s ':hemes used here, the iteration procedure given by Eq. (2.75) is convergeni for $1 \leqslant \omega \leqslant 2 .^{29}$ Furthermore, there is an optimum value of w, say u_{b}, for which the convergence is the most rapid. This groupdependent value of ω_{b} is $g i v e n$ by ${ }^{27}$

$$
\begin{equation*}
\omega_{b}=\frac{2}{1+\left[1-\rho\left(\left[L_{1}\right]\right)\right]^{1 / 2}}, \tag{2.78}
\end{equation*}
$$

where $\rho\left(\left[L_{1}\right]\right)$ is the spectral radius of $\left[L_{1}\right]$, the associated Gauss-Seidel iteration matrix, which can be obtained from Eq. (2.76) by setting w=l.

Following the procedure outlined in Ref. 30 , the value of ω_{b} can be determined to arbitrary accuracy because the [A] matrix for each group has the properties 1 isted above. For such matrices, if $\underline{x}^{(0)}>0$ and if

$$
\begin{equation*}
\underline{x}^{(m)} \equiv\left[L_{1}\right] \underline{x}^{(m-1)} \tag{2.79a}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{(m)} \equiv \frac{\left\langle\underline{x}^{(m)}, \underline{x}^{(m)}\right\rangle}{\left\langle\underline{x}^{(m)}, \underline{x}^{(m-1)}\right\rangle}, \tag{2.79b}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \delta^{(m)}=\rho\left(\left[L_{1}\right]\right) \tag{2.80}
\end{equation*}
$$

Furthermore, if $x_{i}^{(m-1)} \neq 0$ and if

$$
\begin{equation*}
\bar{\delta}(m) \equiv \max \frac{x_{i}^{(m)}}{1} \frac{x_{1}^{(m-1)}}{x_{1}^{(m)}} \equiv \min \frac{x_{1}^{(m)}}{x_{1}^{(m-1)}}, \tag{2.81}
\end{equation*}
$$

then

$$
\begin{aligned}
& \bar{\delta}^{(m)}>\rho\left(\left[I_{1}\right]\right)>\underline{\delta}^{(m)}, \\
& \bar{\delta}^{(m)} \geqslant \delta^{(m)}>\underline{\delta}^{(m)}
\end{aligned}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \bar{\delta}^{(m)}=\lim _{m \rightarrow \infty} \underline{\delta}^{(m)}=\rho\left(\left[L_{1}\right]\right) . \tag{2.82}
\end{equation*}
$$

The spectral radius $\rho\left(\left[L_{1}\right]\right)$ can be computed by carrying out the fiteration given by Eq. (2.79 a), computing $\delta^{(m)}, \bar{\delta}^{(m)}$ and $\delta^{(m)}$, and monitoring their convergence to one another. The computational details involved by implementing this procedure for computing ω_{b} are discussed in E.s. 2.2.4.

2.2.3 Outer Iteration Computational Considerations

The obvious ultimate goal of the outer iteration procedure is to be able to apply the Chebyshev acceleration procedure given in Eqs. (2.60) with accurate estimates of both λ_{0} and $\bar{\sigma}$. However, since neither λ_{0} and $\bar{\sigma}$ are known when the outer iterations are commenced, a "boot-strap" process is required. As reported in Refs. 12 and 13 , it has been found advantageous to perform a limited number of power iterations, Eq. (2.50), initially to provide a reasonable estimate of λ_{0} and an initial estimate of σ, which is generally quite low. A series of low-order extrapolation cycles are then utilized, during which the higher overtones are rapidly damped out and more accurate estimates of $\bar{\sigma}$ are obtained. Only when all but the first overtone mode are essentially damped out are high-order cycles based on accurate estimates of $\bar{\sigma}$ utilized.

The precise algorithm can be described in terms of four basic parts as follows: ${ }^{13}$

1. A minimum of three power iterations using Eq. (2.50) are performed initially. The first Chebyshev acceleration cycle is begun on outer iteration $n^{*}+1$, where $n^{*}+1$ is the smallest integer such that $n * \geqslant 3$ for which the dominance ratio estimate, $\hat{\sigma}$ satisfied the criterion

$$
0.4 \leqslant \hat{\sigma} \leqslant 1.0
$$

where Eq. (2.68) is used to estimate $\bar{\sigma}$. That is,

$$
\begin{equation*}
\hat{\sigma}=E^{(n *)} \tag{2.83}
\end{equation*}
$$

2. Using $\hat{\sigma}$ as the dominance ratio estimate for $\hat{\sigma}$ in Eq. (2.61), the accelerated iterative sequence given by Eq. (2.60) is carried out for iterations $n^{*}+p, p \geqslant 1$. At first, low degree polynomials are applied repeatedly, with the estimates of the dominance ratio being updated continuously according to

$$
\begin{equation*}
\hat{\sigma}^{\prime}=\frac{\hat{\sigma}}{2}\left\{\cosh \left[\frac{\cosh ^{-1}(\gamma)}{p-1}\right]+1\right\} \tag{2.84}
\end{equation*}
$$

where

$$
\begin{align*}
& \gamma=C_{p-1}\left(\frac{2-\hat{\sigma}}{\hat{\sigma}}\right) E_{n *, p-1}, \tag{2.85}\\
& E_{n *, p-1}=\frac{\left\|\Psi^{(n *+p)}-\tilde{\Psi}^{\left(n^{*+p-1)}\right.}\right\|_{2}}{\left\|\Psi^{(n *+1)}-\tilde{\Psi}^{\left(n^{*}\right)}\right\|_{2}}, \tag{2.86}
\end{align*}
$$

and C_{p-1} is the Chebyshev polynomial of degree $p-1$. The polynomials are at least of degree 3 and are terminated when the error reduction factor $E_{n *, p-1}$ is greater than the theoretical error reduction factor:

$$
\begin{equation*}
E_{n *, p-1}>\left[C_{p-1}\left(\frac{2-\hat{\sigma}}{\hat{\sigma}}\right)\right]^{-1} \tag{2.87}
\end{equation*}
$$

The theoretical error reduction factor is the error reduction which would have been achieved if σ were equal to δ, the true dominance ratio. If $E_{n \star, p-1}$ is greater than this, the acceleration cycle has not been as effective as it should have been, so a new cycle is started using the updated dominance ratio estimate, $\hat{\sigma}^{\prime}$, from Eq. (2.84).

It has been found judicious to limit the rate of growth of the dominance ratio estimates, $\hat{\sigma}^{\prime}$, during the early stages of the iterative process. Denoting the dominance ratio estimate to be used to start a new polynomial cycle ($p=1$) at iteration $n *+1$ as $\hat{\sigma}, \hat{\sigma}$ is constrained as

$$
\hat{\sigma}= \begin{cases}\min \left(\hat{\sigma}^{\prime}, 0.9\right), & n^{*}+1<6 \tag{2.88}\\ \min \left(\hat{\sigma}^{\prime}, 0.95\right), & n *+1<9 \\ \min \left(\hat{\sigma}^{\prime}, 0.985\right), & n^{*}+1<12 \\ \min \left(\hat{\sigma}^{\prime}, 0.99\right), & n *+1>12\end{cases}
$$

Though seldom needed in fast reactor problems, these constraints help smooth the convergence process in problems characterized by large dominance ratios.
3. After the estimates for $\bar{\sigma}$ have converged, higher degree polynomials a e applied. In fact, the process described in part 2 above is applied continuously. The length of the cycles increases naturally due to the improving estimates of \bar{J}.
4. The outer iterations are terminated at outer iteration n if the following three criteria are met:

$$
\begin{align*}
& \varepsilon^{(n)} \leqslant \varepsilon_{\lambda}, \tag{2.89}\\
& \left.\frac{\left\|\underline{\psi}^{(n)}-\tilde{\Psi}^{(n-1)}\right\|_{2}^{2} \varepsilon_{\psi},}{\left\langle\Psi^{(n)}, \tilde{\Psi}^{(n-1)}\right\rangle}{ }^{1 / 2}<\varepsilon_{\text {eff }} \right\rvert\, \leqslant \varepsilon_{k}, \tag{2.90}
\end{align*}
$$

where $\varepsilon_{\lambda}, \varepsilon_{\psi}$ and ε_{k} are input parameters. The test specified in Eq. (2.89) is a measure of the pointwise eigenvector convergence and is based on the bounds placed on the relative point error in the relationship (2.66). In computing $\varepsilon^{(n)}$, only cells in which the fission source has some minimum (user-specified) relative size are considered. The test (2.90) is a measure of the average rate of convergence of the eigenvector (the fission source), while test (2.91) is a measure of the eigenvalue convergence. The $k_{e f f}$ estimate at the end of n iterations is taken from

$$
\begin{equation*}
k_{e f f}^{(n)}=k_{e f f}^{(n-1)} \frac{\left\langle\psi^{(n)}, \psi^{(n)}\right\rangle^{1 / 2}}{\left\langle\psi^{(n)}, \tilde{\psi}^{(n-1)}\right\rangle^{1 / 2}} \tag{2.92}
\end{equation*}
$$

Experience has shown that if ε_{λ} and ε_{ψ} are assigned equal values, the test (2.89) almost always controls convergence. The same tests (2.89)-(2.91) are applied after each outer iteration is completed, regardless of whether the iteration just completed was a power iteration or an accelerated iteration.

2.2.4 Inner Iteration Computational Considerations

Computational considerations arise concerning three aspects of the inner iterations. These are the computation of the optimum overrelaxation factor ω_{b} for each group, the determination of the number of inner iterations which should be carried out for a given group at a particular outer iteration and the actual procedure used to solve the tridiagonal matrix equations which characterize the line successive overrelaxation method.

It has been shown in Sec. 2.2.2 that the optimum overrelaxation factor for a given group can be computed if the spectral radius of the, line GaussSeidel matrix, $\rho\left(\left[L_{1}\right]\right)$, is known. The procedure outlined in Eqs. (2.79)(2.81) provides a rigorous method for determining $\rho\left(\left[L_{1}\right]\right)$. With the coding to carry out the inner itcrations using the line successive overrelaxation method already in place, the implementation of this procedure is trivial, since [L_{1}] is equal to [L_{ω}] with ω set to unity. The vector k_{g} in Eq. (2.75) also has to be set to the null factor.

In order to insure that the actual outer and inner iterations are as efficient as possible, this computation of the overrelaxation factors is done prior to commencing the first outer iteration. Starting with an arbitrary non-negative initial guess $\underline{x}^{(0)}$, the iteration in Eq. (2.79a) is carried out for $m=1$ to 10 . Following each iteration for $m>10$, the quantities $\delta^{(m)}$, $\bar{\delta}^{(m)}$ and $\underline{\delta}^{(m)}$ are computed. The related quantities $\omega^{(m)}, \omega^{-(m)}$ and $\underline{\omega}^{(m)}$, defined by ${ }^{12}$

$$
\begin{align*}
& \omega^{(m)} \equiv \frac{2}{1+\left(1-\lambda^{(m)}\right)^{1 / 2}}, \\
& \bar{\omega}^{(m)} \equiv \frac{2}{1+\left(1-\bar{\lambda}^{(m)}\right)^{1 / 2}} \tag{2.93}
\end{align*}
$$

and

$$
\underline{\omega}^{(m)} \equiv \frac{2}{1+\left(1-\underline{\lambda}^{(m)}\right)^{1 / 2}},
$$

are also computed. The iterations for a given group are terminated when either

$$
\begin{equation*}
\left|\bar{\omega}^{(m)}-\underline{\omega}^{(m)}\right| \leqslant \frac{2-\omega^{(m)}}{5}, \tag{2.94}
\end{equation*}
$$

or $m=M$, where M is a user controlled iteration limit; ω_{b} for that group is set to $\omega^{(m)}$. The test given by Eq. (2.94) forces tighter convergence as $\rho\left(\left[L_{\omega}\right]\right)$ increases. The amount of CPU time required to precompute the ω_{b} is typically on the order of one or two outer iterations.

The theory presented in Sec. 2.2.1 on the Chebyshev acceleration method implicitly assumes that the matrix equation for each group, Eq. (2.72), is solved exactly during each outer iteration. For multidimensional problems, this is not the case. It has been shown ${ }^{13}$ that the effect of solving Eq. (2.72) iteratively to less than infinite precision for each group is to modify somewhat the system of equations being solved. Although both systems share the same fundamental eigenvalue and eigenvector, the dominance ratio of the modified system is larger than the original system, Eq. (2.48). Some of the eigenvalues of the modified system may be negative or complex, which would slow convergence of the outer iterations.

The most practical solution to this problem is to do a sufficient number of inner iterations for each group during each outer iteration so that the effect on the dominance ratio is not appreciable, yet no more than this. It has been determined experimentally for a range of typical fast reactor problems ${ }^{11}$ that this can be achieved most economically by doing a fixed number of iterations, m_{g}, for each group during each of the outer iterations. This eliminates the need for any annvergence checking during the inner iterations and thus eliminates the costly divides which would have to be done to determine relative convergence on a component-by-component basis.

This number m_{g} is determined for each group by requiring that the norm of the continued product of the iteration matrices for that group during each outer iteration be less than some desired (user controllable) error reduction factor. This assures that the norm of any of the components of the error vector is greater than or equal to this error reduction factor during each
outer iteration. For a variant of the line successive overrelaxation method of Eq. (2.75), where a single Gauss-Seidel iteration precedes (m-1) successive overrelaxation iterations, the norm of the continued product of the iteration matrices is given by ${ }^{26}$

$$
\begin{equation*}
\left\|\left[L_{\omega_{b}}^{m-1}\right]\left[L_{1}\right]\right\|_{2}=\left[t_{2 m-1}^{2}+t_{2 \mathrm{~m}}^{2}\right]^{1 / 2}, m \geqslant 1, \tag{2.95}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{m}=\left[u_{\mathrm{b}}-1\right]^{(m-1) / 2} \cdot\left[\rho\left(\mathrm{~L}_{1}\right)\right]^{1 / 2}\left[1+(\mathrm{m}-1)\left(1-\left[\rho\left(\mathrm{L}_{1}\right)\right]^{1 / 2}\right)\right] . \tag{2.95b}
\end{equation*}
$$

The single Gauss-Seidel iteration is applied because the norm in Eq. (2.95a) is then strictly decreasing for $m>1$. Letting $\varepsilon_{i n}$ be the desired error reduction factor and given ε_{b} and $\rho\left(L_{1}\right)$ for a group from the optimum overrelaxation factor calculation just described, Eq. (2.96) is solved to determine that value of m such that

$$
\begin{equation*}
\left\|\left[L_{\omega_{\mathrm{b}}}^{\mathbb{m}-1}\right]\left[L_{1}\right]\right\|_{2} \leqslant \varepsilon_{\mathrm{in}} . \tag{2.96}
\end{equation*}
$$

The value of m so obtained is the fixed number of inner iterations, m_{g}, that are done for group g for every outer iteration. There is no direct user control over m_{g}; it is always computed from $\varepsilon_{\text {in }}$.

Experience has shown that choosing $\varepsilon_{\text {in }} \leqslant 0.04$ will result in no adverse impact on the outer iteration convergence rate for typical fast reactor problems. For problems with dominance ratios larger than 0.85 (large reactors), a value of $\varepsilon_{\text {in }}$ as small as 0.01 is sometimes necessary. It is quite obvious when a value of $\varepsilon_{\text {in }}$ which is too large for the problem at hand has been chosen. The dominance ratio estimates being obtained from the outer iteration grow too large, and oscillatory behavior of the acceleration cycles generally results.

A great percentage of the total CPU time required to solve large problems with this solution method is spent in the inner iterations. In implementing the algorithms used to carry out these iterations, it is essential that the full capabilities of the large-scale scalar scientific computers for which DIF3D was designed be utilized. A feature shared by some of these computers is the high speed instruction stack, from which significant gains in execution speed can be obtained when repetitive instruction sequences can be contained in this stack. Multiple functional units and instruction segmentation permit parallel execution of several arithmetic operations, loop indexing and the storing and fetching of data.

The requirements for utilizing these features efficiently include the following: (a) compact coding for loops, (b) no conditional branching performed within the loop, and (c) avoiding divisions whenever possible. The one-line successive overrelaxation method was chosen in part because it is simple and can be coded compactly. Performing a fixed number of inner iterations for each group eliminates the need for the divides and conditional branching which usually accompanies convergence checking. Finally, by utilizing
the procedure outlined below, it is possible to eliminate all divides and conditional branching from the innermost loops of the inner iteration algorithm and reduce those loops to a few lines of machine language coding which easily fit within the instruction stack on, say, an IBM 370/195 or a CDC 7600 .

For a particular line of fluxes which are computed simultaneously during each inner iteration, the equations which must be solved are of the form

$$
\begin{align*}
& {\left[A_{j k}^{x}\right] \hat{\Phi}_{j k}^{(m+1)}=\underline{s}_{j k},} \tag{2.97}\\
& \Phi_{j k}^{(m+1)}=\omega_{h}\left(\dot{\Phi}_{j k}^{(m+1)}-\Phi_{j k}^{(m)}\right)+\Phi_{j k}^{(m)}, \tag{2.98}\\
& \underline{s}_{j k}=q_{j k}+\left[A_{j k}^{y}\right] \Phi_{j-1 k}^{(m+1)}+\left[A_{j+1 k}^{y}\right] \Phi_{j+1 k}^{(m)}+\left[A_{j k}^{z}\right] \Phi_{j k-1}^{(m+1)}+\left[A_{j k+1}^{z}\right] \Phi_{j k+1}^{(m)} \tag{2.99}
\end{align*}
$$

where j and k are the row and plane indices of this line, $\left[A_{j k}^{8}\right]$ are the matrices given by Eqs. (2.37)-(2.39) and the flux values $\phi_{0 k}$ and $\phi_{J+1 k}$, $k=1,2, \ldots, K$, and $\Phi_{j 0}$ and $\phi_{j K+1}, j=1,2, \ldots, J$ are null. The solution of Eq. (2.97) utilizes a variant of Gaussian elimination to perform the LU factorization of the tridiagonal matrix [$\left[\mathrm{Jk}_{\mathrm{k}}^{\mathrm{x}}\right.$].

The forward elimination on the matrices $\left[A_{j k}^{x}\right]$ is performed only once, prior to the beginning of the outer iterations, in such a fashion as to eliminate the need for further divides in computing the $\Phi_{j k}$. The backward sweep and overrelaxation are then combined in a single loop to save memory fetches and stores.

We define $\ell_{i} \equiv a_{i}^{x}$ in Eq. (2.37) then the forward elimination on $\left[A_{j k}^{x}\right]$ is

$$
\left.\begin{array}{l}
d_{1}=\frac{1}{b_{1}} \\
u_{i}=\ell_{i} d_{i-1} \tag{2.100b}\\
d_{i}=\frac{1}{b_{i}-\ell_{i} u_{i}}
\end{array}\right\} i=2,3, \ldots, I
$$

The d_{i} values are saved for subsequent use in the inner iterations by storing over the b_{i} values, which are no longer needed. Given $\underline{g}_{j k}$ for one inner iteration, the forward sweep on it is given by

$$
\begin{equation*}
y_{1}=s_{1} d_{1}, \tag{2.101a}
\end{equation*}
$$

$$
\begin{equation*}
y_{i}=\left(s_{i}+\ell_{i} y_{i-1}\right) d_{i}, \quad i=2,3, \ldots, I \tag{2.101b}
\end{equation*}
$$

where s_{i} is the 1 -th component of $\underline{g}_{j k}$. A second loop then performs the remainder of the work on line j, k according to

$$
\left.\begin{array}{l}
x_{I}=y_{I}, \phi_{I}^{(m+1)}=\phi_{I}^{(m)}+\omega_{b}\left(x_{I}-\phi_{I}^{(m)}\right), \\
x_{i}=y_{i}+\ell_{i+1} d_{i} x_{i+1} \tag{2.102b}\\
\phi_{i}^{(m+1)}=\phi_{i}^{(m)}+\omega_{b}\left(x_{i}-\phi_{i}^{(m)}\right)
\end{array}\right\} 1=I-1, \ldots, 2,1 .
$$

This procedure permits very efficient use of the arithmetic capabilities of high speed scalar computers.

When periodic boundary conditions (e.g. next-adjacent-face periodicity or opposite-face periodicity) are present, the solution procedures given by Eqs. (2.97)-(2.102) require modification. The changes are minimized by permitting periodicity with respect to the domain boundary coincident with coordinate x_{1}, only. Consequently, next-adjacent-face periodicity couples the x_{1} and y_{1} faces; opposite-face periodicity couples the x_{1} and x_{I} faces. The changes are summarized for two cases.

Case 1: Next-adjacent-face Periodicity
The following modifications are required:
(1) Replace diagonal element b_{1} in $\left[A_{1 k}^{g x}\right]$ (see Eq. (2.37) by

$$
\begin{equation*}
b_{1}^{*}=b_{1}-a_{1}^{x}-a_{1}^{y} . \tag{2.103}
\end{equation*}
$$

The elements of $\left[A_{j k}^{g x}\right]$ are unchanged for $j>1$.
(2) Replace transverse leakage terms $s_{i} \equiv \operatorname{si}_{i j k}$ in $\underline{s}_{j k}$ (Eq. (2.101)) by

$$
s_{i j k}^{*}=s_{i j k}+ \begin{cases}a_{11 k}^{y} \phi_{11 k}^{(m)} & j=1, i=2,3, \ldots, I \tag{2.104}\\ 0 & j=1, i=1 \\ a_{1 j k}^{x} \phi_{j 1 k}^{(m+1)} & j>1, i=1 .\end{cases}
$$

Case 2: Opposite-Face Periodicity
The matrix $\left[A_{j k}^{g x}\right]$ associated with the opposite-face periodicity option has the special form (i.e. tridiagonal with two additional entries as indicated)
where

$$
\begin{equation*}
a_{1}^{x} \equiv a_{1 j k}^{g x}=2\left(\frac{\Delta x_{1}}{D_{1 j k}}+\frac{\Delta x_{I}}{D_{I j k}}\right)^{-1} A_{1 j k}^{x} \tag{2.106}
\end{equation*}
$$

The LU decomposition of this matrix is straightforward to derive. The resulting solution algorithm is summarized in the following equations.

Define $\ell_{i} \equiv a_{i}^{x}$, then the forward elimination sweep on $\left[A_{j k}^{g x}\right]$ and on $\underline{s}_{j k}$ is given by

$$
\left.\begin{array}{l}
\theta_{0}=1, \quad \alpha_{1}=1, \quad \Sigma_{\theta \alpha}=0 \\
u_{1}=\ell_{1}, \quad d_{1}=b_{1}^{-1}, \quad y_{1}=s_{1} d_{1} \\
\theta_{i-1}=\theta_{1-2} u_{i-1} \\
\alpha_{i}=\alpha_{i-1}{ }_{i-1} d_{i-1} \\
\Sigma_{\theta \alpha}=\Sigma_{\theta \alpha}+\theta_{i-1} \alpha_{i} \\
u_{i}=\ell_{i} d_{i-1} \tag{2.107j}\\
d_{i}=\left(b_{i}-\ell_{1} u_{i}\right){ }^{-1} \\
y_{i}=\left(s_{i}+\ell_{i} y_{i-1}\right) d_{i}
\end{array}\right\} \begin{aligned}
& \left(2.107 a, b, c^{1}\right) \\
& 1=2,3, \ldots I-1
\end{aligned}
$$

$$
\begin{align*}
& \ell_{I}^{*}=\ell_{I}+\theta_{I-2} u_{I-1} \tag{2.107m}\\
& u_{I}=\left(\ell_{I}+\ell_{I-1} u_{I-1}\right) d_{I-1} \tag{2.107n}\\
& d_{I}=\left(b_{I}-\ell_{I}^{*} u_{I}-\varepsilon_{\theta_{\alpha}}\right)^{-1} \tag{l}\\
& y_{I}=\left(s_{I}+\ell_{I}^{*} y_{I-1}+\sum_{i=1}^{I-2} \theta_{1} y_{i}\right) d_{I} \tag{2}
\end{align*}
$$

Equations (2.107) may be arranged into two overlapping subsets so that the diagonal terms arising from the LU decomposition may be preinverted prior to the start of the outer iterations. Equations (2.107) with superscripts 1 or 2 apply to the preinversion step or the forward elimination of $\boldsymbol{s}_{j k}$, respectively. The non-superscripted Eqs. (2.107) apply to both steps.

The back substitution to complete the work on line j, k proceeds according to

$$
\begin{align*}
& \alpha_{I}=0, \quad x_{I}=y_{I}, \phi_{I}^{(m+1)}=\phi_{I}^{(m)}+\omega_{b}\left(x_{I}-\phi_{I}^{(m)}\right) \tag{2.108a}\\
& x_{i}=y_{i}+\ell_{1+1} d_{1} x_{i+1}+\alpha_{i+1} x_{I},\left\{\begin{array}{l}
i=I-1, \ldots, 2,1 . \\
\phi_{i}^{(m+1)}=\phi_{1}^{(m)}+\omega_{b}\left(x_{i}-\phi_{1}^{(m)}\right)
\end{array},\right. \tag{2.108b}
\end{align*}
$$

The matrices $\left[A_{j k}^{g s}\right]$ obtained for triangular geometry options with nonperiodic and periodic (next-adjacent-face periodicity only) boundary conditions are nearly identical to those obtained in the orthogonal geometry case. Consequently, the same general solution algorithms and data structures are applied.

Two aspects in which triangular geometry problems differ from orthogonal geometry problems lead to the two modifications detailed below.

First, because realistic reactor core models do not fully encompass either the rectangular or parallelogram problem domains required in the triangular geometry option, provision is made for the specification of background (unoccupied) mesh cells. Computational and physical considerations lead to the stipulation that the projection of the region of solution of the K planes be identical. Therefore, the majority of the background cells may be excluded from the calculation if iterations over line $j k$ are over cells $i=I_{j}^{B}, I_{j}^{s}+1$, \ldots, I_{j}^{e} where I_{j}^{s} and I_{j}^{e} are the first and last "active" mesh cells on a line. Occasionally, the reactor outer boundary is so irregular that one or more background mesh cells appear within the active mesh limits $I_{j}^{s}<1<I_{j}^{e}$ of a line. The leakage coefficients $a_{i j k}^{g s}$ and the initial flux guess $\phi_{i j k}^{g}$ are set to zero in such a mesh cell, thereby permitting computations to proceed uninterrupted for the entire active mesh line.

The second difference between orthogonal and triangular geometry concerns the structure of the matrices $\left[A_{j k}^{g y}\right]$. Like their orthogonal geometry counterparts, the matrices $\left[A_{j k}^{g y}\right]$ have a single stripe. In the rectangular boundary domain option, this stripe is located on the main diagonal. In the parallelogram boundary domain option, however, the stripe is located either on the first super- or sub-diagonal of $\left[A_{j k}^{g y}\right]$ depending on the symmetry option (120°. or 60°). In triangular geometry alternate elements of the diagonal stripe are zero corresponding to the fact that alieernate y direction surface areas are nonexistent in the mesh ordering chosen here (see Figs. 2.4-2.6).

Thus in general the matrix $\left[A_{j k}^{g y}\right]$ is defined (for I odd, say) by

where a_{i}^{t} denotes the coupling coefficient $a_{i j k}^{y}$ corresponding to geometry option t. When option t is active all elements a_{i}^{t}, $t^{\prime} \neq t$ are zero. Note that $t=90$ denotes all rectangular domain symmetry options (e.g. 90°, 180° or 360°). When $t \neq 90$, the pattern of null super- or sub-diagonal elements is fixed. When $t=90$, the null entries begin on odd or even mesh cell indices depending upon the orientation of the first triangle in a given row. Knowledge of this special substructure of the $\left[A_{j k}^{g y}\right]$ leads to the following general algorithm for calculating the transverse leakage source in triangular geometry:

$$
\begin{equation*}
s_{i j k}=q_{i j k}+a_{i j k}^{z} \phi_{i j k-1}+a_{i j k+1}^{z} \phi_{i j k+1}+s_{i j k}^{y} \text { for all } 1, j, k \tag{2.110}
\end{equation*}
$$

where the same conditions apply to Eq. (2.110) as apply to the orthogonal geometry algorithm Eq. (2.99). The term $\boldsymbol{q u}_{j k}$ is defined by

$$
\begin{equation*}
\mathbf{s}_{1, j, k}^{y}=a_{1+\ell, j+1, k}^{y} \phi_{1+\ell, j+1, k} \quad j=1,2, \ldots, J-1, \quad i=1 \text { and } t_{j}=2 \tag{2.111a}
\end{equation*}
$$

$$
\begin{align*}
s_{i+1, j, k}^{y} & =a_{i+1+\ell, j+1, k}^{y} \phi_{i+1+\ell, j+1, k} \\
s_{i, j, k}^{y} & =a_{i, j, k}^{y} \\
\phi_{i-\ell, j-1, k} & \tag{2.111d}\\
s_{i, j, k}^{y} & =a_{i, j, k^{\prime}}^{y} \phi_{i-\ell, j-1, k} \tag{2.111e}\\
s_{i, j, k}^{y} & =0
\end{align*}
$$

where

$$
\begin{aligned}
t_{j} & = \begin{cases}1 & : \\
2 & \text { parallelogram boundary domain }\left(60^{\circ}\right. \text { symmetry) } \\
\bmod (j+N T H P T, 2)+1: & \text { parallelogram boundary domain }\left(120^{\circ}\right. \text { symmetry) }\end{cases} \\
m_{j} & =\bmod \left(I_{j}-t_{j}-1,2\right) \\
\ell & =\left\{\begin{aligned}
0: & \text { rectangular boundary domain (} \left.\mathrm{NTHPT}^{\star}=1 \text { or } 2\right)
\end{aligned}\right. \\
-1: & \text { parallelogram boundary domain } \\
+1: & \text { parallelogram boundary domain }\left(6 0 ^ { \circ } \text { symmetry) } \left(120^{\circ}\right.\right. \text { symmetry). }
\end{aligned}
$$

2.2.5 Data Management Considerations

Strong consideration must be given to data management implications of any solution method that is contemplated for use in a code capable of treating problems where the number of space-energy unknown can exceed 10^{6}. From the previous sections, it is obvious that such considerations have influenced the form of the solution method presented here. These considerations are summarized in this section.

The prime goal of the solution strategy described here is to reduce the number of outer iterations to a minimum, even at the expense of investing relatively greater effort in the inner iterations performed during each outer iteration. By minimizing the number of outer iterations, the number of scattering source calculations (one per group per outer iteration) is kept at a minimum. These scattering source calculations necessitate the transfer of large amounts of data from peripheral storage to core memory for problems utilizing 10 or more energy groups, yet there is little arithmetic to be done while these data transfers are taking place. As a result, CPU utilization can be quite low during the scattering source calculations, even if efficient asynchronous data transfer methods are utilized.

Data management considerations also led to the decision to apply the Chebyshev polynomial acceleration technique to the fission source vector ψ rather than the flux vector Φ. Three complete fission source or flux vectors,

[^1]depending on which are to be accelerated, have to be stored on peripheral storage devices and transferred to memory to carry out the acceleration procedure for each outer. Again, there is little arithmetic associated with this acceleration method, so that CPU utilization can again be low if large amounts of data have to be transferred. Since the fission source vectors are only ($1 / \mathrm{G}$) as long as the flux vectors, a significant reduction in data transfer requirements is achieved by accelerating the ψ vector.

Because fast reactor models are generally characterized by significantly fewer space mesh cells than thermal reactor models for reactors of the same thermal rating, relatively less effort is required to carry out the inner iterations for a given group in a typical fast reactor calculation. It is only for relatively large three-dimensional problems that all of the data required for the inner iterations for one group cannot be contained in the memory of the large scale computers available today. The spectral radii of the inner iteration matrices for the groups in a typical heterogeneous fast reactor problem are generally lower than those that arise from typical thermal reactor problems. Thus fewer iterations are required to achieve a given amount of error reduction in typical fast reactor problems. This lessens the price paid for demanding tighter convergence of the inner iterations in order to minimize the number of outer iterations.

Many relatively large three-dimensional problems that cannot be core contained may be solved with no appreciable increase in data transfer cost by employing the concurrent inner iteration strategy. Instead of calculating $\Phi_{j k}^{(m+1)}$ serially for all lines j, k, this strategy serially computes $\phi_{j k}^{(m+1)}$ for the block of mesh planes currently core-contained, then computes $\because \ldots \dot{q}_{j k}^{(m+2)}$ $\Phi_{j k}^{(m+B)}$ where B is the "active bandwidth" of core-contained mesh planss. If $B \geqslant m_{g}$, the number of inner iterations in group g, then the inaer iterations require a single $I / 0$ pass comparable in cost to the one group core-contained option, but usually at a significantly reduced memory size requirement. Details of the concurrent inner iteration strategy are found in Section 4.3.2.2.

2.2.6 Adjoint Solution Strategy

The adjoint problem is solved using the same solution algorithm as the real problem. The self-adjoint property of the continuous and discretized within-group leakage-plus-removal operator only requires a transformation of data in order to utilize the iteration methods just discussed.

The transformation consists of:
(1) Reversing the order of the group structure of the principal macroscopic cross section data (e.g. $\Sigma_{g}^{\mathrm{X}}+\Sigma_{\mathrm{G}+1-\mathrm{g}}^{\mathrm{X}}$).
(2) Transposing the scattering matrix (i.e. $\mathrm{T}_{\mathrm{gg}} \mathrm{\prime}_{\mathrm{T}}+\mathrm{T}_{\mathrm{g}} \mathrm{g}_{\mathrm{g}}$) and then reversing the order of the group structure (i.e. $\mathrm{gg}_{\mathrm{gg}} \mathbf{\prime}^{\prime}{ }_{+} \mathrm{g}_{\mathrm{T}} \mathrm{T}_{\mathrm{G}+1-\mathrm{g}, \mathrm{G}+1-\mathrm{g}}$,). The corresponding arrays indicating the up and down (in)scatter bandwidth are converted to the corresponding up and down (out)scatter bandwidthe.
(3) Interchanging $v \sum_{g}$, and X_{g} terms in the fission source calculation.

The resulting flux eigenvector is then obtained in reverse group order, $g=G, G-1, \ldots, 1$ and the fundamental eigenvalue is identical to the real problem due to the self-adjoint property of $[Q]$ in $E q$. (2,48). Likewise the symmetric within group matrices have identical spectral radii $\rho\left(\left[L_{\omega_{g}}\right]\right)$, hence the ω_{g}
are identical.

2.2.7 Upscatter Iteration Strategy

DIF3D provides an upscatter iteration for application to problems in which [T $\left.{ }_{g g},\right]>0$ for $g^{\prime}>g$ in Eq. (2.29). The essence of this strategy is to perform (in each outer iteration) U-1 additional group (inner) iterations for those groups within the upscatter bandwidth. Let \bar{G} denote the group index of the first energy group that receives a nonzero upscattering source. Then the inner iterations for the groups without upscatter, $g=1,2, \ldots, \bar{G}-1$, follow Eq. (2.72) and Eq. (2.73). The group g inner iteration at outer iteration n and upscatter iteration u is

$$
\begin{equation*}
\left[A_{g}\right]_{g}^{(n, u)}=\underline{b}_{g}^{(n, u)}, \quad g=\bar{G}, \bar{G}+1, \ldots, G \tag{2.112a}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{b}_{g}^{(n, u)}=\sum_{g^{\prime}<g}\left[T_{g g},\right]_{g}^{(n, u)}+\sum_{g^{\prime}>g}\left[T_{g g^{\prime}}\right] \Phi_{g}^{(n, u-1)}+\frac{1}{\lambda^{(n-1)}} \chi_{g} \psi^{(n-1)} \tag{2.112b}\\
& \quad \phi_{g}^{(n, o)}=\phi_{g}^{(n-1, U)} \tag{2.112c}
\end{align*}
$$

The calculation for the group contributions to the fission source $\Psi^{(n)}$ resume in the last upscatter iteration pass, U.

The cost of performing U upscatter iterations is approximately equivalent to solving a probiem with ($U-1) *(G-\bar{G}+1)$ additional grouns. If a scattering band B of fluxes is core contained and if $(G-\bar{G}+1)<B$, then the upscatter iterations requires no additional $I / 0$ transfers for the flux data. Finite difference coefficients and cross section data transfers will still be required.

Experience with several Safety Test Facility configurations with thermal and epithermal drivers indicates that user-supplied U values between 5 and 10 are comparable in performance for the thermal case. $U=1$ is sufficient for the epithermal case.

The procedure in Eqs. (2.112) is reversed for adjoint calculations with upscatter. The upscatter iterations are performed in groups $g=G, G-1, \ldots \bar{G}$. Then the remaining groups, $g=\bar{G}-1, G-2, \ldots, 1$ are calculated.

2.2.8 The Inhomogeneous Problem

The matrix equations describing the fixed distributed source problem may be written in the form

$$
\begin{equation*}
([M]-\mu[B]) \Phi=\underline{S} \tag{2.113}
\end{equation*}
$$

where [M] and [B] are defined by Eqs. (2.35) and (2.42), and $\underset{\sim}{\operatorname{S}}$ is the external source vector. The constant μ is specified to ensure the subcriticality of the reactor in the absence of an external source. An exception occurs, for example, in generalized perturbation theory adjoint calculations where the reactor is critical, but the adjoint source S is orthogonal to the fundamental mode; in this case a solution is guaranteed by the alternative theorem. ${ }^{31}$ For this discussion $\mu=1$ suffices, since [B] may be redefined. The flux ϕ is subject to the boundary and interface conditions of Eqs. (2.3)-(2.5).

Equation (2.113) may be written as

$$
\begin{equation*}
\Phi=\left([I]-[M]^{-1}[B]\right)^{-1} \underline{u} \tag{2.114}
\end{equation*}
$$

where $\underline{u}=[M]^{-1} \underline{S}$. The properties of $[M]$ and $[B]$ discussed in Section 2.2 .1 together with the assumption of reactor subcriticality requires $\rho\left([M]^{-1}[B]\right)<1$. Therefore, $\left([I]-[M]^{-1}[B]\right)^{-1}$ exists which in turn implies that $([M]-[B])^{-1}=$ $\left([I]-[M]^{-1}[B]\right)^{-1}$ exists. Because $[M]$ is nonsingular, the iterative process

$$
\begin{equation*}
[M] \phi^{n}=[B] \phi^{n-1}+\underline{S} \tag{2.115}
\end{equation*}
$$

 converge.

The flux iteration is reduced to a fission source iteration by following the procedure outlined for the eigenvalue problem, provided the definition of ϕ_{g} is appropriately modified for the fixed source problem, i.e.

$$
\begin{equation*}
\Phi_{g}=\left[L_{g}\right] \Psi+\left[A_{g}\right]^{-1}\left(\sum_{g^{\prime} \neq g}\left[T_{g g},\right]{\underset{S}{G}},+\underline{S}_{g}\right) \tag{2.116}
\end{equation*}
$$

Then multiplying Eq. (2.113) by [F] $]^{T}$ and using Eqs. (2.42) and (2.44) we obtain the reduced problem

$$
\begin{equation*}
\Psi=([\mathrm{I}]-[\mathrm{Q}])^{-1} \underline{\mathrm{v}} \tag{2.117}
\end{equation*}
$$

where $\underline{v}=[F]^{T} \underline{u}$ and $[Q]$ is defined by Eq. (2.49). Because the nonzero eigenvalues of $[Q]$ and $[M]^{-1}[B]$ are identical, $\rho([Q])<1$ and therefore $([I]-[Q])^{-1}$ exists. Consequently, the iterative process

$$
\begin{equation*}
\underline{\psi}^{i 1}=[0] \underline{\psi}^{n-1}+\underline{v} \tag{2.118}
\end{equation*}
$$

generated from a regular splitting of (II]-[Q]) will converge and the fission source vectors obtained from the flux problem and the fission source problem will be identical.

The rate of convergence in fixed source problems is dependent on $\rho([Q])$. The Chebyshev acceleration method detailed in Section 2.2.1 can therefore be applied to the iterations in Eq. (2.118) provided that suitable estimates of $\rho(0)$ are obtained. One such estimate may be obtained using Eq. (2.68), which for the fixed source problem is easily shown to satisfy the relation
(n)
$\lim _{n \rightarrow \infty} E=\rho([0])$.

The previously describer Chebyshev acceleration procedures may be used directly in fixed source problems, provided we redefine the meaning of the symbol $\bar{\sigma}$ to mean $\rho([Q])$, the spectral radius of the iteration matrix.

The inner iteration process in fixed source problems differs from its counterpart in eigenvalue problems only by the presence of an additional source term contribution to $g_{j k}$ in Eq. (2.99).

When the fixed source problem is near-critical (i.e. $\rho([Q]$) approaches unity), convergence rates, even with Chebyshev acceleration are unacceptably slow. Application of a single asymptotic extrapolation ${ }^{33,34}$ prior to the first Chebyshev acceleration significantly reduces the required number of iterations. This reduction is achieved by an approximation procedure that attempts to correctly scale the contribution of the fundamental eigenvector to the flux solution. This approach is motivated by the fact that in nearcritical source problems the fundamental eigenvector term dominates the solution.

If we assume, therefore, that the n-th iterate of Eq. (2.118) converges to the exact solution ψ^{∞} with asymptotic behavior

$$
\begin{equation*}
\underline{\psi}^{\infty}=\psi^{(n)}+\rho^{n}([Q]) c \Psi_{0} \tag{2.120}
\end{equation*}
$$

where $c \Psi_{0}$ is an arbitrary multiple of the fundamental eigenvector of [Q] corresponding to $\rho([Q])$, then it follows that an improved n-th iterate is

$$
\begin{equation*}
\tilde{\psi}^{(n)}=\underline{\psi}^{(n)}+\tau^{(n)}\left(\Psi^{(n)}-\psi^{(n-1)}\right) \tag{2.121}
\end{equation*}
$$

where the extrapolation factor $\tau^{(n)}$ is defined by

$$
\begin{equation*}
\tau^{(n)}=\frac{\rho^{(n)}}{1-\rho^{(n)}} \tag{2.122}
\end{equation*}
$$

Here, $\rho^{(n)}=E^{(n)}$ is the estimate for $\rho([Q])$ at the n-th unaccelerated power iteration.

As alluded to earlier, the effect of the extrapolation is to rescale the contribution of the fundamental vector to the solution. The extrapolation factor also increases ${ }^{34}$ the magnitude of the higher harmonics. However, these are readily attenuated by the Chebyshev acceleration procedures that (after a single unaccelerated outer iteration) are applied to subsequent iterations.

To ensure that an asymptotic behavior has been achieved, the single extrapolation is performed when the following conditions are met:

$$
\begin{align*}
& \text { 1. } \varepsilon_{\rho}^{(n)}<.1 \tag{2.123a}\\
& \text { 2. } \varepsilon_{\rho}^{(n-1)}<.1 \tag{2.123b}\\
& \text { 3. } n \geqslant 5 \tag{2.123c}
\end{align*}
$$

where

$$
\begin{equation*}
\varepsilon_{\tau}^{(n)}=\frac{\tau^{(n)}-\tau^{(n-1)}}{\tau^{(n)}} \tag{2.123d}
\end{equation*}
$$

The asymptotic extrapolation procedure typically leads to a factor of 2 or more reduction in the number of outer iterations required to achieve comparable fission source accuracy with the standard acceleration method.

2.3 The Criticality Search Option

2.3.1 Statement of the Problem

The criticality search ${ }^{17}$ seeks to achieve a desired reactor k-effectiwe, k_{d}, by adjusting certain parametric vectors which are constrained to lie along a given straight line. The parametric vectors considered here are subzone volume fractions which are discussed later in section 2.3.3. Other commonly used parametric vectors (not implemented in DIF3D) include buckling, dimension and reactor period (α).

If $p=\left(p_{1}, p_{2}, \ldots, p_{R}\right)$ denotes a parametric vector, then the desired vector is constrained to lie on the line given by

$$
\begin{equation*}
\mathrm{p}(\mathrm{~s})=\mathrm{p}_{\mathrm{o}}+\mathrm{s} \cdot \underline{\delta p} \tag{2.124}
\end{equation*}
$$

where $\delta \underline{p}=\left(\delta_{\mathrm{P}_{1}}, \delta_{\mathrm{P}_{2}}, \ldots, \delta_{\mathrm{p}_{\mathrm{R}}}\right)$ denotes the parametric modifiers (the direction cosines for the lint), and P_{o} denotes the initialized state of the parameter vector when $s=0$.

For reasonable* values of s and δp, the parametric vector $p(s)$ generates matrices $[M(s)]$ and $[B(s)]$ having the same general properties as the matrices $[M]$ and $[B]$ in Eq. (2.34). Then associated with each vector $p(s)$ is $k_{e f f}=k(s)$, the solution to the eigenvalue problem

$$
\begin{equation*}
[M(s)] \Phi=\frac{1}{k(s)}[B(s)] \Phi . \tag{2.125}
\end{equation*}
$$

The object of any search then is to solve the equation

$$
\begin{equation*}
k(s)=k_{d} \tag{2.126}
\end{equation*}
$$

2.3.2 Method of Solution

The solution of Eq. (2.126) is achieved by repeatedly solving Eq. (2.125) for a series of carefully selected estimates s_{n}. This iterative process has three principle steps. The first step estimates s_{n}; Step 2 solves Eq. (2.125) for $k\left(s_{n}\right)$ and Step 3 performs the convergence check on $k\left(s_{n}\right)$.

Step 1: Estimation of s_{n}
s_{1} and s_{2} are derived from user data. s_{3} is determined by linear interpolation or extrapolation of data from search passes 1 and 2:

$$
\begin{equation*}
s_{n}=s_{n-1}+e_{n-1} /(d k / d s)_{n-1} \tag{2.127}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{n}=k_{d}-k\left(s_{n}\right) \tag{2.128}\\
& (d k / d s)_{n}=\left(k\left(s_{n}\right)-k\left(s_{n-1}\right)\right) /\left(s_{n}-s_{n-1}\right) \tag{2.129}
\end{align*}
$$

When $n>3$, the three most recent estimates $\left\{s_{n-1}, s_{n-2}, s_{n-3}\right\}$ determine a parabola $p\left(s_{1}\right)=p_{1} s_{i}^{2}+p_{2} s_{i}+p_{3}-k\left(s_{i}\right), i=n-1, n-2, n-3$. Then, s_{n} is the root of $p(s)-k_{d}=0$ that is closest to s_{n-1}.

[^2]If the parabola is degenerate (a straight line) or if the roots of $p(s)-k_{d}=0$ are complex, then linear extrapolation is applied. The estimate having the largest e_{i} and which upon removal leaves two estimates that bracket the solution k_{d} will then be discarded (This is the regula falsi algoritm ${ }^{35}$).

If the parabola is not degenerate, a similar root bracketing procedure is used to discard in favor of s_{n} the least useful estimate among s_{n-1}, s_{n-2} and s_{n-3}.

Step 2: Solution of Eq. (2.125)
The eigenvalue problem Eq. (2.125) is solved using the methods discussed for Eq. (2.43). The matrices [$M(s)$] and [$B(s)$] are defined by

$$
\begin{align*}
& {[M(s)]=[M(0)]+\lambda[\delta M]} \tag{2.130a}\\
& {[B(s)]=[B(0)]+\lambda[\delta B]} \tag{2.130b}
\end{align*}
$$

where $[M(0)]$ and $[B(0)]$ denote the matrices obtained with no contributions from the search ("modifier") subzones and $\lambda[\delta M]$ and $\lambda[\delta B]$ denote the matrix of perturbations resulting from the inclusion of the search modifier subzones. $[\delta M$] and [δB] have the same general structure as [M] and [B], but the former are quite sparse due to the limited number of compositions usually modified during a search.

Step 3: Termination Tests
Search passes are terminated by any one of the following events:

1. $k_{d}-k\left(s_{n}\right)<\varepsilon_{d}$ where ε_{d} is a user-supplied threshold;
2. $n=n_{\max }$ where $n_{\max }$ is a user-supplied iteration limit;
3. $s_{n}<s_{\min }$ and $\left.s_{n}\right\rangle s_{\max }$ where $s_{\min }$ and $s_{\max }$ are minimum and maximum limits on the range of s. The first time s_{n} exceeds the search range say, $s_{n}<s_{m i n}$, it is set to $s_{m i n}$. A subsequent violation of the limits cause termination.
4. Insufficient time remains to perform the next eigenvalue calculation.

2.3.3 Comments on the Concentration Search Option

On each search pass the SRCH4C module rewrites the subzone ${ }^{6}$ volume fractions on the CCCC file NDXSRF and the HMG4C module calculates the corresponding macroscopic cross sections for the code-dependent file COMPXS. This approach is attractive for two reasons. First, the creation of "modifier" subzones (i.e. collections of isotopes or materials which are to be varied during the search) requires minimal effort o: the part of the user. During the search
process it is a trivial matter for SRCH4C to rewrite the subzone volume fractions on the NDXSRF file. The second advantage of this approach is modularity. Arbitrary neutronics computation modules that use the CCCC interface files may be employed to sclve the eigenvalue problem.

The alternative to subzone volume fraction modification requires atom density modification for all nuclides in the CCCC file ZNATDN, a job of considerably larger magnitude that yields a marginal improvement in user convenience.

The economics of incurring the overhead associated with repeated exits and reentries to the neutronics module might argue against the modular approach. The net gain from avoiding such overhead was considered marginal compared to the benefits of modularity.

Except for the prompt fission spectrum cross section type, the modification of subzone volume fractions in "modifier" subzones yields the following homogenization equation
where
$\Sigma_{m}^{x, g}$ is the macroscopic cross section of type x for group g in zone $m ;$ $\sigma_{i}^{x, g}$ is the microscopic cross section of type x for $g r o u p g$ for isotope $i ;$ m_{0} denotes the set of isotopes in the primary zone assignment and subzone o assignments of zone m (modifier subzones are excluded);
m_{s} denotes the set of isotopes in modifier subzone assignments of zone m;
$n_{i m}$ is the atom density of isotope 1 in the appropriate set m_{o} or m_{s};
$V_{i m}^{f}$ is the zone or subzone volume fraction assigned to isotope i in the set $m=m_{o}$ or m_{s}.

Equation (2.131) may be viewed from a macroscopic standpoint as

$$
\begin{equation*}
\sum_{m}^{x, g}=\sum_{m_{0}}^{x, g}+s_{n} \delta \Sigma_{m}^{x, g} \tag{2.132}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{m_{0}}^{x, g}=\sum_{i \varepsilon m_{0}} \sigma_{i}^{x, g_{n_{i m}}} v_{i m_{0}}^{f} \tag{2.133a}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \Sigma_{m_{s}}^{x, g}=\sum_{i \in m_{s}} \sigma_{i}^{x, g_{n_{i m}}} \tag{2.133b}
\end{equation*}
$$

Modification of the prompt fission spectrum cross section depends upon which of the three available homogenization options are selected.

Option 1: Use set X vector for all zones

$$
\begin{equation*}
\left(x_{\mathrm{m}}^{\mathrm{g}}\right)_{\mathrm{n}} \equiv\left(x^{\mathrm{g}}\right) \tag{2.134}
\end{equation*}
$$

Option 2: Use isotope fission vectors with total fission source weighting

$$
\begin{equation*}
\left(x_{m}^{g}\right)_{n}=\frac{\sum_{i \in m}\left(x_{i}^{g}\right) n_{i m} v_{i m}^{f} \sum_{g^{\prime}}\left(v \sigma_{f}\right)_{i}^{g \prime}}{\sum_{i \in m} n_{i m} v_{i m}^{f}\left(v \sigma_{f}\right)_{i}^{g}} \tag{2.135}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{im}}^{\mathrm{f}}=s_{\mathrm{n}}$ for those isotopes in search modifier subzones.
Option 3: Use isotope fission vectors with ($\nu \sigma_{f}$) weighting

$$
\begin{equation*}
\left(x_{m}^{g}\right)_{n}=\frac{\sum_{i \varepsilon m}\left(x_{i}^{g}\right) n_{i m} v_{i m}^{f}\left(\nu \sigma_{f}\right)_{i}^{g}}{\sum_{i \varepsilon m} n_{i m} v_{i m}^{f}\left(v \sigma_{f}\right)_{i}^{g}} \tag{2.136}
\end{equation*}
$$

There are no restrictions on subzone modifiers or on the zone being modified with regard to fissionable or nonfissionable cross section types or with regard to scattering bandwidths.

2.4 Summary

The mesh-centered finite-difference approximation introduces a three-, five- or seven-stripe symmetric matrix of coupling coefficients that are computed using Eqs. (2.25)-(2.27); Tables 2.1 and 2.2 summarize formulas associated with each geometry option. The required source term is computed using Eq. (2.28) and Eq. (2.2). During each inner iteration a particular line of fluxes is simultaneously computed by solving Eqs. (2.97)-(2.99).

For a wide class of LMFBR problems no user input is required by the acceleration strategies described in Sections 2.2.1-2.2.4. On option the user may override $\varepsilon_{i n}$, the inner iteration error reduction factor in Fq. (2.96), which influences the fixed number of inner iterations to be performed during the within-group calculations in each outer iteration. Section 3.15.2 addresses performance issues in this regard. Performance (i.e. job cost) is also directly related on many host installations to the user-specified ECM storage container size, ultmately the job memory size. Sections 3.9 .1 and 3.10 .1 address this issue.

3. A GUIDE FOR USER APPLICATIONS

3.1 Setting Up a DIF3D Job - An Overview

As mentioned in the introduction, the code described in this report is, in fact, a collection of quite independent code blocks. DIF3D actually is only one of these code blocks; the others process input data required by the diffusion-theory calculation. It is a common, though sometimes confusing, practice to apply the name "DIF3D" to both the complete set of code blocks and the specific diffusion-theory calculation code block.

The DIF3D code block itself reads only binary files. Other code blocks read card input and convert the data to binary files. The input to the code, therefore, is generally a mix of binary files written by code blocks and card-image files composed by users. Users have a variety of options available in choosing the mix; their choice then determines which code blocks are actually executed.

This section is a brief overview of the input requirements. Later sections go into greater detail. Information regarding specific input data sets or conventions may be rapidly located by using the table of contents with its detailed cubsection headings.

3.1.1 Input Binary Files

In practice the input to DIF3D (the collection of code blocks) usually includes only a few binary files. Unless otherwise noted these files will be one of the CCCC interface files described in Appendices C.1 - C.10.

Microscopic cross section libraries are usually maintained as binary files; DIF3D can use two alternative formats, ISOTXS or the code-dependent file XS.ISO (see Ref. 36).

For restart and in cases where reasonable flux guesses are avallable the binary flux file RTFLUX may be input. The adjoint flux is stored in the binary file ATflux.

Other input binary files may contain macroscopic cross sections (COMPXS) (see Appendix D.1), atom number densities (NDXSRF,ZNATDN), geometry specifications (GEODST), inhomogeneous sources (FIXSRC), criticality search parameters (SEARCH) and code-dependent data (DIF3D) (see Appendix D.2). Files in this group are rarely input to the code; it is usually simpler to supply data in card-image form.

3.1.2 BCD Card-Image Model Input

When input data are not provided in binary files one or more of the input processors will be evoked to read BCD card-image files and to write appropriate binary files. This is done automatically; users do not have to provide any special instructions.

BCD input is divided into a number of blocks of data called "DATASETs". The general BCD input format for DIF3D is described in a later section of this chapter; the card-by-card input descriptions are included in the Appendices B.1-B.4.

Atom number densities, geometry specifications, inhomogeneous sources and criticality search parameters can all be input in the A.NIP3 DATASET (see Appendix B.4).

Microscopic cross sections can be input in BCD form in A.ISO (see Appendix B.3), a BCD equivalent of ISOTXS.

Finally, at Argonne any of the CCCC files ${ }^{6}$ ISOTXS, RTFLUX, ATFLUX, NDXSRF, ZNATDN, GEODST, FIXSRC, and SEARCH can be generated directly from the DATASET A.LASIP by the LASIP3 code ${ }^{37}$. LASIP3 is a Los Alamos National Laboratory input processor.

3.1.3 BCD Card-Image Calculation Parameter Input

Two DATASETs, A.DIF3D and A.HMG4C, contain input parameters for the dif-fusion-theory calculation and the cross section homogenization, respectively. In practice these DATASETs usually contain only a few cards. Nearly all the parameters have defaults which have been set within the coding to values appropriate for a wide range of problems.

Among the more important input job parameters are the sizes of the FCM (fast core) and ECM (extended core) data containers. In several places (e.g. A.NIP3, A.DIF3D, A.HMG4C) the user may override defaults and specify the amount of core individual code blocks are to use for data storage. Even on machines with only one level of memory (e.g. IBM machines) two containers are required.

3.1.4 Edits

Individual code blocks offer a variety of edits, most of which can be controlled by the user via input flags. Because most code blocks are independent programs it frequently happens that particular data can be edited from several different places in the code. For example, macroscopic cross sections can be edited in the code block that performs the homogenization (HMG4C) or in the diffusion-theory solution (DIF3D).

Most edits can be routed to one or both of two output media by means of the edit flags. The regular print file (logical unit 6 at Argonne) is normally a printer; the auxiliary print file (logical unit 10 at Argonne) may be any device the user chooses (e.g. microfiche or a disk file).

3.2 BCD Input Conventions

In the input convention used in DIF3D and most other Applied Physics codes, the input BCD card images are grouped into "BLOCKs", and the card images within each BLOCK are grouped into "DATASETs". BLOCKs and DATASETs are identified by cards containing one of the following phrases:

> BLOCK=blknam
> DATASET=dsname
> UNFORM=dsname
> NOSORT=dsname
> MODIFY=dsname
> REMOVE=dsname

The words to the left of the " $=$ " sign are "keywords"; the words to the right of the " $=$ " sign are unique BLOCK or DATASET names. Keywords must start in column 1 of the card, and there can be no imbedded blanks.

Both binary and BCD files are given names and, following the CCCC conventions, ${ }^{6}$ version numbers. Binary files include CCCC standard interface files, code dependent interface files for passing data between load modules, and scratch files used only within particular load modules. BCD files for Applied Physics codes are usually given names starting with "A."; for example A.NIP3 is the $B C D$ file which defines the neutronics input geometry and isotopic number density data.

The number of versions permitted for a particular file is established by individual programs. In references in the BCD card input to one of several versions of a file, the version number must follow the file name and be separated from it by a comma. Taking examples from the list of keyword phrases above:

> DATASET=A.SAMPLE, 2
> REMOVE=RTFLUX,1

A version number of unity is implied when no version number is given. Thus, the second example above could have been written:

REMOVE=RTFLUX

DIF3D users can normally ignore version numbers; the commonly used files come in only one version. The exceptions are the UDOIT binary files, which are intended for individual applications of DIF3D.

3.2.1 BLOCK=

The BCD input stream is divided into BLOCKs, and each BLOCK starts with a card containing

BLOCK=b1knam

In the DIF3D input "blknam" may be either the word "OLD" or the word "STP021". The special case of BLOCK=OLD is discussed in a later section. STP021, which stands for "Standard Path 21 ", is the name given at Argonne to the sequence of modules making up a DIF3D calculation. A BLOCK ends at the last card before the next BLOCK= card or at the end of the card input file, whichever is encountered first.

As far as the user is concerned, the phrase BLOCK=STP02l causes the execution of a DIF3D job. If the phrase occurs twice in the input stream DIF3D is executed twice. Only data contained in the first BLOCK are available to the program during the first execution. Data in the second BLOCK modify or replace the first BLOCK data for the second execution.

3.2.2 DATASET $=$, UNFORM $=$, NOSORT $=$

The data within each BLOCK are subdivided into DATASETs, and each DATASET starts with a card containing one of the phrases:

A DATASET ends at the last card before the next keyword or at the end of the card input file, whichever comes first. The order of dissimilarly named DATASETs within a single BLOCK makes no difference to the execution of the program.

DATASETs designated DATASET= or UNFORM= are expected to contain cards on which the first two columns contain either

```
1. a positive, 2-digit, nonzero
    "card type number," or
```

2. blanks, zeros or non-numeric characters.

The type numbers ($01,02, \ldots .99$) are used to identify the type of data on each card. For example, in the BCD input file named A.NIP3 mesh data are supplied on "type 09 cards" (card-images that have "09" punched in columns 1-2).

At the beginning of each job the cards with card type numbers are automatically rearranged in order of ascending card type number in DATASETs specified by DATASET= or UNFORM=. When more than one card of a particular card type is present the relative order of those similarly numbered cards is unchanged.

At the same time as numbered cards are reordered, unnumbered cards (those with blanks, zeros or non-numeric characters in cols. l-2) are collected and placed after all numbered cards. Some users use unnumbered cards as "comment cards" to annotate their decks of numbered cards; before the data are read by applications load modules the unnumbered comment cards are swept to the back of the DATASET where they will not be seen by the load module. A listing of the input deck before sorting is printed on the user's output medium so that the comments are available for documentation.

DATASETs designated NOSORT= are not reordered in any way. NOSORT DATASETs are normally used for data required by a load module which was written at another installation but which was incorporated as a load module in an Applied Physics production code. In DIF3D A.ISO and A.LASIP are NOSORT DATASETs.

Most DIF3D DATASETs can be input in either formatted or unformatted form. When prefaced by DATASET= the data must all be input in the formats specified in the input description for each card type. When prefaced by UNFORM= the data may be in free-format, but subject to the rules outlined later in this chapter in the section on free-format syntax. In either case cols. 1-2 are still reserved for card type numbers. The format rules for NOSORT DATASETs depend on the individual load modules which read them.

When BLOCK=blknam appears twice in the input - specifying two executions of the same sequence of load modules - DATASETS in the first BLOCK are automatically preserved for the second execution unless the user deliberately redefines a DATASET in the second BLOCK. For example,

BLOCK=STP021
DATASET=A.NIP3
01 data ...
02
07
..........
..........
BLOCK=STP021
DATASET=A.NIP3
01 new data
02
06

The first DATASET is entirely replaced by the second before the second execution. A later section discusses how one can make selective changes to DATASETs.

3.2.3 \quad BLOCK=OLD

The special BLOCK "OLD" permits the user to tell DIF3D which files already exist on disk and are being input to the calculation. Input disk files must be listed under BLOCK=OLD in the following manner:

```
BLOCK=OLD
DATASET=dsname
DATASET=dsname
    etc.
```

BLOCK=OLD may be placed anywhere in the BCD card input file.
These $B L O C K=0 L D$ files are usually binary library or restart files. Occasionally it may be convenient to create and save a BCD file in one job and then pass it to a second job on disk rather than in the BCD card input file. In such a situation the DATASET name should appear under BLOCK=OLD in the second job and not in any other BLOCK processed by the second job.

3.2.4 MODIFY $=$, REMOVE \approx, $n n=$ DELETE

MODIFY $=$ dsname permits the user to replace cards of a particular card type in an old DATASET without affecting the rest of the data. Type-numbered cards following MODIFY=dsname replace the cards of that type (or those types) in a previously defined DATASET. For example, if a DATASET in one BLOCK contains seven type 09 cards and five new type 09 cards are provided in a second BLOCK under MODIFY=dsname, then the seven original cards are deleted and the five new cards substituted before the second execution.

Some users like to define a reference DATASET with DATASET=dsname and then make changes in the same BLOCK before execution with MODIFY=dsname.

REMOVE=dsname deletes the entire DATASET. This option frequently is used with binary files to force applications load modules, for one reason or another, to rewrite a file.
nn=DELETE, where nrt is a card type number, ofter a MODIFY=dsname will cause all of the type nn cards to be deleted from the DATASET.

3.2.5 Sample Input

Figure 3.1 shows a $B C D$ card input file for a fictitious program. The input is designed to exercise most of the options described above. Three input DATASETs are defined; they are two separate versions of a file named A.SAMPLE and one named A.XAMPLE. Below the listing of the input, Figure 3.1 shows the contents of each file after preprocessing and before the imaginary program is executed. There are two BLOCKs (i.e. two executions in the job).

MODIFY= is used in the first BLOCK to modify a DATASET defined in the same BLOCK (A.SAMPLE,2). It is used in the second BLOCK to modify a DATASET defined in the first BLOCK (A.SAMPLE, 1).

Note that A.SAMPLE, 1 and A.SAMPLE, 2 are defined with DATASET= and UNFORM=; the cards are reordered according to card type with unnumbered cards placed last. A.XAMPLE is defined with NOSORT= and is unaffected by the preprocessing.

3.2.6 Output from BCD Input Card Preprocessors

The BCD input preprocessing routines normally produce two kinds of edits. At the beginning of the job the user's input is listed on both the regular and auxiliary output print files by the routine SCAN. In addition, all DATASETs processed under each BLOCK=blknam are edited by the routine STUFF. Users have control over the STUFF edits for each BLOCK through an integer sentinel, n, that can be added to the BLOCK= card:
BLOCK=blknam,n

```
n=0, edits given on both regular and
            auxiliary output files (default).
    = 1, edits on regular output file only.
    = 2, edits on auxiliary output file only.
    = 3, no edits for the curient BLOCK.
```


3.3 General Philosophy on Input Data

A number of principles have guided the design of BCD card input for DIF3D and other Applied Physics codes.

1. Data that are not essential to the problem should not be required in the $B C D$ card input. In particular, no redundant data should be required.
2. Card input files should be easy to create and to modify.
3. Whenever possible, labels and names should be used instead of numbers for descriptive data.

The $B C D$ input conventions defined in the previous section support these principles.

The convention of numbered cards containing very specific types of data helps to eliminate nonessential and redundant data. The preprocessing routines pass to the applications programs the number of cards of each type contained

```
BLOCK=TEST
DATASET=A.SAMPLE
    A.SAMPLE,l
0 9 ~ 0 9 ~ C A R D ~
05 1ST 05 CARD
    5 2ND 05 CARD
    UNNUMBERED
07 07 CARD
5 3RD 05 CARD
UNFORM=A.SAMPLE, 2
XX A.SAMPLE
XX VERSION 2
0 8 ~ 0 8 ~ C A R D ~
MODIFY=A.SAMPLE, 2
08 REPLACE 08
BLOCK=TEST
MODIFY=A.SAMPLE, l
09=DELETE
05 REPLACE 05
REMOVE=A.SAMPLE,2
NOSORT=A.XAMPLE
    A. XAMPLE
    NOSORT
07 TYPE 07 CARD
    NO NUMBER
07 ANOTHER 07
```

Contents of each of the three DATASETs after the
first BLOCK is processed.

A.SAMPLE vers OOn 1	
05	1ST 05 CARD
5	2ND 05 CARD
5	3RD 05 CARD
07	07 CARD
09	09 CARD
	A.SAMPLE, 1
	UNNUMBERED

Contents of each of the three DATASETs after the second BLOCK is processed.

05	REPLACE 05	not defined in	
07	A.XAMPLE		
07 CARD	the second BLOCK		NOSORT
	A.SAMPLE, 1		07
			TYPE 07 CARD
UNNUMBERED		07	NONOTHBER 07

Fig. 3.1. Illustration of Input Conventions

In a particular DATASET. The user never has to tell a code how many data of a particular type are input; the code determines this fact independently. Default values can be provided not only when a particular datum is missing, but also when whole card types are missing.

About forty different card types are defined for the geometry and isotope number density file A.NIP3. Rarely are more than a dozen used for a particular job. Instead of user supplied sentinels, the presence or absence of particular card types signals options. Explicit sentinels would be redundant.

Numbered cards and the free-format option make it relatively easy to create and modify DATASETs. Long strings of input data and tables are convenient to the programmer but not to the user. Applied Physics input has always tended towards requiring only a few pieces of data per card, with the format of the card designed for the convenience of the user. In some cases cards of a particular type may be shuffled without affaciing the definition of a problem. In other cases the order of cards within a card type has significance; the data on one card may overlay, in some way, data defined on a previous card. Modifications to input can frequently be made simply by adding or changing the order of cards; no changes to existing cards are required.

If nothing else, the use of labels instead of numbers for input quantities makes the BCD card input file readable to users. In the A.NIP3 DATASET, for example, compositions and geometric regions are given labels, and isotopes are referred to by name.

3.4 Free-Format (FFORM) Syntax Rules

Free-format input is processed by a subroutine named FFORM. The following sft of rules applies to data prepared for UNFORM= DATASETs.

3.4.1 Delimiters

Data (integers, floating point numbers and Hollerith words) must be separated either by blanks or by combinations of one or more of the four special delimiters:
(comma
left parenthesis
) right parenthesis
slash

3.4.2 Data Forms

Integer and real numbers must be written according to the usual FORTRAN rules and may not have imbedded blanks. Hollerith data can be supplied in any of the following three ways:

1. A string of letters and numbers, beginning with a letter, with no imbedded blanks.
e.g. U238 PU239
2. A string of symbols surrounded by asterisks or apostrophes. In the current version of FFORM for CDC machines only the asterisk can be used to set off Hollerith data; the apostrophe has not been implemented.
e.g. *NA 23* 'REGI'
3. A string preceded by the Hollerith prefix $n H$, where n is an integer constant.
e.g. 3H016

On 'IBM machines an asterisk may be part of a Hollerith string only when that string is surrounded by apostrohpes (e.g. 'X*Y') or defined by the nH convention (e.g. 3 HX *Y). Similarly an apostrophe may be a part of a Hollerith string only when that string is surrounded by asterisks (e.g. *ED'S*) or defined by the nH convention (e.g. 4HED'S). On CDC machines (where FFORM currently does not recognize apostrophes) an asterisk may be part of a Hollerith string only when that string is defined by the nH convention.

When a single asterisk (or apostrophe) is encountered the remaining data on the card are treated as Hollerith data. This does not apply, of course, to an asterisk that is clearly a part of a Hollerith string.

When FFORM passes the data it has read to the calling program, it has stored Hollerith data six characters to the word. If the input description calls for one or more separate Hollerith words each word, therefore, must be six characters or less.

3.4.3 Implied Blanks and Zeroes

Pairs of commas, slashes, or left and right parentheses in consecutive columns of the card image will be interpreted as integer zeroes. Pairs of asterisks (or apostrophes) in consecutive columns of the card image imply Hollerith blanks.

$$
\text { e.g, } \quad \begin{aligned}
, \quad=() & =/ /=0 \\
k * & =11=1 \mathrm{H}
\end{aligned}
$$

3.4.4 nR, the Repeat Option

$n R$ causes the previous datum to be repeated $n-1$ times. n is an integer constant. When several pieces of data are enclosed by slashes or parentheses and are followed by a repeat instruction, the entire string of data will be repeated. Repeats can be nested by the use of slashes and parentheses, but each pair of symbols (// or ()) can be used only once per nest. This limits the depth of the nest to two levels.

$$
\begin{aligned}
& \text { e.g. } \quad 1.0,3 R / 2.0,1 / 2 R=1.01 .01 .02 .012 .01 \\
& /(\text { WORD } 2 R) 3 R / 4 R=\text { WORD } 24 R
\end{aligned}
$$

3.4.5 S, End of Card

All data including and following a $\$$ will be ignored. This will permit the user to include comments on a card. The symbol $\$$ between asterisks (or apostrophes) or somewhere in an $n H$ field is not affected.

3.4.6 UNFORM and Card Type Numbers

Card type numbers must continue to appear in columns 1-2, but all subsequent data can be punched without regard to field definitions.

e.g. UNFORM=A.NIP3	
01	title
02	$0 \quad 107 R$
	etc.

3.5 Microscopic Cross Sections - ISOTXS, XS.ISO and A.ISO

The binary CCCC interface file ISOTXS (see Appendix C.1) is the principal means for specifying microscopic cross section data for a DIF3D calculation. Users may alternatively supply either A.ISO, the formatted version of ISOTXS, or (at Argonne only) XS.ISO, the predecessor to ISOTXS at Argonne. Data from the alternative files are used to create a temporary ISOTXS file, the ultimate form in which data must be specified for use by DIF3D.

At Argonne, ISOTXS (and XS.ISO) files are generated by $\mathrm{MC}^{2}-2$ (Ref. 38), a code which solves the neutron slowing down problem using basic neutron deta derived from ENDF/B data files. ${ }^{39}$ When XS.ISO is specified, an ISOTXS file is created by the module CSE010 early in the DIF3D Standard Path.

The formatted file, A.ISO, provides a machine independent means for exporting ISOTXS data. It also becomes ar expedient means for creating small cross section files for a variety of applications. The sample problem in Section 5.5 .1 uses an A.ISO data set.

While creating an A.ISO data set special attention must be given to the fact that certain data records require an extra blank card-image. This requirement arises only when the number of data items is such that the portion of a format statement preceding a slash (/) is exhausted, but the portion following the slash is not used.

3.5.1 Reaction Versus Production Based ($n, 2 n$) Cross Sections

Users should be aware of at least two things about ISOTXS. First, in the principal cross-section record (also called the 5D record), there are slots for both transport and total cross sections. Cross-section sets generated by $M C^{2}{ }^{2} 2$ (Ref. 38) contain both, and they are different. Second, there are slots for ($n, 2 n$) scattering cross sections in both the principal cross-section record and in the scattering sub-block record (the 7D record). The principal ($n, 2 n$) cross section, $\sigma_{i}^{n 2 n, g}$, is a vector of length equal to the number of energy groups. It is the probability, per unit group-g flux and per atom, that a neutron in group g will undergo an ($n, 2 n$) scattering reaction; i.e. it is reaction-based. The $(n, 2 n)$ cross section in the $7 D$ record, $\sigma_{i}^{g^{\prime} g}(n, 2 n)$, is a group-to-group transfer matrix (number of groups by number of groups) which represents the probability that a neutron will be produced in group g^{\prime} as a result of a scattering event in group g; it is production-based.

These definitions are clear in the current, version IV definition of ISOTXS found in Appendix C.l. There are notes at the end of the 4D record and $5 D$ record that make the distinction and that point out that

$$
\begin{equation*}
\sigma_{i}^{n 2 n, g}=\frac{1}{2} \sum_{g^{\prime}} \sigma_{i}^{g_{i}^{\prime} g}(n, 2 n) \tag{3.1}
\end{equation*}
$$

Until about seven years ago, however, the file definition made no distinction between reaction-based and production-based cross sections, and there was a difference of interpretation within the FBR community.

Argonne previously used the XS.ISO format, in which elastic, inelastic and ($n, 2 n$) scattering cross sections were carried along in separate records. The ($n, 2 n$) reaction data was treated as being reaction-based. The practice was continued by storing reaction-based elastic, inelastic and ($n, 2 n$) scattering matrices separately in ISOTXS; our ISOTXS files normally do not contain a total scattering matrix. Most of the other FBR laboratories were used to dealing only with the total scattering cross section, and the factor of 2.0 (see Eq. (3.1)) required for the ($n, 2 n$) production-based matrix had to be factored into the total when the three partial reaction cross sections were summed. In other words, they were used to dealing with production-based cross sections. Due to this confusion it became necessary to tighten the definition in favor of the production-based interpretation, because a reactionbased, total scattering cross section is useless once the total has been formed - it is impossible to insert the factor of 2.0 that is needed in writing the scattering source term in the neutron balance equations. As a consequence of this inconsistency, HMG4C the code block which processes the microscopic data (ISOTXS) into macroscopic data (COMPXS) performs a check to determine whether the ($n, 2 n$) scattering matrix (if present) is reaction or production based. Hence the proper total scattering source is returned under either definition.

3.6 Number Densities, Cross Section Homogenization and Edits

The code block HMG4C combines microscopic cross sections (from ISOTXS) and atom number densities (from the CCCC files NDXSRF and ZNATDN) to form macroscopic cross sections. These macroscopic cross sections are output to a binary file called COMPXS (see Appendix D.1) which is read by DIF3D to obtain composition and energy group dependent data. HMG4C will optionally edit the COMPXS file contents.

3.6.1 Compositions, Zones and Subzones - A.NIP3 13 and 14 Cards

The terms composition and zone are used interchangeably in this report and in associated documentation. The term composition has traditionally been used at Argonne to mean a mixture of isotopes and a set of macroscopic cross sections. The term zone was introduced by the CCCC file definitions and is functionally equivalent to a composition. The definitions are not precisely the same, however. In the NDXSRF file there are volumes associated with zones - suggesting an additional, geometrical implication. This implied relation is never used by DIF3D. Each composition is simply assigned to one or more geometric regions of the reactor.

DIF3D provides the user with the means for creating several subcollections of isotopes so that the specification of isotopic mixtures may be simplified. This permits a building block approach whereby similar subcollections
(materials and/or secondary compositions) may be used in several compositions. The example supplied with the A.NIP3 file description (Appendix B.4) illustrates the flexibility provided by the A.NIP3 type 13 and 14 cards.

Materials can be defined on type 13 cards in terms of isotopes and/or in terms of other materials. Two types of compositions may be defined on the type 14 cards. Secondary compositions are mixtures of materials and/or isotopes. Primary compnsitions are mixtures of secondary compositions, materials and/or isotopes.

Materials do not exist in the CCCC environment, and the identity of individual materials is los, when the CCCC files NDXSRF and ZNATDN are created. Secondary compositions are treated as CCCC subzones. Those constituents of a primary composition which are not themselves subzones (i.e. isotopes and materials directly assigned to primary compositions) are combined into CCCC primary zone assignments.

The full generality of the NDXSRF file (see Appendix C.3) with regard to the specification of primary zone assignment volume fractions (VFPA(n)) and zone (and subzone) volumes is not, in fact, required by DIF3D. The input processing code block (GNIP4C) always assigns unity to VFPA(n) and the total volume occupied by all regions assigned to zone n is assigned to VOLZ(n). Each subzone volume (VLSA(m)) is chosen so that the ratio (VLSA(m)/VOLZ(n)) yields the volume fraction of subzone m computed from the type-14-card data. Factors on the type 13 or 14 cards other than subzone volume fractions (i.e. isotope atom densities and material volume fractions) are appropriately combined to form the atom density array (ADEN) on the ZNATDN file (see Appendix C.4). From this discussion we see that nowhere is the magnitude of $\operatorname{VOLZ}(\mathrm{n})$ and VLSA(m) critical; we only require their ratio.

3.6.2 Isotope Sets - A.NIP3 39 Cards

The concept of isotope sets is used to permit a reduction in the size of the CCCC atom density file (ZNATDN). All isotopes used in a particular zone or a particular subzone must be assigned to the same nuclide set. The default situation assigns all isotopes to the same set.

The size reduction occurs because of the nature of the matrix of atom densities stored on ZNATDN. The matrix is dimensioned NTZSZ x NNS (i.e. number of zones plus subzones x maximum number of nuclides in a set). Therefore, the introduction of two or more nuclide sets must reduce the dimension NNS.

3.6.3 Homogenization of Principal Cross Sections

The principal microscopic cross sections on the ISOTXS file are homogenized by the general formula
where

$$
\begin{equation*}
\Sigma_{m}^{x, g}=\sum_{i \varepsilon m} \sigma_{i}^{x, g_{n}}{ }_{i m} v_{i m}^{f} \tag{3.2}
\end{equation*}
$$

$\Sigma_{m}^{x, g} \quad \begin{aligned} & \text { is the macroscopic cross section of type } x \text { for energy group } g \text { and } \\ & \text { composition } m ;\end{aligned}$
icm denotes the set of isotopes assigned to composition m (via primary zone assignments and/or subzone assignments);
> $\sigma_{i}^{x, g}$ denotes the linear combination of principal microscopic cross sections that define the type x macroscopic cross section (see Table 3.1):
> $n_{\text {im }}$ is the atom number density (ADEN on the ZNATDN file) assigned to isotope in composition m ;
> $V_{\text {im }}^{f}$ is the (primary zone assignment or subzone) volume fraction (on the NDXSRF file) associated with isotope in composition m.

Table 3.1 summarizes the $\sigma_{i}^{x, g}$ assignments for all but the fission spectrum vector which is treated in Section 3.6.6. The scattering cross section homogenization also included in Table 3.1 is discussed in the next section. Several points regarding the removal cross section are noted in Section 3.6.5.

3.6.4 Homogenization of the Scattering Cross Section

The group g to g^{\prime} scattering cross section $\sigma_{i}^{s t o t, g ' g}$ can also be homogenized by Eq. (3.2) if we generalize the definition of $\sigma_{i}^{x, g}$ and $\Sigma_{m}^{X, g}$ (i.e. let $x \equiv$ stot, g^{\prime}). As shown in Table 3.1 , the scattering cross section may be either in component form or in total form. The total scattering is defined by the linear combination of scattering components tabulated in Table 3.l. The factor $f^{n 2 n}$ accounts for either reaction-based or production-based ($n, 2 n$) cross sections (see Section 3.5.1). If the macroscopic scattering matrix obeys the current ISOTXS rule and is production-based, this factor is unity. When that rule was imposed, however, Argonne had (and still has) cross section sets in which the scattering matrix was reaction-based. A factor of 2.0 was required for the homogenization of these cross sections. The solution of the problem was to code into the HMG4C module a test to see which form the cross section took. The folluwing ratio is formed for each group that has ($n, 2 n$) scattering:

$$
\begin{equation*}
r^{g}=\sigma_{i}^{n 2 n, g} / \sum_{g^{\prime}} \sigma_{i}^{g^{\prime} g}(n, 2 n) \tag{3.3}
\end{equation*}
$$

where the principal ($n, 2 n$) macroscopic cross section is defined in footnote a of Table 3.1 (see also Eq. 3.1). If, for any group, this ratio is greater than .75, then $f^{n 2 n}=2.0$. If this ratio is less than $.75, f^{n 2 n}=1.0$ (Clearly, r should be . 5 for production based data and 1.0 for reaction-based data). In this way HMG4C can detect whether the ($n, 2 n$) scattering matrix is reactionbased or production-based. At Argonne we continue to violate the productionbased rule in ISOTXS files generated by $M C^{2}-2$, but HMG4C is able to handle both legal and 11 legal microscopic cross section sets.

In order to minimize storage on COMPXS, composition dependent maximum upand down-scattering bandwidths (NUP gm and NDN gm) are calculated based on the maximum bandwidths of the isotopic constituents of the corresponding composition.

TABLE 3.1. Microscopic Cross Section Assignments to Macroscopic Cross Sections

Name	$\sum_{m}^{\mathrm{x}, \mathrm{g}}$	$\sigma_{i}^{x, g}$ assignments
Capture	$\Sigma_{m}^{c, g}$	$\sigma_{i}^{g}(n, \gamma)+\sigma_{i}^{g}(n, \alpha)+\sigma_{i}^{g}(n, p)+\sigma_{i}^{g}(n, d)+\sigma_{i}^{g}(n, t)$
Transport	$\sum_{m}^{\text {tr,g }}$	$\sigma_{1}^{t r}, g$
Total	$\sum_{m}^{t, g}$	$\sigma_{i}^{t, g}$
Fission	$\Sigma_{m}^{\mathrm{f}, \mathrm{g}}$	$\sigma_{i}^{g}(n, f)$
Removal	$\Sigma_{m}^{r, g}$	$\sigma_{i}^{c, g}+\sigma_{i}^{f, g}+\sum_{g^{\prime} \neq g} \sigma_{i}^{s t o t}, g^{\prime} g-\sigma_{i}^{n 2 n, g^{a}}$
Scattering	$\Sigma_{m}^{\text {stot, }} \mathrm{g}^{\prime} \mathrm{g}$	$\begin{cases}\sigma_{i}^{e l a s, g^{\prime} g}+\sigma_{i}^{i n e l, g^{\prime} g}+f^{n 2 n^{b}}{ }_{\sigma_{i} g^{\prime} g}(n, 2 n) & \text { compone } \\ \sigma_{i}^{\text {stot }, g^{\prime} g} & \text { tota1 } c\end{cases}$
Power Conversion	$\mathrm{PC}_{\mathrm{m}}^{\mathrm{g}}$	$E^{\text {capt }, g_{\sigma_{i}}{ }_{1}, g+E^{\text {fiss }, g}{ }_{\sigma_{i}} \mathrm{f}, \mathrm{g}}$
Neutrons per Fission	$v \Sigma_{m}^{f, g}$	$\nu_{i}^{g} \sigma_{i}^{f, g}$
Fission Spectrum	$\chi_{\text {m }}^{g}$	See Eq. (3.4) in text.
$a_{\sigma} n 2 n, g \equiv \frac{1}{2} f^{n 2 n} \sum_{g^{\prime}} \sigma_{i}^{g^{\prime} g}(n, 2 n)$. If $\sigma_{i}^{n 2 n, g}$ is absent from ISOTXS and the scattering matrices are in total-form, it is the user's responsibility to appropriately reduce (say) the capture cross sections. $b_{f} \mathrm{n} 2 \mathrm{n}= \begin{cases}1 & \text { production-based } \sigma_{1}^{g^{\prime} g}(\mathrm{n}, 2 \mathrm{n}) \\ 2 & \text { reaction-based } \sigma_{1}^{g^{\prime} g}(\mathrm{n}, 2 \mathrm{n})\end{cases}$ ISOTXS scattering data may be stored componentwise or in total form.		

If higher order scattering cross sections are present in ISOTXS they will be ignored by HMG4C. The COMPXS file currently does not permit higher order scattering.

3.6.5 Discussion of the Removal Cross Section

The removal cross section accounts for two effects:

1. the loss of neutrons from the group due to absorption and outscatter;
2. the addition of neutrons to the group due to within-group ($n, 2 n$) scattering events.

The first two terms in the removal cross section definition in Table 3.1 represent losses of neutrons from absorption (i.e. from capture and fission). The last two terms represent the sum of the outscatter losses and the within group ($n, 2 n$) gain. Recall from Eq. (3.1) that the factor of .5 arises in the definition of $\sigma_{1}^{\mathrm{n} 2 \mathrm{n}, \mathrm{g}}$ because the ($\mathrm{n}, 2 \mathrm{n}$) scattering matrix is production-based, and removal is reaction-based.

The presence of the principal cross section $\sigma_{i}^{n 2 n, g}$ in ISOTXS is optional. As noted in section 3.5 .1 and Table 3.1 (footnote a), if data are expressed in total form with reaction-based ($n, 2 n$) cross sections, then it is impossible for $\mathrm{HMG4C}$ to determine the correct removal cross section. Consequently, it is up to the user to supply an ISOTXS file which accounts for the $\sigma_{1}^{n 2 n, g}$ effect in some other way. For example, one could reduce the capture cross section by the appropriate amount (a practice followed by at least one other laboratory).

3.6.6 Homogenization Options for the Fission Spectrum - A.HMG4C 02 Card

Any of three homogenization options are available by means of the prompt* fission spectrum flag. Denoting the fission fraction for group g of composition m by X_{m}^{g}, then the options avallable for computing it are:

$$
\begin{align*}
& 0 \ldots x_{m}^{g}=x^{g} \\
& 1 \ldots x_{m}^{g}=\frac{\sum_{i \varepsilon_{m}} x_{i m}^{g} n_{1 m}^{g} v_{1 m}^{f}}{\sum_{g^{\prime}} v_{i}^{g} \sigma_{i}^{g}{ }^{\prime}(n, f)} \tag{3.4b}\\
& 2 \ldots x_{m}^{g}=\frac{\sum_{i \varepsilon m} x_{i}^{g} v_{i}^{g} n_{i m} v_{i m}^{f} \sigma_{i}^{g}(n, f)}{\sum_{i \varepsilon m} \nu_{i}^{g} n_{i m} v_{i m}^{f} \sigma_{i}^{g}(n, f)}, \tag{3.4c}
\end{align*}
$$

[^3]where the summation is over all isotopes i contained in composition m. $\bar{\chi}^{g}$ is the set fission fraction for group g while X_{i}^{g} is the fission fraction for isotope 1. The option 1 is termed total fission source weighting and may be derived from the expression for the fission source by assuming the flux is group independent. The option 2 is not recommended. In this option there is no assurance the $\chi_{\mathrm{m}}^{\mathrm{g}}$ summed over all groups will be unity for a given composition m.

Although the ISOTXS format permits the treatment of isotopic fission spectrum data which are incident energy dependent (χ_{m}^{gg}), neither the HMC4C nor the DIF3D code blocks can use such matrices. The weak energy dependence of the fission spectrum data in the LMFBR spectrum make it possible to use the vector derived at the average fission energy without any significant error. ${ }^{40}$ The mixing of the different isotopic data to give a vector introduces a small error since the flux distribution is unknown, and assumed constant in the recommended algorithm. The algorithm does, however, account for the predominant isotopic effects so that the more rigorous matrix treatment is not warranted in view of the considerable data management costs which would result as a consequence of its use.

The presence on COMPXS of Σ_{m}^{f}, g and χ_{m}^{g} data for composition m is indicated by the sentinel $\mathrm{ICHI}_{\mathrm{m}}$. $\mathrm{ICHI}_{\mathrm{m}}=0$, indicates composition m is nonfissionable (i.e. composition m contains no isotopes with non-zero atom density that have a non-zero (n, f) cross section sentinel (IFIS) on the ISOTOPE-AND-GROUP-INDEPENDENT-DATA record of ISOTXS).

3.6.7 Edit Options and Container Storage - A.HMG4C 02 Card

Edit sentinels enable the user to direct edit output to either the print file (FT06F001) and/or an auxiliary file (FT10F001). HMG4C error messages, however, will appear only on the print file. Both the COMPXS (including a user supplied COMPXS) and the ISOTXS files may be edited. The ISOTXS edit is a running edit of those isotopes referenced in the homogenization.

The computer resource requirements (both container storage and CPU time) of the HMG4C code block are insignificant compared to the typical requirements of the DIF3D (neutronics solution) code block. Therefore, the user need only supply a main (FCM) memory size on the A.HMG4C type 02 card that is less than or equal to the sum of the FCM and ECM sizes on the A.DIF3D type 02 card. On two-level machines, of which the $\operatorname{CDC} 7600$ is the only pertinent example, the FCM size from DIF3D is a reasonable estimate. It should be noted that the HMG4C FCM container size may also be specified on the A.NIP3 type 02 card. If both specifications are present, the A.HMG4C specification takes precedence.

In computing the homogenized crose actions, the code attempts to hold as much of the macroscopic cross section data in memory as the container space will permit. If all the macroscopic data will not fit in the available memory, the code determines the maximum number (m) of compositions which can be accomcdated in a single pass. As many passes are then made as required to homogenize all the compositions. Taking this multipass mode of operation to the extreme, just one composition may be computed in each pass. Since there
are a total of NZONE compositions to be formed (one for each ZONE in the problem), the expression for the main (FCM) storage requirement is of the form,

$$
F C M=A+m B, \quad 1<m<N Z O N E,
$$

where A is the amount of storage required to hold the microscopic data and B is the amount needed to hold the macroscopic arrays for a single composition.

HMG4C always prints the actual number of words used and, if in multipass mode, the number of words required for a single composition and the number of passes to be used. These data may then be used as a guide for subsequent runs.
3.6.8 Directional Diffusion Coefficient Factors - A.NIP3 35 and 36 Cards

DIF3D will generate directional diffusion coeffficients of the form

$$
\begin{equation*}
D_{m}^{n, g}=A_{m}^{n, g} * D_{m}^{g}+B_{m}^{n, g}, \quad n=1,2,3, \tag{3.5}
\end{equation*}
$$

using factors $A_{m}^{n, g}$ and $B_{m}^{n, g}$ specified on the A.NIP3 35 and 36 cards. The code block MODCXS writes these factors into COMPXS after HMG4C has completed the homogenizations.

The calculation of transverse leakage by DIF3D always uses the third dimension diffusion coefficient $D_{m}^{3, g}$ for the pseudo absorption

$$
\begin{equation*}
\left(D B^{2}\right)_{m}^{g}=D_{m}^{3, g} *\left(B_{m}^{2}\right)^{g} \tag{3.6}
\end{equation*}
$$

used on option regardless of the problem dimension. The composition-dependent buckling ($\left.\mathrm{B}_{\mathrm{m}}^{2}\right)^{\mathrm{g}}$ is discussed in Section 3.75 and defined in Eq. (3.26) of Section 3.14.7.
3.6.9 Fission and Capture Energy Conversion Factor Data - A.NIP3 37 and 38

Fission and capture energy conversion factors ($E_{m}^{c a p t}$ and $E_{m}^{\text {fiss }}$) in the ISOTXS file may be overridden for particular compositions by supplying the appropriate data on the A.NIP3 type 37 and 38 cards - units are fissions per watt-second and captures per watt-second, respectively.

3.7 Geometry Input and Edits - A.NIP3 and GEODST

The primary means of specifying the model geometry for a DIF3D calculation is the A.NIP3 DATASET. The card-by-card input description is given in Appendix B.4. As of the date of this report there are 43 card types in A.NIP3, 16 of which ($02-12,15,29-34$ and 43) can be used to define and edit the geometry. Of these 16 fewer than half are usually required to define a model.

The alternative to the geometry description cards in A.NIP3 is the CCCC Standard Interface File GEODST. Its file description is included in Appendix C.2.

The code block GNIP4C reads A.NIP3 (if it is input) and writes a GEODST file. GNIP4C also produces an edit of the geometry.

3.7.1 Geometry Types - A.NIP3 03 Card

The only datum on the A.NIP3 03 card is the geometry type sentinel. Geometry types currently implemented in the DIF3D finite-difference solution algorithms are:

Slab (10)
Cylinder (20)
$\mathrm{X}-\mathrm{Y}$ (40) and $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ (44)
R-Z (50)
Theta-R (64) and Theta-R-Z (66)
Triangular (70) and Triangular-Z (90), rhombic region of solution, core center at 60 degree angle (sixth-core symmetry).
Triangular (72) and Triangular-Z (92), rectangular region of solution (half-core symmetry).
Triangular (74) and Triangular-Z (94), rhombic region of solution, core center at 120 degree angle (third-core symmetry).
Triangular (78) and Triangular-Z (98), rectangular region of solution (quarter-core symmetry).
Triangular (80) and Triangular-Z (100), rectangular region of solution (full core).

The numbers in parentheses are the A.NIP3 type 03 card geometry sentinels. The input processor GNIP4C will actually accept and correctly process the additional geometry sentinels:

Spherical (30)
$\mathrm{R}-\theta$ (60) and $\mathrm{R}-\theta-\mathrm{Z}$ (62)
Hexagonal with full (110), sixth (114) and third (116) core symetries Hexagonal-Z with full (120), sixth (124) and third (126) core symetries.

The DIF3D nodal option ${ }^{5}$ solves the hexagonal geometry options.

3.7.2 Boundary Conditions - A.NIP3 04, 05, 10, 11 and 31 Cards

External boundary conditions types are defined on the type 04 card. Boundary conditions permitted by the DIF3D finite-difference solution option are:

Zero flux (2)
Zero gradient (3)
Extrapolated (4) ($\mathrm{D} \cdot \phi^{\prime}+\mathrm{A} \cdot \phi=0$)
Periodic (6), with opposite face (X-direction only)
Periodic (7), along the adjacent boundaries meeting at the origin.
GNIP4C will process additional, periodic and transport-theory boundary conditions, but the DIF3D code block will not accept them.

The constants required by the extrapolated condition are input on the 05 card. Internal, blackness-theory boundary conditions and constants are defined on the type 10 and 11 cards. Type 05,10 and 11 cards may be omitted when they are not required.

For triangular mesh geometries it is possible to reduce the region of solution by not defining a background region (the type 31 card). This yields a region of solution outer boundary which can follow the irregular shape of an outer ring of hexagons. Whenever DIF3D detects an irregular boundary situation, it determines a single boundary condition from the user-specified boundary conditions and applies it to all external mesh surfaces that do not coincide with the parallelogram or rectangular envelope of the region of soiution. If more than one type of boundary condition is specified, the zero flux condition takes precedence; the extrapolated condition is next in rank, and the zero-current condition is least in rank.

Physical considerations strongly reinforce the recommendation that boundary condition specifications along the irregular outer boundary should be uniformly specified. Therefore, it is recommended that the boundary condition specifications for all X - and Y-direction surfaces which are not symmetric (zero-current) or periodic in nature, be identically specified (e.g. zero-flux or extrapolated, but not both)!

3.7.3 Regions and Areas - A.NIP3 06, 07, 15, 30 and 31 Cards

Regions are geometrical shapes, bounded by mesh lines, that contain a homogeneous composition. For orthogonal geometries (e.g. X-Y-Z, R-Z) regions are defined on the 06 cards. For triangular and hexagonal geometry models regions are defined in terms of concentric rings of hexagons on the type 30 cards. A region name for the background region, all the mesh cells outside the hexagons defined on type 30 cards, is defined on the 31 card.

Areas are collections of possibly non-contiguous regions. They are a convenience provided for input and editing and are defined on the type 07 card.

The correspondence between regions (or areas) and the compositions they contain is made on the type 15 cards.

3.7.4 Mesh-Spacing - A.NIP3 06, 09 and 29 Cards

The 1st dimension and 2nd dimension mesh for orthogonal geometry models can be defined on either the 06 or 09 cards. The 3 rd dimension (Z) mesh is always defined on 09 cards. The mesh size for triangular mesh geometries is determined from the hexagon flat-to-flat distance input on the 29 card.

3.7.5 Bucklings - A.NIP3 12 and 34 Cards

Bucklings can be specified by composition and group on the type 34 cards.
Alternatively, the user can input a transverse half height or the type 12 card which is used to calculate a group-independent buckling and which is also used as a transverse finite dimension for flux and power integrals. Users should read the 12 and 34 card input descriptions for a discussion of what happens when both 12 and 34 cards are input. Section 3.1 '. 2 discusses the impact of the type 12 and 34 cards on the edits of the $f m$ integrals.

3.7.6 Geometry Edits - A.NIP3 02 and 43, A.DIF3D 04 Cards

Printer edits of the geometry may be turned on by means of sentinels on the type 02 card of A.NIP3 and the 04 card of A.DIF3D. These two edits include substantfally the same data, but in different formats.

Graphics (e.g. CALCOMP) maps of the geometry for two- and three-dimensional models can be produced by setting a flag on the type 43 card. At Argonne the user must invoke the POSTPLOT procedure to direct the graphics output to the desired device. The graphics output may not be available in all export versions of the code (see Section 4.1.5).

3.8 Distributed, Inhomogeneous Sources - A.NIP3, FIXSRC and A.DIF3D

DIF3D will accept any kind of distributed, inhomogeneous source if it is input in the CCCC Standard Interface File FIXSRC (see Appendix C.5). DIF3D will not accept inhomogeneous boundary sources. On short-word machines the FIXSRC $\overline{f i l e}$ DIF3D expects (and which the GNIP4C code block optionally provides) violates the CCCC standards in one respect; the source distribution must be given in REAL*8 words, rather than REAL*4 words. FIXSRC sources for adjoint problems must be stored in reverse group order, as in the ATFLUX file.

Inhomogeneous source problems are indicated to DIF3D via a sentinel specified on the type 03 card of A.DIF3D. The type 08 card of A.DIF3D evokes the alternate outer-iteration acceleration strategy discussed in Section 2.2.8; a single asymptotic extrapolation precedes the application of the conventional, Chebyshev semi-iterative acceleration strategy.

The BCD input processor GNIP4C will generate three special types of fixed sources from data on one or more of four A.NIP3 cards (19 and 40-42).

3.8.1 By Group, By Region or Mesh - A.NIP3 19 Cards

Fixed source densities can be input on A.NIP3 type 19 cards by combinations of group, region and mesh. This is an efficient way of doing it when a few regions or mesh cells are to contain a constant source density, but it becomes tedious if the source density extends over a large number of mesh and is mesh and group dependent.

3.8.2 Synthesis Trial Function Source - A.NIP3 40 Card

In fiux-synthesis calculations it is sometimes helpful to have trial functions which represent axial blanket or reflector zones and which come from fixed source calculations. The fixed source is the pointwise product of a group flux from some other calculation and the local diffusion coefficient. GNIP4C will prepare such a source given an input RTFLUX file and the proper flag on the A.NIP3 type 40 card. The user should be aware that DIF3D will overwrite the input RTFLUX with the flux solution from the fixed source problem.

3.8.3 Natural Decay Source - A.NIP3 41 and 42 Cards

GNIP4C will generate a distributed source which is the product of an isotope decay constant, the isotope number density and an isotope spectrum (or sums of such products) by mesh and group. Isotope names and decay constants are specified on type 41 cards, the number densities from other input (the type 13 and 14 cards or the ZNATDN file) and the spectra from type 42 cards.

3.8.4 Source Edits - A.NIP3 40 Card

An edit of the fixed source file (either generated from A.NiO3 input or input via FIXSRC directly) may be obtained by turning on the edit sentinel on the type 40 card. The source edits may be sent to either or both of the edit files.

3.9 Code Dependent Input - A.DIF3D

DIF3D calculational parameters, storage containers and edit sentinels are specified via the A.DIF3D DATASET. The card-by-card description of A.DIF3D is found in APPENDIX B. 1.

The alternative to data specification via A.DIF3D is the binary interface file named DIF3D (not to be confused with the module DIF3D). Its file description is provided in Appendix D.2.

The code block BCDINP reads A.DIF3D and writes the interface file DIF3D. If A.DIF3D does not exist, BCDINP writes the DIF3D file using default data. If both A.DIF3D and DIF3D exist BCDINP reads both files. Data existing in the DIF3D file will be overwritten only by its non-zero and non-blank counterparts in the A.DIF3D data set (i.e. defaulted datum fields cannot overwrite their counterparts on the DIF3D file). Consequently, it is a good habit to avoid explicit specification of default data so that recently updated parameters on the DIF3D file are not reset to the default values in subsequent restart jobs.
3.9.1 Data Management Options and Container Sizes - A.DIF3D 02 Card

The DIF3D data management strategy accomodates a wide variety of problems on computers with differing architectures. The rey feature of this strategy is that it employs a fast core memory (FCM) container and an extended core memory (ECM) container to optimize the storage utilization on both one-level and two-level storage hierarchy machines in a unified manner (See Section 4.3). The two containers reside in separate memory levels on two-level machines (e.g. SCM and LCM on the CDC 7600). Both containers reside in main storage on single hierarchy machines (e.g. IBM 370/195).

Major scratch file buffers (also called ECM files) for the flux, finitedifference coefficients and cross section files reside in the ECM container. Files that cannot be contained in ECM, require random access I/O transfers between ECM and their peripheral storage devices.

The FCM container contains miscellaneous arrays required for input processing and several arrays (with lengths on the order of the number of mesh intervals in a mesh line) required during the steady state flux calculation.

On two-level machines additional FCM container space is required for buffering one group of cross sections and blocks of mesh lines in a plane between ECM and FCM for efficient computation in FCM (see Section 4.3.2.3).

DIF3D invokes one of several storage strategies based on the user specified FCM and ECM container sizes. On two-level machines the FCM block sizes range from full plane blocking to partial plane blocking with a minimum of one mesh line per block.

Except for three-dimensional probiems, one group of fluxes, finitedifference coefficients and composition cross sections along with three group-independent source arrays and a mesh-interval-to-composition map array
are the minimum data that must be contained in ECM. If the available ECM exceeds this minimum, DIF3D first attempts to ECM-contain a scattering band of fluxes and then any of the remaining files.

Large three-dimensional problems may require the concurrent inner iteration strategy (CIIS). It requires that data for only a subset of the total number of mesh planes be contained in ECM during the inner iterations for an energy group. In this mode an unlimited number of mesh planes is permitted with limitations only on the number of mesh cells in the plane.

The strategies just summarized permit the user to vary the computer resource requirements to suit specific needs for a particular job. Three resources are primarily affected by the choice of container size. They include core storage, disk storage and I/O processing units (called EXCP's on IBM systems or Peripheral Processor (PP) time on CDC systems). It is usually preferable to ECM-contain the maximum amount of data to avoid excessive I/O charges. On systems where I/O charges are negligible or when excessively high core storage requirements inhibit job turnaround time users may choose to incur the additional I/O activity so that earlier job scheduling is obtained.

Users who wish to devote little time to data management considerations are urged to supply as large an ECM container size as possible since it is usually cheaper to overestimate the required ECM storage size than it is to underestimate ECM and incur the resulting excessive $1 / 0$ charges.

Formulas for calculating the minimum FCM and ECM container sizes for one- or two-level machines are displayed in Table 3.2. The minimum ECM size estimate for the CIIS is provided primarily to indicate the relative storage requirements of the problem. Every effort should be made to avoid running problems at this minimum ECM size to avoid an enormous I/O overhead. In extreme cases job costs can be more then tripled!

A summary of the DIF3D storage allocation parameters is edited with every DIF3D problem. Figure 3.2 illustrates a data management summary page that may be obtained for Sample Problem 4. Edits of the minimum number of words required to run the problem in each data management mode provide the user with the necessary information to determine the feasibility of running a problem with a more efficient strategy. Also included is a tabulation of the location, size and associated record lenths of the principal randuai access (DOPC) files. In the two-level implementation an edit of the number of lines per plane contained in FCM is also indicated.

In three-dimensional problems the data management page includes an edit of the minimum data required for the CIIS. If the CIIS strategy is invoked, the number of planes in a record (or block), the number of records to be simultaneously contained in ECM and the number of container words in a block of planes is edited. The latter data are sufficient to determine the ECM container size adjustments needed to achieve a given inner iteration bandwidth.

It is possible to obtain just the data management edit page, so as to optimize the container size estimates prior to performing the desired neutronics calculation. This may be accomplished by supplying a ridiculously small ECM container size (say two words) which causes DIF3D to terminace abnormally after printing the data management page.

TABLE 3.2. A.DIF3D FCM and ECM Minimum Container Size Estimation

```
Parameters
I,J,K = Number of 1-, 2-, and 3-D mesh Intervals
NRING = Number of hex rings in triangular geometry
NDIM = Number of problem dimensions (1,2 or 3)
NCELLS = Number of spatial mesh cells (I*J*K)
NGROUP = Number of energy groups
MAXSCT = Maximum scattering bandwidth
NCMP = Number of compositions (zones)
NCXSIG = Storage for l group of cross section data
    = (9+MAXSCT)*NCMP
LDW = Word length parameter
    = (1 on longword, 2 on shortword machines)
```

Triangular Geometry I and J Estimates

I	J	Symmetry 0ption
6*NRING-1	4*NRING-2	Full Core
6*NRING-1	2*NRING-1	Half Core
2*J	2*NRING-1	Third Core
3*NRING	2*NRING-1	Quarter Core
2*J	($3 *$ NRING-1)/2	Sixth Core

Minimum Storage Size Estimates	Application
FCM $=$ NCXS $1 \mathrm{C}+12 * \mathrm{I}$ * J	2-level full plane ${ }^{\text {a }}$
FCM $=$ NCXS $16+19 *$ I	2-level partial plane ${ }^{\text {a }}$
$\begin{array}{r} \mathrm{FCM}=\operatorname{MAX}(1500,15 \star \operatorname{MAX}(\mathrm{I}, \mathrm{~J}), \\ (15+\mathrm{MAXSCT}) \star \text { NGROUP }) \end{array}$	1-level ${ }^{\text {b }}$
$\begin{aligned} \mathrm{ECM}=\mathrm{NCXS} 1 \mathrm{G} & +(8+1 . / \mathrm{LDW}) \star \text { NCELLS } \\ & +\mathrm{I}^{\star} \mathrm{J} \end{aligned}$	1 group in core
ECM $=$ NCXS $1 \mathrm{G}+(23+1 . / \mathrm{LDW}) * I * J$	Concurrent Inner Iteration Strategy

a2-level storage hierarchy machines such as CDC 7600.
$\mathrm{b}_{1-1 \text { level }}$ storage hierarchy machines such as IBM 370 systems.

LOCATION OF SCRATCH FILES DURING STEADY STATE CALCULATION

FILE CONTENTS	NO. OF RECORDS	RECORD LENGTH	FILE LENGTH	LOCATION	RECORDS IN CORE
NEW FISSION SOURCE	8	2480	17856	DISK	1
OLD FISSION SRC. 1	8	2480	17856	DISK	1
OLD FISSION SRC. 2	8	2480	17856	DISK	1
TOTAL SOURCE	8	2480	17856	DISK	4
COMPOSITION MAP	8	1240	8928	DISK	1
FLUX ITERATE	32	2480	71424	DISK	1
CROSS SECTIONS	4	72	288	CORE	6
FINITEDIFF. COEFS.	32	9920	285696	DISK	4

PROBLEM WILL BE RUN WITH AN EFFECTIVE BANDWIDTH OF 2 RECORDS WITH 5 PLANES/RECORD YIELDING 10 INNER ITERATIONS/CONCURRENT ITERATION PASS. THE NUMBER OF ECM CONTAINER WORDS REQUIRED TO INCREMENT OR DECREMENT THE INNER ITERATION BANDWIDTH BY 5 INNER ITERATIONS IS 14880 WORDS PROVIDED THE CURRENT BLOCK LENGTH IS MAINTAINED. (I.E. ENTER THE BLOCK LENGTH 2480 IN COLS. $25-30$ OF THE A.DIF3D TYPE 03 CARD).

TOTAL NUMBER OF WORDS USED FOR THIS PROBLEM
$=\quad 508$
73945
Fig. 3.2. A Data Management Page Edit for Sample Problem 4

3.9.2 Solution Options and Control Parameters - A.DIF3D 03 Card

Parameters supplied on the type 03 card of A.DIF3D select the problem type (criticality or distributed inhomogeneous source) and the solution type (real or adjoint). Outer iteration control parameters which limit the maximum number of outer iterations, and optionally override the Chebyshev acceleration of the outers are also present. The outer iteration limit can be used to bypass the outers entirely and simply obtain selected integral edits. In large problems requiring one or more restarts it is economical to request the integral edits only after convergence is achieved.

Two parameters on this card are related to the concurrent inner iteration strategy (CIIS) which is invoked in large three-dimensional problems whenever the ECM container storage is insufficient for the one-group-in-core strategy (see Section 3.9.1). The first parameter is the minimum record size (MINBSZ) in long words for the I/O transfer of blocks of planes in the CIIS. The default values were chosen in an attempt to balance I/O overhead with the ECM storage overhead incurred as the size of the blocks of planes increases (see Section 3.10). The other parameter, the CIIS efficiency factor, avoids the last pass of inner iterations in those groups for which the number of inner iterations falls below a code-dependent threshold. The following simple example illustrates the point: suppose a bandwidth of 12 inner iterations can be performed in a single concurrent iteration I / O pass across the group-dependent data. If in a particular group the required number of inners/outer (m_{g}) is 13 , then the second I / O pass required to perform the single remaining inner iteration is scarcely cost effective.

Problems with thermal scattering frequently require upscatter iterations to ensure convergence. The number of such upscatter iterations performed in every outer is specified on the type 03 card if the default value of 5 upscatter fterations per outer iteration is inappropriate.

The job time limit entry on the type 03 card of A.DIF3D is intended to force graceful termination (i.e. to ensure that restart files - RTFLUX and DIF3D - are saved) on those systems in which the amount of CPU time remaining is not an available quantity to subroutine TIMER. To prevent job failures due to time limit, the user must specify a time limit on the type 03 card which is sufficiently less than the job time limit to permit DIF3D to trigger a graceful termination based on the elapsed time clock.

3.9.3 Convergence Criteria - A.DIF3D 05 and 06 Cards

Three outer iteration convergence criteria (Eqs. 2.89-2.91) are supplied on the type 05 card of A.DIF3D:

1. Absolute eigenvalue change, ε_{k};
2. Pointwise fission source error, ε_{λ};
3. Average relative fission source error, ε_{ϕ}.

All criteria must be satisfied before the outer iterations are converged. When the default convergence criteria are used, the pointwise fission source convergence is typically the last criterion satisfied.

Only one parameter related to the inner iteration convergence can be specified by the user and it is on the type 06 card of A.DIF3D. This parameter specifies the error reduction factor to be achieved by each series of inner iterations for each group during each outer iteration of the calculation. Prior to the start of the outer iterations this factor is used along with the precalculated optimum overrelaxation factors to compute the number of inner iterations required in each group. Experience has shown that this parameter provides an effective means for ensuring uniform convergence behavior.

Included in the edits of every DIF3D problem will be the precalculated optimum overrelaxation factors and an iteration history in which the fission source and k-effective convergence are tabulated. Figure 3.3 illustrates the outer iteration history page from Sample Problem 1.

3.9.4 Edit Options and Interface File Output - A.DIF3D 04 Card

The first four of the eleven edit options on the type 04 card of A.DIF3D simply provide edits of various input quantities and all but the first have already been discussed in their respective applications. Key dimensions for geometry and cross section data are edited along with boundary conditions, zone bucklings, mesh interval data and region to zone assignments.

Certain data are always edited. Included in this category are the data specified on the A.DIF3D file, the DIF3D data management page (a summary of storage allocation options), lists of interface files read or written, the outer iteration history, the optimum overrelaxation factors by group, and a computing time summary which tabulates computation times by each logical computation section in DI.F3D.

Edit options five through nine provide integrals by region, region and group, and by group for neutron balance, power distribution and flux distribution. Except for the neutron balance these items are also available by mesh cell. All but power distribution data are available also for adjoint problems.

The mesh cell and energy dependent flux interface file RTFLUX (ATFLUX in adjoint problems) is always written upon termination of the outer iterations. The power-density-distribution-by-mesh-cell interface file PWDINT and the zone-averaged flux file RZFLUX can be optionally written in real problems by specifying edit option ten.

DIF3D provides edits of commonly expected integral quantities. All requested edits that are not also written to one of the CCCC interface files are written to the code-dependent interface file D3EDIT. Section 3.14 defines these edit quantities.

Some users find it useful to obtain additional edits appropriate to their applications by writing programs which manipulate data available on the various interface files described in this document. The UDOITl - UDOIT4 modules discussed in Section 4.1 .11 are appropriate for this application.

OUTER	REL. POINT	REL. SUM	EIGENVALUE	POLY,	DOM. RATIO	DOM. RATIO	
IT. NO.	ERROR	ERROR	CHANGE	ORDER	USED	ESTIMATED	K-EFFECTIVE

| 1 | $6.055469 \mathrm{D}-01$ | $1.686693 \mathrm{D}-01$ | $5.676263 \mathrm{D}-02$ | 0 | 0.0 | 0.0 | $1.05676263 \mathrm{D}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | $4.704232 \mathrm{D}-01$ | $1.306399 \mathrm{D}-01$ | $3.391310 \mathrm{D}-02$ | 0 | 0.0 | $8.269922 \mathrm{D}-01$ | $1.09067574 \mathrm{D}+00$ |
| 3 | $1.767146 \mathrm{D}-01$ | $7.337978 \mathrm{D}-02$ | $1.908419 \mathrm{D}-02$ | 0 | 0.0 | $5.957153 \mathrm{D}-01$ | $1.10975993 \mathrm{D}+00$ |
| 4 | $8.690130 \mathrm{D}-02$ | $4.552007 \mathrm{D}-02$ | $8.680460 \mathrm{D}-03$ | 1 | $5.957153 \mathrm{D}-01$ | $5.957153 \mathrm{D}-01$ | $1.11844039 \mathrm{D}+00$ |
| 5 | $3.722962 \mathrm{D}-02$ | $2.073863 \mathrm{D}-02$ | $5.107754 \mathrm{D}-03$ | 2 | $5.957153 \mathrm{D}-01$ | $6.254009 \mathrm{D}-01$ | $1.12354814 \mathrm{D}+00$ |
| 6 | $1.064050 \mathrm{D}-02$ | $6.314254 \mathrm{D}-03$ | $2.468417 \mathrm{D}-03$ | 3 | $5.957153 \mathrm{D}-01$ | $6.280142 \mathrm{D}-01$ | $1.12601656 \mathrm{D}+00$ |
| 7 | $3.829818 \mathrm{D}-03$ | $2.197660 \mathrm{D}-03$ | $8.781398 \mathrm{D}-04$ | 1 | $6.280142 \mathrm{D}-01$ | $6.280142 \mathrm{D}-01$ | $1.12689470 \mathrm{D}+00$ |
| 8 | $1.806451 \mathrm{D}-03$ | $1.012883 \mathrm{D}-03$ | $2.399321 \mathrm{D}-04$ | 2 | $6.280142 \mathrm{D}-01$ | $6.305913 \mathrm{D}-01$ | $1.12713463 \mathrm{D}+00$ |
| 9 | $4.606560 \mathrm{D}-04$ | $2.320342 \mathrm{D}-04$ | $9.278793 \mathrm{D}-05$ | 3 | $6.280142 \mathrm{D}-01$ | $6.203958 \mathrm{D}-01$ | $1.12722742 \mathrm{D}+00$ |
| 10 | $1.203257 \mathrm{D}-04$ | $7.173725 \mathrm{D}-05$ | $3.893697 \mathrm{D}-05$ | 4 | $6.280142 \mathrm{D}-01$ | $6.331385 \mathrm{D}-01$ | $1.12726635 \mathrm{D}+00$ |
| 11 | $2.823481 \mathrm{D}-05$ | $1.472779 \mathrm{D}-05$ | $1.050205 \mathrm{D}-05$ | 1 | $6.331385 \mathrm{D}-01$ | $6.331385 \mathrm{D}-01$ | $1.12727686 \mathrm{D}+00$ |
| 12 | $1.556538 \mathrm{D}-05$ | $1.031790 \mathrm{D}-05$ | $2.427902 \mathrm{D}-04$ | 2 | $6.331385 \mathrm{D}-01$ | $7.953652 \mathrm{D}-01$ | $1.12727928 \mathrm{D}+00$ |
| 13 | $4.066891 \mathrm{D}-06$ | $1.710762 \mathrm{D}-06$ | $7.286502 \mathrm{D}-07$ | 3 | $6.331385 \mathrm{D}-01$ | $6.304855 \mathrm{D}-01$ | $1.12728001 \mathrm{D}+00$ |
| 14 | $9.684399 \mathrm{D}-07$ | $7.739674 \mathrm{D}-07$ | $3.097159 \mathrm{D}-07$ | 4 | $6.331385 \mathrm{D}-01$ | $6.577679 \mathrm{D}-01$ | $1.12728032 \mathrm{D}+00$ |
| 15 | $2.049522 \mathrm{D}-07$ | $1.272518 \mathrm{D}-07$ | $8.601389 \mathrm{D}-08$ | 1 | $6.577679 \mathrm{D}-01$ | $6.577679 \mathrm{D}-01$ | $1.12728041 \mathrm{D}+00$ |

outer iterations completed at iteration 15, iterations have converged
k-Effective $=1.12728040833$
to restart this calculation, input following values
DOMINANCE RATIO (SIGBAR) $=6.577679231397 \mathrm{D}-01$

MAXIMOH POWER DENSITY 2.68379D-04 OCCURS AT MESH CELL ($\mathrm{I}, \mathrm{J}, \mathrm{K}$) $=(1,1$ (1)
pear poner density is calculated by sampling the average flux values on the cell surfaces and within the cell.

Fig. 3.3. Iteration History Page Edit for Sample Problem 1.

3.9.5 Restart Option - A.DIF3D 03, 06 and 07 Cards

Restart jobs generally differ from the original job in two ways. The appropriate flux DATASET (RTFLUX or ATFLUX) must be provided and specified under "BLOCK=OLD" in the BCD input data. Appropriate JCL designations are required to ensure that the system accesses the appropriate restart flux file. Optimum overrelaxation factors and the latest eigenvalue and dominance ratio estimates should also be provided. The most convenient means for specifying the last three items is to supply the restart file DIF3D and specify it under "BLOCK=OLD". Note that the restart sentinel will already be set on the DIF3D file if the file was written by a job in which outer iteration convergence was not achieved. An alternative is to revise the original A.DIF3D file by specifying the above data on card typess 06 and 07 and by specifying the restart sentinel on the type 03 card.

The precalculation of optimum overrelaxation factors generally requires CPU time equivalent to two or three outer iterations, so that it is well worth the effort in problem restarts to supply these factors. The remaining factors supplied during restarts facilitate resumption of the Chebyshev fission source acceleration with minimal loss of efficiency. In applications in which a series of related problems are to be solved the optimum overrelaxation factors frequently are quite similar. Con.equently the optimum overrelaxation factors for a common set of problems may be calculated once in the first problem of the set and used throughout.

3.9.6 Acceleration of Near-Critical Source Problems - A.DIF3D 08 Card

An optional strategy which accelerates the outer iteration convergence in near-critical systems with an inhomogeneous source (see Section 2.2.8) can be invoked by specifying the appropriate data on the type 08 card of A.DIF3D. The strategy provides more rapid convergence for this class of problems than the Chebyshev acceleration techniques generally applied to most DIF3D problems.

3.9.7 Neutron Transport Option - A.DIF3D 09 Card

At Argonne there exists a version of DIF3D in which the diffusion theory inner iteration routines have been replaced by a transport theory (Sn) calculation. As of the date of this report there were no plans to make a formal release of DIF3D/transport to any code centers.

One invokes DIF3D/transport in the Argonne system by including
PRELIB='C116.B99983.MODLIB'
on the EXEC card for STP021. The type 09 card of A.DIF3D specifies the transport option. It contains the S_{n} order as well as the control parameters for the innermost line-sweep iteration.

3.10 Guidelines for the Efficient Use of the CIIS

Typical problems invoking the Concurrent Inner Iteration Strategy (CIIS) (see Section 4.3.2.2) make heavy demands on computing system resources including:

1. CPU Time,
2. I/O Processor Time (EXCP's on IBM systems),
3. Central Memory Storage (FCM and ECM),
4. Disk Storage.

Items (1) and (4) are essentially invariant for a given problem, while items (2) and (3) are dependent on the ECM storage container size. Item (2) is also dependent on MINBSZ, the desired I/O record size (see Section 3.9.2). Within practical limits, resources (2) and (3) are roughly inversely proportional, so that as the ECM size increases, the inner iteration bandwidth B increases, yielding a corresponding decrease in the number of inner iteration $1 / 0$ passes and vice versa. This flexibility in resource allocation afforded by the range of permissible ECM values enables the user to tailor the resource utilization for an arbitrary problem to an arbitrary host installation.

3.10.1 Optimal ECM Size Estimation - A.DIF3D 02 Card

If a reasonable estimate exists for M, the average number of inner iterations per outer iteration required for the problem at hand, then the procedure be? ow determines the least storage needed to minimize the number of inner iteration I / O passes having block size MINBSZ. For example, if $M=24$ in a given problem but the maximum ECM-containable inner iteration bandwidth B is $B=18$, then the algorithm will choose U, the number of ECM-contained $I / 0$ blocks, and L , the number of planes in an I/0 block, such that $\mathrm{B}=\mathrm{U} \cdot \mathrm{L} \geqslant 12$. A bandwidth of 12 iterations requires the least ECM storage to perform the inner iterations in two I/O passes.

The four-step procedure detailed below, provides simple guidelines for users to obtain a quick estimation of the appropriate ECM container size for a problem that may need the CIIS option. Formulas and parameter definitions are tabulated in Table 3.3 for short-word and long-word machines and for machines with one- or two-level storage hierarchies. Figure 3.4 graphically depicts ECM storage requirements $\mathrm{W}(\mathrm{U}, \mathrm{L})$ as a function of the number of ECMcontained blocks U for blocks ranging in size from $\mathrm{L}=1$ to $\mathrm{L}=15$ planes. Constant bandwidth (dashed) curves, $\mathrm{B}=\mathrm{U} \cdot \mathrm{L}, \mathrm{B}=5,10, \ldots, 50$ are also plotted to clearly indicate the relative storage overhead incurred as the block size L is increased.

The ECM estimation procedure is given by the following four steps:
Step 1: Determine the maximum container space available for the variable size plane-block arrays,

WMAX $=(\min (E C M M A X, ~ E C M: G)-E C M I S C) /(I M * J M)$.
WMAX is limited by either the machine dependent maximum ECM size (ECMMAX) or by the minimum container size (ECMIG) for the one-group contained data management option.

TABLE 3.3. ECM Size Estimation for the CIIS

Parameter Definitions ${ }^{\text {a }}$

$\underset{\text { BLMAX }}{M}$	$=$ Maximum number of inner iterations (m_{g}) per outer in any group $=$ Maximum ECM system buffer length (usually 32768).b
INDEXR	$=$ ECM space required for dynamic random access $1 / 0$ index in XCM.
MACHUPE ${ }^{\text {c }}$	$=3000 \mathrm{~K}$ bytes on the IBM 370/195 at ANL.
	8000 K bytes on the IBM 3033's at ANL.
	393216 LCM words on the CDC 7600 at LBL.
	294912 words of LCM on the CDC 7600 at BNL.
MACHUPF ${ }^{\text {c }}$	$=61440$ words of SCM on the CDC 7600.
PROGSIZE	= Memory required to contain longest overlay in DIF3D.
ECMISC	: $\quad(9+$ MAXSCT $){ }^{\text {N }}$ NCMP + I*J
	$\{$ MACHUPE-FCM-PROGSIZE on the IBM 370/195.
ECMMAX	$=\{$ MACHUPE-FCM-PROGSIZE-BLMAX-INDEXR(L) on the CDC 7600.
ECMIG	$=$ ECMISC+(8+1/LDW)*NCELLS
INDEXR(L)	$=Q(L) *(5 * N G R O U P+9)+$ NGROUP
Q(L)	$=(\mathrm{K}-1) / \mathrm{L}+1$
W(U, L)	$=(\min (\mathrm{U}+2, \mathrm{Q}(\mathrm{L})) * 5+\min (\mathrm{U}+3, \mathrm{Q}(\mathrm{L}))+4.5) * \mathrm{~L}$

ECM Estimation Algorithm Summary

1) WMAX $=(\min (E C M M A X, ~ E C M I G)-E C M I S C) /(I M * J M)$
2) $L=\min (\operatorname{MINBSZ} /(I * J)+.5, K, \operatorname{WMAX} / \mathrm{W}(1,1))$

3a) $U=\max U$ subject to $W(U, L)<W M A X$ (graphical estimate Fig. 3.4.)
3b) $\quad \mathrm{P}=(\mathrm{M}-\mathrm{I}) /\left(\mathrm{L}^{*} \mathrm{U}\right)+1$
3c) $\mathrm{U}=(\mathrm{M}-1) / \mathrm{P}+1$
4) ECMCC $=$ ECMISC $+W(\mathrm{U}, \mathrm{L}) * I * J$

[^4]

Fig. 3.4. CIIS ECM Storage Requirements Guide

Step 2: Determine L, the near-optimal number of planes in a block

$$
\mathrm{L}=\min (\operatorname{MINBSZ} /(\mathrm{I} * \mathrm{~J})+.5, \mathrm{~K}, \operatorname{WMAX} / \mathrm{W}(1,1)) \text {. }
$$

L cannot exceed the number of planes (K) in the problem or the maximum number of ECM-containable blocks in the problem.

Step 3: Having chosen L, determine the number of blocks (U) to be ECMcontained:
(a) Determine rhe upper bound for U satisfying $W(U, L)<W M A X$. Graphical determination using the domain in Fig. 3.4 bounded by the lines WMAX and L and by the bandwidth curves $B<M$ provides the quickest solution.
(b) Determine the minimum number of $\mathrm{I} / 0$ passes (P)
$P=(M-1) /(L * U)+1$
required to perform the inner iterations for each group during each outer iteration.
(c) Minimize U subject to P (just as in the example at the start of this section), i.e. calculate
$\mathrm{U}=(\mathrm{M}-1) /\left(L^{*} \mathrm{P}\right)+1$.
Step 4: Calculate ECMCC, the ECM container size for the CIIS
ECMCC $=\operatorname{ECMISC}+\mathrm{W}(\mathrm{U}, \mathrm{L}) * I * J$.
The above procedure minimizes $I / 0$ operations and memory requirements subject to the fixed values of parameters MINBSZ, M and ECMMAX. In analyzing a particular job, one should be cognizant of the fact that there is a certain level of performance uncertainty largely attributed to the presence of overlapped I/O and CPU operations and to the subjectiveness of the optimal value for the MINBSZ parameter. The degree of overlap (concurrency) achieved relative to the potential overlap attainable is influenced by the resident job mix at execution time as well as the parameters U and L. Depending on the charging algorithm employed, it may be cheaper at certain host installations to arbitrarily reduce region size at the expense of $I / 0$ or vice versa to obtain reduced overall job cost or improved turnaround time.

3.11 Criticality Search Input and Edits

The primary means for specifying criticality search data is via the A.NIP3 type 21-26 cards. The card-by-card description of A.NIP3 is found in APPENDIX B.4.

The general form of the search equations is

$$
P(x)=P(0)+x \cdot M
$$

where P is the quantity being varied. The user must specify the following data:

1. the parametric modifiers M of the search quantity P
2. bounds for and two initial estimates of the search parameter x
3. the desired search k-effective, k_{d};
4. the search k-effective convergence criterion (EPSRCH);
5. the maximum number of search passes permitted.

The alternative to criticality search data specification via A.NIP3 is to supply the CCCC standard interface file SEARCH. The SEARCH file description provided in APPENDIX C indicates the subset of SEARCH options implemented at ANL and the corresponding ANL modifications to SEARCH.

The code block GNIP4C reads A.NIP3 and writes a SEARCH file when the approprfate type 21-26 cards are present.

3.11.1 Parametric Modifiers M - A.NIP3 23-26 Cards

The desired search option is indicated by the presence of one of the four mutually exclusive A.NIP3 type 23-26 cards. DIF3D currently permits only a nuclide concentration search via the type 23 card of A.NIP3.

The nuclide concentration search operates on subzone volume fractions, modifying the net atom densities in each zone (composition) to which the modifier subzone is assigned. Modifier subzones and the zones they modify are both specifind on the type 23 card of A.NIP3.

3.11.2 Search Parameter Estimates x - A.NIP3 22 Card

Two initial estimates for the criticality search parameter and upper and lower bounds for the search parameter during the course of the search are specified on the type 22 card of A.NIP3. The search problem should be formulated such that the magnitude of the search parameter estimate satisfies ($.1<x<1.0$) for best performance of the parabolic interpolation option of the search procedure. The A.NIP3 type 22 card is optional.
3.11.3 Search Pass Control Parameters - A.NIP3 21 Card

Search passes are normally terminated by one of four conditions:

1. search convergence;
2. the maximum number of search passes reached;
3. computing time 1 imit detected;
4. the search parameter out of range.

The user specifies the desired k-effective, the relative k-effective error bound (EPSRCH) and the maximum number of search passes on the type 21 card of A.NIP3. Specification of the search parameter range restrictions is discussed in the previous section.

From an efficiency standpoint it is recommended that the neutronics calculation k-effective convergence criterion (ε_{k}) be no more than an order of magnitude tighter than EPSRCH during the search passes. Upon search convergence the flux can be more tightly converged via an appropriate restart of the neutronics problem.

3.11.4 Search Restarts - A.NIP3 21 and 22 Cards

In the event of abnormal termination, or if tighter k-effective convergence is desired, the search pass loop may be efficiently restarted by supplying the appropriately saved SEARCH, RTFLUX and DIF3D files and by specifying them under "BLOCK=OLD" in the BCD input data. Data supplied on the type 21 and 22 cards of A.NIP3 will override corresponding data items on the existing SEARCH file.

3.11.5 Search Edits - A.NIP3 21 Card

An edit of a newly created or a previously existing SEARCH file may be obtained from GNIP4C via a sentinel on the type 21 card of A.NIP3. Sentinels for editing the search parameter data and the search quantity at each search pass are also provided on the type 21 card of A.NIP3.

A sentinel provided on the type 04 card of A.DIF3D permits user control of the frequency of the DIF3D neutronics edits. The latter edits are usually deferred until search convergence.

3.12 Running DIF3D

3.12.1 Input and Output Interface Datasets

The BCD and binary input and output files potentially encountered during the execution of DIF3D are tabulated in Table 3.4. User input and output options are such that only a problem dependent subset of these files are required. The next several subsections address details pertinent to the execution of DIF3D on specific classes of host system environments. Much of this discussion is based on DIF3D implementation experience gained on computers which are representative of each environment class.

3.12.2 Sample Input

Figure 3.5 illustrates a job input deck for Sample Problem 1 in the National Energy Software Center (NESC) package (see Section 5.3). The microscopic cross section file ISOTXS is supplied in BCD card image form via the A.ISO file. In typical production applications the ISOTXS binary interface file is usually specified under BLOCK $=0 \mathrm{LD}$ siace it is generated by appropriate cross section processing codes. The remaining interface file data is specified using free format input.

TABLE 3.4. DIF3D Interface Files (CCCC and code-dependent)

BCD	Binary	Mode ${ }^{\text {a }}$	Contents
A. NIP3	GEODST ${ }^{\text {b }}$	I/S	Model Geometry
	NDXSRF	I/S	Composition definition
	ZNATDN	I	(Sub) Zone atom densities
	FIXSRC	I	Distributed inhomogeneuus source
	SEARCH	I/R	Criticality search specifications
A. ISO	ISOTXS	I	Microscopic cross sections
	XS.ISO	I	Converted to ISOTXS by CSE010
A. HMG4C		I	HMG4C control parameters
	COMP Xs ${ }^{\text {b }}$	I/S	Macroscopic cross sections ${ }^{c}$
A.DIF3D	DIF3D ${ }^{\text {b }}$	I/R	DIF3D control parameters
A.LAS IP3		I	LASIP3 input processor data
	RTFLUX ${ }^{\text {d }}$	$0 / \mathrm{R}$	Real flux
	ATFLUX ${ }^{\text {d }}$	$0 / \mathrm{R}$	Adjoint ilux
	NHFLUX ${ }^{\text {e }}$	O/R	Nodal real solution vectors
	NAFLUX ${ }^{\text {e }}$	$0 / \mathrm{R}$	Nodal adjoint solution vectors
	RZFLUX	0	Real zone averaged flux
	PWDINT	0	Power density
	PKEDIT	0	Peak power and flux by mesh cell
	D3EDIT	0	DIF3D integral edits

[^5]```
//SAMPLE1 JOB REGION=1200K,TIME=3,CLASS=W
//*MAIN ORG=PRO,LINES=10
// EXEC ARCSP021,RTFLUX='C116.B20245.SAMPLE.RTFLUX',
// RTCYL=1,RTDSP=(NEW,CATLG)
//SYSIN DD *
BLOCK=STP021
NOSORT=A. ISO
 <A.ISO dataset is listed in Fig. 5.1>
UNFORM=A.NIP3
 <A.NIP3 dataset is listed in Fig. 5.1>
UNFORM=A.DIF3D
 <A.DIF3D dataset is listed in Fig. 5.1>
```

Fig. 3.5. ANL DIf3D Input Skeleton for Sample Problem 1

When the required binary files already exist (possibly created via an alternative CCCC interface file input processor), the minimal input data illustrated in Fig. 3.6 is sufficient to run DIF3D. At Argonne it is occasionally convenient to employ LASIP3, ${ }^{37}$ a generalized $B C D$ input processor code block for CCCC standard interface files. Figure 3.7 illustrates a skeleton of the input data required to execute LASIP3. The optional FPRINT data set supplied in the A. $\dot{A} A S I P 3$ input specifies selective edits of the CCCC interface file data.

### 3.12.3 IBM Considerations - ARCSPO21 Symbolic Parameters

Several key Job Control parameters including Job REGION size and Job TIME 1imit must be specified by the user. Table 3.5 contains the formula for computing the Job REGION size which must include space for the FCM and ECM containers in addition to the space required for the DIF3D program and its I/G buffers. CPL time requirements depend upon the problem size and type, and the data management option enployed. At Argonne no limit is placed on the I/O activity in a job; the EXCP's component of the current charging algoritha assesses the use of $1 / 0$ resources. Therefore, the EXCP charge is influenced directly by the active DIF3D management option and typically accounts for 30 to $40 \%$ of the job cost in large problems.

CPU times for the finite-difference option in DIF3D are roughly linear with the number of flux work units (MFWU) defined by:

$$
M F W U=10^{6} \cdot \mathrm{NCELLS} \cdot \mathrm{~N} \cdot \sum_{\mathrm{g}} \mathrm{mg}
$$

where NCELLS is the number of space mesh cells, $N$ is the number of outer iterations and $\mathrm{m}_{\mathrm{g}}$ is the number of inner iterations in group g . The $\mathrm{m}_{\mathrm{g}}$ are constant throughout the problem and typically range between 8 to 25 inners per outer, $\mathrm{m}_{\mathrm{g}}$ increases monotonically as the spectral radius increases. The upper end of this range is typically achieved in problems having very fine mesh width specifications. Typical ranges for the number of outer iterations vary between 15 to 25 iterations to achieve the default convergence criteria. The higher values in this range are achieved as the dominance ratio (the ratio of the fundamental eigenvalue to the first harmonic) increases towards its limiting value of unity.

Based upon statistics gathered from a variety of DIF3D jobs run on the IBM 370/195 computers, typical computation rates between 6 and 12 MFWU per minute are standard. Problems with large numbers of mesh cells in the first coordinate (" X ") dimension achieve even higher values. For example, the 1 cm mesh ( $170 \times 170$ ) 2D IAEA benchmark problem (see general description in Section 5.3.2) achieves 17 MFWU. This corresponds to 3.9 megaflops (millions of floating point operations per second) when the 13 floating point operations (add or multiplies) per FWU in two-dimensional problems are considered. Lower computation rates are encountered in triangular geometry problems due to additional computational overhead. The ratio of EXCP to CPU charges in triangular geometry problems is also increased due to the extra background mesh cells which are carried along for coding convenience but are not within the solution domain.

```
BLOCK=OLD
DATASET=GEODST
DATASET=ISOTXS
DATASET=NDXSRF
DATASET=2NATDN
BLOCK=STP021
UNFORM=A.DIF3D
-
-
|*
```

Fig. 3.6. Minimal Input Data Example

```
BLOCK=OLD
DATASET=NDXSRF
DATASET=ZNATDN
BLOCK=STP021
UNFORM=A.DIF3D
 -
 \bullet
 \bullet
NOSORT=A.LASIP3
 5000 / (6X,4I6) BPOINTER container size (see Section 3.13)
OV FPRINT
 1D 4000 / Process four files with the print
 2D GEODST 0000 / Print all GEODST record types
 2D ISOTXS 0032 / Print three record types and two isotopes
 3D 1 4 5 / ISOTXS record types to be printed
 4D 1: 4 / ISOTXS isotopes to be printed
 2D NDXSRF 0000 / Print all NDXSRF record types
 2D ZNATDN 0000 / Print all 2NATDN record types
OV GEODST
 \bullet
 *
OV ISOTXS
 \bullet
STOP
/*
```

TABLE 3.5. Job Region Size and Dataset Space


Many files are accessed during the course of a DIF3D calculation and each of them requires a Data Definition (DD) card to describe the file characteristics including size allocations, disposition, volume identification, DCB information and the dataset name. To simplify the input deck for users of the ANL IBM computers a cataloged procedure (ARCSP021) was written (see listing in Appendix A). Symbolic procedure parameters in ARCSP021 permit convenient user specification of key parameters for various DD cards without recoding the entire DD statement. Comments within the ARCSPO2l procedure tabulate the default values and usage of the symbolic parameters and the logical unit numbers (FTnnF001) to which they apply. Several symbolic parameters deserve special attention and are described in the following paragraphs.

The default value (RECFM=U) of the symbolic parameter MODEDCB designates thirteen files as random access I/O files to the I/O package (SIO) employed by DIF3D. An attempt to minimize disk head contention is made by suballocating these files in a particular ordering among the five available scratch disk volumes at ANL. The user must override the default space allocations for these files when the space estimation formulas in Table 3.5 indicate the default values are insufficient. The formulas provide allocation estimates for the thirteen individual files, for RTFLUX and ATFLUX files, and for the five dummy datasets on which the thirteen scratch files are suballocated. When estimating the cylinder sizes for the dumm datasets all fractions must be rounded to the next highest integral number of cylinders. Appropriate cylinder sizes are edited for all ARCSPO2l parameters immediately before the data management summary page.

The parameters UNITSCR=SASCR and UNITS=BATCHDSK denote the system scratch disk volumes and the pool of disk volumes on which datasets can be cataloged, respectively. The latter designation is given to files which are deemed likely to be cataloged by a user.

All files but the thirteen random access files are given block size parameters appropriate to their anticipated I/O activity. When explicitly overriding JCL for any file care must be exercised to specify block sizes appropriate to the output device type so as to avoid inefficient use of storage space.

Insufficient disk storage for extremely large jobs require users to assign the largest scratch file FT45F001 to a 6250 BPI scratch tape. In this event the entire DD card is overridden with the following alternate specification:

> //FT45F001 DD UNIT=READ6250,SUBALLOC=,
> // DCB=(RECFM=VBS,LRECL=X,BLKSIZE=12280,DEN=4)

If the job using a scratch tape has the possibility of running on OS/MVT (1.e. the IBM/195), then some additional JCL is needed to prevent the operator from issuing a tape save request which assigns the tape to the user's account. The following two steps are recommended:

1. Add the following JCL as the first step of the fob
//STEP1 EXEC PGM=IEPBR14
//\$\$NOSAVE DD VOL=SER=,UNIT=READ6250,DISP=(NEW,PASS),
// DCB=(RECFM-VBS,LRECL=X,BLKSIZE-12280,DEN=4)
2. then override the FT45F001 card:
```
//FT45F001 DD UNIT=READ6250,SUBALLOC=,
// VOL=REF=*.STEP1.$$NOSAVE,DISP=(NEW,DELETE),
// DCB=(RECFM=VBS,LRFCL=X,BLKSIZE=12280,DEN=4)
```


### 3.12.4 CDC 7600 Considerations

Figures 3.8 and 3.9 illustrate the structure of a typical job to be executed on the CDC 7600 at Lawrence Berkeley Laboratory (LBL) and at Brookhaven National Laboratory (BNL), respectively. The problem to be solved is identical to that shown in Figure 3.5. As in the latter example for IBM systems, the assumption is made that an absolute overlay module already exists and in this example is merely "STAGEd in" from a magnetic tape library.

When the DIF3D absolute overlay module is created, minimum field length requirements for all subsequent executions of this module can be easily obtained by scanning the loader map for the maximum SCM and LCM field lengths. These field lengths are dynamically requested prior to invoking DIF3D using either the SFL card at LBL or the RFL card on "off the shelf" CDC systems such as the system at BNL. A nominal field length sufficient to perform the staging is specified on the JOB card in these examples.

Additional SCM or LCM field length required for BPOINTER containers subsequently used in DIF3D is dynamically allocated and deallocated appropriately during the execution. In fact, the user must not preallocate space for the BPOINTER containers since DIF3D only uses space dynamically allocated by DIF3D. Error messages result when insufficient field length is available for dynamic allucation. Consequently, the user never needs to compute the SCM and LCM field lengths associated with the BPOINTER container sizes.

On standard CDC installations such as the one at Brookhaven National Laboratory, less SCM space is demanded by the $I / 0$ buffers. About 70,000 octal SCM words are required, thereby permitting a substantial increase in the FCM container size.

Upper bounds for computing units (CU's) at LBL or Central Processor (CP) seconds at BNL are also required on the JOB card. Estimates of CP seconds for the CDC 7600 are from $10 \mathrm{t} 25 \%$ less than the corresponding estimates for the IBM 370/195 (see Section 3.12.3). The CU's quantity at LBL is defined as

CU $=3 *$ CP+. $5 *$ BLD + ITO.
The BLD quantity is discussed below. The interference to others (ITO) quantity measures the efficiency of the utilization of system resources acquired by a job. Figuring heavily in the ITO computation is the LCM size and the frequency of $I / 0$ requests.

The relatively simple Job Control Language on CDC systems simplifies the user's dealings with the many binary files required by DIF3D. Two I/O related considerations, however, are pertinent to execution at LBL.

A significant fraction of the cost of executing jobs requiring large amounts of disk to ECM data transfers is based on the number of buffer loads (BLD). Therefore it is desirable to reduce the number of BLD's by increasing the size of LCM system buffers for the large files when they are not corecontained. This is accomplished via the control card

```
LBLJOB, 7,600,10000.xxxxxx,username
GBSIZE,20.
GETTAPE,DIF3D/*,nnnnn.
GBSIZE,5.
FBSIZE,DIF3D=100.
SFL,120000,1.
DIF3D,LC=77777.
FILES.
7-8-9 END-OF-RECORD CARD
BLOCK=STP021
NOSORT=A.ISO
```

<See A.ISO DATASET specified in Fig. 5.1>
UNFORM=A.NIP3
<See A.NIP3 DATASET specified in Fig. 5.1>
UNFORM=A.DIF3D
<See A.DIF3D DATASET specified in Fig. 5.1>
6-7-8-9 END-OF-INFORMATION CARD

Fig. 3.8. Structure of Job Deck for CDC 7600 at LBL

```
BNLJOB,T400,CM20000.
STAGE,DIF3DUB,E ,PE,VSN=KXXXX.
REWIND,DIF3DUB.
COPYBF,DIF3DUB,DIF3D.
RETURN,DIF3DUB.
RFL,70000,L=1.
DIF3D.
7-8-9 END OF RECORD CARD
BLOCK=STPO21
<See identical input data record in Fig. 3.8.>
6-7-8-9 END-0F-INFORMATION CARD
```

Fig. 3.9. Structure of Job Deck for CDC 7600 at BNL
where filename is the appropriate file name and $m$ is the buffer size in units of 1000 words. $m=100$ is recommended for large files. In all problems it is recommended that a global buffer size value be changed to 20 by the control card

GBSIZE=20.
as in the example in Figure J .8 , thereby attempting to reduce the BLD costs for all files.

The control card, FILES, provides detailed information concerning the BLD's and sectors required by each file in a job, and is useful for determining the distribution or $1 / 0$ costs by file name. If used it should be inserted at the end of the control card record.

The control card
DISKHOG,n.
is required to override the default limit of 4000 sectors when problems which use more than 4000 disk sectors must be executed. The DISKHOG card should be inserted after the JOB card.

An estimate of the number of sectors, $n$, required by a given job can be obtained from the following formula

$$
\mathrm{n}=1.1 * \text { NCELLS } * 2+\text { NGROUP * (5+NDIM) }
$$

where the variables are defined in Table 3.2. The estimate for $n$ is made with the assumption that the major scratch files on logical units ( $41,42,45,48$, 49 and 53) are on disk.

### 3.12.5 Multiple Problems and Restarts - RTFLUX and DIF3D

Practical economic reasons necessitate the inclusion of a restart capability in DIF3D. This feature primarily permits the resumption of the outer iteration process from the point of termination by employing the RTFLUX (ATFLUX) file saved when the previous job terminated (gracefully). It is also advantageous to supply the optimum overrelaxation factors during restarts because they account for 5 to $10 \%$ of the cost in most calculations without restarts. The simplest way to supply these factors is to save the DIF3D restart dataset named DIF3D. It contains the DIF3D control parameters, the most recently updated $k$-effective and dominance ratio estimates, and the optimum overrelaxation factors.

For certain classes of problems it is economical to retain a fixed set of optimum overrelaxation factors for the entire set of similar jobs. These factors are always identical for real and adjoint calculations of a given problem configuration. Control rod worth studies as well as many criticality search problems frequently yield practically identical convergence rates with the initially computed set of optimum overcelaxation factors.

From time to time users attempt co reduce computing times by starting off with an initial flux guess which is the converged solution of a related
problem configuration. This is probably most effective in near-critical fixed source problems where the magnitude of the flux is an important factor. Problems requiring thermal iterations are likely to benefit from this practice ilso. However, situations have been encountered where the use of initial flux guesses require additional outer iterations to satisfy the same convergence criteria as that attained by a similar calculation with an initial flat flux guess.

It is sometimes convenient to stack similar model cases in a single job step by employing successive sets of BLOCK=STPO21 data blocks. Unless explicitly REMOVEd by an appropriately placed REMOVE=filename input command, previously created, binary and BCD files remain in existence. Consequently, the binary interface file ultimately to be changed must be explicitly removed so that the modified file can be created. Typical candidates here are the CCCC interface files GEODST, COMPXS, NDXSRF and/or ZNATDN.

### 3.13 LASIP3 CCCC Standard Interface File Processor

LASIP3 ${ }^{37}$ yill permit the specification and editting of all CCCC interface files. In the Argonne implementation of LASIP3, two additional card-images must immediately precede the normal LASIP3 input data specified in Ref. 37. The first of these card-images must be the NOSORT=A.LASIP3 card which signals the start of LASIP3 input. The second contains BPOINTER control information and a data item LASTCL that indicates the number of columns (default=72) to be processed by the LASIP3 free-field input processor. The card has the format ( $6 \mathrm{X}, 4 \mathrm{I} 6$ ) and contains the four data items: MAXSIZ, MAXBLK, IPRINT and LASTCL. MAXSIZ is the FCM container size in long (REAL*8) words. MAXBLK is unused. IPRINT is the BPOINTER debugging sentinel and has input options identical to those described on the A.DIF3D type 02 card. A MAXSIZ value of 5000 to 10000 is usually quite adequate for most applications. However, a conservative approach is simply to supply a container size bounded by the sum of the FCM and ECM sizes on specified in A.DIF3D. Figure 3.7 contains an example of data set A.LASIP3.

### 3.14 Definitions of Output Integral Quantities

As noted in Section 3.9.4, DIF3D provides optional edits of commonly expected flux integral quantities. Five sentinels (items 5-9) on the type 04 card of dataset A.DIF3D provide the user with the ability to select the desired subset of edits. The sentinels for items 5,6 and 7 are multidigit numbers which permit edits by region and/or group, and by mesh cell and/or group (see Appendix B.1).

The definition of the various integrals for each of the five major edit options are tabulated separately and in the order of their appearance in the individual edits. A preliminary subsection is devoted to establishing the definitions and notation for the integral forms used in the tabulation. An explanation of the iteration history page is also included.

### 3.14.1 Iteration H1story Quantities

In multidimensional geometries the iteration history page begins with a tabulation of the group-dependent inner iteration optimum overrelaxation factors $\mathrm{w}_{\mathrm{g}}$ together with $\mathrm{m}_{\mathrm{g}}$ the corresponding fixed number of inner iterations per outer iteration. These factors are absent in the one-dimensional case because the resulting tridiagonal inner iteration matrix is solved directly.

Following the optimum factor edit, a one-line summary of key parameters for each outer iteration is printed. The first three items are outer itera tion convergence criteria:

1) the relative pointwise fission source error,

$$
\begin{equation*}
\varepsilon_{\lambda}^{(n)}=\frac{\bar{\lambda}^{(n)}-\underline{\lambda}^{(n)}}{2}, \tag{3.7}
\end{equation*}
$$

monitors the pointwise eigenvector convergence;
2) the relative fission source sum error,
$\varepsilon_{\psi}^{(n)}=\frac{\left\|\Psi^{(n)}-\Psi^{(n-1)}\right\|_{2}}{\left(\Psi^{(n)}, \Psi^{(n-1)}\right)^{1 / 2}}$,
monitors the average eigenvector convergence;
3) the eigenvalue change,
$\varepsilon_{k}^{(n)}=k_{e f f}^{(n)}-k_{e f f}^{(n-1)}$,
is a measure of the eigenvalue convergence.

Next in appearance are three items pertinent to the Chebyshev acceleration of the outer (power) iterations:

1) the order $p$ of the Chebyshev polynomial in the current extrapolation cycle;
2) $\hat{\sigma}$, the dominance ratio estimate for $\bar{\sigma}$ to be used in Eq. (2.61);
3) $\hat{\sigma}^{\prime}$ is the most recent update for the dominance ratio estimate (see Eq. 2.84).

When the Chebyshev acceleration is not applied, $p$ and $\hat{\sigma}$ will be zero.
The last item on each history line is $\mathrm{k}_{\mathrm{eff}}^{(\mathrm{n})}$ which is computed during outer iteration $n$ (see Eq. 2.92), except during external source problems in which case $k_{\text {eff }}^{(n)} \equiv \mu$ is constant and is followed by the (unnormalized) total fission source integral for the reactor. In fixed source problems the dominance ratio estimates are replaced by the spectral radius eatimates of the outer iteration matrix.

Upon termination of the outer iterations one of three messages appear:

1) outer iterations converged;
2) maximum number of outer iteration achieved;
3) time limit exceeded.

This message is followed by the most recent eigenvalue estimate and a summary edit of the parameters needed for a subsequent restart of the terminating DIF3D job.

In most problems the relative pointwise fission source error in Eq. (3.6) is the quantity most frequently monitored by users to indicate satisfactory convergence. The eigenvalue change (Eq. (3.8)), an integral parameter, usually is several orders of magnitude less than the pointwise monitor.

### 3.14.2 Preliminary Definition of Integral Forms

The output tabulations include flux distributions by mesh cell and integrals of the flux including power distribution and neutron balances by region and/or group. Note, that throughout this section we frequently use the full subscript ijk when only ij or $i$ are required. In such cases the redundant subscripts may be assumed to be unity. Note also that the $*$ superscript is left off adjoint fluxes.

All tabulations are based on weighted integrals of the flux as a function of three spatial variables and one energy variable with the integrals extending over the domain of the reactor.

Region-dependent extrapolated half heights $\bar{H}_{r n}, n=1, N$ may be optionally specified for the $N(=1$ or 2 ) transverse directions in one- or two-dimensional problems. The $\bar{H}_{r n}$ generate the cosine flux shape $W_{r n}\left(\xi_{n}\right)$.

$$
W_{r n}\left(\xi_{n}\right) \equiv\left\{\begin{array}{cl}
\cos \frac{\pi \xi_{n}}{2 \bar{H}_{r n}} & n=1 \text { or } 2  \tag{3.10}\\
1 & n=0
\end{array}\right.
$$

In transverse direction $\xi_{n}$. The notation is generalized to include $n=0$, the case when $\bar{H}_{r n}$ is unspecified, so that the following two equations summarize the flux shapes that may be assumed in DIF3D:

1. $X, X Y, X Y Z$ or triangular ( $T$ or $T Z$ ) geometries:

$$
\phi(x, y, z)=\prod_{n=0}^{N} W_{r n}\left(\xi_{n}\right) \cdot\left\{\begin{array}{lll}
\phi(x) & N=0,1 \text { or } 2: X  \tag{3.11}\\
\phi(x, y) & N=0 \text { or } 1 & : X Y \text { or } T \\
\phi(x, y, z) & N=0 & : X Y Z \text { or } T Z
\end{array}\right.
$$

2. $\mathrm{R}, \mathrm{RZ}, \theta \mathrm{R}, ~ \theta \mathrm{RZ}$ geometries:

$$
\phi(\theta, r, z)=\frac{N}{\|_{n=0}} W_{r n}\left(\xi_{n}\right) \cdot \begin{cases} & \begin{array}{ll}
\phi(r) & N=0 \text { or } 1: R \\
\phi(r, z) & N=0 \\
\phi(\theta, r) & N=0 \text { or } 1: R 2 \\
\phi(\theta, r, z) & N=0
\end{array} \quad \theta R  \tag{3.12}\\
& \end{cases}
$$

where the product symbol is defined by

$$
\prod_{n=0}^{N} t_{n}=t_{0} \cdot t_{1} \cdot t_{2} \cdot \cdots \cdot t_{n}
$$

Consider any macroscopic cross section $\varepsilon_{r}^{x}, g$ in region $r$ (having unextrapolated half-height $H_{r n}$ ). Using $X Y$ geometry as an example a typical integral edit might involve the numerical approximation to the following integral

$$
\begin{align*}
I_{r}^{g} & =W_{r} \iint_{x, y \in r} d x d y \varepsilon_{r}^{x, g} \phi^{g}(x, y) \\
& \cong W_{r} \varepsilon_{r}^{x, g} \sum_{i, j \varepsilon r} \phi_{i j}^{g}(x, y) V_{i j} \tag{3.13}
\end{align*}
$$

where the $V_{i f}$ are defined in Table 2.2 and the flux integration weight factor is defined by

$$
W_{r}= \begin{cases}1 & \text { for } N=0  \tag{3.14}\\ \frac{N}{\|_{n=1}} \int_{-H_{r n}}^{H} d \xi_{n} W_{r n}\left(\xi_{n}\right) & \text { for } N=1 \text { or } 2\end{cases}
$$

In this case

$$
\begin{equation*}
W_{r}=\frac{4 H_{r 1}}{\pi} \sin \left(\frac{\pi \bar{H}_{r 1}}{2 \mathrm{H}_{r 1}}\right) . \tag{3.15}
\end{equation*}
$$

A second weighting factor, the volume integration weight factor

$$
{\underset{r}{V}}_{W_{r}^{v}}= \begin{cases}1 & \mathrm{~N}=0  \tag{3.16}\\ \frac{\mathrm{~N}}{\|_{\mathrm{n}=1}} 2 \mathrm{H}_{\mathrm{rn}} & \mathrm{~N}=1 \text { or } 2\end{cases}
$$

is required to compute region volumes

$$
\begin{equation*}
v_{r}=W_{r}^{v} \sum_{i j k \in r} v_{i j k} \tag{3.17}
\end{equation*}
$$

and the total reactor volume

$$
\begin{equation*}
\mathrm{v}_{\mathrm{T}}=\sum_{\mathbf{r}} \mathrm{V}_{\mathrm{r}} \tag{3.18}
\end{equation*}
$$

In real homogeneous problems the flux is normalized to the user-specified power level, $P_{0}$, i.e.

$$
\begin{equation*}
\phi_{1 j k}^{g}=N^{P} \phi_{1 j k}^{g(\text { computed })} \tag{3.19}
\end{equation*}
$$

The normalization factor $N^{p}$ is calculated the following way

$$
N^{P}= \begin{cases}P_{0} / P_{u} & \text { for real homogeneous problems }  \tag{3.20}\\ 1 & \text { for adjoint homogeneous and fixed source problems }\end{cases}
$$

where

$$
\begin{align*}
P_{u} & =\sum_{g=1}^{G} \sum_{r=1}^{R} W_{r} \psi_{r}^{g}  \tag{3.21}\\
\psi_{r}^{g} & =\sum_{i j k \varepsilon r} P C_{r}^{g} V_{i j k} \phi_{i j k}^{g}(\text { computed }) \tag{3.22}
\end{align*}
$$

$P C_{r}^{g}$ is the power conversion factor, see the COMPXS description in Appendix D.1.

DIF3D permits the user to specify arbitrary collections of regions (called areas) over which the various output integrals are to be performed. A typical integral over area a is defined in terms of region integrals, i.e.

$$
\begin{equation*}
I_{a}^{g}=\sum_{r \varepsilon a} I_{r}^{g} \tag{3.23}
\end{equation*}
$$

If areas exist, they will be editted whenever region edits are requested. The region to area assignments are recorded in the 2 D record of the LABELS file (see Appendix D.3).

Improved accuracy may be obtained for peak flux and power edits based on pointwise flux or power distributions if the average flux distribution $\phi_{1} \mathbf{I}_{\mathbf{j}}^{\mathrm{j} k}$ on the $m=1,2, \ldots, M$ surfaces of each mesh cell are computed in addition to the cell-averaged flux. (The surface index assignments follow the conventions of Section 2.1 .2 where $m=1$ for $-x, m=2$ for $+x, \ldots, m=6$ for $+z$. ) $M=2 N$ in orthogonal geometry where $N=1,2$ or 3 denotes the number of coordinate directions in the problem. In triangular geometry $M=2 N-1$ because only a single second-dimension surface assignment is required to index the alternating pattern of upper and lower triangle surfaces.

Equation (2.18) in the finite-difference coefficients derivation provides an interpolation formula that yields surface-averaged fluxes with an $0\left(h^{2}\right)$ accuracy consistent with that of the cell-averaged fluxes, i.e. for $m=2$

$$
\begin{equation*}
\phi_{1 j k}^{g 2}=\frac{\frac{D_{i j k}^{g}}{\Delta x_{i}}}{\frac{D_{i j k}^{g}}{\Delta x_{i}}+\frac{D_{i+1 j k}^{g}}{\Delta x_{i+1}}} \phi_{i j k}^{g}+\frac{\frac{D_{i+1 j k}^{g}}{\Delta x_{i+1}}}{\frac{D_{i j k}^{g}}{\Delta x_{i}}+\frac{D_{i+1 j k}^{g}}{\Delta x_{i+1}}} \phi_{i+1 j k}^{g} \tag{3.24}
\end{equation*}
$$

Consistent with this notation the cell-averaged flux is assigned to index $M+1$, i.e.,

$$
\begin{equation*}
\phi_{i j k}^{\mathrm{gM}+1} \equiv \phi_{i j k}^{\mathrm{g}} \tag{3.25}
\end{equation*}
$$

We can now display the caiculations made in the five edit categories.

### 3.14.3 Region and Mesh Cell Flux Integrals

1. Neutron flux by mesh cell and group (RTFLUX or ATFLUX)

$$
\phi_{1 j k}^{g}=N^{p_{\varphi_{1 j k}} g(\text { computed })}
$$

2. Group-integrated neutron flux by mesh cell

$$
\phi_{i j k}=\sum_{g=1}^{G} \phi_{i j k}^{g}
$$

3. Region and/or group and area flux integrals
a. Total flux (neutron-cmi/sec)

$$
\begin{aligned}
& \Phi_{r}=\sum_{g=1}^{G} \Phi_{r}^{g}, \Phi_{T}=\sum_{r} \Phi_{r}, \\
& I_{a}=\sum_{r \varepsilon a} \Phi_{r}
\end{aligned}
$$

where $\Phi_{r}^{g}$ is defined using Eq. (3.13) with $\Sigma_{r}^{x, g} \equiv 1$.
b. Peak group-integrated mesh cell flux (neutron/cm²-sec)

$$
\begin{aligned}
& \hat{\phi}_{r}=\max _{1<m<M+1}\left|\phi_{1 j k}^{m}\right|, \quad \hat{\phi}_{T}=\max _{r} \hat{\phi}_{r}, \\
& \hat{\phi}_{a}=\max _{r \in a} \hat{\phi}_{r}
\end{aligned}
$$

c. Total fast flux (neutron-cm/sec)

$$
\begin{aligned}
& \Phi_{r}^{f}=\sum_{g=1}^{g_{r}^{\prime}} \Phi_{r}^{g}-\alpha \Phi_{r}^{g}, \Phi_{T}^{f}=\sum_{r} \Phi_{r}^{f} \\
& \Phi_{a}^{f}=\sum_{r \in a} \Phi_{r}^{f}
\end{aligned}
$$

where

$$
\alpha=1-\frac{\ln \left(E_{100} / E_{\max }^{g^{\prime}}\right)}{\ln \left(E_{\min }^{g^{\prime}} / E_{\max }^{g^{\prime}}\right)}
$$

$\mathrm{E}_{100}=100 \mathrm{keV}$, the fast flux energy threshold
$g^{\prime} \quad=$ energy group in which $E_{\text {min }}^{g^{\prime}} \leqslant E_{100}<E_{\max }^{\mathcal{E}^{\prime}}$
$\mathrm{E}_{\max }^{\mathrm{g}}$ and $\mathrm{E}_{\mathrm{min}}^{\mathrm{g}}$ are the maximum and minimum energy bounds for group g
d. Peak mesh cell fast flux (neutrons /cm ${ }^{2}$-sec)

$$
\begin{aligned}
\hat{\phi}_{\mathbf{r}}^{\mathrm{f}} & =\max _{1<\mathrm{m} \leqslant M+1}\left|\phi_{1 j \mathrm{k}}^{\mathrm{f}, \mathrm{~m}}\right|, \quad \hat{\phi}_{\mathrm{T}}^{\mathrm{f}}=\max \left|\hat{\phi}_{\mathbf{r}}^{\mathrm{f}}\right|, \\
\hat{\phi}_{\mathbf{a}}^{\mathrm{f}} & =\max _{\mathbf{r \varepsilon a}} \hat{\phi}_{\mathbf{r}}^{\mathrm{f}}
\end{aligned}
$$

where

$$
\phi_{i j k}^{f, m}=\sum_{g=1}^{g^{\prime}} \phi_{i j k}^{g, m}-\alpha \phi_{i j k}^{g}, m
$$

e. Total flux by region and group (neutron-cm/sec)

$$
\begin{aligned}
& \Phi_{r}^{g}=W_{r} \sum_{i j k \in r} \phi_{i j k}^{g} V_{i j k}, \Phi_{T}^{g}=\sum_{r} \Phi_{r}^{g} \\
& \Phi_{a}^{g}=\sum_{r \in a} \Phi_{r}^{g}
\end{aligned}
$$

3.14.4 Region-Averaged Flux Integrals

Average total flux by region (neutron/ $\mathrm{cra}^{2}-\mathrm{sec}$ )
$\bar{\Phi}_{\mathrm{r}}=\sum_{\mathrm{g}=1}^{\mathrm{G}}{ }_{\Phi}^{\mathrm{g}} / \mathrm{V}_{\mathrm{r}}, \quad \bar{\Phi}_{\mathrm{T}}=\Phi_{\mathrm{T}} / \mathrm{V}_{\mathrm{T}}$

$$
\bar{\Phi}^{\mathrm{g}}=\Phi_{\mathbf{r}}^{\mathrm{g}} / \mathrm{v}_{\mathbf{r}}, \quad \bar{\Phi}_{\mathrm{T}}^{\mathrm{g}}=\Phi_{\mathrm{T}}^{\mathrm{g}} / \mathrm{v}_{\mathrm{T}}
$$

3.14.5 Zone-Averaged Flux Integrals (RZFLUX)

Average total flux by zone (neutron/ $\mathrm{cm}^{2}-\mathrm{sec}$ )

$$
\begin{aligned}
& \bar{\Phi}_{c}=\sum_{r \in c} \sum_{g=1}^{G} \phi_{r}^{g} / v_{c}, \quad \bar{\Phi}_{T}^{g}=\Phi_{T} / v_{T} \\
& \bar{\Phi}_{c}^{g}=\sum_{r \in c} \Phi_{r}^{g} / v_{c}, \quad \bar{\Phi}_{T}^{g}=\Phi_{T}^{g} / v_{T}
\end{aligned}
$$

where

$$
v_{c}=\sum_{r \varepsilon c} v_{r}
$$

3.14.6 Region and Mesh Cell Power Density Integrals (PWDINT)

1. Power density by mesh cell (PWDINT interface file):

$$
P_{i j k}=\sum_{g=1}^{G} \mathrm{PC}_{i j k}^{g} \phi_{i j k}^{g}
$$

2. Region, region-integrated and area tabulation:
a. Flux integration weight factor $W_{r}$ (see Eq. (3.14))
b. Total power (watts)
$P_{r}=\sum_{\mathbf{g}=\mathrm{l}}^{\mathrm{G}} \mathrm{PC}_{\mathrm{r}} \mathrm{g}_{\mathrm{r}}^{\mathrm{g}}$
$P_{T}=\sum_{\mathbf{r}}{ }_{\mathbf{I}} \mathbf{P}_{\mathbf{r}}$

$$
P_{a}=\sum_{r \varepsilon a} P_{r}
$$

c. Average power density (watts/cc)

$$
\overline{\mathbf{P}}_{\mathbf{r}}=\mathbf{P}_{\mathbf{r}} / V_{\mathbf{r}}
$$

$$
\overline{\mathrm{P}}_{\mathrm{T}}=\sum_{\mathbf{r}} \mathrm{P}_{\mathbf{r}^{\prime}}{ }_{\mathbf{r}} \mathrm{V}_{\mathbf{r}}
$$

$$
\bar{P}_{a}=\sum_{r \varepsilon a} P_{r} \sum_{r \varepsilon a} v_{r}
$$

d. Peak power density

$$
\hat{\mathbf{P}}_{\mathbf{r}}=\max _{\substack{1 j k E r \\ 1<m<M+1}}\left|\mathrm{P}_{\mathrm{ijk}}^{\mathrm{m}}\right|
$$

$$
\begin{aligned}
& \hat{\mathrm{P}}_{\mathrm{T}}=\max _{\mathrm{r}}\left|\hat{\mathrm{P}}_{\mathrm{r}}\right| \\
& \hat{\mathrm{P}}_{\mathrm{a}}=\max _{\mathrm{r} \varepsilon \mathrm{a}}\left|\hat{\mathrm{P}}_{\mathrm{r}}\right|
\end{aligned}
$$

e. Peak-to-average power density:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{r}}^{\mathrm{A}}=\hat{\mathrm{P}}_{\mathrm{r}} / \overline{\mathrm{P}}_{\mathrm{r}} \\
& \mathrm{P}_{\mathrm{T}}^{\mathrm{A}}=\hat{\mathrm{P}}_{\mathrm{T}} / \overline{\mathrm{P}}_{\mathrm{T}} \\
& \mathrm{P}_{\mathrm{a}}^{\mathrm{A}}=\hat{\mathrm{P}}_{\mathrm{a}} / \overline{\mathrm{P}}_{\mathrm{a}}
\end{aligned}
$$

f. Mesh cell indices ( $i, j, k$ ) associated with peak power density of type $p$ where $p=\hat{P}_{r}, \hat{\mathrm{P}}_{\mathrm{T}}$ or $\hat{\mathrm{P}}_{\mathrm{a}}$.
g. Power density (three-dimensional problems only) in the axial column of mesh cells in area a that includes the mesh cell location $(i, j, k) \hat{P}_{T}$

$$
P_{a}^{z}=\sum_{g=1}^{G} \sum_{r \in a} \sum_{\substack{i j k \varepsilon r \\ i j=(i, j) \hat{P}_{T}}} P C_{i j k}^{g} \phi_{i j k}^{g} v_{i j k} / \sum_{r \varepsilon a} \sum_{\substack{i j k \varepsilon r \\ i j=(i, j) \hat{P}_{T}}} v_{i j k}
$$

h. Peak-to-average power density in the axial column described for the preceding item

$$
\hat{\mathrm{P}}_{\mathrm{a}}^{\mathrm{z}}=\hat{\mathrm{P}}_{\mathrm{T}} / \mathrm{P}_{\mathrm{a}}^{\mathrm{z}}
$$

### 3.14.7 Region and Group Balance Integral Components

## 1. Principal Balance Integral Components

For each of the three balarce options (e.g. by region, by group or by region and group) the principal balance components

$$
\begin{equation*}
B_{r}^{g}=L_{r}^{g}+I_{r}^{a, g}+I_{r}^{o, g}-I_{r}^{1, g}-\frac{1}{k_{e f f}} I_{r}^{f, g}-S_{r}^{g} \tag{3.26}
\end{equation*}
$$

are edited first and are defined below. The variety of integral forms available will only be listed for the balance term. The corresponding forms for each principal component is obvious:

$$
\begin{aligned}
& B_{a}^{g}=\sum_{r \in a} B_{r}^{g}, B_{T}^{g}=\sum_{r} B_{r}^{g} \\
& B_{r}=\sum_{g} B_{r}^{g}, \quad B_{a}=\sum_{r \varepsilon a} B_{r}, \quad B_{T}=\sum_{g} B_{T}^{g}
\end{aligned}
$$

a. Net Leakage

$$
L_{r}^{g}=\sum_{n=1}^{4} L_{r}^{g, n}
$$

The $L_{r}^{g, n}$ are defined later in this section.
b. Absorption (Capture + Fission)

$$
\mathrm{I}_{\mathrm{r}}^{\mathrm{a}, \mathrm{~g}}=\varepsilon_{\mathrm{r}}^{\mathrm{a}, \mathrm{~g}_{\Phi} \mathrm{g}}
$$

c. Outscatter (Removal - Absorption)

See Table 3.1 for a definition of the removal cross section.

$$
\mathrm{I}_{\mathbf{r}}^{0, g}=\left(\Sigma_{\mathbf{r}}^{\mathbf{r}, g}-\Sigma_{\mathbf{r}}^{a, g}\right) \Phi_{\mathbf{r}}^{g}
$$

d. Inscatter Source

$$
I_{r}^{1, g}=\sum_{g^{\prime} \neq g} \varepsilon_{r}^{s, g g^{\prime}{ }_{\Phi}^{g}{ }_{r}^{\prime}, ~}
$$

e. Fission Source

$$
\begin{aligned}
& I_{r}^{f, g}=x_{r}^{g} \sum_{g^{\prime}=1}^{G} \nu \Sigma_{r}^{f, g^{\prime} \Phi_{r}^{g}} \quad \text { (Real) } \\
& I_{r}^{f, g}=v \varepsilon_{r}^{f, g} \sum_{g^{\prime}=1}^{G} x_{r}^{g_{r}^{\prime} \Phi_{r}^{\prime}} \quad \text { (Adjoint) }
\end{aligned}
$$

f. External Source (Inhomogeneous problems only)

$$
s_{r}^{g}=w_{r} \sum_{i j k \varepsilon r} s_{i j k}^{g} v_{i j k}
$$

2. Leakage and Buckifng Components

In any problem the net leakage (item la. above) is defined by up to three directed leakage components corresponding to the problem coordinate directions. $\mathrm{L}_{\mathrm{r}}^{\mathrm{g}, 4}$ denotes an optional $\mathrm{DB}^{2}$ leakage term applicable to oneor two-dimensional problems. The $\mathrm{L}_{\mathrm{r}}^{\mathrm{g}, \mathrm{n}}, \mathrm{n}=1,2,3$ are defined by

$$
L_{r}^{g, n}=\sum_{i j k \varepsilon r} L_{i j k}^{g, n}
$$

where the mesh cell leakage components $L_{i j k}^{g, n} \equiv L_{\ell}^{g, n}$ are defined by

$$
L_{\ell}^{\mathrm{gn}} \equiv \mathrm{~J}_{\ell}^{2 n} A_{\ell}^{2 n}+J_{\ell}^{2 n-1} A_{\ell}^{2 n-1} \quad n=1,2,3
$$

see the definitions of $J_{\ell}^{n}$ and $A_{\ell}^{\mathrm{P}}$ in Eq. (2.15) and Table 2.2, respectively.
In triangular geometry the $\mathrm{L}_{\mathrm{r}}^{\mathrm{g}, 1}$ term includes leakage components from both " $X$ " and " $Y$ " directions. $L_{r}^{g} \mathcal{I}_{\text {is }}$ therefore replaced by the more useful planar leakage given by $L_{r}^{g, 1}+L_{r}^{g, 2}$. The quantity $L_{r}^{g, 2}$ is also editted, but probably has limited use since it does not represent the entire " $Y$ " leakage component.

By convention the $D B^{2}$ leakage term always uses $D_{r}^{g, 3}$ (see Section 3.6.8) so that

$$
L_{r}^{g, 4} \equiv D_{r}^{g, 3}\left(B^{2}\right)_{r}^{g}
$$

The leakage components $L_{r}^{g, n}$ may be used to define effective iegion bucklings

## 3. Miscellaneous Edits

a. Capture Rate

$$
I_{\mathbf{r}}^{c, g}=\left(\Sigma_{\mathbf{r}}^{a, g}-\Sigma_{\mathbf{r}}^{f, g}\right) \Phi_{\mathbf{r}}^{g}
$$

b. Fission Rate

$$
\mathbf{F}_{\mathbf{r}}^{\mathrm{g}}=\Sigma_{\mathbf{r}}^{\mathrm{f}, \mathrm{~g}_{\Phi_{r}}^{\mathrm{g}}}
$$

The following components are found on the group-integrated edits only.
c. ( $\mathrm{N}, 2 \mathrm{~N}$ ) Source

$$
I_{r}^{N 2 N}=I_{r}^{0}-I_{r}^{1}
$$

d. Net production

$$
I_{r}^{p}=\frac{1}{k_{e f f}} \sum_{g=1} I_{r}^{f, g}+I_{r}^{N 2 N}
$$

The next three median energy edits use the following definitions:
$I_{r}^{s, g}=$ the type s reaction rate or flux integral
$\mathrm{E}_{\mathrm{g}} \quad=$ the maximum energy bound (ev) for group g
$\ell_{g} \quad=\ln \left(E_{1} / E_{g}\right)=$ lethargy for group $g$
The median energy of the type $s$ integral is defined by

$$
\begin{equation*}
E_{r}^{s}=E_{1} / e^{\ell g^{\prime}+\alpha\left(\ell_{g^{\prime}}+1^{-\ell} g^{\prime}\right)} \tag{3.27}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha=\frac{1}{2} I_{r}^{s}-\sum_{g^{\prime} g^{\prime}} I_{r}^{8, g}  \tag{3.28}\\
& g^{\prime}=\left\{\min g \left\lvert\, \sum_{g^{\prime}<g^{\prime}+1} I_{r}^{\left.s, g^{\prime \prime}>\frac{1}{2} I_{r}^{s}\right\} .}\right.\right. \tag{3.29}
\end{align*}
$$

The following three median energy integrals may then be defined using Eqs. (3.27)-(3.29).
e. Median Energy of Fission Source

$$
\mathrm{E}_{\mathrm{r}}^{\mathrm{f}}, \text { let } \mathrm{I}_{\mathrm{r}}^{\mathrm{s}, \mathrm{~g}}=\mathrm{I}_{\mathbf{r}}^{\mathrm{f}, \mathrm{~g}}
$$

f. Median Energy Absorption Rate

$$
\mathrm{E}_{\mathrm{r}}^{\mathrm{a}}, \operatorname{let} \mathrm{I}_{\mathrm{r}}^{\mathrm{s}, \mathrm{~g}}=\mathrm{I}_{\mathrm{r}}^{\mathrm{a}, \mathrm{~g}}
$$

g. Median Energy of Total Flux

$$
E_{r}^{\phi}, \text { let } I_{r}^{s, g}=\Phi_{\mathbf{r}}^{g}
$$

### 3.15 Signs of Trouble

### 3.15.1 Error Messages

During the processing of input data an effort is made to detect as many user errors as possible in a single job. To this end, fatal errors are recorded and printed as they occur, but in many situations processing is resumed until the currently executing module completes its tasks. Non-fatal warning messages may occur from time to time indicating situations that may be suspect, and therefore warrant the users attention.

A typical case in point occurs when DIF3D iterations are prematurely terminated because the outer iteration limit has been exceeded. Here the message is intended to simply remind the user that the specified convergence has not been achieved.

The warning message advising that the iteration threshold has been reached during the optimum overrelaxation factor calculation frequently occurs in applications for which the spectral radif of the inner iteration matrices are close to unity, as is frequently the case in thermal reactor problems. In practice this message is no cause for alarm, but simply reflects the fact that the convergence test in Eq. (2.94) is too stringent.

Reactor models with steep flux gradients near reactor boundaries (research reactors are a good example here) frequently trigger underflow error messages during the calculation of optimum overrelaxation factors. The error message simply reflects the fact that some of the mesh cell fluxes that are involved in a squaring operation are extremely small. The message may be ignored, since the offending fluxes have a negligible contribution to the norms being calculaced. However, it should be clear that such pathological situations are the cause of the messages and not some more basic difficulty in problem specification.

### 3.15.2 Non-monotonic Convergence

Other than convergence criteria, the only parameter the user has at his disposal to influence the DIF3D outer iteration process is the inner iteration error reduction factor which may be supplied on the Type 06 card of A.DIF3D.

When the user has specified a factor that is too "loose", the pointwise fission source monitor on the outer iteration history page undergoes erratic behavior. In extreme cases iterations may reach a point after which no further progress is made. When such behavior is observed it is useful to take note of the dominance ratio estimates which also appear in the iteration history edit. If these are erratic or exceed unity, it is a sign that the inner iteration error reduction factor must be "tightened" (i.e. reduced in magnitude).

The effects of increasing and decreasing (by powers of 4) the error reduction factor ( $\varepsilon_{i n}$ ) is illustrated in Tables 3.6-3.8 for three reactor models. In a given model, the container storage remained fixed for all $\varepsilon$. Consequently, EXCP charges and job cost are not optimized in cases involving the concurrent inner iteration strategy (i.e. the optimal CI'S bandwidth changes as the number of inner iterations change). The results indicate that 0.04 is at best conservative (i.e. in these problems there is no ir:centive to tighten the error reduction). On the other hand if the user plans to run a series of similar models, it will likely be to his advantage to attempt further cost reduction by first loosening the error reduction (increasing $\varepsilon_{i n}$ ), then adjusting the DIF3D ECM container size to a value which yields the optimum inner iteration bandwidth for this problem.

TABLE 3.6. Inner Iteration Error Reduction Effects for the SNR Benchmark Problem ${ }^{\text {a }}$

| $g$ | $\omega_{g}$ | $m_{g}(.64)^{b}$ | $m_{g}(.16)^{b}$ | $m_{g}(.04)^{b}$ | $m_{g}(.01)^{b}$ | $m_{g}(.0025)^{b}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.45386 | 3 | 6 | 8 | 10 | 12 |
| 2 | 1.60581 | 5 | 9 | 12 | 15 | 18 |
| 3 | 1.32388 | 3 | 4 | 6 | 7 | 9 |
| 4 | 1.40978 | 3 | 5 | 7 | 9 | 11 |
|  |  |  |  |  |  |  |
| NO. INNERS/OUTERS | 14 | 24 | 33 | 41 | 50 |  |
| TOTAL OUTERS |  |  |  |  |  |  |
| (E $=10^{-5}$ ) | 39 | 20 | 17 | 15 | 15 |  |
| TOTAL INNERS | 546 | 480 | 561 | 615 | 750 |  |
| CPU SEC. (195) | 40 | 32 | 34 | 34 | 40 |  |
| EXCP | 2745 | 2745 | 2713 | 2710 | 2737 |  |
| COST | $\$ 8.11$ | $\$ 7.00$ | $\$ 7.21$ | $\$ 7.25$ | $\$ 8.06$ |  |

[^6]

ag group $60 \times 120$ half-core 2PPR 11 (B) model.
$b_{m_{g}}\left(\varepsilon_{i n}\right)$ is the number of inner iterations in group $g$ required to achieve an error reduction factor of $\varepsilon_{\text {in }}$.

### 3.16 Special DIF3D Applications

The following sections are brief outlines of some of the special applications of DIF3D avallable at Argonne. These are not available in the export version of the code; they are included in this report primarily to scimulate users to use the code in unique and creative ways. Some of the special applications make use of one or more of the four user modules UDOITl - UDOIT4 which are discussed in Section 4.1.11, (see also Fig. 1.1).

### 3.16.1 Perturbation Theory - VARI3D

VARI3D ${ }^{14}$ is a set of code blocks currently under development in the Applied Physics Division for doing ordinary and generalized perturbation theory calculations. Many of the code blocks and files described in this report are also used in VARI3D. Additional code blocks have been written to set up direct and adjoint DIF3D calculations, to calculate inner products and to edit the perturbation results.

### 3.16.2 Fuel Cycle Analysis - REBUS-3

KEBUS-3 ${ }^{7}$ is a set of code blocks currently under development in the Applied Physics Division for doing fuel cycle analysis for one-, two- and three-dimensional diffusion theory models. Many of the code blocks and files described in this report are also used in REBUS-3. Additional code blocks are being written to set up DIF3D calculations and to calculate the burn-up.

### 3.16.3 Calculating Higher Harmonics

DIF3D has been used a number of times to calculate higher harmonics of the one-, two- and three-dimensional neutron-diffusion finite-difference equation.

The UDOIT2 dummy code block, which is executed just prior to the DIF3D solution code block, is replaced by a program which generates and saves a flux guess which contains all harmonics; this is currently done using a random number generator.

Next, fundamental mode direct and adjoint flux solutions are run with tighter than usual convergence criteria. The UDOIT3 position, just after the DIF3D solution code block, is used for a program which strips the fundamental mode from the original flux guess using the orthogonality condition for eigenfunctions.

The path of the calculation then loops back to the DIF3D solution code block for a few outer iterations, after which the latest flux iterate is again purged of the fundamental by the UDOIT3 coding. This loop continues until the second and higher harmonics have been iterated out of the flux. If the firsic harmonic flux and adjoint are calculated in this way the UDOIT3 coding can be made to drive second harmonic ca?culations.

DIF3D can calculate harmonics because it uses a linear acceleration scheme that cannot reintroduce large components of the fundamental into the flux iterate. The fundamental does grow back into the flux iterate (therefore the succession of purges), but it does so starting from the level of the convergence of the original flux and adjoint problems. Periodic purging easily keepe it in check.

In this application of DIF3D the only programming involved is in the UDOIT2 and UDOIT? positions. The remainder of the code is used without internal changes.

### 3.16.4 Calculating Electrostatic Potential Distributions

DIF3D has been used on one occasion to solve for the electrostatic potertial distribution in a relatively complicated system of conducting electrodes and dielectric material. DIF3D does not permit internal, inhomogeneous (fixed-potential) boundary conditions of the sort needed for electrostatics, but this difficuity was overcome by a Green's function approach and the UDOIT feature of the code.

The electrodes, on which fixed potentials are to be applied, are divided into regions small enough that the internal charge distributions can be approximated by a constant. A "multigroup" cross section set (A.ISO) of one isotope is set up with no group-to-group transfer, no removal or fission and unit transport cross section. The dielectric constant for various regions can then be set by adjusting the number density input for each region of the model. A fixed source (FIXSRC file) is generated, each group of which has a unit source in a different, individual electrode region and a zero suurce elsewhere. One solution of this "multigroup" fixed source problem yields the simultaneous solution for the complete set of Green's functions, one for each electrode region.

The overall potential distribution in the model is the sum of products of each Green's Eunction distribution times a charge-density multiplier for the corresponding electrode region. An additional program was written for the UDOIT3 position in the code to calculate the multipliers for each Green's function (i.e. each electrode region). A least-squares criterion was applied to minimize the difference between the Green's function solution and the applied voltages in the electrode regions.

In this application of DiF3D the only programming involved was in the UDOIT3 position. The remainder of the code was used without internal changes.

### 3.16.5 Neutron Transport with Isotropic Scattering

A version of the DIF3D code block has been modified at Argonne to perform $S_{n}$ transport calculations for isotropic scattering. The diffusion-theory equation coefficient and solution routines were replaced by transport theory counterparts for two-dimensional $X-Y, R-Z$ and triangular geometries. Although this still must be considered an experimental code, DIF3D/transport is used quite regularly in the analysis of critical experiments and in core design applications. Its main advantage over other available transport codes is that its input is identical to the standard, diffusion-theory version of the code, which is a considerable convenience to analysts at Argonne.

## 4. PROGLAMMING INFORMATION

This chapter contains detalled programming information concerning the overall structure and function of the major code blocks in the DIF3D system. The information is primarily intended for the programmer concerned with DIF3D sorre code modifications and for users who wish to understand particular details of the calculational flow. Additional details are provided by internal code documentation included in the DIF3D source code.

### 4.1 Role and Function of Subprograms

The DIF3D system consists of a collection of large independent code blocks logically connected by a small "driver" subroutine D3DRIV (standard path STP021 in ARC System terminology). D3DRIV dynamically invokes the code blocks according to data-dependent logic. The code blocks communicate with each other, and with D3DRIV, by means of interface files; with the exception of the three utility routine COMMON blocks mentioned in Section 4.1.1, no data are passed in-core from one code block to another.

DIF3D is carefully designed to run in one of two different environments: modular and standalone. In the modular format each code block, including STPO21, is organized as a separate load module. Each load module contains versions of all the utility subroutines called from the module and is, in fact, an executable program. At Argonne, and at other IBM installations at which Argonne staff maintain codes, DIF3D is set up in modular style.

In the standalone format the entire production code is a single load module. D3DRIV and the utility subroutines are contained in the root overlay; the code blocks executed by D3DRIV are separate overlays. The National Energy Software Center versions of DIF3D are set up in standalone style (see Chapter 5).

### 4.1.1 Module and Overlay Driver - STP021 (D3DRIV)

D3DRIV (STP021) is a small driver subroutine that controls the load module (overlay) calculational sequence ("path") in all DIF3D problems. Figure 1.1 illustrates the sequence of module salls in D3DRIV and the input and output datasets employed by each module. (See Table 4.2 for a detailed list of input and output data sets for each module). Module execution is inftiated via the LINKERO or LINKERI subroutines described below.

The path has a simple loop structure which permits multiple case problem sets; modules in the path are conditionally executed based on the existence of interface files. Within the case loop there exists a searci 1 nop which is only triggered by the existence of the SEARCH interface file. Termination of the search loop is triggered by a sentinel on the SEARCH file.

The file "existence" attribute is obtained via calls to the CCCC utility subroutine SEEK (see the discussion in section 4.3.4.1). These dynamic attributes are maintained by SEEK and changed by modules in the course of problem execution. Prior to invoking the first module, D3DRIV initializes subroutine SEEK by passing to it a list of file names (DSNAME array) and a corresponding list of logical unit number assignments (NREF array). It must also initialize the COMMON blocks IOPUT, PTITLE and STFARC, which are required by certain of the utility subroutines.

The logical unic numbers (NIN, NOUT and NOUT2) for the card-input and the two printer-output files are defined and stored in COMMON block/IOPUT/. They are also stored in COMMON block /PTITLE/. The page heading information and timing information in /PTITLE/ are frequently reinitialized upon entry to a new module. Initialization of COMMON block/STFARC/ is described in the discussion of the SCAN module in the next section.

Subrou:ines LINKERO and LINKER1 were written to simplify the readibility and programming of D3DRIV. The subroutines are identical in coding; separate names are required to prevent recursion. Their function is to provide the module calling sequence appropriate to the modular or stand-alone environments. In a modular environment on IBM/370 systems execution is transferred to load modules via the LINK 36,41 macro. In a stand-alone system the appropriate overlay call is generated. Auxiliary functions including elapsed time of module execution and (in the ANL modular system) the detection and listing of logical unit numbers left open upon module exit, are also provided.

### 4.1.2 Input Preprocessors - SCAN and STUFF

The two code blocks which preprocess the BCD card input file are SCAN and STUFF. This section discusses their use in a program (see also Ref. 41).

SCAN must be called before any BCD input is read and before the first call to STUFF; it is called only once in a job. The initialization call to SEEK must precede the call to SCAN. SCAN reads the entire BCD card input file from logical unit NIN (NIN is the first variable in the fabeled common block /IOPUT/) and copies it to another file which is either the file named ARC or, if ARC is not in the SEEK tables, logical unit 9. In the process it sets up a table of pointers to the beginning of each BLOCK. The call to SCAN also processes the data in BLOCK=OLD if that block is present in the input file.

All BLOCKs other than BLOCK=OLD are processed by calls to STUFF. Before each call to STUFF the variable STFNAM (the first variable in the labeled common block /STFARC/) must be set equal to the name of the BLOCK to be processed. For the DIF3D code that name is "STP021". STUFF returns a flag (NRET in /STFARC/) which permits the program to test for end of input. STUFF writes, or rewrites, each BCD disk file referenced under the particular BLOCK=STFNAM according to the instructions in the input (DATASET=, MODIFY=, etc.). It is STUFF that reorders, replaces and deletes numbered cards. Since the STUFF processing follows the processing of BLOCK=OLD by SCAN, a new DATASET input on cards would destroy the data already on an existing file of the same name referenced under $B L O C K=O L D$.

Figure 4.1 shows a simple driver that uses SCAN and STUFF to preprocess BCD card input. In fact, this driver could be used with the input shown in Figure 3.1 since the BLOCK and DATASET names are consistent. The driver starts by setting card and printer file numbers and by initializing SEEK, TIMER and LENES. Following the single call to SCAN it goes into a loop containing a call to STUFF and an execution of a program (PROG). Execution terminates when the last BLOCK=TEST has been processed. Figure 4.1 is a simplified, but otherwise typical, driver; a calculation is performed for each BLOCK in the input.

As it writes or rewrites a BCD card image file STUFF inserts a few formatted records at the beginning which contain information about the structure of the file. These lead records may be read:

```
CSW
 IMPLICIT REAL*8(A-H,0-Z)
CSW
 COMMON /PTITLE /TITLE(66), TIME(10), HNAME(4), KOUT, KOUT2, NTITLE
 COMMON / IOPUT / NIN, NOUT, NOUT2
 COMMON / STFARC / STFNAM, BLKNAM(50), IBLTAB(3,50), NBLOCK, NRET
 DIMENSION DSNAME(6)
 DATA DSNAME / 8HA.SAMPLE, 8HA.SAMPLE, 8HA. XAMPLE, 6HRTFLUX,
1 6HISOTXS, 1H$ /
 DATA BLOCK/4HTEST/, BLANK/6H /
 DATA IM1/-1/, IO/0/, Il/1/, I3/3/, I4/4/, Il1/11/
C
 NIN=5
 NOUT=6
 KOUT=NOUT
 NOUT2=I0
 KOUT2=NOUT2
 NTITLE=0
C
C INITIALIZE TITLE AND HNAME TO BLANKS
C
 CALL FLTSET(TITLE,BLANK,I11)
 CALL FLTSET(HNAME,BLANK,I4)
C
 N=0
 CALL SEEK(DSNAME,Il,N,I3)
 CALL TIMER(IO,TIME)
 CALL TIMER(IMI,TIME)
 CALL LINES(IO,I)
 CALL SCAN
C
 STFNAM=BLOCK
 10 CONTINUE
 CALL STUFF
 IF(NRET.LE.O) GO TO 20
 CALL PROG
 GO TO 10
C
20 CONTINUE
 RETURN
 END
```

Fig. 4.1. An Example of the Use of SCAN and STUFF

READ (M, 99) ANAME , MAXTYP, NONUM, NOFORM, (N(I), I=1, MAXTYP)
99 FORMAT(A8,315/(16I5))

| M | file logical unit number |
| :--- | :--- |
| ANAME | file name |
| MAXTYP | highest card type number in file |
| NONUM | number of unnumbered cards |
| NOFORM | $0 / 1$, cards are to be read |
|  | formatted/free-format |
| N(I) | number of cards of type $I$ |

The logical unit number, $M$, should be obtained through calls to SEEK and SEKPHL:

CALL SEEK (ANAME,IVER,I,0)
CALL SEKPHL (I, M,0)

$$
\begin{array}{ll}
\text { IVER } & \text { file version number } \\
\text { I } & \text { file reference number }
\end{array}
$$

There are always at least two of these lead records in a $B C D$ file written by STUFF; FORTRAN I/O expects a second record even if MAXTYP=0. Indeed, for NOSORT DATASETs MAXTYP is zero.

The NOFORM sentinel is 0 for files designated DATASET= or SUBLOCK=; it is 1 for files designated UNFORM=.

These lead records permit applications modules reading BCD files to mike decisions based on the presence or absence of particular card types. The user's input card images follow the lead records and can be read as if they were cards - one 80 -column card per record.

### 4.1.3 CSE010 (ANL only)

CSEO10 converts cross section data from the ARC System (XS.ISO) file 36 format to the CCCC isotope ordered file format (ISOTXS). The code will also merge two ISOTXS files into . single output file. CSEOlO is made up of five subprograms and is not overlayed. The entry routine CSEO10 allocates the BPOINTER container array and calls the various subroutines to perform their specific tasks. The input files used by CSEO1O are XS.ISO, the input ARC System double precision cross section file, ISOTXI and ISOTX2, the input CCCC files which may be merged into the final output ISOTXS file. There is no BCD input to the routine. Following problem setup the subroutine CTAD is celled to load isotope independent data from the XS.ISO file into appropriate arrays. PRINXD is then called in a loop over isotopes to process the isotope cross sections from the XS.ISO file. Since the ARC System file contains derived data rather than the specific cross sections required in the ISOTXS file, an approximation is required in deriving the CCCC data. In particular, it is assumed that the flux and current weighted total cross sections are equal. Thi. 3 approximation allows a unique conversion of the XS.ISO data to an ISOTXS format. If input ISOTXS files ISOTXI and/or ISOTX2 are available, the subroutines ISOCTL and PRINO are called to add these data to the data generated from the XS. ISO conversion.
4.1.4 LASIP3 (ANL only)

The LASIP3 module ${ }^{37}$ was developed at Los Alamos for processing Version-3 standard CCCC interface data files. It performs two distinct tasks; namely
transforming free-field format, BCD data into well-defined binary files and providing for printing and punching data in the binary files.

LASIP3 is impleme ted in the modular environment on the IBM 370/195 at Argonne to provide auxiliary input processing capabilities of interest to a limited number of DIF3D users. It is not implemented in the NESC versions of DIF3D detailed in Chapter 5.

LASIP3 was modified to incorporate the dynamic storage allocation capability provided by the BPOINTER package discussed elsewhere in this document, thereby eliminating a fixed length working storage array previously required in LASIP3 (see sample input in Fig. 3.7).

### 4.1.5 The General Input Processor - GNIP4C

GNIP4C is an input processor that generates a number of CCCC Standard Interface Files from BCD card-image input. Figure 4.2 shows the structure of the code. The main driver (GNIP4C) calls on one or more of nine subprograms.

The combination of subprograms RANIPl and FGEODS reads geometry data from A.NIP3 cards and generates a čODST file. For the most part RANIPl reads and checks the data, and FGEODS composes the GEODST and LABELS files. All subroutines in GNIP4C whose names start with "ANIP" (e.g. any of the routines in RANIPI) read one (and occasionally two) card types. If a GEODST file is input RANIPI and FGEODS are skipped.

The third subprogram, EGEODS, edits the GEODST file at the user's request. EGEODS contains graphics and printer output routines that generate maps of arrays of hexagons (TRIPLT) or orthogonal geometries (ORTMAP). TRIPLT uses data from the A.NIP3 type 15 and 30 cards, and so GNIP4C is not able to generate hexagonal array maps when the geometry is input via a GEODST file. ORTMAP generates its maps from data in the GEODST file. There is coding in the subroutines associated with TRIPLT and ORTMAP to generate computer graphics maps via standard CALCOMP or DISPLA calls. This coding is commented out in the NESC versions of the code, but it is not difficule to reactivate.

RANIP2 and FADENS read A.NIP3 data and write the number density files (NDXSRF and ZNATDN). Number density edits are produced as the input data are processed from A.NIP3 into GEODST, and so it is not possible for GNIP4C to edit atom densities when they are input to the code in the ZNATDN file. RANIP2 and FADENS are skipped entirely if NDXSRF and ZNATDN already exist.

BCDXST reads the formatted version of the ISOTXS file from a NOSORT DATASET named A.ISO. This is the only direct means by which the user can input cross sections to the code on cards. BCDXST converts the formatted, BCD form into the binary file ISOTXS. Coding exists in the subprogram to convert in a similar way a formatted version of the delayed neutron data file DLAY $\mathrm{XS}^{6}$ to a binary form, however, the delayed neutron file names have not been included in the DIF3D SEEK tables. There are internal flags in BCDXST which trigger edits of ISOTXS and DLAYXS; however, these flags cannot be manipulated from outside the code.

The seventh subprogram, WRSORC, reads inhomogeneous source specifications from A.NIP3 cards and generates and edits a FIXSRC file. WRSORC is skipped when none of the fixed source card types (A.NIP3 19 and 40-42) appear in the input.


Fig. 4.2. Subroutine Map for the GNIP4C Code Block

WRSRCH reads specifications for the criticality search option and writes and edits the SEARCH file. WRSRCH is skipped when none of the search card types (A.NIP3 21-26) appear in the input.

WRRODS processes the input for the control rod model and it is skipped when the A.NIP3 type 44 cards are absent.

### 4.1.6 Cross Section Homogenization - HMG4C

HMG4C is a cross section processor which generates the macroscopic cross section file COMPXS based on the data contained in the CCCC files ISOTXS, NDXSRF, ZNATDN, and DLAYXS. In generating the macroscopic data, it is assumed that there is a one-to-one correspondence between compositions and zones. Thus, for example, the fifth composition on the completed COMPXS file corresponds to the data for zone number five on the two CCCC files NDXSRF and ZNATDN. The code accepts the CCCC files in their full generality with the single exception that an isotope or file-wide CHI matrix is not permitted.

The data management strategy used by the code is rather straightforward. After reading and storing the data obtained from the ZNATDN and NDXSRF files, and che isotope independent data of ISOTXS and DLAYXS, the code attempts to hold all of the fourteen dif erent types of macroscopic array data in the remaining container space. If this is possible then a single pass is made through the ISOTXS file and the contribution of each relevant isotope is added to each macroscopic cross section of each composition. If all the macroscopic arrays will not fit in the avallable core, the code determines the maximum number of compositions which can be homogenized in a single pass. As many passes are then made as required to completely process the data. The results of each pass are written on a scratch file (SCROO1) for temporary storage before being rewritten to the COMPXS file.

The three CCCC files ISOTXS, NDXSRF, and ZNATDN are always required input to $\mathrm{HM} G 4 \mathrm{C}$ and hence must be declared under a BLOCK=0LD statement in the input data or generated from input BCD data by the code block GNIP4C. The file DLAYXS is optional but must be included under BLOCK $=0$ LD if delayed neutron data are required. Additionally, the user may specify the BPOINTER container size, the method by which the composition fission spectra are to be computed, and various edit options on the BCD dataset A.HMG4C.

Figure 4.3 shows the structure of the code. The subroutines of HMG4C may be divided into four separate functional units of code each of which may be linked to form a separate overlay. The first overlay, OVLl, reads all of the input data except for the microscopic cross sections. The second overlay, OVL2, computes the homogenized cross sections in the form of fourteen macroscopic arrays which are the working storage units of the code block. In the third overlay, OVL3, the COMPXS data set is written from the data contained in the fourteen working arrays. The fourth overlay, oVL4, is essentially independent of the preceding three and is used to edit a COMPXS file. HMG4C may be used for the express purpose of editing a user input COMPXS file, in which case only the fourth overlay is executed.
4.1.7 MODCXS

MODCXS is an input processor that modifies an input macroscopic cross section file, COMPXS, to account for user specified directional diffusion coefficients and/or energy conversion factors. A COMPXS file generated by the


COMMON BLOCKS

ARRAY REF
IOPUT HMGPTR
PTITLE SCAT

Fig. 4.3. Subroutine Map for the HMG4C Code Block
code block HMG4C does not include any directional diffusion coefficient capability. Furthermore, the fission and capture energy conversion factors are derived directly from the data available on the input ISOTXS cross section file. User input to override these data may be specified and the code block MODCXS processes these data.

The code block MODCXS is made up of five subroutines. The main driver MODCXS allocates the BPOINTER container for the code block and controls the program flow. The first program routine called by MODCXS is ANIP35 which reads and validates the directional diffusion coefficient data input by the user on the Type 35 and Type 36 cards of the A.NIP3 dataset. The subroutine ANIP37 is then called to read and validate the energy conversion factor data from the Type 37 and/or Type 38 cards of A.NIP3. The subroutine DOMODS is then called to process the user input data. DOMODS reads version 1 of the file COMPXS and writes the file SCROOl in the same format as the COMPXS file after modifying the power conversion and directional diffusion coefficient factors according to the user specifications. Finally the subroutine COPIER is called to copy the data from the file SCROOl onto the file COMPXS. The standard utility routines are used throughout the code block to ensure code standards.

### 4.1.8 BCDINP

BCDINP creates and modifies the DIF3D control file (also called DIF3D) from default values and/or from the BCD dataset A.DIF3D. BCDINP is comprised of three subroutines and is not overlayed. The driver subroutine BCDINP sets the A.DIF3D default parameters for the DIF3D file. If an old DIF3D file exists the default data is overridden by data read from the existing DIF3D file. If an A.DIF3D file exists, subroutine RADF3D reads A.DIF3D and updates the DIF3D file arrays with non-default data from A.DIF3D. Upon successful validation of the DIF3D file arrays by subroutine PDIF3D, BCDINP writes the interface file DIF3D.

### 4.1.9 SRCH4C

The SRCH4C module controls the criticality search iterative process by adjusting certain parametric vectors in order to achieve a desired value of k-effective. Search control information including the three most relevant search pass parameter estimates are maintained by SRCH4C on the CCCC interface file SEARCH (Appendix C.7). The interface files containing the parameter vectors appropriate for the selected search option are also modified by SRCH4C.

At the start of each search pass SRCH4C reads the SEARCH file to establish the search control parameters. Next the header records of interface datasets required for the selected search option are read and checked for data consistency. Subroutine GETCON performs this function in the concentration search option. Data management requirements for performing the interface file modifications in core-contained mode or with auxiliary disk storage are determined at this time. If the DIF3D file is present the BPOINTER ECM container size estimate is obtained to determine the feasibility of the core-contained option.

The most recent elgenvalue estimate will be read frow the DIF3D file, if present, otherwise it will be taken from the RTFLUX file. Then subroutine SRCHX is invoked to calculate the new search parameter estimate based upon
the previous estimates. A parabolic extrapolation method with root-bracketting uses three recent estimates to accelerate the parameter search process. Upon completion of the two initial search passes with initial parameter estimates, one linearly extrapolated estimate is employed before the parabolic procedure is invoked. The search parameter is permitted to exseed its user specified range only once during the estimation algorithm. Subsequent occurences lead to problem termination.

Upon return from SRCHX the search history array is updated and the SEARCH file is rewritten. If the search parameter has not yet converged the subroutine which modifies the search quantity interface files is called. Subroutine DMDCON modifies the subzone volume fractions on the NDXSRF file for the concentration search option. Upon successful modification of NDXSRF, DMDCON turns off the COMPXS existence sentinel so that upon return from SRCH4C, subroutine D3DRIV will invoke HMG4C and MODCXS to obtain updated macroscopic cross sections.

SRCH4C has several features which exploit the time remaining feature of some systems and which exploit the DIF3D file if it is present. Consequently, the search is gracefully terminated if time limit is imminent. Abnormal termination of the DIF3D neutronics module is detected from the restart file DIF3D thereby causing SRCH4C to end gracefully and permitting a subsequent restart at the current search extrapolation cycle and/or at the next DIF3D outer iteration.

### 4.1.10 DIF3D

The DIF3D module performs the neutron flux and criticality calculations. Figure 4.4 illustrates the structure of the DIF3D module. Names preceded by asterisks in Fig. 4.4 are relevant only to the nodal solution option described in Ref. 5. They will not be discussed here. The four primary overlays called by DIF3D (BININP, SSINIT, SSTATE and DSSTOU) share COMMON blocks and BPOINTER FCM and ECM container arrays. Logic sentinels and problem specifications data reside in the /CONTRL/ and /SPECS/ COMMON blocks, respectively. Definitions for the elements of the COMMON blocks are located in subroutine BLOCKS which is included with the DIF3D source listing.

In stand-alone mode, the three-level overlay structure permitted by the CDC Overlay feature is retained by adding the DIF3D subroutine (and required utility subprograms) to the driver module D3DRIV. The different calling sequences required for the execution of DIF3D in a variety of computer systems in modular or standalone mode are unified via the subroutines LINKRO, LINKR1 and LINKR2. The suffixes 0,1 or 2 denote the ( 0,0 )-, primary- and secondarylevel overlay calls, respectively.

The module driver subroutine DIF3D initializes TIMER and then calls subroutine START which performs the following initialization functions:

1. Zeroes COMMON blocks;
2. Sets the machine dependent word length parameter LDW ( -1 or $\boldsymbol{m}$ );
3. Sets I/O mode parameters
4. Initializes unite for BCD input and output files;


Fig. 4.4. Subroutine Map for the DIF3D Code Block


Fig. 4.4. Subroutine Map for the DIF3D Code Block (cont'd)
5. Reads BPOINTER container size data from the binary interface file DIF3D and allocates the container space.

Upon return from START, and prior to invoking the primary modules, DIF3D initializes the random access dataset utility routine DOPC.

The binary file input processor overlay driver, BININP, reads the specification records from the DIF3D input interface files listed in Table 4.2 (Section 4.2). The data is checked for consistency and entered into the pertinent COMMON block variables.

Using the data obtained in the BININP overlay, the SSINIT overlay calls SSCORE to determine the storage requirements for the DIF3D data manangement options. From these options SSCORE chooses the option that maximizes the usage of the available BPOINTER container space.

Upon completion of the data management edits in SSCORE, SSDISK is called to establish (via DOPC) the random access disk file group assignments required in the multilevel data management strategy. On CDC systems an auxiliary ECM container (see XCM discussion in Section 4.3.5.2) is allocated for storing the table of pointers that index the random access file records.

The problem input data and geometry description are edited by subroutine INEDIT. During the process of forming the zone map array, FOKMMZ optionally calls subroutine REGMAP to edit the region and/or zone to mesh interval maps. If the zone map array cannot be ECM-contained in concurrent inner iteration problems, it is written to the random access scratch file ZONMAP.

XSGETl reorders the group within composition (or zone) cross section data from the COMPXS interface file so that data is ordered by zone within cross section type for a given energy group. During this reordering process, XSGETl computes directional diffusion coefficients and calls XSEDIT to edit the macroscopic cross sections. If the reordering process cannot be corecontained, cross sections are written by composition to the auxiliary file SCROO1 by subroutine XSGETI. Subroutine XSGET2 performs the necessary number of read passes across SCROOi to complete the reordering process. In each pass a core-contalnable bandwidth of groups is processed.

The primary overlay SSTATE has five secondary overlays (DXSREV, DFDCAL, DORPES, DOUTR1 and DOUTR2). In adjoint problems, DXSREV calls XSREV which reverses the cross section group ordering and forms the adjoint scattering matrix. In the event that the available container storage is insufficient to core-contain all groups, the real problem cross sections are copied to auxiliary file SCROOl. The cross section reversal process is then performed in multi-pass mode with the maximum permissible bandwidth of groups corecontained in each pass.

Overlay DFDC.L calls FDCAL which controls the finite difference coefficient calculation by calling the appropriate subroutines ORTFDC or TRIFDC for orthogonal or triangular geometries, respectively. For data management purposes, mesh cells for both orthogonal and triangular geometries are mapped by mesh plane onto a rectangular array. In certain triangular geometry problems and in problems with black absorber composition assignments some of
the mesh cells are excluded from the problem solution domain. In triangular geometry two arrays IS( j ) and $\operatorname{IE}(\mathrm{j}), \mathrm{j}=1,2, \ldots ., \mathrm{J}$ define the lower and upper index limits of the active mesh cells on line $j$. Mesh positions outside these limits are logically excluded from all calculations. Mesh cells which must be excluded from the problem domain, but which lie within the limits of the active mesh cells are effectively excluded from the problem domain by assigning the value zero to transverse direction coupling coefficients. Thus, computations proceed in an identical fashion for both active and excluded mesh cells with no additional logic overhead.

The DORPES overlay calls ORPES 1 or ORPES2 to compute the optimum successive line overrelaxation factors for the inner (within group flux) iteration. Because of significant differences in data managetent strategy, dual sets of subroutines, differentiated by the suffixes 1 or 2 , are employed. The first set applies to strategies in which at least one energy groups worth of data is ECM-contained; the second set applies to the concurrent inner iteration strategy which requires a minimum of three planes worth of data to be ECMcontained. Subroutines ORPIN1 and ORPIN2 control the Gauss-Seidel inner iterations employed to estimate the optimum factors $\omega_{\mathrm{g}}$. These routines were cloned from the routines INNER1 and INNER2 which perform the inner iteration sweeps during the outer iteration.

DORPES also calls RFLXIN and FSRCIN to read the real (adjoint) flux file RTFLUX (ATFLUX) and the fixed distributed inhomogeneous source file FIXSRC. If the the flux file does not exist, RFLXIN creates a flat flux guess of unity. In near-critical inhomogeneous source problems, an initial flux guess of zero is optionally senerated. Mesh cells are initialized to zero when they are within the active portion of the rectangular data structure of the mesh plane arrays, but they are not part of the problem domain.

Overlay DOUTRI calls subroutine OUTER1 which controls the outer (fission source) iterations and in thermal problems the upscatter iterations which are required to solve the multidimensional neutron diffusion equation when at least one energy group of flux, finite difference coefficients and cross section files can be ECM-contained. OUTER1 calls subroutines FISSRC, SCTSRC and TOTSRC which compute the fission, scattering and leakage sources and add them to the fixed source, if present. It also calls subroutines INNERI and CHEBYI which perform the inner iterations (within group flux calculations) and extrapolate the resulting fission source, respectively.

One of two data management strategies for calculating the scattering source are chosen based on whether or not the scattering band of fluxes can be ECM-contained. When the latter is true, the scattering source calculation is performed by double buffering the scatter band of fluxes through memory from disk one group at a time. When the former is true, the buffer for the scatter band of fluxes is treated in a circular manner. Upon filling the circular buffer, unneeded flux values are displaced, if necessary, by appropriate fluxes as the group index advances during each outer iteration.

Following each completed outer iteration pass, the average time required per outer iteration is computed to determine the feasibility of performing the next outer iteration and completing the editting wrapup in the remaining time indicated by the TIMER subroutine.

Overlay DOUTR2 calls subroutine OUTER2 which controls the outer iterations for the concurrent inner iteration option. The source computation routines (FISSRC, SCTSRC and TOTSRC) are called from the intermediate driver routines FISSD2, SCTSD2, and TOTSD2, respectively. The initial fission source is computed by IFISD2. Subroutines INNER2 and CHEBY2 perform the inner iterations and extrapolate the resulting fission source, respectively.

The scattering source calculation accesses blocks of flux planes from the energy groups in the scattering band of fluxes pertinent to the current energy group. The I/O requirements of such calculations are appropriately treated by the random access I/O features available on the IBM and CDC versions of DIF3D.

The DSSTOU overlay calls three secondary overlays (DSSTO1, DSSTO2 and DSST03) that perform the optional region, area and mesh cell flux integral edits. Two general purpose subrcutines (TWODPR and TWODTB) are employed to perform mesh cell tabulations and region (and area) tabulations, respectively. TWODTB also writes a copy of the editted tables to the D3EDIT interface file.

The DSSTOl overlay initializes the editting overlays by establishing the edit sentinels in COMMON block EDITDM and then calls FORMMR to generate the region-to-mesh-interval map array and BKLWGT to compute region-dependent transverse-direction weight factors for the volume and flux integrals. Subroutine SSTOUl performs the following tasks:

1. Obtains the power normalization factor in real criticality (homogeneous) problems;
2. Edits and/or writes the PWDINT power density interface file;
3. Edits total power fin real fixed source problems;
4. Controls the surface power and flux calculations in the ORTSRF and TRISRF subroutines;
5. Writes via WPKEDT the peak (surface) power interface file, PKEDIT, for the post processing edit module SUMMARY;
6. Edits maximum power density and corresponding mesh cell indices;
7. Creates the mesh cell power densities for subsequent use by the POWINT, RPWADD and APWADD subroutines which compute and edit the region and area dependent power density integrals.

The DSSTO2 overlay establishes via subroutine EDCORE the block sizes for the requested region and area integrals. Then subroutine SSTOU2 is called to write the appropriate flux interface files RTFLUX or ATFLUX. In real homogeneous problems the flux is power-normalized prior to editing or writing. The group-integrated fluxes by mesh cell are optionally edited here,also. If region or zone integral edits are requested, RPSADD is called to compute the region flux integrals. ORTBAL and TRIBAL are called to compute region leakage components in orthogonal or triangular geometries. Overhead is minimized by requiring only one $I / O$ pass over the unnormalized flux data. Depending opon the requested edit options one or more sweeps across the resident block of fluxes may be required. In the first sweep, fluxes are
power-normalized, written and optionally editted. The group-integrated fluxes by mesh cell are accumulated also. In adjoint problems an additional I/O pass is required to reverse the flux group ordering for integral edits. An additional NBLKR sweeps (NBLKR is the number of region blocks) over the resident block of flux planes are made to compute the region flux integrals and the leakage component integrals for the neutron balance edits. Prior to exiting SSTOU2 the region-to-mesh-interval map is converted back to a zone-to-meshinterval map.

The DSSTO3 overlay optionally calls three subroutines (BALINT, FLXINT and FLXRZ) which edit the region and area balance integrals, the region and area flux integral totals and/or the region averaged fluxes, and the zoneaveraged fluxes (e.g. the kZFLUX file), respectively.

### 4.1.11 SUMMARY (ANL only)

The SUMMARY module is used with DIF3D at ANL to edit summary reaction rates and isotopic masses. It is evoked whenever the A.SUMMAR data set is supplied with the input data (the single card-image "DATASET=A.SUMMAR" is sufficient data to trigger a SUMMARY edit). The interface files RTFLUX, GEODST, ISOTXS, NDXSRF, ZNATDN and COMPXS must also be present (these normally exist following a typical DIF3D calculation). If present, SUMMARY will also use the LABELS, PKEDIT, and NHFLUX files.
4.1.12 UDOIT1-UDOIT4

The four UDOIT modules, UDOIT1 - UDOIT4 are user modules placed at strategic points in D3DRIV to provide the user with additional processing capability during the calculational sequence (see Fig. 1.1). This feature of DIF3D is particularly useful in modular systems where the dummy UDOIT modules may be easily pre-empted by user UDOIT modules located in an automatic-call 11brary that may be processed via the ARCSP021 procedure parameter PRELIB='name'. The user merely creates a self-contained load module which communicates with the DIF3D system via the appropriate interface files and thereby tailors DIF3D processing capabilities to suit his needs. This feature may be exploited in stand-alone implementations by relinking DIF3D with dummy user overlays appropriately replaced. Four interface file names (three binary files UDOIT versions 1,2 and 3 and one BCD file A.UDOIT) are reserved in the SEEK file table for UDOIT applications.

### 4.2 Data Set Classification and Use by Code Block

Table 4.1 lists all of the data sets used by the code blocks in DIF3D and classifies them into one of five different categories:

BCD: Formatted, sequential access input and output, including standard system data sets (see definitions in Appendix B);
CDB: Code-dependent (including ARC system) binary (unformatted sequential access) interface data sets (see definitions in Appendix D);

CCCC: CCCC binary interface data sets (see definitions in Appendix C);
DOPC: Unformatted random access scratch data sets;
SCR: Sequential access scratch data sets.

TABLE 4.1. Data Set Classification and Description

| File <br> Reference <br> Number | File | File | File <br> Dame |
| :---: | :---: | :---: | :--- |
| 4 | TyPe | Description |  |

The file reference numbers are assigned in the SEEK initialization call. In the Argonne implementation of the CCCC routines REED/RITE and SEEK, the Fortran logical unit numbers are identical to the file reference number. The absence of a file name in Table 4.1 indicates a system data set; these do not appear in the SEEK table. Files of type DOPC are listed in Table 4.3 (Section 4.3). The Argonne implementation of DOPC (see Sections 4.3.4.3 and 4.3.4.1) assigns Fortran logical unit numbers to DOPC files RNDMO1 - RNDMI4 via a call to SEEK. This, of course, has no effect on other DOPC implementations (i.e., the data set names RNDMOl-RNDM14 will never be referenced). The data sets accessed by a given module are summarized in Table 4.2.

TABLE 4.2. Interface File Usage by Module

| Module | Input Files | Output Files |
| :---: | :---: | :---: |
| SCAN | $B L O C K=O L D$ and $B L O C K=$ dsname (BCD card image input) | ARCBCD (BCD input data spool |
| STUFF | BLOCK=STP021 | BCD input files from BLOCK=STP021 |
| UDOIT1, $2,3,4$ | See footnote a | See footnote a |
| CSE010 | XS.ISO or ISOTX1, ISOTX2 | ISOTXS (on ISNTXS unit) |
| LASIP3 | A.LASIP3 and CCCC interface files | CCCC interface files |
| GNIP4C | A.ISO, A.NIP3, GEODST, NDXSRF, ZNATDN, ISOTXS, FIXSRC, SEARCH | ```ISOTXS from A.ISO, GEODST, NDXSRF, ZNATDN, FIXSRC, LABELS, SEARCH from A.NIP3``` |
| HMG4C | A.HMG4C, A.NIP3, LABELS, ISOTXS, NDXSRF, ZNATDN | COMPXS |
| MODCXS | A.NIP3, COMPXS, LABELS | COMPXS |
| BCD INP | A.DIF3D, DIF3D | DIF3D |
| SRCH4C | SEARCH, RTFLUX or DIF3D, NDXSRF,ZNATDN, GEODST, LABELS | SEARCH, NDXSRF, GEODST, LABELS |
| DIF3D | $\begin{aligned} & \text { DIF3D, GEODST, COMPXS, } \\ & \text { FIXSRC, LABELS, RTFLUX, } \\ & \text { ATFLUX, SEARCH, SNCONS, } \\ & \text { UHFLUX, NAFLUX } \end{aligned}$ | DIF3D, RTFLUX, ATFLUX, <br> RZFLUX, PWDINT, D3EDIT, <br> PKEDIT, NHFLUX, NAFLUX |
| SUMMARY | ```A.SUMMAR, GEODST, COMPXS, ISOTXS, NDXSRF, ZNATDN, RTFLUX, NHFLUX, PKEDIT, LABELS``` |  |

[^7]
## - 4.3 Data Management Considerations

A multilevel transfer approach that unifies the treatment of one- or two-level storage hierarchy machines is adopted in DIF3D. The implementation employs a set of high level subroutines to perform the data management tasks. These subroutines in turn exclusively employ the standardized utility subroutine calling sequences defined by the CCCC $^{6}$, thereby providing a highly exportable code system that has been taflored to utilize machine-dependent multilevel and random access I/O methods.

### 4.3.1 Data Management Concepts

The following terminology will be used in the ensuing discussion (see Ref. 6 for more detailed definitions):

1. Extended Core Memory (ECM): That (physically separate or logically designated) portion of a computing system containing storage locations which serve as a buffer for random access data.
2. ECM File: A named array allocated within the BPOINTER ECM container. This array provides a buffer area for one or more blocks of random access file data. Associated with an ECM file is a block structure identical to the random access files it services.
3. Fast Cose Memory (FCM): That portion of a computing system which contains storage for both data and instructions, which is directly coupled to the computations portion of the system, and which is directly coupled to ECM. FCM may be the entire central memory or it may be that portion of central memory remaining after an ECM portion is designated.
4. Random Access Data: Data which can be transferred between FCM and ECM in out-of-sequence strings.
5. String: A subportion of a random access file block. Data transfers beween FCM and ECM are string transfers.
6. Random Access File: (Also called Direct Access File). A named collection of data which is stored on a peripheral storage device. The file data are arranged in blocks which can be transferred between ECM and peripheral storage randomly, i.e. out of sequence.
7. Logical File: A random access file. The identity of a logical file in DIF3D is established by an integer variable, the (logical) file reference (or unit) number.
8. Logical Record: A basic unit of information used in the definition of a logical file; all records in a logical file are the same length.
9. Logical Record Group: A logical collection of records. Each record group in a file has the same number of records (e.g. a group and space-dependent flux file has each flux plane of each group as a record and all flux planes (records) in a particular energy group as a logical record group).
10. Block: A collection of logical records in a record group of a random access file. Each block consists of an equal number of records ( $N$ ) except for the last block in a record group which may have $M<N$ records. The block length is always less than or equal to the record group length. Data transfers between disk and ECM are block transfers.
11. Disk: A generic name for a peripheral storage device used for storing random access files.
12. Physical Unit: An identifiable subpart of a disk. One of more physical units comprise a disk.
13. File-Group: A collection of one or more random access files. The file-group collection is assigned to a single physical unit.

### 4.3.2 Multilevel Data Management Strategy

The standardized method ${ }^{6}$ of multilevel data management employs the data transfer paths illustrated in Fig. 4.5. Each random access file is composed of one or more record groups and resides on a physical unit. When needed, data is transferred (via DRED and DRIT) in blocks of records between disk and ECM, and then strings of data are transferred (via CRED and CRIT) between ECM and FCM. When the ECM and FCM BPOINTER containers both reside in the same memory level, data from ECM is used directly, thereby avoiding redundant memory allocation and data transfer. Most of the bookkeeping associated with this data management approach is consolidated and eliminated by the high level data management routines described in Section 4.3.4.

The principal goal of the DIF3D data management strategy is to minimize the use of costly random access $1 / 0$ transfers by optimizing the use of the available ECM container (ECM size is specified on the type 02 card of A.DIF3D). As mentioned in Section 3.9.1 two principal strategy options, the one-groupcontained option and the concurrent inner iteration option, are available to achieve this goal. The latter option performs one or more $1 / 0$ sweeps across the data required in the within-group (inner) iteration for a given outer iteration because the data for all planes in the current group are not simultaneously contained in ECM. The former option requires exactly one I/O pass across the data. As ECM size is increased beyond the one-group-contained threshold an attempt is made to contain additional data, namely, a scattering band of fluxes or the entire flux file, and/or cross sections, finite-difference coefficients and fission sources. Ulitmately, a third option, all files ECM-contained, is possible at which point no DOPC files are required except for the DOPC file FSRC in inhomogeneous source problem.

The principal data structures in the strategy options are the ECM files through which all data are buffered for the (up to 14 ) random access disk files listed in Table 4.3. The block structure of an ECM file is identical to the structure of the random access disk files that it will service. However, only a subset of the total number of blocks in a DOPC file is typically allocated to an ECM file in most strategy options.

Data is transferred between the random access scratch files in Table 4.3 and the corresponding ECM files listed in Table 4.4 using the DIF3D data management routines BLKGET and BLKPUT which in turn call the atandardized CCCC $^{6}$


DISK


Fig. 4.5. Multilevel Data Transfer Paths

TABLE 4.3. Random Access File Descriptions

| DOPC <br> Reference <br> Number | File <br> Group <br> Number | SEEK <br> Reference <br> Number | SEEK <br> Table <br> File Name | ARCSP021 <br> File <br> Name |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 41 | RNDM01 | PSIOLD |
| 2 | 3 | 42 | RNDM02 | PSINEW |
| 3 | 5 | 43 | RNDM03 | PSIUP |
| 4 | 1 | 45 | RNDM04 | FDCOEF |
| 5 | 2 | 46 | RNDM05 | FRNOLD |
| 6 | 3 | 47 | RNDM06 | FRNNEW |
| 7 | 4 | 48 | RNDM07 | FRNM1 |
| 8 | 5 | 49 | RNDM08 | FRNM2 |
| 9 | 4 | 51 | RNDM09 | SRCNEW |
| 10 | 1 | 52 | RNDM10 | ZONMAP |
| 11 | 6 | 54 | RNDM11 | CXSECT |
| 12 | 2 | 55 | RNDM12 | FSRC |
| 13 | 3 |  |  | RNDM13 |

TABLE 4.4. Correspondence Between ECM and Disk Files

| $\begin{gathered} \text { ECM } \\ \text { File Name } \end{gathered}$ | $\begin{aligned} & \text { Disk } \\ & \text { File Name } \end{aligned}$ | File Contents |
| :---: | :---: | :---: |
| ZONMAP | ZONMAP | Zone to fine mesh map |
| CXSECT | CXSECT | Macroscopic cross sections |
| ZONMPC* | -- | Zone to coarse mesh cell map |
| PSINEW | ; PSIOLD, PSINEW | Flux iterate (all groups) |
| BPSI* $\}$ | [PSIGO**, PSIGN** | Flux iterate (current group) |
| FDCOEF | FDCOEF | Finite difference coefficients |
| SRCNEW | SRCNEW** | Group total source |
| FRBUFS | \{ FRNM1, FRNM2 | Fission source iterates |
| FRNM1**,2**\} | \{FRNOLD**, FRNNEW** |  |
| CXSADJ | CXSECT | Adjoint ordered cross sections |
| VOLUME | -- | Unit height mesh cell volumes in X-Y plane |
| AREATC* | $\cdots$ | Cross sectional area for any $X-Y$ plane |
| AREAFC* | -- | Cross sectional area for any $X-Z$ plane |
| AREALC* | -- | Cross sectional area for any $Y-Z$ plane |
| REGMPC | -- | Region to coarse mesh cell map |
| POWERF | PSIGO**, PSIGN** | Power density by mesh cell |
| PEAKFL | FRNNEW** | Peak total flux by mesh cell |
| PEAKFF | FRNOLD** | Peak fast flux by mesh cell |
| PEAKPW | SRCNEW** | Peak power density by mesh cell |
| SRFBUF | SCR001,2 | Surface fluxes by mesh cell |
| RPWINT | SCR001 | Region power integrals |
| APWINT | SCR002 | Area power integrals |
| TOTPS I | PSIGO**, PSIGN** | Total flux by mesh cell |
| RPSINT | SCR001 | Region flux integrals |
| APSINT | -- | Area flux integrals |
| RBLBUF | SCR006, 3,4 | Region balance (leakage) integrals |
| RBLINT | SCR003,1,2 | Region balance integrals |
| RBLTNT | SCR003,1,2 | Region balance integral totals |
| ABLINT | SCR004,5 | Area balance integrals |
| ABLTNT | SCR004,5 | Area balance integral totals |
| ZPSINT | SCROOS | Zone-averaged flux integrals |

- Temporary ECM files
* CIIS option only
routines DRED and DRIT. ECM files are opened (via calls to OPENCF) with the number of blocks required by the current data management option.

Except for ZONMAP and CXSECT which are defined in SSINIT, all ECM files in the upper half of Table 4.4 are defined (via DEFICF) in subroutine SSTATE. ECM files in the lower half of Table 4.4 are defined in one of the three edit overlay drivers (DSSTO1, DSST02 or DSST03). The ECM files are not opened (i.e. ECM container space is not suballocated to a particular ECM file) until an OPENCF call is issued. When an ECM file is no longer needed its ECM space may be via a call to CLOSCF. The definitions of the DOPC files are made (via DOPC and DEFIDF) in subroutine SSDISK. The characteristics of the ECM and DOPC files are provided in the subroutine calls to DEFICF and DEFIDF and will not be repeated here.

Several of the ECM files in Table 4.4 are temporary files needed during preliminary stages of the DIF3D calculation (e.g. ZONMPC, CXSADJ, AREATC, AREAFC and AREALC). The temporary files use ECM space that will later be reused by the major ECM files during the outer iteration strategy.

Numerous small arrays are allocated in the FCM container. Documentation of these arrays occurs in the source listings of the subroutines which use them. Data transfer required for these arrays is performed by the CCCC routines REED and RITE. An auxillary group of arrays are allocated in FCM on two-level machines, of which the CDC 7600 is the only machine on which we have had operating experience. These FCM arrays provide a computational buffer area in which data passed from ECM may be efficiently processed, thereby avoiding the less efficient computations that result when ECM files are directly addressed (see discussion in Section 4.3.2.3).

The auxiliary edit files in the lower half of Table 4.4 are opened at different stages in the editing overlays. A number of these ECM files are region and area integral files which have a logical record group structure similar to the flux files. Within a record group, however, blocking is simply based on the available ECM container space; a natural block size (such as a mesh plane in files of mesh cell data) does not exist. Because of the special nature of these region and area files and their relatively limited resource utilization, the BLKGET and BLKPUT routines are not used to transfer data between disk and ECM. Instead we use the sequential access routines REED and RITE to transfer data from scratch files SCR001-SCRO06 directly to ECM files on one-level machines. On two-level machines auxiliary FCM sub-blocks are allocated for computational efficiency (as noted in Section 4.3.2.3) and data is transferred between disk and FCM using REED and RITE. After processing a sub-block of data pertinent sub-blocks are transferred between FCM and ECM using CRED and CRIT. Several sub-blocks of data may then be successively saved in and reused from ECM until the next region or area block is required.

### 4.3.2.1 The One-Group-Contained Strategy

In this strategy each block of an ECM file contains all data for at least one energy group (i.e. all mesh planes in mesh cell dependent files). Therefore, each ECM file requires one block of appropriate size. During the outer iterations the FDCOEF and BPSI files are alternately opened and closed once each outer to permit the reuse of ECM space. When a scattering band of fluxes is ECM-contained, the ECM file (PSINEW) is opened with MAXSCT+l blocks
where MAXSCT is the maximum scattering bandwidth. The BPSI file is not used in this case. The three most recent iterates of the fission source file are required for the Chebyshev acceleration of the outers. The two most recent iterates are held in the ECM file FRBUFS which unlike the other ECM files is normally assigned two blocks. The oldest iterate is buffered through the ECM file SRCNEW alternately from DOPC files FRNMI or FRNM2 on which it had been previously saved. When sufficient ECM space exists, three blocks are allocated to FRBUFS thereby permitting the three most recent fission source estimates to ECM contained.

### 4.3.2.2 Concurrent Inner Iteration Strategy

The concurrent inner iteration strategy (CIIS) requires that data for only a fraction of the total number of mesh planes be ECM-contained during the within-group inner iterations. Consequently, three-dimensional problems with an unlimited number of mesh planes are permitted with the number of mesh cells on a plane dictated by the ECM container size.

The $K$ planes in each energy group are partitioned into $Q$ blocks of planes with block size L. An upper bound on the block size $L$ is an input parameter on the type 03 card of A.DIF3D. This bound represents an estimated optimal block length for efficient I/O performance on a particular machine. As mentioned in section 3.10.1, an attempt is made to ECM contain as many blocks of planes of size $L$ as is possible with the given ECM container size.

The CIIS algorithm is sketched in a FORTRAN-like notation in Fig. 4.6.
The inner iterations sweep across the mesh planes in a wave-front fashion, processing all data on a particular plane before proceeding to the next plane. As an inner iteration for one block completes, the next iteration for all preceding blocks can be performed. $U$, the effective number of blocks which can be simultaneously contained in ECM determines the wavefront or bandwidth of inner iterations ( $B=U L$ ) which can be performed in a single $I / O$ pass over the current group data. After the B'-th iteration has completed for all planes in a given block the write operation for the block may be initiated. Although the calculations for the new flux in this block are completed, the block must remain in ECM for the next $1 / 0$ cycle because data in the last plane of the block is required during the next cycle. During this cycle the asynchronous write operation is given time to complete. The number of inner iterations, $M_{g}$, for each outer iteration determines the number of $I / O$ passes, $P_{g}$,

$$
P_{g}=\left(M_{g}+B-1\right) / B
$$

required to complete the inner iterations in group $g$. A diagram of the $1 / 0$ and CPU activity that occurs in the ECM file PSINEW on two successive I/O cycles $c$ and $c+1$ is illustrated in Fig. 4.7.

In summary, each inner iteration pass, $p=1,2, \ldots, P_{g}$, is comprised of $\mathrm{c}=1,2, \ldots, \mathrm{C}$ I/O cycles. The following events occur in cycle $\mathrm{c}:$

1. The asynchronous reads for block $c$ ( $c<Q$ ) are completed and reads for block $c+1$ ( $c<Q$ ) are initiated.
2. In the first pass ( $p=1$ ) the group source for block $c$ is calculated and saved for for later passes.
```
 Q = (K+L-1) / L
 B = U * L
 C=U+Q
 DO 400 g = 1,NGROUP
 Pg= (Mg-1)/B + 1
 DO 300 p = 1,Pg
 B'=min(B, Mg
 'initiate reads on block (}1,g\mathrm{) data'
 DO 200 c = 1,c
 IF (c<Q) 'finish reads on block (c,g) data'
 IF (c<Q) 'initiate reads on block (c+l,g) data'
 IF (c<Q and p=1) 'calculate block (}c,g\mathrm{) group source'
 DO 100 b = l, B'
 K
 K
 IF (}\mp@subsup{\textrm{K}}{\textrm{s}}{<}<\mp@subsup{K}{e}{e}\mathrm{) 'perform Inner iteration for planes K}\mp@subsup{\textrm{K}}{\mathbf{S}}{}\mathrm{ to }\mp@subsup{\textrm{K}}{\textrm{e}}{
 CONTINUE
 IF (c>U+L) 'finish write of flux block (c-U-1,g)'
 IF (}c>U\mathrm{) 'initiate write of flux block (}c-U,g)
 IF (}\textrm{p}=\mp@subsup{\textrm{P}}{g}{}\mathrm{ and c>U) 'compute fission source for block (c-U,g)'
 IF (}\textrm{p}=\mp@subsup{P}{g}{}\mathrm{ and }\textrm{c}>\textrm{U}\mathrm{ and g=G) 'perform Chebyshev acceleration on
 fission source block (c-U,g)'
 CONTINUE
 'finish writes on flux block (Q,g)'
 CONTINUE
400 CONTINUE
```

Fig. 4.6. Concurrent Inner Iteration Algorithm


Fig. 4.7. Concurrent Inner Iteration I/O Cycle Description ( $\mathrm{L}=3, \mathrm{U}=2$ )
3. The $B^{\prime}$ inner iterations for blocks $c-U$ to $c$ are performed (See Fig. 4.7).
4. The write for flux block $c-U-1$ is completed and the write for block $c-U$ is initiated.
5. On the last pass $P_{g}$ the block c-U fission source is calculated and Chebyshev acceleration is applied.

The storage requirements (in units of mesh planes) for the variable size CIIS blocks are summarized by:

1. U+3 fluxes,
2. 4(U+2) finite difference coefficients,
3. $\mathrm{U}+2$ total group sources,
4. 4+1/LDW miscellaneous data (3 fission sources, 1 flux and $1 / \mathrm{LDW}$ zone map).

The constant terms in these storage requirements formulas account for auxiliary blocks required to achleve a high degree of $I / O$ and CPU concurrency. LDW is a word length parameter which accounts for the fact that integer array storage requirements are half that of long words on short word machines, The procedure for estimating the optimal ECM size for a given problem and for fetermining the appropriate value for $U$ is presented in Section 3.10.1.

### 4.3.2.3 Two-Level Machine Data Management Considerations

As mentioned earlier (Section 4.3.2) transfers between ECM files and FCM arrays use the CCCC utility routines, CRED and CRIT. This practice avoids the inefficiencies obtained when single data items are directly addressed at random locations in ECM. After allocating required fixed size arrays in FCM including the cross sections array for one group, the remaining planeorlented mesh cell arrays are blocked with one or more mesh lines per block based on the FCM container size (specified on card 02 of A.DIF3D file).

Because of the regular nature of the mesh cell structure in the DIF3D finite difference option, the two-level strategy is implemented with no essential change to the solution algorithm. Loops over the $J$ lines in a plane are replaced by an equivalent set of two loops; a loop over blocks of lines in a plane and a loop over lines within each such block. The one-level implementation simply uses the special case of all J lines contained in a single block.

Prior to processing each block of lines, data from appropriate ECM files must be transferred to FCM (via CRED). After processing each block of lines newly calculated data must be transferred to ECM (via CRIT). The pointers to the FCM arrays used which receive the ECM data are always passed as subroutine arguments to the routines in which the CRED and CRIT occur. On one-level implementations these pointers are set to the appropriate location in the directly addressable ECM file.

Coding which is pertinent only to the two-level data transfers (e.g. CRED and CRIT calis and associated indexing) is bracketted by C2LV comment cards ${ }^{41}$ which are "activated" by a preprocessor code when generating a two-level implementation of DIF3D. When partial plane blocking is required in FCM, additional coding is required for initialization tasks in the next-adjacent-face periodic boundary condition option. An additional array is needed to contain the boundary fluxes (along the lower $X$-boundary on plane $k$ ) which are required in the transverse leakage calculations for the $j=1$ line on plane $k$. A similar array is needed for the reverse calculation.

### 4.3.3 DIF3D Data Management Routines

The high level data management routines developed for DIF3D are designed to simplify the bookkeeping associated with managing the disk and ECM files in a variety of machine environments. These routines employ the BPOINTER routines ${ }^{41}$ to manage ECM file allocations in the ECM container and call the CCCC routines DOPC, DRED and DRIT to perform asynchronous, random access I/O tasks.

The DIF3D routines may be logically divided into two primary groups, those related to ECM files and those related to DOPC files. The first group includes DEFICF, OPENCF, CLOSCF, PURGCF, RNTGET and PCRED. They communicate with each other via the CFTABL COMMON block in which is located data defining the characteristics and current state of each ECM file. The second group includes DEFIDF, OPENDF and CLOSDF which communicate via the RNDMFL COMMON block in which is located data defining the characteristics and current state of each DOPC file. The BLKGET subroutine with entry points (FINGET, BLKPUT and FINPUT) controls data transfer between DOPC files and ECM files and therefore belongs to both groups.

The PCRED routine with entry points (ICRED, PCRIT and ICRIT) is a recent addition to these data management routines and is employed only in the nodal option.

### 4.3.3.1 DEFICF

The characteristics of each ECM file are specified to the DIF3D data management routines by a call to DEFICF. The calling sequence for DEFICF is:

> CALL DEFICF ( CFNAIY, NREC, LREC, NRBLK, NRGRP, LCFN)

This call defines the characteristics of ECM file, CFNAM, which has NREC records of length LREC (single precision) words. There are NRBLK records in a block and NRGRP records in a record group. LCFN is the ECM file reference number by which this file may be addressed and is simply the index of the next available entry in the ECM file table in COMMON block CFTABL. Calling DEFICF with CFNAM $=$ CLEARC will initialize the CFTABL COMMON block.

Entry point DELECF deletes file CFNAM and zeroes its CFTABL entries. Entry point CHNGCF changes the name of the ECM file having reference number LCFN to the name CFNAM.

### 4.3.3.2 OPENCF

After the characteristics of an ECM file have been defined (via DEFICF), ECM container space may be suballocated for it via a call to OPENCF:

CALL OPENCF ( CFNAM, LCFN, NBUFS, IFTYP )
This call issues a call to the BPOINTER routine PUTB to allocate an array named CFNAM. The call allocates space for NBUFS blocks where the size of a block was given in the DEFICF call. The sentinel IFTYP signals one of two operational modes for the ECM file. Files that require I/O transfers are designated with IFTYP=1. Random access files that are ECM-contained and require no $I / 0$ transfers are designated by IFTYP $=0$. Subsequent calls to BLKGET or BLKPUT will automatically ignore I/O requests for these files. Note below the effect of CLOSCF calls with action sentinel unity on IFTYP=0 files.

Calls to OPENCF for files that have already been opened are ignored if either the file is already ECM-contained or if the existing file is not ECMcontained but has sufficient space to contain the requested NBUFS blocks. A file opened with IFTYP=1 can be changed to ECM-contained mode (IFTYP=0) by calling OPENCF with IFTYP=0 provided NBUFS is identical to the existing number of blocks already allocated.

### 4.3.3.3 CLOSCF

When an ECM file is temporarily or permanently no longer needed, the CLOSCF subroutine may be used to release the buffer space. The calling sequence for CLOSCF is:

CALL CLOSCF ( LCFN, NOP )
This call releases the suballocated buffer space for the ECM file with reference number LCFN depending on its associated OPENCF sentinel and the action sentinel $N O P$. If $N O P=0$ or 2 , the buffer space is unconditionally released (via the BPOINTER WIPOUT command). When NOP $=0$ this call also deletes (via an internal DELECF call) the ECM file from the list of files in the CFTABL common block. Calls to CLOSCF with NOP $=1$ are ignored when the file is ECM-contained (i.e. opened with IFTYP $=0$ ).

### 4.3.3.4 PURGCF

Following one or more calls to CLOSCF, the released ECM container storage may be recycled for subsequent use by calling PURGCF. The calling sequence for PURGCF is:

CALL PURGCF (LSTBUF)
PURGCF calls the BPOINTER routine PURGEB to clean up a fragmented ECM container and then refreshes the ECM pointers for all ECM files that remain open. A pointer to the first unused ECM location is returned in LSTBUF.

### 4.3.3.5 BLKGET, FINGET, BLKPUT and FINPUT

All I/O requests to random access files are channeled through BLKGET and FINGET or BLKPUT and FINPUT which ultimately invoke the CCCC routines DRED or DRIT. The calling sequence for BLKGET (which calls DRED) is:

CALL BLKGET ( LCFN, NCBLOK, LDFN, NDBLOK )

This call requests the NDBLOK-th block from the random access file with DOPC reference number LDFN to be read into the NCBLOK-th block of the ECM file having reference number LCFN. A corresponding FINGET call is required to ensure that the potentially asynchronous $1 / 0$ operation has completed prior to using the requested data. An identical calling sequence is required for the BLKPUT and FINPUT routines for writing random access files to disk.

If the designated ECM file is core-contained (IFTYP=0 in the OPENCF ca11) no data transfer requests are issued by these routines. If NBUFS denotes the number of blocks allocated to an ECM file, then the block in which the data transfer occurs is determined as NCBLOK modulo NBUFS. This enables the programmer to use the natural block index of the DOPC file rather than the index imposed by the size of the ECM file. In most applications NCBLOK and NDBLOK will be identical.

### 4.3.3.6 DEFIDF

Members of DOPC random access file groups are defined via calls to DEFIDF. The calling sequence of DEFIDF is:

CALL DEFIDF ( DFNAME, LDFN, MXBLOK, MXLEN, LENFIL )
This call defines the characteristics of the random access file having DOPC reference number LDFN. The maximum number of blocks (MXBLOK), the maximum block length (MXLEN) and the length of the file (LENFIL) are the parameters passed on to DOPC within DEFIDF. The file name DFNAME is used internally by the DIF3D data management routines for the programmer's convenience.

The random access file table in the RNDMFL COMMON block must be initialized by calling DEFIDF with file name CLEARD prior to defining the first DOPC file. A DOPC initialization call (action code 0) will also be made by DEFIDF. A DOPC file group is defined by calling DOPC with action code 3 following one or more DEFIDF calls which define the member files of the corresponding file group. Null files are defined when MXBLOK=0 and provide a means for simplifying program logic. Such files are not added to DOPC file groups, but are entered into the random file table COMMON block, RNDMFL.
4.3.3.7 OPENDF and CLOSDF

The calling sequence for OPENDF is:
CALL OPENDF ( DFNAME, LDFN )
This call returns the DOPC reference number (LDFN) associated with a random access file name and does not initiate $1 / 0$ activity.

The calling sequence for CLOSDF is:
CALL CLOSDF ( LDFN, NOP )
This call closes the random access file with DOPC reference number LDFN by calling either DRED or DRIT with record number zero. The choice of DRED or DRIT depends on the most recent file activity. When action flag NOP $=0$, the associ ted file is deleted from the random access file table.

### 4.3.3.8 PNTGET and IPTGET

Pointers to particular records within an ECM file are obtained by subroutine PNTGET. The calling sequence for PNTGET is:

CALL PNTGET ( LCFN, ICREC, LPT )
This call returns the pointer (LPT) to record number ICREC in the ECM file denoted by the reference number LCFN. LPT is a pointer relative to a long word ECM container array. A long word array is single precision on a long word computer such as the CDC 7600 or the CRAY-1. On short word machines (e.g. IBM 3033) a long word array is a double precision (REAL*8) array. A similar calling sequence used with IPTGET returns the pointer (LPT) to a requested record in the LCFN file relative to a short word (single precision) ECM container array.

On two-level implementations the ECM container is never directly addressed therefore PNTGET is made equivalent to IPTGET. The pointers are then appropriate for use in the CRED/CRIT routines which transfer data between ECM and FCM.

### 4.3.3.9 PCRED, ICRED, PCRIT and ICRIT

PCRED and ICRED combine the functions of returning ECM pointers to a requested record of an ECM file (a PNTGET or IPTGET function, respectively) and then, on two-level machines, transferring data for the requested record from ECM to FCM (a CRED function). The calling sequence for PCRED is:

CALL PCRED ( NCFN, ICREC, MCPNT, LCPNT, NREC, IREAD )
This call returns the pointer (MCPNT) to record number ICREC in ECM file NCFN. In one-level machine implementations the ECM container is directly addressable, therefore PCRED also sets the FCM pointer LCPNT to MCPNT prior to return. In two-level implementations LCPNT is an input argument to the PCRED call and NREC records are transferred to FCM (starting at FCM pointer LCPNT) from ECM file NCFN (starting at ECM pointer MCPNT) whenever the sentinel IREAD is nonzero.

In two-level implementations PCRIT and ICRIT transfer NRECS records from FCM (starting from FCM pointer LCPNT) to ECM file NCFN (starting from ECM pointer MCPNT). MCPNT must be already defined before a PCRIT or ICRIT call is made.
4.3.3.10 STATCF

STATCF is a debugging tool that displays the currently defined ECM files and their associated characteristics.

### 4.3.4 CCCC Utility Routines

Reference 6 describes a set of subroutine calls defined by the Committee on Computer Code Coordination (CCCC) which standardizes data management in order to facilitate the exchange of programs between different computers and laboratories. Only the calling sequences and functions are standardized; the actual coding of each routine is left to individual installations.

The set of routines ${ }^{41}$ developed at ANL are designed to operate on machines with either one level of memory (e.g. IBM and Cray computers) or two levels (e.g. the CDC 7600). The machin?-dependent coding has been kept to a minumum. Not only does this approach make code export easier, it also permits the testing of a two-level data-management strategy on a one-level machine.

The calling sequences and functions are defined fully in Ref. 6. This section goes into some of the coding details for the versions of the CCCC subroutines included in the utility subroutine package.

### 4.3.4.1 SEEK

In the ANL implementation of the CCCC standards all data sets except the output print file and input card image file are given names and version numbers. Some file formats (e.g. those containing isotopic neutron cross sections or the neutron flux distributions) are defined by the CCCC, but others (e.g. the file used by Applied Physics codes to store macroscopic cross sections) are code-dependent. Subroutine SEEK provides the connection between file names and logical unit numbers, even for scratch files. SEEK is very similar to the ARC System routine SNIFF ${ }^{36}$.

SEEK must create and maintain a table (the "SEEK table") that associates each unique file name and version number pair with a "file reference number". The SEEK table must also tell whether a file "exists" (i.e. has had something written into it) or not. The method of initializing the SEEK table is entirely up to the individual installation. The ANL version of SEEK permits two different methods for inftialization. Both are described in the writeup of SEEK in Appendix A of Reference 41. One is the same as the procedure required by SNIFF, the other is more flexible. SEEK must be initialized before any files (binary or $B C D$ ) are read.

A distinction must be made between the "file reference number" used in the arguments of CCCC routines and the "logical unit number" that a programmer codes into a Fortran I/O statement. In the Los Alamos implementation of the CCCC standards the two are not the same. The programmer need not be concerned with the difference when dealing with binary files since all I/O is performed through calls to CCCC routines; applications programs should contain no Fortran statements such as READ or WRITE for binary files. It is a common ANL practice, however, to employ a number of BCD input files and to manage them with SEEK. This means that ANL coding contains calls to SEEK which reference file reference numbers as well as Fortran I/O READs and WRITEs which reference logical unit numbers for such BCD files. The correspondence between the two numbers is managed by means of a subroutine, SEKPHL, which is described later.

Because we employ subroutine SEEK with BCD and random access files in addition to sequential access files, it is instructive to review the following guidelines to avoid potential portability problems.

1. A call to SEEK with the proper read/write mode flag must be issued prior to the first read or write to a data set and prior to the first read or write to a data set that has been rewound. This practice is necessary for compatibility with implementations that dynamically assign logical unit reference numbers upon each call to SEEK and dynamically release logical unit numbers aft or a data set rewind command is received. A call to the appropr, te routine, KEED or RITE, with a record nuber of zero rewinds the data set.
2. The logical unit number for $B C D$ data sets must be obtained by calling subroutine SEKPHL following the call to SEEK. SEKPHL returns the logical unit number corresponding to the logical unit reference number returned by SEEK. SEKPHL must also be used to rewind and close BCD files. See the SEKPHL example in Section 4.1 .2 ; also see Ref. 41.
3. A set of fifteen generic file names (RNDMO1-RNDM15) have been reserved for random access $1 / 0$ applications. In order to maintain portability, calls to SEEK for random access data sets are embedded within our version of DOPC and DRED/DRIT. Consequentiy, SEEK calls for random access files are not otherwise necessary and should never be coded by the programmer.
4. Successive calls to SEEK (with different read/write mode flags) without intervening rewinds must be avoided. Such situations may arise when SEEK is called in a read mode solely to determine file existence. If the file exists, but the programmer does not intend to read the file, then REED (for binary files) or SEKPHL (for BCD files) should be called to rewind it. Later, if the file is actually to be read, SEEK must be called again. The compatibility issues raised on point 1 (above) apply here as well.

The version of SEEK in the utility package performs no finalizing or wrap-up function (NOP=2). The other operations specified by the CCCC standard are all implemented ( $N O P=0,1,3,4,5$ ).

### 4.3.4.2 REED/RITE

The CCCC standards require that all binary $I / O$ operations be executed through calls to standard subroutines, not through Fortran I/0 statements coded into applications programs. This practice permits individual installations to take advantage of locally available, efficient access methods without recoding programs; all that is needed is a local set of CCCC standard I/O routines.

REED and RITE are the CCCC routines specified for binary sequential data transfer between fast core (FCM) and external data files (disk). The calling sequence for REED is:

> CALL REED(NREF,IREC,ARRAY(I),NWDS,MODE)

This call transfers NWDS single-precision words from record number IREC of the sequential file with logical unit reference number NREF to the FCM locations starting at the address of ARRAY(I). A similar call to RITE performs the inverse operation. MODE is a sentinel that permits a programmer to code buffered I/O. When MODE $=0 \mathrm{I} / \mathrm{O}$ operations are completed before the return from REED/RITE. When MODE=1 I/O operations are not necessarily completed before the return to the calling program; a subsequent call with MODE=2 is required to complete the outstanding I/O operation.

The ANL version of REED/RITE includes IBM assembler language code that provides optional special access methods. In addition to providing the standard sequential I/O capability of the Fortran language, this version of REED/RITE provides an asynchronous, random access I/O capability. The SIO
program (see Section 4.4 .3 .1 ) is used to obtain this capability. In short, SIO uses IBM BSAM macro instructions, along with internal tables and absolute track addressing, to process the $\mathrm{I} / 0$ requests. SIO was originally written for the $O S / M V T$ operating system as a more efficient and more convenient alternative to IBM Fortran Direct Access. The current version of the routine runs under both OS/MVT and OS/MVS. The record format for SIO files must have the undefined attribute ( $\mathrm{RECFM}=\mathrm{U}$ ). Since each logical record requires at least one track of direct access storage, the use of the $S I O$ access capability for short record transfers is not efficient.

Within the REED/RITE subroutine, the RECFM parameter of a file's JCL is interrogated by a call to the subroutine RECiM. If the file has an undefined attribute ( $R E C F M=U$ ) the code will use SIO access methods. Any other record format (e.g. VBS, VS, FB, etc.) is processed by standard Fortian sequential $I / 0$. To perform the SIO data transfers, a subroutine SIO is invoked. This routine in turn invokes the subtask SIOSUB which actually performs the I/O operations. The MODE parameter which is passed to REED/RITE is used to determine whether transfer is returned to the calling routine before the $I / 0$ operation is complete. This facility, therefore, provides the user with the ability to overlap I/O and CPU operations or I/O operations on one file with those on another.

### 4.3.4.3 DOPC and DRED/DRIT

The CCCC standards require that all random access $I / 0$ operations be channeled through calls to standard subroutines, not through Fortran $1 / 0$ statements coded into applications programs. Alsu specified is the fact that such data should be transferred between external data files (disk) and extended core memory (ECM).

The calling sequence for $\operatorname{DRED}$ is:
CALL DRED( NREF, IREC, LOCBFU, NWDS, MODE )
This call transfers NWDS single-precision words from record number IREC of the random access file with logical unit reference number NREF to the ECM locations starting LOCBFU words from the (user) ECM reference address (see IOP=0, below). A similar call to DRIT performs the inverse operations. MODE is a sentinel that permits the programmer to code asynchronous $I / 0$. When MODE $=0$ operations are completed before return from DRED/DRIT. When MODE=1 I/0 operations are not necessarily completed before return from DRED/DRIT; a subsequent call with $M O D E=2$ completes the outstanding I/O operation.

Prior to calling DRED/DRIT the random access I/O implementation must be initialized by several DOPC calls. The five DOPC calling options are summarized below:

1. (IOP=0) Initialize DOPC and, in one-level implementations, supply a pseudo ECM reference location.
2. (IOP=1) Supply file characteristics for reference number NREF.
3. (IOP=2) Conclude the definition of the file group, NGREF. NGREF includes all files defined with IOP=l csiis since either the last IOP=2 call or the original IOP=0 call.
4. (IOP=3) Delete file group NGREF and its constituent files.
5. (IOP=4) Finalize DOPC at the conclusion of the program module. All file groups are deleted.

The connection between a random access file reference number NREF and its corresponding logical unit number is established in the ANL implementation by calling subroutine SEEK during the processing of each DOPC (IOP=1) call. The call to SEEK uses the generic random access file name RNDMnn which by convention corresponds to the random access fille reference number NREF=nn. Currently NREF must satisfy $0<N R E F<16$. Codes which use this version of DOPC and DRED/DRIT need only supply in the SEEK initialization call those generic file names used by the applications code.

The DOPC initialization call establishes the pseudo ECM reference point for DRED and DRIT calls on one level machines. Although never explicitly specified in the CCCC standards, this pseudo ECM reference point initialization must also app.ly to CRED and CRIT usage. Consequently, all calls to DRED, DRIT, CRED and CRIT on one-level machines must be preceded by a DOPC initialization call. By defintion in the CCCC standard, the ECM reference location on two-level machines is the first word of ECM (e.g. LCM on the CDC 7600). It should be emphasized that the ECM reference point does not necessarily specify the starting location of ECM.

Except for the implementations on the CDC and CRAY computers (see sections 4.4.3.2 and 4.4.3.3), DRED/DRIT call REED/RITE to perform the random access I/O operations. Consequently, the implementation of DRED/DRIT on IBM 370 systems is simply the REED/RITE implementation discussed earlier in this section.

### 4.3.4.4 CRED/CRIT

CRED and CRIT are the CCCC routines specified for data string transfer between ECM and FCM. The calling sequence for CRED is:

CALL CRED ( FCM(I), LECM, NWDS, IER )
This call transfers NWDS single precision words starting from ECM location LECM to the FCM locations starting at the address of FCM(I). IER is an error sentinel. A similar call to CRIT performs the inverse operation.

The implementation of CRED/CRIT on the CDC 7600 employs the COMPASS assembly language routines WRITEC and READEC to perform the actual data transfers between ECM and FCM. The three arguments in the calling sequence for WRITEC are identical in type to the first three arguments in the CRIT calling sequence (e.g. CALL WRITEC ( FCM, LECM-1, NWDS ) ).

The second parameter LECM in CRIT denotes an ECM location relative to the ECM reference array, while the second parameter supplied in the WRITEC call denotes the corresponding ECM address (e.g. LECM-1). On one-level implementations CRED and CRIT simply transfer data between FCM and pseudo ECM locations both of which reside in the same memory level. The transfers are performed via standard Fortran assignment statements.

As noted in the DOPC and DRED/DRIT section, CRED/CRIT are interlocked with DOPC to ensure that the ECM container reference address pointers have been initialized by DOPC.

### 4.3.4.5 ECMV

ECMV is the CCCC routine specified for transfering data strings between locations in ECM on two-level machines (e.g. CDC 7600). Transfers are performed using CRED and CRIT which route data through a 64 -word FCM buffer array local to ECMV. This approach circumvents the compiler restriction limiting array sizes to 131071 words on the CDC 7600 . The calling sequence for ECMV is:

CALL ECMV ( LECM1, LECM2, NWDS )
This call transfers NWDS single precision words starting from ECM location LECM2 to the ECM location starting at LECM1.

### 4.3.5 BPOINTER, a Dynamic Storage Allocation Program

The problem size limitations imposed by fixed-dimension arrays in a large scale code such as DIF3D is intolerable. Running small problems with unnecessarily large dimensions can be needlessly expensive. Code changes may be awkward and, from a quality assurance standpoint, risky. DIF3D, therefore, uses a dynamic storage allocation system to manage the core storage of data during execution. Core storage is reserved for a particular dimensioned array only during the time the corresponding data are required to be in-core; at other times the space is made available for the storage of other data.

The ARC System dynamic storage allocation routines are contained in the BPOINTER package ${ }^{36,41}$. BPOINTER is a collection of subprograms which was developed to alleviate bookkeeping chores associated with the use of dynamic storage allocation techniques. These chores are separated into two functional categories:

1. The highly machine-dependent functions of obtaining/releasing large blocks of workspace called "containers" from/to the operating system.
2. The largely machine-independent bookkeeping functions associated with managing array allocations within a given container.

Category 1 tasks are performed by the IGTLCM package, a self-contained set of subroutines that may be used independently of BPOINTER. Consequently, in situations requiring only the IGTLCM functions (e.g. the XCM container allocation in the CDC 7600 implementation of DOPC and DRED), inclusion of the BPOINTER routines is unnecessary.

### 4.3.5.1 Programming Considerations

Programs which use the BPOINTER capability tend to be structured in subroutine form. A control routine is used to define one or two blocks of storage (the containers) and to make the appropriate calls to BPOINTER to control the allocation of space within these containers. Calls to calculational subroutines transmit pointers corresponding to array locations through
the calling sequences. All BPOINTER capabilities are accessed through an appropriate call to an entry point, subroutine or function subprogram. The following capabilities are available in the BPOINTER system:

1. Storage of data in and retrieval of data from the container array via user defined variable arrays.
2. Purge of variable arrays stored in the container array.
3. "Cleanup" of the container array when more storage is required (to avoid fragmentation).
4. Redefinition of array sizes without loss of data already stored in the array.
5. Dump of selected integer, floating point or Hollerith arrays in an appropriate format.
6. Trace edits of BPOINTER activities.
7. Status reports of the BPOINTER tables.

Detailed program documentation including flow charts, common block information and subprogram descriptions is avallable in Reference 36. A shorter, functional writeup is included in Appendix A of Reference 41 (member POINTR) and gives calling sequences for the BPOINTER routines. This section is intended to provide a brief description of how the program package operates.

The short example shown in Figure 4.8 illustrates the structure of a program using the BPOINTER package. This example demonstrates the manner in which a container is allocated, pointers defined and used, and the container released.

The letters $M$ and $B$ are used as mnemonics within BPOINTER to designate routines which operate on the FCM and ECM containers, respectively. Thus PUTM allocates an array in the FCM container while PUTB allocates an array which must be referenced on a CDC 7600 as either a LEVEL 2 or a LEVEL 3 array. According to CCCC conventions ${ }^{6}$, arrays allocated in ECM are referenced through the standard subroutines CRED/CRIT and DRED/DRIT in exportable source code intended for two-level computers.

On IBM equipment without HIARCHY support (e.g. the 370/195) the two containers are both in fast core. The distinctions noted above between the two dynamic containers are important on the CDC 7600 where the containers are addressed quite differently and on IBM equipment with HIARCHY support where access to the LCM container (HIARCHY l, subpool l) is significantly slower than access to the MAIN core container (HIARCHY 0 , subpool 2).

In the example all dynamically allocated FCM arrays are addressed relative to the labeled COMMON block /ARRAY/ which contains a single array element, BLK(1). In the short-word version of the code the element must be declared REAL*8. In the two-level (CDC 7600) version of BPOINTER the ECM container is addressed relative to the first word of LCM. The pseudo ECM container on IBM equipment is a second container which may be given a HIARCHY 1 location but is

```
CSW
 IMPLICIT REAL*8(A-H,0-Z)
 REAL*4 BLK4
CSW
 COMMON/ARRAY/BLK(1)
 COMMON/IOPUT/NIN,NOUT,NOUT2
 DIMENSION BLK4(1)
 EQUIVALENCE (BLK(1),BLK4(1))
 DATA FLUX/4HFLUX/, POWER/5HPOWER/, MAXSIZ/10000/, NG/27/,
 1 14/4/, I8/8/, I0/0/
 NOUT=6
C ALLOCATE CONTAINER WITH MAXSIZ WORDS OF FCM AND NO ECM.
 CALL BULK(IO)
 CALL POINTR(BLK,MAXSIZ,IO)
C ALLOCATE SPACE FOR ARRAYS POWER AND FLUX. DETERMINE THE
C POINTER FOR SUB-ARRAY CURRENT WHICH FOLLOWS THE FIRST NG
C SINGLE-PRECISION WORDS FOR THE ARRAY FLUX. THEN CHECK FOR
C A BPOINTER ERROR.
 CALL PUTM(POWER,NG,I8,IPOWR)
 CALL PUTM(FLUX,2*NG,I4,IFLUX)
 ICURNT=IPT2(IFLUX,NG,IO)
 IF(IPTERR(DUMMY).LE.0) GO TO 10
 PRINT 500
 500 FORMAT(15HOBPOINTER ERROR)
 STOP
 10 CONTINUE
C CALL SUBROUTINE INIT TO USE THESE ARRAYS. THEN FREE THE
C CONTAINER AND STOP.
 CALL INIT(BLK(IFLUX),BLK(IPOWR),BLK4(ICURNT),NG)
 CALL FREE
 STOP
 END
C
C---
C
 SUBROUTINE INIT(PHI,POWER,CURENT,NG)
CSW
 REAL*8 POWER
CSW
 DIMENSION PHI(1), POWER(1), CURENT(1)
 DO 10 I=1,NG
 PHI(I)=1.0
 POWER(I)=3.1E+06
 CURENT(I)=. }33
 10 CONTINUE
 RETURN
 END
```

Fig. 4.8. A BPOINTER Example
addressed in precisely the same manner as the first (FCM) container. The one word assigned to the container by the applications program provides a reference address. At execution time the function routines IGTLCM and IGTSCM are used to obtain the addresses of core which are available to the program for the allocation of data arrays.

A few codes at the same time use BPOINTER and directly address ECM on twolevel machines. In these programs the "LEVEL $2 "$ BPOINTER reference common block must start at the first word of LCM. BPOINTER calculates address offsets based on that assumption. DIF3D and most codes currently under development do not address ECM directly; they employ CRED and CRIT to transfer blocks of data between the two levels of memory.

Occasionally it is convenient to exercise the two-level implementation on a one-level machine. In such cases it is necessary to precede the BPOINTER initialization call by the DOPC initialization call so that the user reference address of the BPOINTER ECM container is initialized prior to the first call to CRED/CRIT (BPOINTER employs CRED/CRIT in its two-level implementation). A discussion of IGTLCM/IGTSCM and the associated assembler routines that allocate these blocks of memory follows.

### 4.3.5.2 IGTLCM/IGTSCM/IGTXCM

Function IGTLCM and its associated entry points IGTSCM and IGTXCM manage the allocation of the ECM, FCM and XCM containers, respectively. The FCM container always resides in fast memory (e.g. the FCM storage pool). The ECM container and the auxiliary ECM container named XCM both reside in the same storage pool. On single-level machines they reside in the FCM storage pool along with the FCM container; on two-level machines like the CDC 7600 they reside in LCM. If the ClLV language flag is activated in a CDC 7600 implementation then the ECM and XCM containers will be allocated in the FCM storage pool along with the FCM container.

IGTLCM, IGTSCM and IGTXCM route all memory allocation requests through function subroutine JGT which calls the appropriate assembler, Fortran or system routines. The calling sequence for IGTLCM is:

$$
\text { LOCECM }=\text { IGTLCM( NWORDS ) }
$$

This call returns the (REAL*4) word address of the requested block of NWORDS which constitutes the ECM container. A similar call to IGTSCM or IGTXCM allocates the appropriate container. The function value of -1 is returned if the container allocation falls. Subroutine FRELCM with associated entry points FRESCM and FREXCM release the corresponding containers. The example in Figure 4.9 illustrates the use of the IGTLCM package. The function LOCFWD provides the (REAL*4) word address of the reference variable used to address the container.

### 4.3.5.3 IBM Allocation

The assembler routine MYLCM with entry point MYSCM, FREELC and FREESC (called by JGT or FRELCM) uses the standard IBM macro instructions GETMAIN and FREEMAIN to allocate and free consecutive words of core which are available to the program. The designations subpool 1 and 2 are assigned to the ECM and

```
 COMMON /REFFCM/ BLK(1)
C
C ALLOCATE FCM CONTAINER
C
 LOCFCM = IGTSCM(NWORDS)
 IF (LOCFCM .EQ. -1) GO TO 10
C
C DETERMINE WORD OFFSET OF CONTAINER FROM REFERENCE ARRAY BLK(1)
C
 LFCREF = LOCFCM - LOCFWD (BLK(1))
C INITIALIZE CONTAINER
C
DO l I=1,NWRDS
 BLK(LFCREF+I)=0.0
 l CONTINUE
 \bullet
 •
```



```
C
C FREE CONTAINER
C
 CALL FRESCM
 .
 •
 -
C
C ERROR EXIT
C
10 CONTINUE
 •
 •
```

Fig. 4.9. IGTSCM/FRESCM/LOCFWD Example

FCM containers, respectively. Since allocations are performed in units of 256 (REAL*8) words, it is most efficient to request blocks of memory in such multiples.

Figure 4.10 shows a schematic diagram of a program and SCM container.

### 4.3.5.4 CDC Allocation

The COMPASS assembler routine JGTSCM with entry point JGTLCM (called by JGT) uses the standard CDC macro instruction MEMORY to determine and to change the job's SCM and LCM field lengths.

The FCM container is placed at the end of the user's SCM field length, as shown in Figure 4.10. The ECM container is placed at the end of the user's LCM field. The last word of each container is four words short of the user's SCM or LCM field length; this is done to avoid I/O problems in systems that attempt to read ahead. The XCM container is allocated to provide space for indices to the random access records of the DOPC files on the CDC 7600 implementation, only. The implementation uses mass storage routines (READMS, WRITMS, OPENMS and CLOSMS) in the CDC library.

BPOINTER releases containers when they are no longer needed and returns field lengths to their original values.

### 4.3.5.5 CRAY Allocation (CTSS)

Two subroutines (LASTMEM and MEMORY) from the CRAY Time Sharing System (CTSS) Fortran Library at Los Alamos National Laboratory are called by JGT to determine and change a job's field length, respectively. JGT establishes the user program length (i.e. the high limit of user code, JCHLM) by an initial call to LASTMEM. Each time a new container is requested JGT allocates space in one of two ways:

1. If another container has been previously allocated, and there is enough free space between it and the program, the new container is established in the free space. The field length is not changed.
2. If adequate free space is not available MEMORY is called to increase the field length, and the new container is placed such that the address of its last word is the new value of JCHLM.

Figure 4.11 shows a schematic diagram of fast core of a CRAY machine containing a program and two containers.

JGT reduces the field length by an appropriate amount only when the container ending at address JCHLM is released.

### 4.3.5.6 CRAY Allocation (COS)

Dynamic memory allocation on machines using the standard CRAY Operating System ( $\operatorname{COS}$ ) is implemented in a manner that is functionally equivalent to the CTSS implementation. CTSS subroutines MEMORY ( 2 arguments) and LASTMEM are simulated on COS installations by the Fortran subroutine MEMGET and its entry point LASTMEM, respectively. A blank COMMON array of length 1 must be located as follows in order for it to provide a reference point (JCHLM) for the dynamic memory allocation:


Fig. 4.10. Fast-Core Allocation on IBM and CDC 7600 Machines


Fig. 4.11. Fast-Core Allocation on a CRAY Machine

1. Non-overlayed COS systems - place it after all object code (the CFT compiler does this by default).
2. Segmented loading on COS system - assign it to a second memory level above all overlays.
3. COS overlay loading types 1 or 2 - assign it (via the SBCA overlay directive) to a specified address larger than any address used in the overlay structure (this number is installation dependent and must be determined upon completion of loading).

Subroutine MEMGET calls the COS system routine MEMORY (5 arguments) which issues calls to the CAL assembler MEMORY macro to increment or decrement JCHLM, the length of the user code area. A corresponding field length change occurs simultaneously.

### 4.4 Machine Dependence, Hardware and Software Requirements

### 4.4.1 General Considerations

Machine dependent features in DIF3D that are not universally supported in FORTRAN ' 66 compilers are isolated in accordance with the coding conventions established by the CCCC ${ }^{6}$. All data transfer, except for BCD input file processing is performed via the CCCC utility routines described in Section 4.3.4. Dynamic storage allocation of FCM and ECM containers is isolated in the IGTLCM routines (Section 4.3.5.2). The BPOINTER package manages the dynamic suballocation of arrays within the ECM and FCM containers. Differences of a global nature such as word length, compiler dialects or machine storage hierarchy are surrounded with pairs of special "keyword" comment cards ${ }^{41}$ that are activated or deactivated depending upon the characteristics of the target machine.

### 4.4.2 Storage Requirements

Formulas for calculating required ECM and FCM container space are given in Tables 3.2 and 3.3. At least 325 K -bytes of storage are recommended for program and file buffer storage on the IBM 370 series; 40,000 words of SCM are required on the CDC 7600. ECM requirements are linearly dependent on the number of cells ( $N$ ) in a mesh plane. The finite-difference option requires at least 9 N (8-byte) words in $2-\mathrm{D}$ problems and at least 25 N words in $3-\mathrm{D}$ problems. At least 19 mesh lines of data and one group of cross section data must be stored in SCM on the CDC 7600. External data storage must be available for approximately 40 scratch and interface files. Fourteen of these are random access scratch files (grouped into six file groups), the remainder are sequential access files with either formatted or unformatted record types.

### 4.4.3 Data Access Modes

The calling sequences in the CCCC utility routines REED/RITE and DRED/DRIT provide for asynchronous, sequential and random access $1 / 0$. These features have been fully exploited on IBM 370 systems by the SIO package discussed in Section 4.4.3.1 (see also Sections 4.3.4.2 and 4.3.4.3). The READMS, WRITMS, OPENMS and CLOSMS routines provide random access I/O capabilities on CDC 7600 systems (see Section 4.4.3.2). No asynchronous I/O has been implemented on this system. Fortran ' $77 \mathrm{I} / 0$ statements are used to implement random access I/O on the CRAY-1 (see Section 4.4.3.3).
4.4.3.1 SIO, a random access, asynchronous I/O package for IBM systems

In order to make efficient use of large computers such as the IBM System 370 Model 195 or 3033 at Argonne National Laboratory, a program must attempt to optimize both its central processor and peripheral processor operations. Most large scientific programs are written in Fortran, a high level language which provides little flexibility in specifying efficient $I / O$ methods. Several Fortran codes have, however, been designed which would profit by the availability of a program package with the following characteristics:

1. permits asynchronous operation;
2. performs random access operations efficiently;
3. handles large records efficiently;
4. performs $I / O$ operations without the need for buffers.

The SIO program package was written to provide a Fortran-callable access method with these characteristics.

The two IBM-supplied Fortran I/O programs which come closest to satisfying these requirements are the Fortran IV (H Extended) asynchronous I/O and the Fortran IV Direct Access I/O.

The Asynchronous I/O uses V-type records which include control information in each record. Hence buffers are essential. However, with records longer than two tracks on standard direct access devices, the buffers become essentially useless in increasing I/O effieiency, since almost the entire I/O operation must be completed before the user can access the data. Furthermore, these buffers consume large amounts of core, and additional central processor effort is required to move the data between program locations and the buffer. In addition to buffering the data, the Asynchronous I/O operations are sequential and there are no efficient methods for accessing records in a random manner.

Fortran Direct Access I/O does permit random access of the data file, but it is essentially limited to track-length records. This could be overcome through keeping track of the location of each record in an index table and doing software spanning. Since Direct Access I/O uses V-type records, buffering is required. There is also a substantial overhead incurred in the initial formatting of the direct access data set when the file is first opened. Furthermore, asynchronous operation is impossible.

The first step toward attaining a capability with the attributes noted above was to study the IBM I/O routines accessible through standard system Macro calls. Of these, the Basic Sequential Access Method (BSAM) was chosen because it could be used to randomly access records through the Point Macro; it supported U-format records which contain no control information within them; and it features chained scheduling which allows several tracks to be accessed without relinquishing the input/output channel and so decreasing I/O time. As with the Direct Access method, it was necessary to use an index table which contains the relative location of each record and its length. A copy of this table resides in core and also occupies the first track of the
data set. The problem of formatting the data set was overcome by always appending a new record to the end of the data set regardless of which logical record it might be. When records are updated, they are written over the old record if possible, or else appended to the end of the data set like a new record. Asynchronous operation is achieved through subtasking the actual code to do the I/O.

The SIO program package consists of two central modules (SIO and SIOSUB) along with a few auxiliary routines used for edit and error processing (SIOTRC,SIOERR,SIOWU6). In addition the capability may be invoked using the standard I/O routines REED/RITE which branch to the SIO access method for datasets defined with the job control record format $U$, i.e. RECFM=U. The two main modules consist of a subroutine (SIO) which is included in the main program (task) through appropriate linkage editor control statements and a self-contained load module (SIOSUB) which operates as a subtask after being ATTACHed by the subroutine SIO. There are two assembly parameters in the modules SIO and SIOSUB which are of interest to the user. They are NBLKS and MAXFILES. NBLKS sets the length of the index table discussed above (called the File Control Block or FCB) and determines the maximum number of records which may be placed in the file. For NBLKS $=1,431$ entries are allowed; for NBLKS $=2,943$ entries are allowed; for NBLKS $=3$, 1455 entries are allowed; for $\operatorname{NBLKS}=4,1967$ entries are allowed, but this option is available only if the SIO files are on direct access devices with a track length greater than eight kilbyotes. The parameter MAXFILES specifies the maximum number of files which may be open at a single time. The two parameters are routinely set at NBLKS $=2$ and MAXFILES $=50$. The variables must be identically defined both in the main task (SIO) and the subtask (SIOSUB) and files created with a specific value of NBLKS may not be accessed by versions of SIO with a different value of NBLKS.

### 4.4.3.2 Implementation Considerations on the CDC 7600

Random access I/O on the CDC 7600 is implemented using the routines OPENMS, CLOSMS, READMS and WRITMS found in the Fortran utility library. Auxiliary storage equal in length to the number of records in the file must be supplied during the OPENMS call for each file. An auxiliary ECM container named XCM is allocated directly from DOPC by calling entry point IGTXCM in the IGTLCM dynamic storage allocation subroutine package. Consequently, DOPC and DRED/DRIT depend only on IGTXCM for dynamic storage allocation.

The subscript index limitation of 131071 words imposed on CDC 7600 LCM arrays is effectively raised to 393213 by employing two routines DRED1 and DRED2 each of which addresses a successively higher block of 131070 words of ECM. The circumvention is accomplished by passing the initial address of the next adjacent block of 131070 words of ECM to the appropriate routine, DRED1 or DRED2.

### 4.4.4 Vectorization on the CRAY-1

Although DIF3D was not designed for a pipelined computer such as the CRAY-1, an advanced computer performance evaluation project ${ }^{42}$ at Argonne led to the implementation of a vectorized variant of the SLOR algorithm applicable to nonperiodic, orthogonal geometry models. The regular mesh structure and the fact that at least 75\% of the DIF3D scalar execution time is spent in a
small kernel of subroutines that perform the SLOR algorithm provided ample opportunity for vectorizing (with vector lengths $\mathrm{J} / 2$ ) the dominant computations in DIF3D without changing the DIF3D data structure.

The vector pipeline of the CRAY-1 is exploited by simultaneously solving the tridiagonal matrix equations generated for the ( $\mathrm{J}+\mathrm{l}$ )/2 odd lines on a mesh plane, and then simultaneously solving the corresponding tridiagonal matrix equations generated for the $\mathrm{J} / 2$ even lines on a plane. This odd/even (red/black) SLOR algorithm ${ }^{43}, 44$ was implemented within the existing DIF3D data structure by modifying subroutine OSWEEP and by increasing one auxiliary mesh line array (SOLN) to the size of a mesh plane array. The CRAY-1 version of OSWEEP calls RBOSRC and RBOSOR, the vectorized counterparts of the ROWSRC and SORINV subroutines, twice for each mesh plane $k$ before processing plane $k+1$; the first pass processes the odd numbered lines on plane $k$ and the second pass processes the even numbered lines.

A comparison of the relative megaflop rates (millions of floating point operations per second) achieved by the scalar (conventionally ordered) and the vector (odd/even ordered) algorithms, when applied to the two-dimensional IAEA benchmark problem with a ( $170 \times 170$ ) rectangular mesh, is tabulated in Table 4.5.

The results ${ }^{45}$ in Table 4.5 should be viewed in light of three considerations. First, one expects a factor of 2.3 increase in megaflop rates on the CRAY-1 due to machine clock cycle differences ( 12.5 nanosecs on the CRAY-1 vs. 28.5 nanosecs on the IBM 370/195). Second, the ROWSRC subroutine in the so-called scalar algorithm will vectorize on the CRAY-1. Third, the megaflop rate of the current, vectorized algorithm is dependent on the problem in two respects. The vector length depends on the number of lines ( J ) on a plane; the vector stride (the number of memory words between successive vector elements) of length 2 I will cause memory bank conflicts whenever

Table 4.5. Execution Rates for the 2D IAEA Benchmark ${ }^{\text {a }}$

| Method/Machine | Cray-1 | IBM $370 / 195$ |
| :---: | :---: | :---: |
| Vector Fortran (RBOSRC, RBOSOR) | 4.4 | 0.83 |
| Scalar Fortran <br> (ROWSRC, SORINV) | 1.6 | - |
| Scalar Fortran with Assembler SORINV | 2.7 | 1 |
| ${ }^{\text {Rates }}$ are expressed in units of 3.9 megaflops. The 2 group model is defined with a $1 \mathrm{~cm}(170 \times 170)$ mesh |  |  |

the line length $I$ is a multiple of 8 on the typical 16 memory bank machine. Work in progress towards implementation of a vector length of $\mathrm{J} \cdot \mathrm{K} / 2$ should yield favorable performance increases for a wider class of problems without significantly altering the DIF3D data structure.

## 5. THE NATIONAL ENERGY SOFTWARE CENTER VERSIONS OF DIF3D

DIF3D is available on magnetic tape through the National Energy Software Center; versions exist for the IBM 370 series, the CDC 7600 and the CRAY-1 computers. This section describes the contents of the tapes and outlines the steps necessary to implement the code in a standalone form on the above mentioned computers. Knowledge regarding solution techniques or the code itself is not assumed. The NESC package includes several benchmark problems; this section also contains descriptions and solutions of these test problems.

### 5.1 The DIF3D Package

The NESC package consists of this report and a magnetic tape the characteristics of which are listed in Table 5.1. Tables $5.2 \mathrm{a}, \mathrm{b}$, c respectively describe the contents and approximate length of each BCD file on the tape for each of the three target computers noted above.

TABLE 5.1. DIF3D Tape Characteristics and its BCD File Contents

| Characteristics |  |
| :---: | :---: |
| Type | 9 track |
| Density | 1600 bpi |
| Label | unlabeled |
| Block Size | 3200 (1596) $^{\text {a }}$ |
| Record Length | 80 (133) $^{\text {a }}$ |
| Format | EBCDIC |

### 5.1.1 File 1 - DIF3D FORTRAN Source Images

The source code in files 1 and, if applicable, files 2 and 3 combine to form the DIF3D code. The first file includes the major code blocks summarized in Table 5.3. FORTRAN source for all machine versions is derived from a single master source file. Statements that are unique to a particular implementation are surrounded by pairs of "keyword" comment cards. Code within the keyword brackets is selectively "activated" (uncommented) or "deactivated" (commented out) by a simple preprocessing program ${ }^{41}$ at the time a tape is generated. The keywords bracket coding applicable to general machine architectural features such as long and short word lengths (e.g. CLW or CSW) and one- or two-level memory hierarchies (e.g. C1LV or C2LV). Particular manufacturer, compiler or installation dependencies are also bracketted (e.g. CIBM, CDC*, CRAY, CAR*- CLBL and CD76). Keywords (CSA, CSEG and COVL) exist for generating modular or standalone code appropriate for segmented or overlay loading.

This package is sufficiently large that although the source code on the tape will be numbered in a global fashion, future code modifications will be specified on a subroutine basis, only.

TABLE 5.2a. Contents of NESC Export Tape for IBM 370 Systems

| File <br> Number | Contents | Estimated Number <br> of Card Images |
| :---: | :--- | :---: |
| 1 | DIF3D FORTRAN Source Code | 79196 |
| 2 | Machine Dependent Source Code | 1498 |
| 3 | SIOSUB Subtask (IBM) Assembler | 1228 |
| 4 | Lader Directives | 194 |
| 5 | ARCSP021 JCL Procedure | 282 |
| 6 | Sample Problem Input (Cases 1, 2, 3 and 4) | 226 |
| 7 | Sample Problem Input (Cases 5 and 6) | 161 |
| 8 | Sample Problem Output (Cases 1, 2, 3 and 4) | 3936 |
| 9 | Sample Problem Output (Cases 5 and 6) | 2392 |
| 10 | CCCC and Code Dependent File Descriptions | 5431 |

TABLE 5.2b. Contents of NESC Export Tape for CDC 7600 Systems

| File <br> Number | Contents | Estimated Number <br> of Card Images |
| :---: | :--- | :---: | :---: |
| 1 | DIF3D FORTRAN Source Code | 79196 |
| 2 | Loader Directives | 121 |
| 3 | Sample Problem Input (Cases 1, 2, 3 and 4) | 226 |
| 4 | Sample Problem Input (Cases 5 and 6) | 161 |
| 5 | Sample Problem Output (Cases 1, 2, 3 and 4) | 3936 |
| 6 | Sample Problem Output (Cases 5and 6) | 2392 |
| 7 | CCCC and Code Dependent File Descriptions | 5431 |

TABLE 5.2c. Contents of NESC Export Tape for CRAY-1 Systems

| File <br> Number | Contents | Estimated Number <br> of Card Images |
| :--- | :--- | :---: |
|  | DiF3D FORTRAN Source Code | 79196 |
| 2 | Machine Dependent Source Code (optional) | 177 |
| 3 | Loader Directives | 121 |
| 4 | Sample Problem Input (Cases 1, 2, 3 and 4) | 226 |
| 5 | Sample Problem Input (Cases 5 and 6) | 161 |
| 6 | Sample Problem Output (Cases 1, 2, 3 and 4) | 3936 |
| 7 | Sample Problem Output (Cases 5 and 6) | 2392 |
| 8 | CCCC and Code Dependent File Descriptions | 5431 |

TABLE 5.3. DIF3D Code Blocks

| Principal <br> Code Blocks | Approximate Number <br> of Card-Images |
| :--- | ---: |
| D3DRIV (+ utilities) | 9537 |
| SCAN | 306 |
| STUFF | 730 |
| GNIP4C | 23043 |
| HMG4C | 4745 |
| MODCXS | 938 |
| BCDINP | 1176 |
| S4C10A | 2625 |
| DIF3D | 36056 |
| UDOIT1,2,3,4 | 40 |

### 5.1.2 Machine Dependent Source Code

Most compilers (except for the FTN compilers on the CDC 7600) do not permit the intermixing of FORTRAN and assembler source code. File 2, therefore, segregates assembler code from the FORTRAN coding on File l for computers other than the CDC 7600. Some of the assembler code located on File 2 is provided solely for the purpose of optimizing CPU performance, and is optional in this respect.

On the tape destined for IBM installations, file 2 contains IBM assembler code for dynamic storage allocation and for asynchronous, random access I/0 processing. File 3 on this tape contains the IBM assembler source code for the SIOSUB subtask which is required for the DIF3D random access I/O implementation on IBM 370 systems. See the explanation in Section 5.4.3.

On the tape destined for the $\operatorname{CDC} 7600$, assembler subroutines for dynamic storage allocation, for transfers between ECM and SCM and for optimizing SORINV (the subroutine which performs the back substitution and overrelaxation tasks in the SLOR solution of the tridiagonal matrix equations) are appropriately located with their FORTRAN counterparts and associated routines on file 1.

File 2 on the CRAY-1 tape contains an assembler coded optimized version of the (non-vectorizable) SORINV routine mentioned in the previous paragraph. Subroutines RBOSOR and RBOSRC for the vectorizable (odd/even ordering) SLOR algorithm are present on file 1 (see Section 4.4.4).

### 5.1.3 Loader Instructions

Instructions for creating the DIF3D overlay or segment structure are included for the convenfence of the user. Linkage editor instructions are provided on the NESC tape for IBM 370 systems (see also Appendix E). Instructions for the SEGLINK segmented loader at Lawrence Berkeley Laboratory are included on the CDC 7600 tape (see also Appendix F.1). Type 01 overlay directives are included with the CRAY-1 tape (see also Appendix F.2). As noted in Section 5.1.1 all tapes have overlay calls and directives present in the FORTRAN source; these are appropriately activated (uncommented) on the CDC 7600 and CRAY-1 tapes (see Section 5.2.1).

### 5.1.4 Sample Problem Input and Output

Six problem cases are supplied; four of these cases arise from two- and three-dimensional models of the well-known SNR Benchmark Problem ${ }^{46,47}$ in four energy groups. Solutions for both the finite-difference triangular geometry option and the nodal hexagonal geometry options are generated for these two models. Two- and three-dimensional models of the well-known IAEA benchmark problem ${ }^{48}$ with two energy groups provide the remaining two test problems. Finite-difference solutions of these orthogonal geometry (XY and XYZ) problems are generated. Section 5.3 describes the benchmark problems.

Each sample problem was run on the IBM 370 system at Argonne and the corresponding output, including carriage control symbols, is provided on the NESC tape. The output files will consequently have a record length of 133 characters.

### 5.1.5 ARCSP021, An Instream JCL Procedure for IBM 370 Systems

ARCSP021, the instream JCL procedure appropriate for running the NESC version of DIF3D on IBM systems is provided for the convenience of the user. It is listed in Appendix $A$ and a discussion of its parameters appears in Section 3.12.3.

### 5.1.6 CCCC and Code-Dependent Interface File Descriptions

The file descriptions for the various interface files used in DIF3D are provided on the tape to allow the user to inexpensively generate additional copies. These descriptions also appear in the Appendices B, ` $\quad \mathrm{Id}$ D of this report.

### 5.2 Implementation of the NESC DIF3D as a Stand-Alone Program

### 5.2.1 Code Structure and Loading Instructions

Table 5.3 lists the major code blocks within the DIF3D code system; functional descriptions of these code blocks appear in Section 4.1. A minimal overlay structure, other than no overlays at all, uses these major code blocks as primary overlays and D3DRIV as the root overlay. A detailed overlay structure is given for the major code blocks GNIP4C, HMG4C and DIF3D in Figures $4.2,4.3$ and 4.4 , respectively. On systems restricted to three overlay levels, a root segment with primary and secondary overlays only (e.g. CDC 7600 overlay loader or the type 01 overlay directives on the CRAY-1), subroutine DIF3D is assigned to the root segment as a logical extension of the main Siver D3DRIV. This puts the major overlays of the neutronics solution at the same (primary overlay) level as the remaining code blocks GNIP4C, HMG4C, etc.

Source code for the major code blocks is on File 1 of the NESC tape; code generated from assembling the marinne-dependent source (if present) on File 2 should be included at load time with the root segment. Loading instructions for the target computers are included in the appropriate files noted in Tables $5.2 \mathrm{a}, \mathrm{b}, \mathrm{c}$. Also present within the source code are appropriately inactivated (e.g. commented) or activated (uncommented) overlay directives for the CDC 7600 and CRAY-1 computers. Appendices E, F. 1 and F. 2 display the job control language and the loader directives required to create the DIF3D load modules for each computer.

SIOSUB, a separate subtask module (file 3), is required to implement the random access I/O capability used by DIF3D on IBM systems. The next section describes its relation to the SIO access method and its placement in the STEPLIB data set prior to execution.

### 5.2.2 SIO

The SIO access method provides a random access, asynchronous I/O capability on IBM operating systems. Within DIF3D the SIO routines are invoked directly from the CCCC generalized I/O subroutines REED and RITE. The source code for SIO is included as part of the DIF3D standalone code and requires special care with regard to its implementation. In particular, SIO is made up of an assembler language module, SIOSUB, and three assembler subroutines, SIO, RECFM and SIOTRC. The latter routines are assembled and included within the root segment of the DIF3D load module in a manner completely analagcus to Fortran routines such as REED and RITE. The subroutine RECFM is called by REED/RITE to interrogate the DCB of a dataset to determine whether it has been designated with an undefined record format, i.e. RECFM=U. If so, it is considered an SIO dataset and the subroutine SIO is called to perform the I/O rather than the Fortran system routine IBCOM ${ }^{\prime}$. The subroutine SIO sets up argument lists and then passes control to the load module SIOSUB to perform the actual I/O operations. Thus, in addition to the DIF3D load module, a second load module, SIOSUB, must be available to the system at the time of execution of DIF3D, i.e. SIOSUB must be a member of a partitioned data set referenced in the STEPLIB data definition JCL of the job step. To create the load module SIOSUB, it is necessary to assemble the source code and link edit the resulting object code using standard procedures. It is however essential that the load module SIOSUB be assigned the "Re-enterable" attribute by the linkage editor. This may be done by assigning the parameter RENT in the PARM field of the linkage editor execution step as follows:
//LKED EXEC PGM=IEWL, PARM='RENT,...'

### 5.2.3 File Number Assignments

All sequential binary files (input and output interface files and scratch files) used in the DIF3D code system are handled through the CCCC standard subroutines SEEK, REED and RITE. The assignment of file numbers to file names and the initialization of the SEEK tables is done from the DIF3D driver D3DRIV (also known as MAIN on IBM systems). Subroutine SEEK is also used to obtain reference numbers for sequential $B C D$ interface files; the subroutine SEKPHL is then used to obtain corresponding logical unit numbers for subsequent use with FORTRAN READ and WRITE statements. SEKPHL is also called to rewind (close) all BCD data sets. Section 4.3 .4 describes these functions.

Fourteen random access scratch files are exclusively referenced by the CCCC standard subroutines DOPC, DRED and DRIT; only the DIF3D neutronics solution code block references these files. File names RNDMO1-RNDM14 correspond to DOPC reference numbers $1-14$, respectively. The Argonne implementation of the DOPC, DRED and DRIT package uses subroutine SEEK to assign logical unit reference numbers to the 14 DOPC reference numbers. Except for noted exceptions, all DOPC calls are issued from subroutines SSDISK or NHDISK in the DIF3D initialization segment SSINIT. The exceptions are the DOPC initialization and termination calls in subroutine DIF3D, the driver for the DIF3D neutronics
module proper, and a DOPC call required in subroutine XSREV, the adjoint cross section reversal subroutine. In the latter case, DOPC file group 6 is deleted and redefined with a potentially different record size in its lone member file.

Table 5.6 lists all of the files used by the code blocks in the NESC version of DIF3D and classifies them into one of five different categories that have already been defined in Section 4.2 for the Argonne production version of DIF3D. As shown in the table, printer output is written to file 6 and optionally to file 10. BCD input data is read from file 5; BCD or binary interface files which exist at the start of a job will be read from their respective files. The DOPC data sets in Table 5.4 have previously been defined in Table 4.3.

TABLE 5.4. Data Set Classification for the NESC DIF3D

| File <br> Reference Number | File <br> Name | $\begin{aligned} & \text { File } \\ & \text { Type }^{\text {a }} \end{aligned}$ | $\begin{gathered} \text { File } \\ \text { Description } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 5 |  | BCD | input data for SCAN module |
| 6 |  | BCD | output data all modules |
| 9 |  | BCD | input data spool from SCAN |
| 10 |  | BCD | auxiliary output all modules |
| 11 | A.DIF3D | BCD | DIF3D control |
| 12 | A.NIP3 | BCD | GNIP4C control |
| 13 | A. HMG4C | BCD | HMG4C control |
| 15 | A. ISO | BCD | BCD ISOTXS |
| 18 | DIF3D | CDB | DIF3D control |
| 19 | COMPXS | CDB | macroscopic cross sections |
| 20 | LABELS | CDB | labels, half-heights |
| 22 | D3EDIT | CDB | tabular edits spool |
| 23 | NHFLUX | CDB | nodal restart (real) |
| 24 | NAFLUX | CDB | nodal restart (adjoint) |
| 25 | PKEDIT | CDB | peak power/flux interface |
| 26 | GEODST | CCCC | geometry description |
| 27 | ISOTXS | CCCC | microscopic cross sections |
| 28 | NDXSRF | CCCC | nuclide/zone reference |
| 29 | ZNATDN | CCCC | zone nuclide atom densities |
| 30 | RTFLUX | CCCC | real flux |
| 31 | ATFLUX | CCCC | adjoint flux |
| 32 | FIXSRC | CCCC | fixed source |
| 33 | RZFLUX | CCCC | zone flux averages |
| 34 | PWDINT | CCCC | power density |
| 39 | SEARCH | CCCC | SRCH4C control |
| 41-56 ${ }^{\text {b }}$ | RNDMnn | DOPC | random access scratch files |
| 66-71 | SCR001-6 | SCR | scratch files |
| 76-78 | UDOIT | CDB | UDOIT versions 1-3 |
| 80 | AUDOIT | BCD | UDOIT module input |

${ }^{\text {a }}$ See Section 4.2. CDB denotes a code-dependent binary file.
${ }^{\mathrm{b}}$ Table 4.3 describes the 14 DOPC files. Reference numbers 44 and 50 are undefined.

File assignments may be easily reassigned by changing source code in D3DRIV; no other routines need be modified. All files are written sequentially (one minor exception is noted in Section 4.4.3; it applies to adjoint calculations with upscatter). If necessary, all files may be read sequentially. Greater efficiency is achieved when random access I/O methods are employed. Reading the flux file in the inscatter source calculation and the flux and finite-difference coefficient files during the concurrent inner iteration strategy are the principal I/O operations affected by this access method.

### 5.2.4 Running the NESC version of DIF3D

DIF3D is designed to run in environments in which codes that follow the CCCC standards may have never before been implemented. If desired, all input data may be entered in BCD form. BCD input processors within the DIF3D code system will subsequently convert this data to the necessary CCCC and codedependent binary interface files. Existing $B C D$ or binary interface files will also be accepted by DIF3D. Table 4.2 summarizes the input and output interface files for each code block within the DIF3D code system. The contents and formats of the $B C D$ and binary interface files are given in the interface file descriptions in Appendices $B-D$. The sample problem input data on the NESC tape is entirely in BCD format.

The BCD data format principally consists of sets of card images having a two-digit card type identifier in columns 1 and 2. Frequently, several cards of the same type are required; the ordering of cards within a given type is usually fixed. Data associated with a particular file is preceded by the card image DATASET=filename and terminated by another DATASET=filename card for the next file, by a BLOCK=STPO2l card or by an end-of-file indicator. Alternative keywords to DATASET (e.g. UNFORM, NOSORT and MODIFY) are described in Section 3.2; these provide free field input, special dataset treatment (e.g. A.ISO), and permit modification of specified card types (replacement or deletion), respectively. Preceding a collection of DATASETs must be a BLOCK= STPO2l card image. Each such BLOCK invokes another execution of DIF3D. Old DATASETS (files) which already exist at the start of a job are specified in the BLOCK=OLD block. The list of old DATASETs consists of card images of the form DATASET=filename.

Most systems require users to specify memory size and CPU time estimates in a JOB control statement (see JOB Control examples in Section 3.12, Figs. $3.5,3.8$ and 3.9). DIF3D jobs require a fixed amount of storage to contain the longest program overlay and I/O buffers, and a problem-dependent minimum amount of computer memory for the FCM and ECM data storage containers (see Section 3.9). The FCM and ECM container sizes specified in the sample problem input are appropriate for the $\operatorname{CDC} 7600$, but they may also be used (less efficiently) on the other target computers. The length of the longest overlay is installation dependent and can be obtained by examining the output from a successful loader job. The amount of space required for I/O buffers is also installation and implementation dependent; at a given moment the maximum number of files that are opened is problem dependent, but should not exceed 14 (the number of DOPC files). This number does not include the three $B C D$ input and output file unit numbers 5,6 and 10 . A practical estimate may be closer to 6 or 7 simultaneously open files.

For IBM and CRAY-l systems region sizes specified on the JOB card provide an upper bound on the allowable memory to be used for both program instructions and dynamically allocated storage containers. On the CDC 7600, the FCM and ECM field length requests should only include space required for the longest overlay; additional space will be dynamically allocated via calls to IGTLCM or IGTSCM from the BPOINTER package. The sample problem discussions which follow include container size and CPU time estimates for each problem.

### 5.3 Sample Problems

Six problem cases are derived from two benchmark source situations. Summarized in Table 5.5 are estimates of typical FCM and ECM container sizes that are appropriate for running the sample problems on the designated computers. For implementations on the IBM 3033 or CRAY-1 computers these estimates may optionally replace the container sizes (on the A.DIF3D type 02 card) supplied with the sample problems on the NESC tape. As noted above the supplied sizes are appropriate for the CDC 7600. The relatively large container sizes suggested for the CRAY-1 (operating under the CRAY Time Sharing System at Los Alamos National Laboratory) reduce expensive I/O costs in favor of less expensive memory residence charges. Because sample problems 1-4 are combined in a single job (as are sample problems 5-6), JOB region size or field length calculations are governed by the largest container sizes in each problem set (i.e. problems 4 or 6 ).

### 5.3.1 The SNR Benchmark Problem

The SNR benchmark problem 46,47 is a 4 -group model of a 300 MWe homogeneous-core LMFBR originally specified in both Cartesian and triangular geometry. The modified problem 5,47 solved here is obtained by altering the outer boundary of the triangular-geometry model (while preserving the volume of the core) to allow imposition of boundary conditions along surfaces of hexagons. The model consists of a two-zone core surrounded by radial and axial blankets without a reflector. The height of the active core is 95 cm , and each axial blanket is 40 cm thick. A total of 11 rings of hexagons (including the central hexagon) are included in the model, with a lattice pitch of $11.2003 \mathrm{~cm} . \mathrm{J}_{\mathrm{in}}=0$ boundary conditions are imposed on the outer surfaces of the blankets. The full-core model includes a total of 18 control rods, with 6 of these rods parked at the core-upper axial blanket interface, and the remaining 12 inserted to the core midplane. As in Ref. 5, all calculations are performed using sixth-core symmetry.

### 5.3.1.1 The Two-Dimensional Model

Figure 5.1 displays the BCD input data contained on the NESC tape for the two-dimensional SNR benchmark problem. Two cases corresponding to the finite-difference and the nodal solution options are specified. Data following the second BLOCK=STP021 in Fig. 5.1 invokes the nodal solution option. The REMOVE=filename cards located after the second BLOCK=STPO2l card turn off the existence sentinels for the corresponding file names in the SEEK table before processing begins for the second case. Selected printed and plotted output from these two cases is displayed in Appendices G.l and G.2. Included are a geometry map, a mesh cell to region map, macroscopic cross section edits and tabulations of region and area integrals for power density, total flux and neutron balances.

TABLE 5.5. Resource Estimates for Sample Problems 1-6

| Problem and Computer | Conta FCM | r Size <br> ECM | CPU Time (Seconds) ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| Sample 1-2D SNR |  |  |  |
| Finite Difference Option |  |  |  |
| IBM 3033 | 450 | 4300 | 2.8 |
| CDC 7600 | 3600 | 6000 | 1.7 |
| CRAY-1 | 550 | 11250 | 1.9 |
| Sample $2-2 \mathrm{D}$ SNR |  |  |  |
| Nodal Option |  |  |  |
| IBM 3033 | 550 | 5700 | 1.8 |
| CDC 7600 | 4000 | 5700 | 1.0 |
| CRAY-1 | 600 | 6100 | 1.6 |
| Sample 3-3D SNR |  |  |  |
| Nodal Option |  |  |  |
| IBM 3033 | 600 | 27000 | 21 |
| CDC 7600 | 20000 | 27000 | 11 |
| CRAY-1 | 650 | 61000 | 11 |
| Sample 4 - 3D SNR |  |  |  |
| Finite Difference Option |  |  |  |
| IBM 3033 | 550 | 15300 | 147 |
| CDC 7600 | 12000 | 164000 | 81 |
| CRAY-1 | 650 | 450000 | 42 |
| Sample 5-2D IAEA Problem |  |  |  |
| Finite Difference Option |  |  |  |
| IBM 3033 | 800 | 62000 | 60 |
| CDC 7600 | 20000 | 102000 | 25 |
| CRAY-1 | 8040 | 102000 | 11 |
| Sample 6-3D IAEA Problem |  |  |  |
| Finite Difference Option |  |  |  |
| IBM 3033 | 400 | 94000 | 74 |
| CDC 7600 | 8000 | 166000 | 36 |
| CRAY-1 | 800 | 166000 | 19 |

a $_{\text {Units }}$ are decimal number of longwords (REAL*8 words on IBM systems). JOB region size calculations are given by:

$$
\begin{aligned}
& \text { IBM 3033: REGION }= 325 \mathrm{~K}+(\mathrm{FCM}+\mathrm{ECM}) /(128 \text { words } / \mathrm{K} \text { byte) } \\
& \text { CDC 7600: } \mathrm{SCM}= 100,0008+\mathrm{FCM} \text { (octal words) } \\
& \text { LCM }= S C M+\mathrm{ECM}+\text { buffers (octal words) } \\
& \text { CRAY-1 : REGION }= 200000+\mathrm{FCM}+\mathrm{ECM} \text { (decimal words) } \\
& \text { (unoverlayed) } \\
& \mathrm{b}_{\text {CPU times on the }} \mathrm{IBM} 370 / 195 \text { are approximately } 30 \text { to } 50 \% \text { less } \\
& \text { than on IBM } 3033 .
\end{aligned}
$$



Fig. 5.1. Input Data for the Four SNR Benchmark Problem Models


Fig. 5.1. Input Data for the Four SNR Benchmark Problem Models (contd.)

### 5.3.1.2 The Three-Dimensional Model

The third and fourth BLOCK=STP021 cards in Fig. 5.1 signal the start of the three-dimensional models solved by the nodal and finite-difference options, respectively. The MODIFY=filename cards permit selective modification of card types within appropriate data sets; previously existing data that are still pertinent need not be respecified. Appendices G. 3 and G. 4 display selected printed output for these two cases.

### 5.3.2. The IAEA Benchmark Problem

The IAEA benchmark problem ${ }^{48}$ is the well-known 2-group LWR model designed as a severe test for the capabilities of coarse mesh methods and flux synthesis approximations. The problem solved here has the $\mathrm{J}_{\mathrm{in}_{\mathrm{n}}}=0$ boundary condition applied at external boundaries. Because the DIF3D finite-difference option requires a rectangular boundary domain in the XY plane, the irregular outer boundaries on the XY plane that are required by the benchmark specifications are modelled by assigning the inactive mesh cells to a blackness theory region with an appropriate internal black boundary condition constant ( $B=.5$ ). The dimensions of the quarter-core planar mode $\perp$ are $170 \times 170 \mathrm{~cm}$. The threedimensional quarter-core model has 380 cm in the axial dimension. Two fuel regions, a reflector and five inserted rods (oue of which is only partially inserted) appear in the quarter-core model.
5.3.2.1 The Two-Dimensional Model

Input data for the two-dimensional IAEA problem appear in Figure 5.2. Printed and graphical output selections similar to those chosen for the SNR problems are displayed in Appendix G.5.

### 5.3.2.2 The Three-Dimensional Model

Input data for the three-dimensional IAEA problem also appear in Figure 5.2; it follows the second BLOCK=STPO21 card. Selected printer output is displayed in Appendix G.6.

### 5.4 Suggested Local Modifications

The export package described in this chapter is designed to run in standalone fashion on a variety of machines and operating systems. Because of this we cannot take advantage of local system routines and options. In this section we point to several areas of the code which programmers may wish to modify to make DIF3D more compatible with the local system.

### 5.4.1 SEEK Initialization

The initialization of the SEEK tables at the front of the driver of the code is done in the manner required by the version of SEEK which accompanies the NESC package. Programmers at those installations that have their own version of SEEK may wish to modify the initialization procedure coded into the DIF3D driver. There are no CCCC standards for SEEK Initialization.

UNFORM=A.DIF3D
01 **** SAMPLE 5 **** IAEA 2d benchmark - 2. CM mesh
$\begin{array}{lllll}02 & 20000 & 102000 \\ 03 & 0 & 0 & 0 & 0 \\ 50\end{array}$

$06 \quad 0.0$. . 01

$\begin{array}{ll}03 & 40 \\ 04 & 3\end{array}$
$\begin{array}{lllll}04 & 3 & 4 & 3 & 4 \\ 05 & 0 . & . & \\ 06 & 0 . & .5\end{array}$
06 RREFL $0.170 .8585 \quad 0.170$.
$\begin{array}{lccccccc}06 & \text { RFUEL1 } & 0 . & 50 . & 25 & 20 & 110 . & 150 \\ 06 & \text { RFUEL1 } & 50 & 90 & 20 & 20 & 90 & 130\end{array}$
$\begin{array}{llllll}06 & \text { RFUEL1 } & 50 . & 90 . & 20 & 20 \\ 06 & \text { RFUEL1 } & 90 . & 110 . & 10 & 10 \\ 90 . & 110 .\end{array}$
$\begin{array}{lllllll}06 \\ 06 & \text { RFUELI } & 90 . & 110 . & 10 & 10 & 90 . \\ 06 & \text { RFUEL1 } & 90 . & 130 . & 20 & 20 & 50 . \\ 90 .\end{array}$
$\begin{array}{lllllrr}06 & \text { RFUELI } & 90 . & 130 . & 20 & 20 & 50 . \\ 06 \\ \text { RFUELI } & 110 . & 150 . & 20 & 25 & 0 . & 50 .\end{array}$
$\begin{array}{lllllll}06 \\ 06 \\ \text { RFPUEL2 } & 0 . & 30 . & 15 & 65 & 0 . & 130 .\end{array}$
$\begin{array}{llllllll}06 \\ 06 \\ \text { RFUEL2 } & 0 . & 30 . & 15 & 65 & 0 . & 130 . \\ \text { RFUEL2 } & 30 . & 70 . & 20 & 50 & 0 . & 110 .\end{array}$
$\begin{array}{llllll}06 & \text { RFUEL2 } & \text { 30. } & \text { 70. } & 20 & 50 \\ 06 & \text { RFUEL2 } & \text { 70. } & 110 . & 20 & 35 \\ 0 . & 70 .\end{array}$

| 06 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 06 |  |  |  |  |  |
| RFUEL2 | 70. | 110. | 20 | 35 | 0. |
| 0. | 110. | 130. | 10 | 15 | 0. |
| 30. |  |  |  |  |  |

$\begin{array}{lrrrrrrr}06 \\ 06 \\ \text { RFUE2R } & 0 . & 10 . & 5 & 5 & 0 . & 10 .\end{array}$

| 06 |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 06 | RFUE2R | 0. | 10. | 5 | 5 | 0. |
| 06 | RFUE2R | 70. | 90. | 10 | 5 | 0. |
| 0. |  |  |  |  |  |  |


| 06 | RFUE2R | 70. | 90. | 10 | 5 | 0. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 06 | RPUE2R | 0. | 10. | 5 | 10 | 70. |
| 0. |  |  |  |  |  |  |


| 06 | RPUE2R | 70. | 90. | 10 | 10 | 70. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 06 | 90. |  |  |  |  |  |

$\begin{array}{llllllll}06 & \text { BACKGR } & 70 . & 170 . & 50 & 10 & 150 . & 170 . \\ 06 & \text { BACKGR } & 110 . & 170 . & 30 & 20 & 130 . & 150 .\end{array}$
$\begin{array}{llllll}06 \\ 06 & \text { BACKGR } & 130 . & 170 . & 20 & 10 \\ 110 . & 130 .\end{array}$
06 BACKGR 150. 170. $10 \quad 20 \quad 70.110$.
10 CBACKG
11 CFUELI FUELI 1.
14 CFUEL2 FUEL2 1
14 CFUE2R FUEL2R 1
14 CREFL REFL 1 .
14 CRACXG BLACK 1.
15 CFUELI RFUELI
15 CFUEL2 RFUEL2
15 CFUE2R RFUE2R
15 CREFL RREFL
15 CBACKG BACKGR
34 ** . $8 \mathrm{EE}-4$
nosortai.iso

$2 \mathrm{D} * 2$ GROUP CROSS SECTIONS FOR IAEA BENCHMARK PROBLEM

* FUEL1 FUEL2 FUEL2R REFL REFLR BLACK
$1.00000 \mathrm{E}+092.20000 \mathrm{E}+051.00000 \mathrm{E}+071.00000 \mathrm{E}+000.0$ $\begin{array}{llllll}0 & 3 & 6 & 9 & 12 & 15\end{array}$
$1.00000 \mathrm{z}+00 \quad 3.20000 \mathrm{E}-110.00$
4 D FUEL2 IAEA

5D $2.22222 \mathrm{E}-018.33333 \mathrm{E}-01 \quad 3.00000 \mathrm{E}-02 \quad 8.50000 \mathrm{E}-02 \quad 1.00000 \mathrm{E}-02$
$4.00000 \mathrm{E}-02 \quad 0.0$
$4.50000 \mathrm{E}-023.00000 \mathrm{E}+003.00000 \mathrm{E}+00$
4 D fuel2R IaEA

SD 1.66667E-01 1.11111E+00 4.00000E-02 5.50000E-02 0.0
.50000E-02
$7 \mathrm{D} 0.0 \quad 0.0 \quad 4.00000 \mathrm{E}-02$
$\begin{array}{ccccccccccccc}1.0000 \mathrm{E}+00 & 3.20000 \mathrm{E}-11 & 0.0 & & 0.0 & 0.0 & 0.0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$
5D $1.66667 \mathrm{E}-011.11111 \mathrm{E}+001.00000 \mathrm{E}+001.00000 \mathrm{E}+001.00000 \mathrm{E}+00$
$1.00000 \mathrm{E}+00$
$7 \mathrm{D} \quad 0.0$
REMOVE=GFODST
REMOVE $=$ COMPXS
REMOVE $=$ NDXSRF
REMOVE=2NATDN
REMOVE-LABELS
REMOVE=RTFLUX
01 IAEA SD benchmark 10. CM MESH
028000166000
o

Fig. 5.2. Input Data for the IAEA Benchmark Problem Models

```
0344
04343444
05 XU . 5
05 YU . 5
05 2L . 5
O5 ZU . 5
06 RREFL 0.170. 0 38 0. 170.
06 RFUEL1 0. 50. 2 36 110. 150.
0 6 ~ R F U E L 1 ~ 5 0 . ~ 9 0 . ~ 2 ~ 3 6 ~ 9 0 . ~ 1 3 0 . ~
0 6 ~ R F U E L 1 ~ 9 0 . ~ 1 1 0 . ~ 2 ~ 3 6 ~ 9 0 . ~ 1 1 0 . ~
66 PFUEL1 90.130 2 36 50.190.
* RFUEL, 90. 130. 2 36 50. 90.
RFUEL1 110. 150. 2 36 0. 50
06 RFUEL2 0. 30. 2 36 0. 130.
06 RFUEL2 30. 70. 2 36 0. 110.
06 RFUEL2 70. 110. 2 36 0. 70.
06 RFUEL2 110. 130. 2 36 0. 30.
06 RFUE2R 0. 10. 2 36 0. 10
06 RFUE2R 70. 90. 2 36 0. 10.
6 RFUE2R 0. 10. 2 36 70. 90
RGFUE2R 70. 90 2 36 70. 90
6 RFUE2R 70. 90. 28 36 70. 90
```



```
06 RREFLR 70. 90. 36 38 0. 10.
06 RREFLR 0. 10. 36 38 70. 90.
06 RREFLR 70. 90. }3638\mathrm{ 70. 90.
06 RREFLR 30. 50. }36383830. 50.
06 BACKGR 70, 170, 0 38 150, 170
06 BACKGR 70. 170. 0 38 150. 170.
06 BACKGR 110. 170. 00 38 130. 150.
```



```
10 CBACKG
11 1.0 .5
09 X 17 170.
09 Y 17 170.
7 38 380
14 CFUEL1 FUEL1
14 CFUEL2 FUEL2 1.
14 CFUE2R FUEL2R I.
1 4 \text { CREFL REFL 1.}
14 CREFLR REFLR 1.
14 CBACKG BLACK 1.
5 CFUELI RFUELI
5 CFUEL2 RFUEL
S CFUEL2 RFUEL2
5 CFUE2R RFUE2R
15 CREFL RREFL
5 CREFLR RREFLR
5 CBACKG BACKGR
34=DELETE
43=DELETE
```

Fig. 5.2. Input Data for the IAEA Benchmark Problem Models (contd.)

### 5.4.2 Storage Allocation Routines

The BPOINTER container allocation is done in a FORTRAN subroutine named IGTLCM (with entry point IGTSCM). At individual installations there may be special system routines available which could be called from IGTLCM to borrow space from the system or to return it. Programmers should look at IGTLCM to see if modifications are in order.

### 5.4.3 TIMER

The subroutine TIMER is a general timing routine specified by the CCCC. The specifications for the subroutine include elapsed central processor time, remaining "limiting" time, elapsed peripheral processor time, current date, user identification, user account, user case identification and wall clock time. Many of these options are installation dependent so that they are not implemented in the export version of TIMER. The options which are not implemented are not required for execution of DIF3D although various timing edits are zeroed in the export version of TIMER. Programmers interested in obtaining proper edits should modify TIMER according to local conventions to implement the desired options.

### 5.4.4 GNIP4C Graphics

The graphics region map options in the GNIP4C input processor are not operational in the NESC version of DIF3D; they are not crucial to the execution of the code, and graphics systems vary from system to system. An effort was made, however, to make it as simple as possible to implement these options.

1. All graphics calls for the orthogonal geometry maps are made through the subroutine ORTPC2, and all graphics calls for maps of arrays of hexagons are made through HEXPC5. It should be possible to limit code modifications to these two routines.
2. The graphics map routines were coded and checked out for three different graphics systems: CALCOMP, DISPLA and the local Argonne graphics primitives. Code peculiar to CALCOMP and DISPLA were conmented out but are identified by comment cards of the form:

C**** DISPLA GRAPHICS
or
C**** CALCOMP GRAPHICS
It should not be hard to reactivate the DISPLA or CALCOMP options.
3. On some systems additional, initialization calls may have to be made.

### 5.4.5 Random Access I/O Routines DOPC, DRED and DRIT

In the implementation of DOPC that accompanies the NESC package each code block using DOPC initializes it in their respective driver subroutines. On IBM systems DRED (DRIT) call REED (RITE) to perform asynchronous, random access I/O. On CDC 7600 systems, the mass storage routines READMS, WRITMS, OPENMS and CLOSMS are used. On the CRAY-1 FORTRAN ' 77 I/O statements provide random access capabilities. Installations with asynchronous, random access capabilities superior to those previously mentioned may simply replace DOPC, DRED, DRIT, CRED and CRIT. The latter two routines must be replaced or modified to maintain ECM referencing consistent with any replacement DOPC implementations.

## ACKNOWLEDGEMENTS

A number of people have contributed significantly to the programming in the DIF3D code package. C. H. Adams chiefly managed the evolution of the GNIP4C input processor from the FX2 input processor; the broader picture of the evolution of the CCCC routines was also greatly influenced by him. GNIP4C was touched by many others including B. J. Toppel, R. P. Hosteny, Herb Henryson II and several summer students. R. P. Hosteny coded the HMG4C code block. The nodal solution option overlays are the work of R. D. Lawrence. I am indebted to D. R. Ferguson who originally outlined the basic code structure of DIF3D and chose the iteration strategies. Contributions to this report were made by C. H. Adams, H. Henryson II, R. P. Hosteny and B. J. Toppel. Users whose feedback uncovered bugs during the development stages are gratefully acknowledged. A. R. Hinds made several fine tuning suggestions to improve the running times of the inner iteration kernal, SORINV, on the [BM 370/195. Significant CPU time reductions were aiso achieved on the CDC 7600 with a COMPASS assembler version of SORINV written by F. E. Dunn. For the assistance of L. Rudsinski with the implementation of DIF3D on the CRAY-1 at NCAR, and F. Brinkley and D. McCoy on the CRAY-1 with CTSS at Los Alamos 1 am indebted. The work of Karen Leffler and Eileen Jornson in typing this report is greatly appreciated.

## REFERENCES

1. D. R. Ferguson and K. L. Derstine, "Optimized Iteration Strategies and Data Management Considerations for Fast Reactor Finite Difference Diffusion Theory Codes," Nucl. Sci. Eng., 64, 593 (1977).
2. K. L. Derstine, "DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite Difference Diffusion Theory Problems," ANL-82-64, Argonne National Laboratory, 1983.
3. R. D. Lawrence, "A Nodal Interface Current Method for Multigroup Diffusion Calculations in Hexagonal Geometry," Trans. Am. Nuc1. Soc., 39, 461 (1981).
4. R. D. Lawrence, "A Nodal Method for Three-Dimensional Fast Reactor Calculation in Hexagonal Geometry," Proceedings of the Topical Meeting on Advances in Reactor Computations, Vol. II, p. 1030, Salt Lake City, American Nuclear Society, March, 1983.
5. R. D. Lawrence, "The DIF3D Nodal Neutronics Option for Two- and ThreeDimensional Diffusion Theory Calculations in Hexagonal Geometry," ANL-83-1, Argonne National Laboratory, 1983.
6. R. Douglas 0'Dell, "Standard Interface Files and Procedures for Reactor Physics Codes, Version IV", UC-32, Los Alamos Scientific Laboratory (September l977).
7. B. J. Toppel, "The Fuel Cycle Analysis Capability, REBUS-3," ANL-83-2, Argonne National Laboratory, 1983.
8. R. W. Hardie and W. W. Little, Jr., "3DB, A Three-Dimensional Diffusion Theory Burnup Code," BNWL-1264, Battelle-Pacific Northwest Laboratories (1970).
9. D. R. Vondy, T. B. Fowler, and G. W. Cunningham, "VENTURE: A Code Block for Solving Multigroup Neutronics Problems Applying the Finite-Difference Diffusion-Theory Approximation to Neutron Transport," ORNL-5062, Oak Ridge National Laboratory (1975).
10. W. R. Cadwell, "PDQ-7 Reference Manual," WAPD-TM-678, Bettis Atomic Power Laboratory (1967).
11. D. R. Ferguson, Personal communication.
12. L. A. Hageman, "Numerical Methods and Techniques Used in the TwoDimensiona Neutron Diffusion Program PDQ-5," WAPD-TM-364, Bettis Atomic Power Laboratory (1963).
13. L. A. Hageman and C. J. Pfeifer, "The Utilization of the Neutron Diffusion Program PDQ-5," WAPD-TM-395, Bettis Atomic Power Laboratory (1965).
14. C. H. Adams, Personal communication. VARI3D performs perturbation theory calculations and is still under development at Argonne.
15. C. H. Adams,"SYN3D: A Single-Channel, Spatial Flux Synthesis Code for Diffusion Theory Calculations", ANL-76-21, Argonne National Laboratory, 1976.
16. T. B. Fowler, D. R. Vondy and G. W. Cunningham, "Nuclear Reactor Core Analysis Code: CITATION," ORNL-TM-2496, Oak Ridge National Laboratory, Tenn. (1971).
17. T. A. Daly et al., "The ARC System Two-Dimensional Diffusion Theory Capability, DARC2D," ANL-7716, Argonne National Laboratory (1972).
18. R. S. Varga, Matrix Iterative Analysis, Chap. 3, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1962).
19. A. F. Henry, Nuclear Reactor Analysis, Cambridge, Mass. (1975).
20. E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, Chap. 2., Prentice-Hall Inc., Englewood Cliffs, New Jersey (1966).
21. R. S. Varga, Proc. Symp. Appl. Math., 11, 164, American Mathematical Society, Providence, Rhode Island (1961).
22. G. Birkhoff and R. S. Varga, J. Soc. Ind. Appl. Math., 6, 354 (1958).
23. R. Froehlich, "A Theoretical Foundation for Coarse Mesh Variational Techniques," Proc. Int. Conf. Research Reactor Vitalization and Reactor Mathematics, Mexico, D.F., l, 219 (May 1967).
24. E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, pp. 77-80, 83 and 270-287, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1966).
25. D. A. Flanders and G. Shortley, J. Appl. Phys., 21, 1326 (1950).
26. R. S. Varga, Matrix Iterative Analysis, Chap. 5, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1962).
27. R. S. Varga, Matrix Iterative Analysis, Chap. 4, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1962).
28. B. J. Toppe1, C. H. Adams, R. D. Lawrence, H. Henryson II, and K. L. Derstine, "Validation of Alternative Methods and Data for a Benchmark Fast Reactor Depletion Calculation," Proceedings of the Topical Meeting on Advances in Reactor Physics and Core Thermal Hydraulics, (held in Kiamesha Lake, NY), NUREG/CP-0034, Vol. 1, p. 177, U.S. Nuclear Regulatory Commission, Washington, D.C., August 1982.
29. R. S. Varga, Matrix Iterative Analysis, Chap. 6, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1962).
30. R. S. Varga, Matrix Iterative Analysis, Chap. 9, Prentice-Hall, inc., Englewood Cliffs, New Jersey (1962).
31. I. Stakgold, Boundary Value Problems of Mathematical Physics, Vol. I, pp. 79-81, MacMillan, Toronto (1969).
32. E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Chap. 2, Wiley, New York, 1966.
33. M. R. Wagner, "GAUGE - A Two-Dimensional Few Group Neutron Diffusion Depletion Program for a Uniform Triangular Mesh," GA-8307, Gulf General Atomic, 1968.
34. D. A. Meneley, "Acceleration of External Source Problems in Near-Critical Systems," Applied Physics Division Annual Report: July 1, 1970, to June 30, 1971, ANL-7910, pp. 513-515.
35. E. Issaacson and H. B. Keller, Analysis of Numerical Methods, pp. 98-102, Wiley, New York (1966).
36. L. C. Just, H. Henryson II, A. S. Kennedy, S. D. Sparck, B. J. Toppel and P. M. Walker, "The System Aspects and Interface Data Sets of the Argonne Reactor Computation (ARC) System," ANL-7711, Argonne National Laboratory (1971).
37. G. E. Bosler, R. D. O'Dell, and W. M. Resnik, "LASIP-III, A Generalized Processor for Standrd Interface Files," LA-6. $80-\mathrm{MS}$, Los Alamos Scientific Laboratory (1976).
38. H. Henryson II, B. J. Toppe1, and C. G. Stenberg, " $\mathrm{MC}^{2}-2$ : A Code to Calculate Fast Neutron Spectra and Multigroup Cross Sections," ANL-8144, Argonne National Laboratory (1976).
39. M. K. Drake, ed., Data Formats and Procedures for the ENDF Neutron Cross Section Library, Brookhaven National Laboratory, BNL 50274 (0ct. 1970).
40. H. Henryson II, Personal communication.
41. C. H. Adams, K. L. Derstine, H. Henryson II, R. P. Hosteny and B. J. Toppel, "The Utility Subroutine Package Used by Applied Physics Export Codes," ANL-83-3, Argonne National Laboratory, 1983.
42. L. Rudsinski, "Production Runs on the CRAY-1," ANL-79-68, Argonne National Laboratory (1979).
43. D. Boley, B. Buzbee, and S. Parter, "On Block Relaration Techniques," University of Wisconsin, Mathematics Research Center: Report 1860 (June 1978).
44. D. Boley, "Vectorization of Block Relaxation Techniques: Some Numerical Experiments," Proceedings of the 1978 LASL Workshop on Vector and Parallel Processors, LA-7491 (September 1978).
45. K. L. Derstine, "An Experience with the Conversion of the Large-Scale Production Code DIF3D to the CRAY-1," Scientific Computer Information Exchange Meeting, Livermore, CA, pp. 116-127 (September 1979).
46. G. Buckel, K. Kufner, and B. Stehle, "Benchmark Calculations for a Sodium-Cooled Breeder Reactor by Two- and Three-Dimensional Diffusion Methods," Nucl. Sci. Engr. 64, 75 (1977).
47. "Benchmark Problem Book," ANL-7416, Supplement 3, Argonne National Laboratory, to appear, 1984.
48. "Benchmark Problem Book," ANL-7416, Argonne National Laboratory (1968).

## Appendix A

ARCSP021 INSTREAM JCL PROCEDURE FOR IBM 370 SYSTEMS

| //ARCSFO2I PROC ATCYL=5,ATDSP='(, DELETE)', ATFLUX='\&ATFLIIX', |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| // |  | ATVOL=,DEST='*', DEST2=F, DMPDEST=F, |  |  |
| // |  | DMY1CYL=21, DYY2CYL=7, DMY CYYL=4. |  |  |
| // |  | FDCCYL $=20$, FLXCYL $=1$, HALFTRK=6136, |  |  |
| // |  | ISOCYL=1, ISODSP $=$ ' (MOD, KEEP $)^{\prime}$, , ISOVOL= , |  |  |
| // |  | ISOTXS $=$ ' $\& 1 S O T X S^{\prime}, \mathrm{MODEDCB}=$ 'RECFM=U', |  |  |
| $1 /$ |  | MODLIBl-'SYSI. DUMFYLIB' |  |  |
| $1 /$ |  | MODLIB2='C116.NESC.MODLIB', |  |  |
| 11 |  | NACYL=5, NADSP=' (, DELETE ${ }^{\text {' }}$, NAFLUX $=$ '\&NAFLUX', NAVOL=, |  |  |
| $1 /$ |  | NHCYL $=5$, NHDSP ${ }^{\prime}(\text {, DELETE })^{\prime}$ ', NHFLUX $=$ '\&NHFLUX', $\mathrm{NHVOL}=$. |  |  |
| $1 /$ |  | PATH='STP021', |  |  |
| // |  |  |  |  |
| $1 /$ |  | PS ICYL=5,PSUCYL=3,QRTRTRK=3064, $\mathrm{REGN}=1000 \mathrm{~K}$, |  |  |
| 11 |  | RTCYL=5,RTDSP='(, DELETE ) ', RTFLUX='SRTFLUX', |  |  |
| $1 /$ |  | RTVOL $=$, TIMLIM ${ }^{\prime}(600,0)^{\prime}$, TWELTRK=1016, |  |  |
| // |  | SRFCYL=12, |  |  |
| $1 /$ |  | UNITS-BATCHDSK, UNITSCR=SASCR, |  |  |
| // |  | ZONCYL=1 |  |  |
| //* |  |  |  |  |
|  |  |  |  |  |
| //* |  |  |  |  |
| //* Catal.oged procedure for 1, 2 OR 30 diffusion Code difid 3.0 |  |  |  |  |
| //* *LAST MODIFIED 6/09/83, PREVIOUSLY MODIFIED 5/16/83 |  |  |  |  |
| //* |  |  |  |  |
|  |  |  |  |  |
| //* |  |  |  |  |
| //* ******************** |  |  |  |  |
| //* |  |  |  |  |
| //* | PARAMETER | default value | USAGE | FTNNFOOI |
| //* | **=*===* | -***-ニ*フ**** | $=$ | *-3=3=3* |
| //* |  |  |  |  |
| //* | PATH | STP021 | Program name | EXFPC |
| //* | TIMLTM | $(600,0)$ | StEP TIME LIMIT | EXEC |
| //* | REGN | 1000K | STEP REGION SITE | EXEC |
| //* | MODLIB1 | SYSI . DUMAYLIB | SECOND STEP LIBRARY | STFPPIIR |
| //* | modLIB2 | Clib.NF.SC.MODL | B NESC SYSTEM LIBRARY | StEPLIR |
| 1/* | PRF.LIB | SYS1. DUMMYLIB | FIRST STEP LIBRARY | STEPLIB |
| 1/* | POSTLIB | SYSI. DIMMYLIB | Last step library | STEPL.IB |
| 1/* | DE.ST | * | OUTPUT DEST. (PRINTER) | 06 |
| //* | dest2 | F | outplit destination fiche. | 10 |
| //* | dmpdest | F | ROUTE DUMP TO FICHE. | sysulimp |
| 1/* | ATCY1. | 5 | NO. DF CYL. FOR ATFLUX | 3 t |
| //* | ATDSP | (,DFLFTE.) | disposition of atflux | 31 |
| 1/* | ATHILIX | satfliox | ISN for dataset atmidix | 31 |
| 1/* | ATvor. |  | voibme flir atriex | 31 |
| //* | ismey. | 1 | No. CYI. FOR isotys | 27 |



$1 /$
UNIT $=\delta U N I T S, V O L=S E R=\delta N H V O L$
DCB-(RECFM=VBS,LRECL=X, RLKSITE=6HALFTRK)

//FT24FOn1 D
$1 /$
DSN= $=$ NAFLUX, DISP=\&NADSP, SPACE=(CYL, (\&NACYL, 1))
UNIT= $=$ UNITS, VOL-SER- $\delta$ NAVOL,
$\mathrm{DCB}=(\mathrm{RECFM}=\mathrm{VBS}, \mathrm{LRECL}=\mathrm{X}, \mathrm{BLKSIZE}=\& \mathrm{HALFTRK}$ )
restart file for adjoint nodal hex calculation.
//FT2SFOOI OD
$1 / 1$
DSN= $\oint P K F D I T, U N I T=\delta I N I T S C R, S P A C E=(C Y L,(1,1))$
$D C B=(R E C F M=V B S, L R F, C L=X, B L K S I Z E=\delta H A I, F T R K)$
PEAK POWER DENSITY AND FLUX INTERFACE DATASET.
datasets 26 to 40 are cccc intfrface files.
//FT2AFOO1 DD DSN= /GEODST,UNIT= UUNITSCR,SPACE=(CYL, (01, 1)),
$1 /$
DCB- (RECFM-VBS, LRECL=X, BLKS IZE= HALFTRK)
CCCC GEOMFTRY DESCRIPTION DATASET.
//FT27FOOI DD DSN=\&ISOTXS,DISP=SISODSP,SPACE=(CYL,( $\delta I S O C Y L, 1))$,
// UNIT=SUNITS, VOL=SER=SISOVOL,
11
CCCC NUCLIDE-ORDFRED MICROSCOPIC CROSS SECCTIONS
/FT28F001 DD DSN=\&NDXSRF,IINIT=\&IUNITSCR,SPACE=(TRK,(03, (\%)),
$1 /$
//FT29FOnI DN
CCCC NUCIIDE/CROSS SECTION RFFERFNCING DATA.
$1 / 1$
$1 /$
$1 /$
//FT30FMOl DD CCCC ZONE NUCLIDE ATOM DENSITIFS.
$1 /$
$1 /$
//FT31FOOI mo
$1 /$
$1 /$
$1 /$
//FT32FOO1 DO CCCC ADJOINT FLUX INTERFACE DATASET.
$1 / 32 \mathrm{FnOl} \mathrm{Dn}$
$1 /$
//FT3ZFIOI DD DSN=SRZFI.IIX, UNIT-SUNITS,SPACE=(TRK,(OI, I)),
$1 /$
$1 / D C R=(R F, C F M=V B S, L R E C L=X, B L K S I Z F=G H A L F T R K)$
//FT34FOOt DO CC.GC ZONF. AVERACE:D FLUX tNTERFACE DATASFTT.
//
// DCB=(RECFM=VBS,LRF.CL=X,BI.KSITFE\&HALFTRK
//FT39FOMI DN DSN=6SFARCH, UNIT=SUNITSCR, SPACFF(TRK, (O3,0))
// $\quad D C R=(R E C F M=V B S, L R F, C L=X, B I . K S I \% F=\& H A I . F T R K)$
//*
//** datasets 41 TO GO arf. SCRATCH DATASETS.
//FT4IFOOI DI DSN=S\&PSIOLD, SUHALLOC=(CYL,(SPSICYI, 1), DUMMY2),
//
$1 /$
DCR $=\delta M O D F$ I)C:
FLIX ITERATE SCRATCH DATASET.


| $1 /$ | DCS-smonedin | x |
| :---: | :---: | :---: |
| // | FLIX ITERATE SCRATCH DATASET. |  |
| //FT43POOI DD | DSN-¢¢PSIUP, SUBALLOC= (CYL, (\$PSUCYL , 1) , DUMYY 5) , |  |
| $1 /$ | DCBmamonence | X |
| $1 /$ | AlIXILIARI FLUX DATASET FOR ADJOINT UPSCATTER ITERATIONS |  |
| //7T458001 D0 | DSN-ESFDCOEF, SUBALLOC- (CYL, ( 6 FDCCYL , 5 ) , DUAMY 1 ), |  |
| // | DCE-5MODEDC8 | X |
| $1 /$ | FINITE DIFFERENCF COEFFICIENTS SCRATCH DATASET. |  |
| //FT46F001 DD |  |  |
| // | DCSESMODEDCE | X |
| $1 /$ | FISSION SOURCE SCRATCH DATASET |  |
| //PT47POOI DD | DSN-E\&FRNNEW, SUBALLOC= (CYL, ( 6 FLXCYL, 1) , DUMRY 3), |  |
| // | DCE-EMODEDCE | X |
| $1 /$ | FISSION SOURCE SCRATCH DATASET |  |
| 1iFT4Am01 DD | DSN-66 FRIMAI, SUBALLOC-(CYL , (6FLXCYL, 1), DUMPY 4), |  |
| // | DCE-6mODF.DCB | X |
| // | FISSION SOURCF SCRATCH DATASET. |  |
| //FT49P001 DD | DSN-\&6 PRNM2, SUBALLOC- (CYL , ( $¢$ FLXCY! , 1), DUMRY5 ) , |  |
| // | DCR-smodedca | X |
| // | FISSION SOITRCE SCRATCH DATASET. |  |
| //FTSIPOOL DD | DSN-ESSRCNEW, SUBALLOC= (CYL, ( 6 FLXCYL, 1) , DUMPY 4) , |  |
| $1 /$ | DCD-EMODEDCB | X |
| // | TOTAL SOURCE: SCRATCH DATASET. |  |
| //FTS2F001 DD | DSN-¢6ZOMMAP, SUBALLOC=(CYL, (\$ZONCYL, 1 ) , DUMAYY ) , |  |
| $1 /$ | DCSE6MODFRCA | x |
| $1 /$ | ZONE MAP SCRATCH DAtASET. |  |
| //FTS3POOI DD | DSN-6\&CXSECT, UNIT=6UNITSCR, SPACE= YL, (01, 1 ) , |  |
| // | DCW-6modenc: | X |
| // | Conposition cross sections scratch dataset. |  |
| //PT54mol Di |  |  |
| // | DCE-6mODEDC: | x |
| // | FIXED SOURCE SCRATCH DATASET. |  |
| //FTSSPON1 DD | DSN=66PSICO, SUBALLOC=(CYL, ( 4 FLXCYL, i) , DIMAYY2), |  |
| $1 /$ | DCE-AMODFDCE | x |
| // | fux iterate scratch dataset one group. |  |
| //FTSHFONI Dn |  |  |
| $1 /$ | DCBedmonf. CS $^{\text {a }}$ | x |
| $1 /$ | flux iterate scratch dataset one group. |  |
| 1/* |  |  |
| 1/* | datasfis 66 to 71 arg scratch datasets |  |
| 1/* |  |  |
| //FThGFOOI Du |  |  |
| $1 /$ | DCRE(RECFTHVES, LRECL=X, BLKSITE=6HALFTRK) | X |
| $1 /$ | SCRATCH FIL.E. 1. |  |
| //FTh7mol Dn | DSN=\$SCROM2, UNIT=\&UNITSCR, SPACE=(CYI, ( 6 SRFCCYL, 2) ) , |  |
| // | DCB=(RFCFFT-VBS, LRE.CLeX, BLXSIT.F-6HAI.FTRK) | X |
| $1 /$ | SCRATCH FILEE 2. |  |
| //Ftagmoli do | DSN=SSCROO3, UNIT-SUNITSCR,SPACF, $=(C Y L,(01,1)$ ), |  |
| $1 /$ | DCR=(RECFTHVBS, LRECL, -X, BLKSIZE=6HALFTRK) | x |
| $1 /$ | SCRATCH FII.F. 3. |  |
| //FTG9FOnI DN |  |  |
| $1 /$ |  | x |
| // | scratch filf. 4. |  |

## DIF3D BCD INPUT FILE DESCRIPTIONS

## B. A A.DIFID





| 1-2 | 02 |
| :---: | :---: |
| 7-12 | pointr container array site in fast corf. mbatory (fom) IN REAL** WHRDS (DEFAIILT=30000). |
| 13-18 | pointr containfr array size in extended corf. <br>  |
| 19-24 | pointr ofmigeing: ebit. <br> o. ...no demigcing printolit (bf.falitit). <br> 1...debicicing mimp printout. <br> 2... Debitging tract irintout. <br> 3... ROTH DUMP and trace printout. |

PROBLEM CONTROI, PARNGETERS (TYPE 03)
Format----(12,4X,11th)

EDITS ONLY.
.ge.n....maximut number of outer iterations (defaille 30 ).

| 37-42 | RESTART FLAG. |
| :--- | :--- |
|  | O...THIS IS NOT A RESTART (DEFAULT). |

t...tmis is a restart proalem.

43-4R JOB TIME LIMIT, MAXIMIM (CP AND PP(OR WAIT)) PROCESSOR SECORDS (DEFAULTE1000000000).

69-54 NUABFR OF UPSCATTER ITERATIONS PER OUTER ITERATION (DFFAULT-S). PERTINENT TO UPSCATTER PROBLEMS ONLY.

SS-60 CONCURRENT ITFRATION EFFICIENCY OPTION.
O... perform the fistimated no. of inne.r iterations for EACH GROUP.
1...anoid the last pass of inner iterations in those GROUPS FOR UHICH THE NO. OF ITERATIONS IN THE LAST pass are less than a code dependent threshold.

61-66 ACCELERATION OF OPTIMUM OVERRELAXATION FACTOR caiculation.
O... MO ACCELERATION (DFFAULT).
1... ASYHFTOTIC SOURCE EXTRAPOLATION OF POWER ITERATIONSUSED TO ESTIMATE THE SPECTRAL RADIUS OF EACH INNER (UTTHIN GROUP) ITERATION MATRIX.
67-72 OPTIMIM OVERREIAXATION FACTOR ESTIMATION ITERATION CONTROL. THE DEFAULT (-50) is Stroncly recompandied.

THF. MAXIMM NUMBER OF OUTER ITERATIONS SFANTINFL specififs the mumber of outers that can be performen (COLS. 31-36) EACH TIMF THE DIFJD MODULE IS INVORF.D.

THE DIF3D TERMINATION PROCEDURE WILL ALWAYS:
1...(RE)WRITE THE APPROPRIATE FLUX FILES (PTFLIXX OR ATFLUX).
2...(RE) WRITE THE RFSTART FILE DIF3D.
to facilitate automatic restart. the restart flag, ON THP DIFSD RESTART CONTROL, FTLE. HILL BE TIRNED ON AITTOMATICALLIY UPON DFTECTION OF:
1...maximum mimber of outer iterations. 2...TIME LIMIT.

## to restart the flux calculation: <br> FITHER

PROVIDE THE RESTART DATA SET DIF3D AND THF APPROPRIATF: FLUX DATA SET (RTFLIIX OR ATFLIIX) AND SPFCIFY THEM UNDER BLOCK-OLE IN THF, BCD inpitt data
I....SET THF RESTART flag (COLS. 37-42) TO 1 ON THF TYPE 03 CARD. THIS PERMITS IMMEDIATE

CN CN
CN CN
CN
CN CN CN CN CN CN
CN
CN CN CN CN CN
CN
CN CN
CN CN
$\mathrm{C} \times \mathrm{H}$ $C N$
$C N$

RESUMPTION OF OIITER ITERATION ACCFI.ERATION

- INCLUDE THF Latest K-EffFCTIVE ESTIMAT (COLS. 13-24) AND THE DOMINANCE RATIO ESTIMATE ON THE TYPE 06 CARD (CNLS. 61-72)
3...INCLUDE THE OPTIMUM B:ERRFLAXATION FACTORS FOR EACH GROUP (TYPE 07 CARD).
4...PROVIDE THF APPROPRIATE FLUX DATA SET (RTFLUX OR ATFLIX) AND SPECIFY IT UNDER - BLOCK=0LD in thf red inplit data.

A NON-ZFRO TIME LIMIT (COLS. 43-48) OVERRIDES the actual time limit determined internal.ly by system routines in the anl and lel production IMPLEMFNTATIONS

THE TIME LIMIT PARAMETER (COLS. 43-48) IS PERTINFNT TO EACH ENTRY TO THE DIF3D MODULE.
it is recommended that an odd nimber of upscatter ITERATIONS BE SPECIFIED (COLS. 49-54) TO AVOID additional i/o overhead.

THE USER IS CAUTIONED TO MONITOR THE POINT-WISE FISSION SOURCE CONVERGENCE TO ENSIIRE THAT MONOTONIC CONVERGENCE IS ORTAINED WHEN THE EFFICIENCY OPTION (COLS. 5S-60) is ACTIVATED.

THE OPTIMUM OUERREI.AXATION FACTOR ACCEILERATION OPTION IS PRIMARILY INTENDED FOR PRORifems KNOWN TO HAVE HIGH ( $>1.8$ ) OPTIMIIM OVERRELAXATION FACTORS.

ITERATION CONTROL (COLS. 67-72) OF THE OPTIMUM overrelanation factor estimation is primarily intended FOR USE IN CONJUNCTION WITH THE ASYMPTOTIC ACCELIERATIONOPTION (COLS. 61-66).

```
13-18 GEOMFTRY (RFGION TO MESH INTERVAL) MAP EDIT.
 0...NO EDITS (DEEAULT).
 1...PRINT EDITS.
 2...WRITE EDITS TO AUXILIARY OUTPUT FILE.
 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
19-24 GFONETRY (ZONE TO MESN INTERVAL) MAP EDIT.
 GFOHETRY (ZONE TO MESN
 O...Mn EDITS (DE
 ...P质INT EDITS.
 2..-WRITE EDITS TO AUXILIARY OUTPUT FILE.
 3...WRITE EDITS TO BOTH PRINT AND AIXILIIARY OUTPUT FILE-
25-30 HACROSCOPIC CROSS SECTION EDIT.
 ENTER TVO DIGIT NUABER SP WHERE
 S Controls the scattering and principal cross sections -
 P CONTROLS THF PRINCIPAL CROSS SECTIONS EDIT ONLY.
 ThE INTEGFRS S aND P ShoULD bE ASSIGNED ONE OF THE.
 following values (leading zeroes are trrelevant).
 G....MO EDITS (DEFAULT).
 l....PRINT EDITS.
 2...WRITE EDITS TO AUXILIARY OUTPUT FILE.
 3...write edits to both PRINT aND AuXIlitary outfit file-
31-36
 ENTER 3 DIGIT NUMRER GIBR LHFRE
 G CONTROLS GROUP Balance edits integratf.d OVER THE
 REACTOR
 g CONTROLS REGION EALANCE EDIT BY GROUP
 R CONTROLS REGION BALANCE EDIT TOTALS
 (INCLUDING NET PRODUCTION AND ENERGY MEDIANS)
 THE INTfGERS G, B, aND R SHOULD BE ASSIGNED ONE OF THE
 FOLLOWING VALUES (LEADING ZEROES ARE IRRFLFVANT)
 O...MO EDITS (DEFAULT).
 1...P的INT EDITS.
 2...GRITE EDITS TO AUXILIARY OUTPUT FILE.
```



```
37-42
PONER EDITS
 fmtfer 2 dIGit number rm wherf.
 R CONTROLS REGION power and avfragf. power df.nsity fidits-
 m CONTROL.S POWER DF:ISITY RY MfSH INTERVAI. FDIT (PWDINT)
 THE INTEGERS R AND M ShOULD BF ASSIGNED
 one of thf. follomimg values (leading zerof.S arf.
 IRREILEVANT)
 O...WN EDITS (DEFAULT).
 1...PRTNT EDITS.
 2...WRITE EDITS to auXIliaRY output file.
```





ENTERED ON THE TYPE 07 CARD -EXACTLY- AS EDITTED IN THE RESTART INSTRUCTIONS.

THE PERMISSIBLE FACTOR RANGE IS BOUNDED BY 1.0 AND $2.0-$ INCLISIVE. A 2ERO OR BLANK FACTOR ENTRY DEFAULTS TO t.0. FACTORS ARE COHPUTED FOR THOSE GROUPS HAVING A FACTOR OF 1.0 ; FACTORS GREATER THAN 1.0 ARE NOT RECOMPUTED.

TYPE 07 CaRns are primarily intended for restart jobs ONLY (STRONGLY RECOMMFNDFD).


CR

$$
\text { FORMAT-----(I2 } 4 \mathrm{X}, 2 \text { I6 }, 6 \mathrm{X}, \mathrm{E} 12.4)
$$

columns
-=2
-
7-12 SN ORDER.
13-18 maximim allowed number of line sheeps per line per INNER ITERATION (DEFAULT=10).

25-36 LINE SHEEP CONVERGENCE CRITERION (DEFAULT=1.OE-4).
m Invore the dif3d transport option, the type 09 Card MUST RE PRESENT WITH A NONZERO SN ORDER. FOR THE. TIMF: being, users must also continue to 'preith' to DATASET 'CII6.B99983.MODLIB' TO INVOKE THIS OPTION. -

| Parameters for nodal hexaconal geometry option (type in) |  |
| :---: | :---: |
| FORMAT- | ---(12,4X,516) |
| colimms | S CONTENTS...IMPLICATIONS, IF ANY |
| 1-2 | 10 |
| 7-12 | order of modal approximation in hex-plant. <br> 2....NH2 APPROXIMATION. <br> 3... NH3 APPROXIMATION. <br> 4...NH4 APPROXIMATION (DEFAULT). |
| 13-18 | ORDER OF NODAL APPROXIMATION IN Z-DIRECTION. 2...QUADRATIC APPROXIMATION. <br> 3....CURIC APPROXIMATION (DEFAULT). |
| 19-24 | COARSE-MESH REBALANCE ACCELERATION CONTROL. <br> -1....NO COARSE-MESH RFBAI.ANCE ACCELf.RATION. <br> .ce.o....number of coarse-mesh rebalance iterations per OUTER ITERATION (DEFAULT=2). |
| 25-3n | asymptotic source extrapolation of outer iterations. O...APPLY ASYMPTOTIC SOURCE EXTRAPDLATION TO OUTER itterations (default). <br> 1....no asymptotic source extrapolation. |
| 31-36 | number of axial partial current swe.ps pfr group PFR OITER ITERATION (DFFAULT-2). |


| CN <br> CN |  | HEXAGONAL GEOMETRY OPTION (A.NIP3 TYPE 03 CARD grometry-type sentinel, values between 110 AND 128) |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $\begin{aligned} & \mathbf{C N} \\ & \mathbf{C N} \end{aligned}$ |  | IS SPECIFIED. |  |
| CN |  |  |  |
| CW |  | It is recomamded that the default values for the |  |
| CN |  | ORDER OF THE modal approximation in the hfx-plane |  |
| CN |  | (COLS. 7-12) AND FOR THE ORdER OF THE NODAL APPROXI- |  |
| CN |  | mation in the z-direction (COLS. 13-18) BE SPECIFIED. |  |
| c |  |  | - |
| C |  |  |  |
|  |  |  |  |
| CR | AXIAL COARSE-MFSH REBALANCE BOUNDARIES FOR NCDAL |  |  |
| CR HFXAGOMAL GEOMETRY OPTION (TYPE 11 |  |  |  |
| c |  |  |  |
| CL |  |  |  |
| c |  | CONTENTS... IMPLICATIONS, IF ANY |  |
| CD | coluras |  |  |
| CD | -naees |  |  |
| CD | 1-2 | 11 |  |
| CD |  |  |  |
| CD | 13-18 | muter of axial coarse-mesh rebalance intervals. |  |
| CD |  |  | - |
| CD | 19-30 | ITPPER Z-COORDINATE. |  |
| CD |  |  |  |
| CD | 31-36 | mineie of axial coarse-nesh remalance interval. |  |
| CD |  |  |  |
| CD | 37-48 | UPPFPR 3-COnotninate. |  |
| CD |  |  |  |
| CD | 49-54 | MTiser of axial coarse-mesh rfmalance intervals. |  |
| CD |  |  |  |
| CD | 55-66 | UPPER 7-COORDIMATE. |  |
| c |  |  |  |
| CM |  | THE TYPF 11 Cand is Pertinent only when the three- |  |
| CN |  | DIMPMSIOMAL MODAL HEXAGONAL GEOMETRY OPTION (A.NIP3 |  |
| CN |  | type 03 Card geonetry-type sentinel values between |  |
| CN |  | 120 AND 128) IS SPECTFIED. |  |
| CN - |  |  |  |
| CN |  | If mo type 11 cards are present, the axial coarse-mesh |  |
| Cr |  | REBALANCE intervals are drifined by the z-COORDINATE: - |  |
| CN |  | VALUES SPFCIFIED ON A.NIP3 CARD 09. - |  |
| CN |  |  |  |
| CN |  | moundaries are spficified via number pairs. - |  |
| CN |  | fach nidiater pair is of the form (n(i), z(i)). therr. - |  |
| CN |  | are n(1) axial coarse-mfsh rebalance intervals betwern - |  |
| CN |  |  |  |
| CN |  | GOUNDARY IN THF Z-DIRECTION. NUMBER PAIRS MUST BE. - |  |
| CN |  | GIVEN IN ORDER OF INCREASING, MESSH COORDINATES. ALI, - |  |
| CN |  | axial Coarse-mesh rebalance. boundaries must coincide. With the mesh lines which boind mesh interval.s. |  |
| CN |  |  |  |
| c |  |  | - |
| C |  |  |  |

## B. 2 A. HMC.4C




COMPXS EDIT FLAG.
COMPXS EDIT FLAG.
$0 .$. .NO EDIT (DEFAULT).
1...PRINT COMPLETE FDIT OF THE CREATED COMPXS FILE.
2... WRITE COMPLETE EDIT OF THE CREATED COMPXS FILE ON THE AUXILIARY OUTPUT FILE.
3... COMPXS EDIT WRITTEN ON BOTH PRINT AND AUXILIARY output files.
isotxs edit flag.
O...NO EDIT (DEFAULT)
1...PRINT RUNNING EDIT OF ISOTXS (I.E. NOT EVERY ISOTOPE ON THE FILE IS PRINTED, ONLY THOSE actually referf.nced).
2... WRITE RUNNING EDIT OF ISOTXS ON THE AUXILIARY OITPUT FILE.
3...RUNHING EDIT OF ISOTXS URITTEN ON BOTH PRINT AND aUXILIARY oUtput FILES.

POINTR DEBUGGING EDIT FLAG.
0...NO DEBUGGING PRINTOUT (DEFAULT).
1... DUNP PRINTOUTS ONLY.
2...TRACE PRINTOUTS ONLY.
3... Both trace and dump printout.
mote that hagac Contains no dumps, i.e. it is not a relevant value for this flact.

PRONPT FISSION SPECTRUM OPTION FLAG.
O...IGNORE ISOTOPE FISSION VECTORS, IF PRESENT IN ISOTXS, AND USE THE SET FISSION VECTOR FOR ALL COMPOSITIONS (DEFAULT). If a SET FISSION SPECTRUM IS HOT PRESENT IN ISOTXS. THE COMPOSITION FISSION SPECTRA MILL BF COHPUTED BY THE TOTAL FISSION SOURCE LEIGHTING METHOD USING ISOTOPE FISSION vectors.
1...USF ISOTOPE FISSION VECTORS, IF PRESENT IN ISOTXS TO COHPUTE COHPOSITION FISSION VECTORS WITH TOTAL FISSION SOURCE WEIGHTING, I.E., UNDFR ASSUMPTION THAT FLUX IS GROUP INDEPENDENT. THIS IS THE PREFERRED WEIGHTING RETHOD. IF AN ISOTOPE FISSION VFCTOR IS MOT PRESENT. THE SFT FISSION VECTOR WILL BE USED IN ITS PLACE.
2...USE ISOTOPE FISSION VECTORS, IF PRESENT IN ISOTXS, TO COMPITE COMPOSITION FISSION VECTORS WITH mJesigma(fission) witghting. this mithon of COMPUTING A FISSION SPFCTRIR IS NOT RFCOMMENDED. IF AN ISOTOPE. FISSTON VECTOR IS NOT PRESENT, THE set fission vector will be usfi in its place.

43-48 AUXILIARY OUTPUT FILE MASTER CONTROL FLAG.
O... SUPPRESS ALL OUTPUT TO AlIXILIARY FII.E (DF.FAULT).
1... witite general. ritn information ant requested EDITS ON AIXILIIARY OUTPUT FILE.
note that error diagnostics are not written on the alixiliary output file.

## 49-54

dit flag for a supplied
1...PRINT COMPIETE EDIT OF SUPPLIED COMPXS FILE.
2...WRITE COMPLETE EDIT OF SUPPLIED COMPXS FILE ON THE AUXILIARY OUTPUT FILE.
3...EDIT OF SUPPLIED COMPXS WRITTEN ON BOTH PRINT AND aUXILIARY OUTPUT FILES.


CEMF
R. 3 A.ISO (SEE ISOTXS FILE DFSCRIPTION)
8.4 A.NIP3

PREPARED 8/28/75 AT ANL LaST REVISED 09/30/83
A.NIP3
nEUTPONICS mODEL INPUT FOR CODES WHICH REOUIRE CCCC INTERFACF FILES

THIS ECD DATA SET MAY BR WRITTEN EITHER IN FREE FORMAT (UNFORH=A.NIP3) OR ACCORDING TO the formats specified for each card type (DATASET=A.NIP3).
columns 1-2 must contain the card type NUABER.
unless otherulse stated, blanks are not deaningful in ab label fields.
atit CARD TYPE DIRFCTORY ***

| TYPE | CONTENTS |
| :---: | :---: |
| 01 | PROBLEM TITLE |
| 02 | INPUT PROCESSING SPECIFICATIONS |
| 03 | PROALEM GEOMETRY |
| 04 | FXTERNAL BOUNDARY CONDITIONS |
| 05 | EXTERNAL BOUNDARY CONDITION CONSTANTS |
| 06 | REGION BOUNDARIES FOR ORTHOGONAL GEOMETRIES |
| 07 | AREA SPECIFICATIONS |
| 09 | variablemene structure |
| 10 | INTPRNAL BLACX ABSORBER CONDITIONS |
| 11 | internal black absorber Condition constants |
| 12 | FINITE-GEOMETRY TRANSVERSE DISTANCES |
| 13 | material specifications |
| 14 | COMPOSITION (ZONE) SPECIFICATIONS |
| 15 | REGION/COHPOSITION CORRESPONDENCE |
| 19 | REGION OR MESH DISTRIBUTED INHOMOGENEOUS SOURCE |
| 21 | SEARCH EDIT OPTIONS AND CONVERGENCF CRITERIA |
| 22 | SEARCH PARAMFIER DATA |
| 23 | CONCENTRATION MODIFIERS FOR Criticality search |
| 24 | hrash modipiers for Criticality search |
| 25 | HUCKLING modifiers for criticality search |
| 26 | ALPHA MODIFIERS FOR CRITICALITY SEARCH |
| 29 | hexagon dimension |
| 30 | RFGION DEFINITIONS FOR ARRAYS OF HEXAGONS |
| 31 | mackground region for arrays of hexacons |
| 34 | COHPOSITION- AND GROUP-DEPF.NDENT BUCXLINGS |
| 35 | DIRECTIONAL DIFFUSION COEF. SCHFME |
| 36 | DIRECTIONAL DIFFUSION COEF./COMPOSITION CORRESPONDENCF |


| CN | 37 | FISSION ENERGY CONVERSION FACTORS |  |
| :---: | :---: | :---: | :---: |
| CN | 38 | CAPTURE ENERCY CONVERSION FACTORS |  |
| CN | 39 | NUCLIDE SET ASSIGMMENTS |  |
| CN | 40 | SOURCE EDIT, SYNTHESIS TRIAL FUNCTION SOURCE |  |
| CN | 41 | natural df.cay inhombgeneous source |  |
| CN | 42 | SOURCF SPFCTTRA |  |
| CN | 43 | GRAPHICS OUTPUT CONTROL |  |
| CN | 44 | ASSIGNMENT OF REGION TO CONTROL ROD BANK |  |
| C |  |  |  |
|  |  |  |  |
| C |  |  |  |
| CR | PROBLEM TITLE (TYPE OI) |  |  |
| C |  |  |  |
| CL | FORMAT-- $(12,4 \mathrm{X}, 11 \mathrm{A6}$ ) |  |  |
| C |  |  |  |
| CD | COLIMNS | CONTENTS...IMPLICATIONS, IF ANY |  |
| CD | -07*-3* |  |  |
| CD | 1-2 | 01 |  |
| CD |  |  |  |
| CD | 7-72 | any alphanumeric characters. |  |
| C |  |  |  |
| CN | any number of type ol cards may be used. |  |  |
| C |  |  |  |



|  | processing modle (gnip4c) in real*B hords (Defailit-iOOOO). |
| :---: | :---: |
| 31-36 | size of bulk core storage array for geomftry |
|  | processing module (GniphC) in realab mords |
|  | ( DEFAILLT-0). |
| 37-42 | size of main core stornce array for cross section |
|  | processtme modules in real*8 words (default = 20000). |
| 43-68 | site of bulk core storage array for cross section |
|  | processing modules in real* hords (defaultm). |
| 49-54 | pointr demugging edit por cross sfiction procfssing |
|  | modules. |
|  | O....vo dfigiceing printout (default). |
|  | 1.... demucging durf printoite |
|  | 2... DEbugcime trace printout. |
|  | 2...frll demuccing printout (durptirace). |
| 55-60 | CRoss section processing edit. |
|  | O...mo EDITS (DEFAULT). |
|  | 1....PRINT CROSS SECTION EDITS. |
|  | 2....nnite cross section edits to auxiliary output file |
|  | 3...cross section edits go to moth print and auxiliary |
|  | OUTPIT FILES. |
| 61-66 | megion/mrsh interval printer-plotter map edit during |
|  | grometry processimc. |
|  | O...no map (default). |
|  | I....print region map. |
|  | 2...trite region map to auxiliary output file. |
|  | 3...write region map to moth print and auxiliary out |
|  | FILFS. |
| 67-72 | zone (composition)/mesh interval printer-plotter hap |
|  | edit durtuc genmetry processing. |
|  | O....mo rap (default). |
|  | 1...PRINT ZONE MAP. |
|  | 2...URITE |
|  | 3...irite zone map to both print and ailxiliary outplit |
|  | FILES. |
|  | EDIt options 2 ant 3 are operative oni.y for those. |
|  | codes uhich recocmize ainilitary oitpit files. |
|  | the printer-plotter map opttons (C0i.s. 61-72) are. |
|  | fint rely separate from the graphics map iptions |
|  | in cols. 7-iR of the type 43 card. |

problem geometry specification (type n3)
FORMAT-- $-(12,10 \mathrm{X}, 16)$
COLUMNS CONTENTS... IMPLICATIONS, IF ANY.
10...SLAB
20...CYLINDER
30....SPHERE
40....x-y
44...x-Y-Z
44... $X-Y-Z$
$50 . . . R-Z$
50...R-Z
62....R-THFTA-2
62... R-THFTA-
64...TTHETA-R
66...THETA-R-Z
66...THETA-R-Z
70...TRIANGULAR, RHOMBIC ROUNDARY, CORE CENTER AT
-TRIANGULAR, DEGREE ANGLE (SIXTH CORE SYMMETRY).
72...TRIANGIILAR, RECTANGULAR BOUNDARY, HALF CORE
SYMMFTRY.
74... TRIANGULAR, RHOMBIC BOUNDARY, CORE CENTER AT
120 dFGREE ANGLF. (THIRD CORE SYMMETRY).
76...triangular, 60 degree triangular boundary,
SIXTH CORE SYMMFTRY.
78...TRIANGULAR, RECTANGULAR BOUNDARY, QUARTER
CORE SYMMETRY.
BO... TRIANGULAR, RECTANGULAR BOUNDARY, FULI, CORF.
90... TRIANGULAR-7., RHOMRIC ROUNDARY in PLANF, CORE.
CFNTFR LINE AT 60 degref ancle.
92...triancular-Z, rectancular roundary in planf.
hal.f Core symmetry in plane.
94...triangular-7. rhomaic boundary in planf, core
CENTER I.INE AT 120 DEGREF, ANGLF.
96...TRIANGULAR-2, 60 degrf.e TRIANGULAR boundary in PLane.
$98 .$. triancular-7, rectangular boundary in plank. gUARTER CORE SYMMETRY IN PLANE.
100... triangular-Z, rectangular boundary in planf, FULL. CORE IN PLANF.
110... HFXAGONAL, FH.L CORE
114.... HEXAGONAL, SIXTH CORE SYMMFTRY.
116... HFXAGONAL, THIRD ©ORE, SYMMFTRY.
120... HFXXAGONAL,-Z, FILLL CORF, IN Pl.ANE.
124....HEXACONAL-Z, SIXTH CORE SYMMETRY iN PLANF.
126...HEXAGONAL-7., THIRD CORF. SYMMETRY IN Pl.ANE.

EXTERNAI, BOUNDARY CONDITIONS (TYPF 04 )

2...PHI- 0 .
3...PHI PRIMEOO
4...D * PhI PRIME + A * PHI = 0 .
6...REPEATING (PFRIODIC; WITH OPPOSITE FACE.
7...REPEATING (PERIODIC) WITH NEXT ADJACENT BOUNDARY (SEE DISCUSSION BELOH).
B... inverted repeating along this face (180 degree rotation).
9... INCOMING ANCULAR FLUX ZERO (TRANSPORT ONLY)
10.. REFLECTIVE (TRANSPORT ONLY).
11.. PERIODIC (TRANSPORT ONLY).
12..WHITE (TRANSPORT ONLY).

Phi prime: is thf derivative of the fiux in the. DIRECTION OF THE RFACTOR OIITWARD NORMAL. D IS THE dIFFUSION COEFFICIENT IN THE MESH INTERVAL
IMMFDIATELY INSIDE THE REACTOR BOINDARY. IF COL.S.
43-48 are 4 and no TYPE 05 CARD IS SUPPI.IF.D TO SPE.CIFY the constant a, the vallee n. 46920 WILL bF IISFid by Default.
CONDITIONS 2-8 APPLY TO DIFFUSION THEOORY PROBLI:MS, AND 9-12 APPLY to transport theory prorlems.
" $x$ " REPRESENTS THE FIRST dimenston COORDINATE ( $x$ in X-Y GFOMETRY, R TA R-Z, ETC.). "Y" REPRFSENTS THF: SfCOND DIMFNSION COORDINATE (Y IN X-Y GfOMFTRY, Z IS r-Z, eTC.). When the monfl is threti-dimensional., the THIRD DIMENSION IS ALHAYS Z.
repfating condittons ( $6,7,8$ ) are only applitcablef tn
$\square$

THE FIRST TWO DIMENSIONS.
NOTE FOR REPEATING CONDITION 7. LET XL DENOTE THE LONFR " X " BOINDARY, XU DENOTE THE UPPER " X " BOUNDARY, YL DENOTE THE LOUER " $Y$ " BOUNDARY AND YU DENOTE THE UPPER Y BOUNDARY. FOR REPEATING BOUNDARY CONDITIONS (CONDITION 7) THE SEQUENCE OF BOUNDARIES IMPLTED BY THE TERM -NEXT ADJACENT BOUNDARY" IS XL, YL, XU, YU. OF THE TUO BOUNDARIES INVOLVFD THE ONE APPFARTNG. FIRST TN B B
CONDITION (7), THE SECOND IS IGNORED. FOR FXAMPLE, CONDITION (7), THE SECOND IS IGNORED. FOR EXAMPLE,
IF XL AND YL ARF, THE PERIODIC ROUNDARIPS, COLS. $13-18$ IF XL AND YL ARE, THE, PERIODIC ROUNDARIFS, COLS
MIST CONTAIN A 7, COLS. $25-30$ W!LL BE. IGNORFD.
fexternal boundary condition constants (type 05)
FORMAT——— ( $12,8 \mathrm{X}, \mathrm{A} 2$, F12 $-5.12 \mathrm{X}, 216$ )
COLUMNS CONTENTS...IMPLICATIONS, IF ANY
1-2 05
11-12 BOUNDARY DESIGNATOR.
XL.... ${ }^{-x} x^{\prime \prime}$ LOWTR.
xU...."x" ITPPER.
YL.... ${ }^{-} Y^{-}$LOWER.
ZL...7. LONER.
ZIU... 2 UPPER.
13-24 Value of constant a rfferred to on card type 04.
37-42 HIGHFR-ENERGY GROUP NUMBER FOR WHICH CONSTANTS APPLY.
43-48 L.OWER-ENERGY group number for which constants apply.
as many type 05 cards as negf.ssary may be lesed to SPECIFY THE EXTERNAI. BOUNDARY CONDITIONS.

If no "higher-fnfrgey group nimber" is supplifin (COLS. 37-42 ARE. BLANK), THF, CONSTANTS CIVEN APPLY TO AL.L finergy groits. If no "Lowtr-entirgy group numbfic it UIPPLIED (COLS. 43-4R ARE BLANK), THE CONSTANTS GIVEN APPI.Y TO THE "HIGHER-FNE:RGY GROUP" onl.Y. IF NO GROIIP nimbers are sitplited (COLS. 37-48 are blank), the. constants givfin apply to all energy groups.
data on this card may be overlayed. that is, boundary constants definf.d on later type 5 Cards superceide gata for f.NF.RGY RANGF.S PRF.VIOISIY SPF.CIFIFD.


| CD |  |  |
| :---: | :---: | :---: |
| CD | 37-42 | labsl of region cohprising area. |
| CD |  |  |
| CD | 43-48 | labfl of region compresing area. |
| CD |  |  |
| CD | 49-54 | label of region comprising area. |
| CD |  |  |
| CD | 55-60 | lasfl of region comprising area. |
| CD |  |  |
| CD | 61-66 | Label of region comprisimg area. |
| CD |  |  |
| CD | 67-72 | label of region comprising area. |
| c |  |  |
| CN |  | area labels must se non-blank. the first blank region |
| CN |  | LabEL EnCOUNTERED TERMINATES READING OF THE data on |
| CN |  | that partictilar type 07 ard. a region can me placed |
| CN |  | In as many areas as : if USER desires. |
| CN |  |  |
| CN |  | the concept of areas does mot exist in the cccc |
| CN |  | environnent. only certain codes mritten at aml make |
| CN |  | use of areas, and in those codes areas are used for |
| CN |  | edit purposes only. |



- X - represents the first dimension comrninate (x in X-Y GFOMFTRY, R IN R-7, ETC.). "Y" represents the SECOND DIMENSION CODRDINATF. (Y IN X-Y GEOMFTRY, 2 IN R-I., ETC.). WHEN THE MODEL IS THRFE-DIMENSIONAL, THE THIRD DIMFNSION IS Al.WAYS $Z$.

In geometries involving an angular dimension (theta) thf. angutar variable mest be given in radians.
fach number pair is of the form ( $n(\mathrm{I}), \mathrm{X}(\mathrm{t})$ ). there
ARF. $N(I)$ INTERVALS BETWEEN $X(I-1)$ AND $X(I)$, WHERE $X(0)$ IS THE LOMER REACTOR BOUNDARY IN THIS DIRECTION.
number pairs must be given in order of increasing
MFSH COORDINATES. ALLL. REGION BOUNDARIES MUST COINCIDE. WITh the mesh lines that bound mesh interval.s.

| FORMAT--(12,10x, 10A6) |  |
| :---: | :---: |
| colimas | CONTENTS... Implications, if Any |
| 1-2 | 10 |
| 13-18 | LABEL OF COMPOSITION (CCCC ZONE) WHICH IS TO BE treated hith internal black boundary condition. |
| 19-24 | taABEL OF COMPOSITION (CCCC ZONE) WHICH IS TO BE. treaten with internal black roundary condition. |
| 25-3n | LABEL DF COMPOSTTION (CCCC ZONE) VHICH IS TO BE treaten hith internal black boundary condition. |
| 31-36 | LABEL OF COMPOSITION (CCCC ZONE) WHICH IS TO BE trf:ated hith internal mlack boundary condition. |
| 37-42 | label of composition ( CCCC ZONE) which is to re. treated with internal mlack boumdary condition. |
| 43-48 | DABFL OF COMPOSITION (CCCC ZONE) WHICH IS TO be. trfeaten hith internal black boundary condition. |
| 49-54 | Labfl of composition (cCCC Zone.) which is to be. trfatki with internal black houndary condition. |
| 55-60 | LAREL OF COMPOSITION (CCCC \%ONF) WHICH IS TO BE TREATER WITH INTERNAL BLACK BOUNDARY CONDITION. |


| $\begin{aligned} & C D \\ & C D \end{aligned}$ |  | treated with internal mlack boundary condition. |
| :---: | :---: | :---: |
| CD | 67-72 | Label of composition (CCCC ZONE) Which is to me |
| CD |  | TREATED WITH INTERNAL BLACK BOUNDARY CONDITION. |
| c |  |  |
| CN |  | as many type 10 cards can be used as are necessary to |
| CN |  | SPECIFY ALL, OF THE DESIRED COMPOSITION (CCCC ZONE) |
| CN |  | Latels. |
| CN |  |  |
| CM |  | EACH REGION Which is composed of any composition |
| CN |  | LISTED ON TYPF. 10 Cards will be treated as a black |
| CW |  | ABSORBER ACCORDING TO THE INTERNAL BOUNDARY CONDITIONS |
| CN |  | GIVEN ON TYPE 11 cards to follow. |
| CN |  |  |
| CN |  | THE REGIONS MHICH ARE COMPRISED Of these compositions |
| CN |  | ARE SPECIFIED ON TYPE 15 Cards. |
| CN |  |  |
| CN |  | THE PIRST Blank Conposition label terhinates reading |
| CN |  | Of the data on that particular type 10 Card. |
| c |  |  |

intranal black absorber condition constants (TYPE 11)

| COLUMNS | CONTENTS... IMPLICATIONS, If ANY |
| :---: | :---: |
| 1-2 | 11 |
| 13-24 | the constant a, definfd mflow. |
| 25-36 | the constant a, depined below. |
| $61-66$ | HIGAER-ENERGY GROUP NUMAER FOR WHICH CONSTANTS APPLY. |
| 67-72 | LOMER-ENf.RGY group nunier for which constants apply. | THE INTERNAL BLACK ROUNDARY CONDITION IS SPECIFIED AS

$$
A^{\star} \text { PHI PRIME }+n / D^{\star} \text { PHI }=0 \text {. }
$$

IF NO -higher-Enfrat groht number- is supplifid (cols. GI-GK ARF BLANK), THE CONSTANTS GIVIN APPLY TO ALL FANERGY GROUPS. IF NO "LOWFR-ENERGYY GROUP NUMBER" IS SUPPLIFD (COLS. 67-72 ARE BIANK), THE CONSTANTS GIVEN APPLIY TO THE "HIGHFR-ENERGY GROUP" ONL.Y. IF NO GROUP mimafrs are supplied (COLS. h1-72 arf blank), thi CONSTANTS GIVEN APPLY TO Al.L ENERGY gROUPS.
data on this card may be civirlayed. that is, constants -
dF.FINF.D ON LATER TYPE 11 CaRDS SUPERCE.DE DATA for enf.rcy ranges previously specified.

ANY GROUP FOR GHICH NO INTERNAL BLACK ABSORBFR Condition constants are specified on type ll card will 8f treated as being non-black.

FINITE-GECMETRY TRANVERSE DISTANCES (TYPE 12)
FORMAT- $-(12,4 X, A 6,4 E 12.5)$

| COLUMNS | CONTENTS... IMPLICATIONS, IF ANY |
| :---: | :---: |
| 1-2 | 12 |
| 7-12 | region or area label. |
| 13-24 | actual transverse halfoheight or radius. |
| 25-36 | transverse extrapolation distance. |
| 37-48 | actual transverse half-height in the second direction for a finite one-dimensional rectangular slab. |
| 49-60 | TRANSVERSE EXTRAPOLATION DISTANCE IN THE SECOND direction for a finite one-dimensional rectancular SLAR. |

HE DATA ON THE TYPE 12 CARDS ARE USED TO CALCULATE region volumes and, in the absence of type 34 Cards, BUCKLINGS. REGION VOLUMES ARE CALCULATED USING actual half-heights (EXCLUDING THE EXTRAPOLATION DISTANCE).
an area label in cols. 7-12 implies all the regions ASSIGNED TO THAT AREA.
the region-depfindent data that is provided on this Card is converted by the ginipuc input processor to COMPOSITION-DEPENDENT DATA. THIS IS A POTENTIAL PROBLEM FOR IISERS IF THEY HAVE ASSIGNED ONF. COMPOSITION TO TWO OR MORE REGIONS WITH DIFFERENT half heights.
if therf. is no rfgion label (Cols.7-12 arf blank), thf DATA ON THF, CARD APPLY TO al.l. RESHIONS OF THF RF.ACTOR. if there is no regienn lasel and if therf. arf. no type 34Card (COMPISITION AND GROUP DEPENDENT BUCKILING
spfecifications), the data in this carn nill be isfid to CAICIULATE A SPACF- AND ENE:RGY-INDEPENDENT BLICKLING, AND -

to calculate region volumes. in this mode of input ONLY ONE TYPE 12 GARD SHOULD BE SUPPLIED.

If more than one type 12 Card is present (each card ITH A YALID REGION OR AREA LABEL IN COLS. 7-12), TH WITH a Valid region or area label in cols. 7-12),
data on the cards will be used to calculate region DATA ON
vOLIMES.
data on this card may be overlayed. that is,
TRANSVERSE DISTANCES DEFINED ON LATER TYPE 12 TRANSVERSE DISTANCES DEFINED ON LATER TYPE
CARDS SUPERCEDE DATA FOR REGIONS PREVIOUSLY SPECIFIED.

If type 34 cards are present, sucklings hill be takfn PROM TYPE 34 CARDS AND WILL NOT EE CALCULATED FROM TYPE 12 CARD DATA. EVEN IF bucklings are taken from TYPE 34 Cards, ReGION VOLUHES ARE CALCULATED USING type 12 CARD data mhen type 12 Cards are present.

IN THE ABSENCE OF TYPE 12 AND TYPE 34 CARDS NO aucklings will be used and region volumes will be calculated usimg unit transverse heights.

| $\mathrm{CN}_{\mathrm{c}}$ | those constituents of a primary composition which arf. mot thrmselves subzones (i.E. isotopes and materials |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CN |  |  |  |  |  |  |  |  |  |
| CN | DIRECTLY ASSIGNED TO PRIMARY COMPOSITIONS) ARE |  |  |  |  |  |  |  |  |
| CN | COMBINED INTO CCCC PRIMARY ZONE ASSIGNHENTS. |  |  |  |  |  |  |  |  |
| CN |  |  |  |  |  |  |  |  |  |
| CN | AN EXAMPLE Of a SET Of TYPE 13 and 14 Cards |  |  |  |  |  |  |  |  |
| CN |  |  |  |  |  |  |  |  |  |
| Cr | 13 | FUFL1 | U238 | . 020 | PU239 | .003 | 016 | . 042 |  |
| CN | 13 | FUEL2 | U238 | . 015 | PU239 | . 004 | 016 | . 042 | - |
| CN | 13 | SS |  | . 055 | CR | . 015 | NI | . 012 |  |
| CN | 13 | CNOL | na23 | . 022 | SS | 0.1 |  |  |  |
| CN | 14 | HIXI | PUEL1 | 1.0 |  |  |  |  |  |
| cN | 14 | M1x2 | PUELI | 0.5 | FUFL2 | 0.5 |  |  |  |
| CN | 14 | COHPI | MIX1 | 0.4 | SS | 0.2 | COOL | 0.4 |  |
| CN | 14 | CONP2 | Mix2 | 0.4 | SS | 0.2 | COOL | 0.4 |  |
| CH | 14 | Comp 3 | mixi | 0.2 | MIX2 | 0.2 | SS | 0.2 |  |
| CM | 14 | COnP 3 | COOL | 0.2 |  |  |  |  |  |
| CW | 14 | COMP4 | Na23 | . 022 |  |  |  |  |  |
| CN |  |  |  |  |  |  |  |  |  |
| CM | THE MATERIAL COOL is defined in teras of an |  |  |  |  |  |  |  |  |
| CN | ISOTOPF (NA23) AND A MATERIAL (SS). |  |  |  |  |  |  |  |  |
| CN |  |  |  |  |  |  |  |  |  |
| CN | MIXI AND MIX2 ARE SECONDARY COnPOSITIONS. |  |  |  |  |  |  |  |  |
| CN | COHP1, COMP2, COMP3 AND COMPG ARE PRIMARY |  |  |  |  |  |  |  |  |
| Cr | CORPOSITIONS. |  |  |  |  |  |  |  |  |
| CN |  |  |  |  |  |  |  |  |  |
| CN | tn the CCCC files mixi will de assigned as |  |  |  |  |  |  |  |  |
| CT | SUBZONES TO BOTH COHPI AND COMP3. THE PRIMARY |  |  |  |  |  |  |  |  |
| CN | ZONE ASSIGNTEMTS OF COMP1, CONP2 AND COHP3 |  |  |  |  |  |  |  |  |
| CN | WILL CONSIST OF SS AND COOL. COHP4 WILL HAvEWO SUBZONES. |  |  |  |  |  |  |  |  |
| CN |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  | - |



| 25-30 | RECION LABEL OR ARE CONTAINING SPECIFIE | Label defining COMPOSITION. | RECION(S) |
| :---: | :---: | :---: | :---: |
| 31-36 | RFGTON LABF.L OR ARE CONTAINING SPEGIFIE | LABFI, DEFINING, COMPOSITION. | PEGION(S) |
| 37-42 | REGION label or area CONTAINING SPECIFIE | Label defining COMPOSITION. | REGION(S) |
| 43-48 | rggion label or area CONTAINING SPECIFIE | Label defining COMPOSITION. | REGION(S) |
| 49-54 | region label or arfa CONTAINING SPECIFIE | Label defining COMPOSITION. | REGION(S) |
| 55-60 | REGION LABEL OR ARF CONTAINING SPECTPIE | Label defining COMPOSITION. | REGION(S) |
| 6) -66 | regitin latel or are CONTAINING SPECIFIE | Label defining COMPOSITION. | REGION(S) |
| 67-72 | REGION LABEL OR ARF CONTAINING SPECIFIF | LabFi defining COMPOSITION. | REGION(S) | CONTAINING SPECIFIED COMPOSITION.

an area label in cols. 13-72 implifs all the regions assigned to that area. arfas are defined on the, TYPE 07 CARD.
when a particular region or area is referenced on MORE THAN ONE TYPE 15 CARD, THE LAST REFERENCE to that region (Either directly, or through an area) establishes the cohposition assignatent.
I. E. A REGION/COMPOSITION CORRESPONDENSF ESTABLISHED ON ONE TYPE 15 CARD CAN BE OVERURITTEN BY A reference on a later type is card.

COMPOSITION LABELS MUST BE NON-BLANK. THE FIRST blank region label encountered terminates reading of the data on that particular type 15 Card.
only primary composition lanfle (ser: card type 14) CAN APPEAR IN COLS. 7-12. PRIMARY COMPOSITIONS are CAN APPFAR IN COLS. T-12. PRIMARY COMPOSITIONS ARE, ONF PRIMARY COHPOSITION.

HHEN THERE. ARE NO TYPE 14 CARDS (THE MACROSCOPIC CROSS SECTIONS ALREADY EXIST) THF. COMPOSITION IARFI, FIELDS SHOULD CONTAIN COMPOSITION NUMBERS instean ( $12,4 \mathrm{X}, \mathrm{I}, 10 \mathrm{AK}$ ).

DISTRIBUTEO ISOT:OPIC INHOMNGENEOUS SOURCE DATA DEFINED EITHER BY REGION OR ME H INTERVAL (TYPE 19)

columans
19
Label of rfgion or area (blank if data are given by
EESH INTERVALS). IF THE GEOHETRY HAS BEEN SPFETFIED
8Y AN INPUT GEODST FILE (AND NOT BY A.NIP TYPE. 36
OR 30 CaRdS) USE THE REGION NUMIER (16) INSTEAD OF
ThE RRGION LABEL.
13-18 NIGHER-ENTREY GROUP NUMBER.
19-24 LOYER-ENERGY GROUP NUMBER.
25-36 ISOTkOPIC SOURCE VALUE IN THE SPECIFIED MF.SH INTERVAL,
recion or area for this enercy range. (neutrons per
LOMER " $\mathrm{X}^{-}$DIRECTION COORDIMATE OF MESH INTERVAL
LONRR " $\mathrm{Y}^{-}$DIRECTION COORDINATE OF MESH INTERVAL
LOMER 2 DTRECTION COORDINATE OF MESH INTERVAL
an area label in cols. 7-12 implies all the rficions
If there is mo rfigion labfl (cols. 7-12 are blank),
THE SOURCE SPECIFIED IN COLS. 25-36 IS PLACED IN THE
MESH BOX DEFINED BY COLS. 37-68, 49-60 AND 61-72
IF ThFRE is a rfgion labrl (cols. 7-12 are non-blank),
THE MFSH COORDINATE FIELDS (COLS. 37-48, 49-60 AND
25-36 is placed in fuery mesh dox in thf rfigion.
"X* REPRESEINTS THF FIRST DIMENSION COORDINATE (X in
$x-Y$ granetry, $R$ IN R-Z, ETC.). " $Y^{*}$ RE:PRESENTS THE
R-2, ETC.). WHEN THE MODEL IS THREE-DIMENSIONAL, THE
In GEOATSTRIES INVOLVIMG AN ANGULAR IMENSION (THETA)
thf: ancillar variable mist be given in kadians.

IF NO "higher-finergy group number" is supplied (cols. -13-18 ARE BLANK), THE SOURCE VALUE GIVEN APPLIES TO all finfrgy groups. If no "LOWTR-ENERGY GROUP NUMBER" ALL ENERGY GROUPS. IF NO LOWFR-ENERGY GROUP NUMBER
IS SIPPLIED (COLS. 19-24 ARE BLANK), THE SOURCE VALUE GIVEN APPLIES TO THE "HIGHER-ENERGY GROUP" ONLY. IF NO GROUP NIMMERS ARE SUPPLIED (COLS. 13-24 ARE BLANK) the source value given applies to all enercy groups.
data on this card may be ovferlayed. that is, source VALUES DEFINED ON LATER TYPE 19 CARDS SUPERCEDE DATA FOR REGIONS AND GROUPS PREVIOUSLY SPECIFIED.
an edit of the nutput fixsrc file may me obtained by SUPPLYING THE EDIT SENTINFL ON THE TYPE 40 CARD.

| SFARCH EdIt options abd convergence criteria (type 21) |  |  |
| :---: | :---: | :---: |
| FORMAT-- ( $12,10 \mathrm{X}, 216,2 \mathrm{E} 12.5,216$ ) |  |  |
| COlumes | CONTENTS... IMPLICATIONS, IF ANY | - |
| 1-2 | 21 |  |
| 13-18 | SEARCH file processing edit sentinel <br> 0, No edits (default). <br> 1. PRINT FDITS. <br> 2. URITE fidits to auxiliary output file. <br> 3. WRITE EDITS TO BOTH PRINT AND aUXILIARY OUTPITT FILE. |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 19-24 | maximim number of search passes (dffaulte $)$. |  |
| 25-36 | DFSIRED KEFF, KEFF(0) (DEFAULT-i.0). |  |
| 37-48 | CONVERGENCE CRITERION, EPSILON: RELATIVE ERROR BOUND FOR KFFF (DEFAULT=.Ot). |  |
|  |  |  |
|  |  |  |
|  | EPSILON. |  |
| 49-54 | Sfarch (module) Parameter fitt options |  |
|  | FiNTER TWO-DIGIT NUMBER (If) WHERE |  |
|  | I Controls intermediate pass parameter mdits |  |
|  | F COntrols final starch pass parameter fidits | - |
|  | the inthgers i and f arf assignfd onf of the following values (lfading pfroes are irrflefvant) n...NO EDITS |  |
|  |  |  |
|  |  |  |
|  | 1...PRINT EDITS (DFFAULT FOR F) |  |



WHERE P IS THE QUANTITY BEING VARIED, $X$ IS THE SEARCH Parameter, and m is the quantity modififer obtained FROM INFORMATION CONTAINED ON ONE OF THE MUTUALLY EXCLUSIVE CARD TYPES 23, 24, 25, OR 26. X IS TO BE VARIED UNTIL THE DESIRED KEFF IS REACHED. THE SEARCH WILL BE TERMINATED IF $X$ EXCEEDS ITS BOLNDS OR IF THE maximum number of search passes are reached.
(SOMF CODES MAY also trigger jor termination betueen SFARCH PASSES IF IT IS ESTIMATED THAT JOB TIME LIMT hould be exceeded during the next search pass).

FOR EFFICIENT SEARCHING, SCALE THE SEARCH OUANTITY such that the magnitudes of the search paraheter estimates lie in the interval (.1,10.)
monzern data on this card overrides data in an existingsearch file during a search problem restart.

| CR | CONCENTRATION MODIFIERS POR CRITICALITY SFARCH (TYPE 23) |  |
| :---: | :---: | :---: |
| C |  |  |
| CL. | FORMAT- - ( $12,4 \mathrm{X}, 11 \mathrm{~A}$ ) |  |
| C |  |  |
| CD | COLIMANS | CONTENTS... Implications, if ANY |
| CD | mesememe |  |
| CD | 1-2 | 23 |
| CD |  |  |
| CD | 7-12 | COMPOSITION LABEL OF COMPOSITION (FROM CARD TYPE 14) |
| CD |  | to be used as the modifier m in the search formula. |
| CD |  |  |
| CD | 13-18 | COAPOSITION LABEL OF COMPOSITION (FROM CARD TYPE 14) |
| CD |  | to which modifier m is added as a subzone. |
| CD |  |  |
| CD | 19-24 | COMPOSITION LABFL OF COMPOSITION (FROM Card type 14) |
| CD |  | to mhich modifier m is added as a subzone. |
| $C D$ |  |  |
| CD | 25-30 | Composition label of composition (from card type 14) |
| CD |  | TO which modifier m is added as a sumbone. |
| CD |  |  |
| CD | 31-36 | Composition label of composition (from card type 14) |
| CD |  | TO Which modifigr m is admed as a subzonf. |
| CD |  |  |
| CD | 37-42 | composition taabil of composition (from card type 14) |
| $C D$ |  | to which modifiter m is added as a sumzone. |
| CD |  |  |
| CD | 43-48 | COMPOSITION LABEL OF COMPOSITION (FROM CARD TYPE. 14) |
| CD |  | to hhich modifier m is added as a subione. |
| CD |  | COMPOSITION LABEI. Of COMPOSItion (from carn type 14) |
| CD | 49-54 |  |
| CD |  | TO Which modifier m is admed as a subzonf. |



```
FORMAT----(12.9X,A1, 3F.12.5)
cOlumNS
M-2==== 2=
12 COORDINATE DIRFCTION.
 X..."X" COORDINATE DIRECTION
 Y..-"Y" COORDINATE DIRECTION.
 z..."z" COORDINATE DIRECTION
 13-24 LOWER (COARSE MESH) COORDINATE.
 25-36 UPPER (COARSE mESH) COORDINATE.
 37-48 MESH MODIFIER, M FOR EACH MESH INTERVAL BETNEEN
 37-48 MESH MODIFIFR, M. FOR EACH MESH INTERVAL BETUEEN
 in the search formula P(X)=P(0) + X * M,
 P(X) IS THE RESULTING MESH INTERVAL,
 ?(0) IS THE INITIAL MESH INTERVAL, AND
 M IS THE MESM INTERVAL MODIFIER.
 dATA ON this CARD may be overlayed. that is mesh
 mOdIFIERS DEFINED ON LATER TYPE 24 CARDS SUPERCEDE
 dATA FOR REGIONS SPECIFIED PREVIOUSLY.
 repeat type 24 cardS as needed.
FORMAT-- \(=\) (\(12.9 \mathrm{X}, \mathrm{Al}, 3 \mathrm{~F} .12 .5\)) -
COLUMNS CONTENTS...IMPLICATIONS, IF ANY
data on this card may be overlayed. that is mesh Motr fors difined on later type 24 CARDS SUPERCEDE
repeat type 24 cards as needed.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{COMPOSITION DEPENDENT RUCKLING MODIFIERS FOR CRITICALITY SEARCH (TYPE 25)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline collims & Contents... implications, if any \\
\hline 1-2 & 25 \\
\hline 7-12 & COMPOSITION (TONF) LABEL. \\
\hline 13-24 & blickling montfier, M, in first transverru dirf.ction. \\
\hline 25-36 & bucki.ing modifier, m, in second transversf direction for a finite onf:-dimfnsional pectangular slab. \\
\hline & in the search formila \(P(X)=P(0)+X * M\), \(P(X)\) is the rf.sulting bucxiang, \(P(0)\) is the initial. buckling. ant m is thf buckling modifier. P(0) wili. be evaluated from the transverse heights givin on card type 12 or takfin directly from bucklinc \\
\hline
\end{tabular}

\section*{GIVEN ON CARD TYPE 34.}
IF COLS. 7-12 are blank, the data in cols. 13-24 apply TO AIL COMPOSITIONS (ZONES) OF THE REACTOR.
rf.peat type 25 carns as needed.

THE TYPE 29 CARD IS PERTINENT ONLY IF CULS. 13-18 ON CARD TYPE 03 arf greater than or equal to 70.

FOR TRIANGULAR-Z AND HEXAGON:L-T. GEOMETRIES THE: AXIAL (Z) mf.Sh must be specified on type 9 Cards.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(C R\)
\(C R\)} & \multicolumn{3}{|c|}{LOCATIONS OF REGIONS FOR TRIANGULAR, TRIANGULAR-Z,} \\
\hline & & AGONAL, AND HEXAGONAL-Z GEOMETRIF.S (TYPE 30) & \\
\hline \multicolumn{4}{|l|}{C} \\
\hline CL & format- & -(12,4X, A6, 3I6, 2F.12.5) & \\
\hline \multicolumn{4}{|l|}{C} \\
\hline CD & COLUMNS & CONTENTS... IMPLICATIONS, IF ANY & \\
\hline CD & -0=.e=e & & \\
\hline CD & 1-2 & 30 & \\
\hline \multicolumn{4}{|l|}{CD} \\
\hline CD & 7-12 & Rfgicion label (repeated on anditional type 30 Cards). & \\
\hline \multicolumn{4}{|l|}{CD} \\
\hline CD & 13-18 & hexagonal ring ntmber where region is located. & - \\
\hline \multicolumn{4}{|l|}{CD} \\
\hline CD & 19-24 & Starting hexagon position for this region. & \\
\hline \multicolumn{4}{|l|}{CD} \\
\hline CD & 25-30 & final hexagon position for this region. & \\
\hline \multicolumn{4}{|l|}{CD} \\
\hline CD & 31-42 & LOWER 2 boundary of region. & \\
\hline \multicolumn{4}{|l|}{CD} \\
\hline Cn & 43-54 & UPPER Z BOUNDARY OF REGGION. & \\
\hline \multicolumn{4}{|l|}{C.} \\
\hline \multicolumn{4}{|l|}{C} \\
\hline CN & & RFGION LABELS MIIST BF NON-BLANK. & \\
\hline \multicolumn{4}{|l|}{CN} \\
\hline CN & & if the starting position (COL.S. 19-24) is blank or & \\
\hline CN & & 7.f.rn, the region labei. is assigned to the whole ring. & - \\
\hline \multicolumn{4}{|l|}{CN} \\
\hline CN & & If THE FINAL POSITION (COLS. 25-30) is blank or \%ero, & \\
\hline CN & & the. region labmil is assignen to the position in 19-24 & \\
\hline CN & & OF THE RING [N 13-18. & \\
\hline \multicolumn{4}{|l|}{CN} \\
\hline CN & & data on this card may be oveklaymd. that is, rricion & \\
\hline CN & & ASStGNmpints dffinfo on lattre type 30 Cards stiperceide & \\
\hline C N & & data for rincs and positions previously spectifieid. & - \\
\hline CN & & & - \\
\hline CN & & & - \\
\hline CN & & hith mpesh lines, which boind mesh intfrval.s. & - \\
\hline \multicolumn{4}{|l|}{CN} \\
\hline CN & & the figure beiou ili.ustrates the order of naming & - \\
\hline CN & & ringis and hixagons in the rings. the first number of & - \\
\hline CN & & fach numberfil pair is the rinc nimmber, and the second & \\
\hline CN & & number is the hfitagon number in that rinc. & \\
\hline
\end{tabular}

TO ALL ENERGY GROUPS. IF THERE IS A "HIGHER-ENERGY
GROUP NUHBER
IN CDLS. \(25-30\), BUT NO -LOWER-ENERGY GROUP NUMBER" IS SUPPLIED IN COLS. 31-36. THE BUCKLING GIVEN IN COLS. \(13-24\) APPLIES TO THE "higher-ENERGY

IF NO "HIGGER-ENERGY GROUP NUMBER" IS SUPPLIED IN COLS. 49-S4. THE DATA IN COLS. 37-60 ARE IGNORED. IF THERE IS A -HIGHER-ENERGY GROUP NUHEER" IN COLS. 49-54,IT NOCRUINC CIVEN IN COLS 37-48 APPLIES TO THE "HIGHER-ENERGY GROUP" ONLY.
bucxlings can be overlayed. that is, mucklings defined ON LATER TYPE 34 CAROS SUPERCRDE DATA FOR COMPOSITIONS AND/OR ENERCY RANGES PREVIOUSLY DEFINED. THE EXCEPTION CEDIMG PARACRAPHS UHERE DATA IS SPECIFICALLY IGNORED.

EXAMPLE

Exampi.s IS IN freE-FORMAT - ** IMPLIES A BLANK \(-2, .004\) IN GROUP 3,003 IN GROUPS 4-5, 002 IN GROUPS 6-7, AND ZFRO IN ALL OTHER GROUPS.
COHPOSITION COAP2 IS BUCKLED .ONS IN ALL GROUPS. ALL 002 IN GROUPS \(4-7\) AND ZERO IN ALL OTHER GROUPS

HEN ANY TYPE 34 CARDS EXIST. BUCXLINGS WILL NOT BE calculated from finite geomftry data on type 12 cards.
dIaf.CTIONAL DIFFUSION COEFFICIENT FACTOR SChEME (TYPE 35)
FORRAT-Z- \((12,4 X, 46,6 F 6.2,216)\)

25-30 SECOND DIMENSION DIFFUSION COEFFICIENT MULTIPLIER, A2. -
SECOND DIMENSION DIFFUSION COEFFICIFNT ADDITIVE TERM, R2.

37-42 THIRD DIMENSION DIFFUSION COEFFICIENT MULTIPLIER, A3.
43-48 THIRD DIMENSION DIFFISION COEFFICIENT ADDITIVE TERM, B3.

49-54 HIGHER ENERGY SROAD GROUP NUMBER TO WHICH DATA IN COLS. 13-48 APPLY.

55-60 LOWER FNERGY BROAD GROUP NUMBER TO WHICH DATA IN COLS. 13-48 APPLY.

If more than one type 35 card is needed for a given DIFFUSION COEFFICIENT FACTOR SCHEME, THE LAREL IN COLS. \(7-12\) MUST BF REPEATED ON FACH ADDITIONAL CARD.
first, second and third dimensions refer to the DIMENSIONS IN THE ORDER THEY ARE NAMED ON CARD TYPE 3. E.G. FOR R-Z GROMETRY R IS THE FIRST DIMENSION, AND 7. IS THE SECOND.
the first dimpnsion diffusion coefficient, di, is calculated from the homogeneous diffusion coffficifnt, D, AS FOLLOWS:
\[
D 1=A 1 * D+B 1
\]
(f THE "higher energy broad Group number is not PROVIDED (COLS. 49-54 ARE BLANK OR 2ERO), THF CONSTANTS SPECTFIED IN COLS. \(13-48\) WILL APPLY TO AIL broad groups for the particular scheme.

If the -lowfr finergy broad group number- is not PROVIDED (COLS. 55-f0 ARF BLANK OR 2FRO), THF, CONST:MTS SPECIFIFD IN COLS. \(13-48\) HILL APPLY TO THF HIGHEK ENERGY RROAD GROUP NIMBER (COLS. 49-54) ONLY.
the constants defiiinc a particular scheme can br ovi.RI.AYED. THAT IS, FACTORS DEFINE.D ON LATF.R TYPF 35 CARD: SUPERCEDE DATA FOR FNERGY RANGES PREVIOUSI.Y DFFINR.D.

DIRECTIONAL DIFFUSION COEFFICIFNT FACTOR SCHEME:S ARE assignfd to timpositions on type 36 cards.

If No type 36 CARDS are supplied. af: only onf schem IS DEFINED (THF Samf. Larel APPEABS IN COLS. 7-12 0F ALI. TYPE 35 CARDS), THE FACTORS WILL BE USER IN AIL

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{directional diffusion coefficient factors-composition CORRESPONDENCE (TYPE 36)} \\
\hline \multicolumn{2}{|l|}{PORMAT-- \((12,4 \mathrm{X}, 11 \mathrm{~A}\))} \\
\hline columas & CONTENTS... IMPLICATIONS, IF ANY \\
\hline 1-2 & 36 \\
\hline 7-12 & directional diffusion coefficient factor scheme label (SEE CARD TYPE 35). \\
\hline 13-18 & COMPOSITION TO wHICH DIFFUSION COEFFICIENT FACTORS ARE. ASSIGNED. \\
\hline 19-24 & COHPOSITION TO WHICH DIFFUSION COEFFICIENT FACTORS ARE ASSIGNFD. \\
\hline 25-30 & COMPOSITION TO WHICH DIFFUSION COEFFICIFNT FACTORS ASSIGNED. \\
\hline 31-36 & COnPOSITION TO GHICH DIffusion COEFFICIENT FACTORS ASSIGNFD. \\
\hline 37-42 & COAPOSITION TO Which diffision coeffictent factors are ASSIGNED. \\
\hline 43-48 & COMPOSITION TO WHICH dIFFUSION COEFFICIENT FACTORS ARE. ASSIGNED. \\
\hline 49-54 & COMPOSITION TO WHICH DIFFUSION COEFitiCIENT FACTORS ARE ASSIGNED. \\
\hline 55-60 & COMPOSITION TO WHICH DIFFIISION COFFFICIENT FACTORS AR \\
\hline
\end{tabular}

ASSIGNED.
GI-66 COMPOSITION TO WHICH DIFFUSION COEFFICIENT FACTORS ARE ASSIGNED.

67-72 COMPOSITION TO HHICH DIFFUSION COEFFICIENT FACTORS ARE ASSIGNED.

If more than one type 36 Card is required to assign GIVEN DIFFUSION COFFFICIENT FACTORS TO COMPOSITIONS THF, LABEL IN COLS. \(7-12\) MUST BE REPEATED ON THE adDitional cards.

IF NO TYPE 36 CARDS ARE SUPPLIED, AND ONLY ONE DIRECTIONAL DIFFUSION COEFFICIENT FACTOR SCHEME IS dIRECTIONAL DIFFUSION COEFFICIENT FACTOR SCHEME IS
DEFINED (THE SAME LABEL APPEARS IN COLS. \(7-12\) DF ALL TYPE 35 CARDS), THE FACTORS WILL BE USED IN ALL COMPOSITIONS.

If no type 36 Cards are supplied and more than onf. SCHEME IS DEFINED, THE FACTORS FOR THE FIRST DEFINED SCHEME WILL BE USED IN ALL COMPOSITIONS.
if no compositions are defined in cols. 13-72, the SCHEME IDENTIFIED BY THE LABEL IN COLS. 7-12 WILL BE USED FOR ALL COMPOSITIONS.

THE SCHEME-COMPOSITION CORRESPONDENCE DATA CAN BE overlayed. that is, data given on later type 36 cards supfrcedes data previously definf.d.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CR Capture energy conversion factor data (tYpe 38)} \\
\hline C & & & \\
\hline CL. & \multicolumn{3}{|l|}{PORMAT--(I2,10X, 3(A6, E12.5))} \\
\hline c & & & \\
\hline CD & columas & \multicolumn{2}{|l|}{CONTENTS. . . IMPLICATIONS, IF ANY} \\
\hline CD & -0-Exeme & \multicolumn{2}{|l|}{} \\
\hline CD & 1-2 & \multicolumn{2}{|l|}{38} \\
\hline CD & & & \\
\hline CD & 13-18 & \multicolumn{2}{|l|}{COHPOSITION LABEL.} \\
\hline CD & & & \\
\hline CD & 19-30 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ENERGY CONVERSION FACTOR FOR THIS COMPOSITION (CAPTURES/WATT-SEC.).}} \\
\hline CD & & & \\
\hline Cn & 31-36 & \multicolumn{2}{|l|}{COMPOSITION LABFL.} \\
\hline CD & & & \\
\hline CD & 37-48 & \multicolumn{2}{|l|}{Enf.rgy conversion factor for this compositlon} \\
\hline CD & & \multicolumn{2}{|l|}{(CAPTURES/WATT-SEC.).} \\
\hline CD & & & \\
\hline CT & 49-54 & \multicolumn{2}{|l|}{Cohposition larfl.} \\
\hline CD & & & \\
\hline CD & 55-66 & \multicolumn{2}{|l|}{ENERCY CONVERSION FACTOR FOR THIS COMPOSITION} \\
\hline CD & & \multicolumn{2}{|l|}{(CAPTURES/WATT-SEC.).} \\
\hline \multicolumn{4}{|l|}{C IF TYPE 37 OR TYPE 38 CARDS ARE PROVIDED FOP} \\
\hline CN & & If type 37 or type 38 cards arf provided for a & \\
\hline
\end{tabular}

> NUCLIDE SET ASSIGNMENTS ARE OPTIONAL. THEIR USE. MAY REDUCE TPF SIZF OF THF CCCC ATOM DENSITY FILE (ZNATDN) AND, THEREFORE, THE RUNNING TIME FOR CROSS SECTION HOMOGENIZATION. ALL ISOTOPES USED IN A PARTICULAR ZONE OR A PARTICULAR SUBZONE MUST BE ASSIGNED TO THE SAME NUCLIDE SET. WHEN NO TYPE 39 CARDS ARE PROVIDED, ALL. ISOTOPES ARE ASSIGNED TO A SINGLF. -

\section*{SOURCE EDIT AND SYNTYESIS TRIAL FUNCTION SOURCE SPECIFICATION (TYPE : 0)} file.

13-18 RTFLUX FILE VERSION NUMBER FOR A SYNTHFSIS TRIAL FUNCTION SOURCE.
\(S(X, Y, Z, G)=D(X, Y, Z, G) * \operatorname{FLUX}(X, Y, Z, G)\)
herf d is a diffusion cofffictent and flux is a flux OR ADJOIN? ALUX) FROM AN INPUT RTFLUX (OR ATFLUX) When another type of solirce is required.

19-24 VERSION NIMAER OF GEODST FILE SPECIFYING COMPOSITION DISTRIBUTION REOUIRE: FOR A SYNTHESIS TRIAL FUNCTION SOURCE. O OR 1 TMPLIES THE GEOMETRY DEFINED BY THE CURRENT A.NIP 3 dataset. this parameter is used only Hord lencth parametf.r for the fixsrc file source istribution. on single-WORD-LENGTH Machines (ERD-LENGTh machines a value of 1 WILL pronuce PRODICE A DOUBLF-WORN (I.F. RFAL*A) FILE, THE: DI CODF REQUIRES A DOUBLE-WORD FILE ON DOURLF.-WORD-

\begin{tabular}{|c|c|}
\hline 7-12 & CONTKOL ROD BANK LABEL (RFPEATED ON ADDITIONAL TYPE 44 CARDS IF NECESSARY). \\
\hline 13-18 & \begin{tabular}{l}
rfgion labfl or area label defining region(s) \\
at t:e tip of the moveable portion of the rod (s) in THE SPECIFIED CONTROL ROD BANK.
\end{tabular} \\
\hline 19-24 & gfgion label or area label defining region(s) at The Tip of the moveablfy portion of the rod (s) in THE SPECIFIED CONTROL ROD MANK. \\
\hline 25-30 & region labfl or area label defining region(s) at the tip of the moveable portion of the rod (s) in THF SPECTFIED CONTROL ROD RANR. \\
\hline 31-36 & region label or area label defining region(s) at the tip of the moveable portion of the rode(s) in THE SPECIFIED CONTROL ROD BANK. \\
\hline 37-42 & negion label or area label defining region(s) at the tip of thf miveable portion of the rod (s) in THE SPECIFIED CONTROL ROD BANK. \\
\hline 43-48 & region label or area label defining region(s) at the tip of the moveable portion of the rodes) in THE SPECTFIED CONTROL ROD BANK. \\
\hline 49-54 & region label or area lasel defining region(s) at the tip of the moveable portion of the rod (s) in THF SPECIFIED CONTROL ROD BANK. \\
\hline 55-60 & region label or area label defining region(s) at the tip of the moveable portion of the rod (s) in THE SPECIFIED CONTROL ROD BANK. \\
\hline 61-66 & region label or area label defining region(s) at the tip of the moveahle portion of the rod (s) in THE SPECIFIED CONTROL ROD BANK. \\
\hline 67-72 & region larel or arfa label defining region(s) at the tip of the moveable portion of thf: rod (S) in THE SPECIFIED CONTROL ROD BANK. \\
\hline & all regions in a rod channel above the rod tip mNVF TOGETHER. ALL REGIONS BELOW THE TIP ARE stationary, and are replaced by rod regions as the. ROD MNES DOLNN. THE TOPMOST REGION IN THE ROD expands as the rod moves down from its initial. POSITION. THF REGION JUST BELON THE INITIAL ROD-TIP POSITION EXPANDS AS THF ROD MOVES UP FROM ITS onicimal position. \\
\hline & the loner boundary of all rod-tip recions which define rof. A ASSIGNED TO A PARTICULAR CONTROL ROD BANK MIST \\
\hline
\end{tabular}
hf: at the, samp axial position. "axial- refers to the -DDIMESSION IN KZ, XYZ, AND HEX-Z, AND TO THF: Y diymenion in xy. thüs for the (r-Z f.g.) gedometry PICTURED BFLOLS.

TII FOLLOWING TYPE 44 CARDS (GIVEN in free format STYLE INPUT) WOULD RESULT IN A FATAL ERROR

44 BANKI CRI2 CR22
hitreas
44 BANKI CR12 CR23
ould be acceptarle. also, a rou bank may not he SPECIFI:D USING MOKE THAN ONE RFGION in a Particulir vertical channel. thus
\[
44 \text { BANK! CR22 CR23 }
\]
would le:ad to a fatal input ferror.
note. that since it must he asslmed that a conthol red bask will be moved dukint thf colrse of a prohley,
 sprctritid in cols. 13-72. TiIS, Tif rolloning; TYP: 4 (ARII WOULD NOT BF: aCCEPTABLE: FOR THE GROMETRY (:I vF: anove:
\[
44 \text { BANKI CI }
\]

 TYPF. 17 CAKD UF DATASET A.NIP3.
tif first hlank mbition tabel encountribeu trirminates kf:ADIN: UF Tik: bata oi that particulak type 44 cakis.
notf that a hiannk control, ron bank i.abel is acceptabl.f.-

\section*{DIF3D CCCC BINARY INTERFACE FILE DESCRIPTIONS}
c. 1

\begin{tabular}{|c|c|c|c|}
\hline co & CHI(J) & FILE-WIDP FISSION SPECTRIM(PRESENT IF ICHIST.EQ.1) - & CD \\
\hline CD & VFL(\({ }^{\text {d }}\) & mean neutron velocity in groip J (\(\mathrm{Cm} / \mathrm{SEC}\)) & CD \\
\hline CD & eanx (j) & maxtmin mafrgy bound of croup \(J\) (EV) & CT) \\
\hline CD & EHIN & MINIMUA ENERGY BOUND OF SET (EV) & CD \\
\hline CD & Local (I) & munder of records to be skipped to read data for & CD \\
\hline CD & & ISOTOPE 1. LOCA(1) \(=0\) & CD \\
\hline C & & : - & CD \\
\hline c & & & CD \\
\hline c- & & & CD \\
\hline CR & FILE-WI & DE CHI dATA (3D RECORD) & CD \\
\hline c & & - - & CD \\
\hline cc & present I & F ICHIST.CT. 1 & CD \\
\hline C & & & CD \\
\hline cl. & (\((\mathrm{CHI}(\mathrm{K}, \mathrm{J}), \mathrm{K}=\) & & CD \\
\hline c & & & CD \\
\hline CN & MGROUP* (ICHIS & ST+1)-NUMSER OF WORDS & CD \\
\hline c & & & CD \\
\hline c3 & mormat 6 H 30 & , 5E12.5/(6E12.5)) CHI & CD \\
\hline CE & Format (1216) & ISSPEC & CD \\
\hline c & & & CD \\
\hline CD & CHI (\(\mathrm{K}, \mathrm{J}\)) & fraction of neutrons emitted into group j as a & CD \\
\hline CD & & RESULT OF FISSION IN ANY GROUP, USING SPr,.zUM X & CD \\
\hline CD & 1SSPEC(I) & ISSPEC(I)*K Implies that spectrum k is useis & CD \\
\hline CD & & to calculate feission spectrum from fission & CD \\
\hline CD & & IN Group 1 & \(C D\) \\
\hline C & & - - & CD \\
\hline c & & & CD \\
\hline c & & & CD \\
\hline CR & ISOTOPE & CONTROL AND GROUP INDEPENDENT DATA (4D RECORD) & \(C D\) \\
\hline C & & - & CD \\
\hline CL & HABSID, HIDENT & , HMAT, AMASS, EFISS, ECAPT, TEMP, SIGPOT, ADENS , KBR, ICHI, & CD \\
\hline CL & IIFIS, IALF.tNP & , IN2N, IND, INT, LTOT, LTRN, ISTRPD, & CD \\
\hline CL & 2(IDSCT(N), \(\mathrm{N}=1\) & , NSCMAX), (LORD(N\()\), \(\mathrm{N}=!\), NSCMAX), & CD \\
\hline CL & 3(\({ }^{\text {JRand }}\) (J,N) , & J-1, MGROUP) , N=1 , NSCMAX). & CD \\
\hline CL & 4(\(\mathrm{IJJ}(\mathrm{J}, \mathrm{N})\), J= & \(1, N G R O U P), N=1, N S C M A X)\) & Cb \\
\hline C & & (\({ }^{\text {a }}\) - & \(C D\) \\
\hline CH & 3*MULT \(+17+\mathrm{NSC}\) & HAX* (2*NGROUP + 2) - NUMBER OF WORDS & CD \\
\hline C & & & \(C D\) \\
\hline CB & Format (4, 4D & .3(1x,A6)/ 6E12.5/ & CD \\
\hline C8 & I(1216)) & (1x, \({ }^{\text {a }}\) (- & cos \\
\hline c & & (1) - & Cn \\
\hline CD & hassid & mollerith absolutf isotope labfl - samf. for alit. & CD \\
\hline CD & & VERSIONS OF The same isotope in filee (ag)- & CD \\
\hline CD & HIDF.NT & InENTIFIER OF LIERARY FROM HhICH BASIC data & CD \\
\hline CD & & CAME(E.C. ENDF/B) (Af) & CD \\
\hline CD & hatat & isotopm ldentification (e.g. endf/b mat no.) (ag) & ct \\
\hline CD & arass & gram atohic weight & CD \\
\hline CD & f.FISS & & CD \\
\hline CD & ECAPT & Thtal thermal fnercy yifld Capture (h. sec/capt) & c. \\
\hline CD & TEMP & ISOTOPE TF.MPERATURF (DE.gREES KF.LVIN) & 0 c \\
\hline CD & Stgpot & avfrace mffectivf. potential scattering in & Cn \\
\hline CD & & RE.SONANCF. RANGE (BARNS/ATOH) & CD \\
\hline CD & ADENS & DFANSITY OF ISOTOPF. In mixture, in which isotope & CD \\
\hline CD & & Cross sfictions were generated (a/barn-cm)- & C) \\
\hline
\end{tabular}

O-UNDEFINED
2-FERTILE
3-OTHER ACTINIDE.
5=STRUCTURE
7=COOLANT
ISOTOPE FISSION SPECTRUM FLAG
ICHI.EQ.O, USE FILE-WIDE CHI ICHI.EQ. , ISOTOPE CHI VF.:TOR
(\(\mathrm{N}, \mathrm{F}\)) CROSS SECtion flag
IS=0, HO FISSION DATA IN PRINCIPAL CROSS SECTION RECORD
CROSS SECTION RECORD
(N.ALPHA) CROSS SECTION FLAG SAME OPTIONS AS IFIS
N,P) CROSS SECTION FLAG
SAME OPTIONS AS IFIS
(\(\mathrm{N}, 2 \mathrm{~N}\)) CROSS SECTION FLAG
(, D) CROSS SECTION FLAC
SANE OPTIONS AS IFIS
SAME OPTIONS AS IFIS
GBER OF MOMENTS OF TOTAL CROSS SECTION PROVIDED MMBER OF MOMENTS OF TRANSPORT CROSS SECTION PROVIDED IN PRINCIPAL CROSS SECTIONS RECORD
MBER OF COORDINATE DIRECTIONS FOR WHICH
COORDINATE DEPENDENT TRANSPORT CROSS SECTIONS
ARE GIVEN. IF ISTRPD=0, NO CCORDINATE DF.PENİENT -
TRANSPORT CROSS SECTIONS ALEICATEN
SCattering block N. SIgnificant only if
LORD(N).GT. 0
ELASTIC, INELASTIC, AND N, 2N SCATTERING
RIX TERHS).
\(=100+N N\)
200 + NN, ELASTIC SCATTERING
\(=300+N N,(N, 2 N)\) SCATTERING,---SEF. NOTE RELOU-
TRE IS THE. LEGRDRE EXPANSION INDEX OF THE -
MMBER OF SCATTE:ING ORDERS IN BLOCK N. IF R THIS DSCT(N), THEN THE MATRICES IN THIS BLOCK \(\mathrm{NN}+2, \ldots, \mathrm{NN}+\operatorname{LORD}(\mathrm{N})-1\)
JBamd \(J, N\)) masser of groups that scatter into group \(J\). IMCLUDING SELFFSCATTER, IN SCATTERING BLOCK N. IF JBAN
MSITION OF INGGROUP SCATTERING CROSS SECTION IN OSITION OF IN-GROUP SCAITERING SCATTERIMG BLOCK SCAITERING DATA FOR GROUP J, SCATTERIME BLOCR , COUNTED FROM THE THE, UJ(J,N) MUST SATISFY IF JBAND(J,N).NE.O THE, \(N\)).LE.JBAND (J,N)
mOTE- POR \(\mathrm{N}, 2 \mathrm{~N}\) SCATTER, THE MATRIX CONTAINS TERMS, SCAT(S TO G). WHICN ARE EMISSSION (PRODICTION)asEd, I.E. ARE dEFINED such that macroscopic cat(J to g) times the flux in group J gives HE RATT OF EMISSION (PROOUCTION) OF NEUTRONS INTO GROUP G.

```

((STOTPL(J,L),J=1,MGROUP),L=1,LTRT),(SNGAM(J),J=1,MGRRUUP),
2(SFIS(J),J-1,MGROUP),(SMITOT(J),J=1, WGROUP)
(CHISO(J) J=1 MCROUP)(SXALP(J),J=1,WGROUP)
(SM(J) J=1 MCROUP),(SN2N(J),J=1,MGROUP).
*)
(STRPD(J,I),J=1, mGROUP),I-1, ISTRM0)

```

```

CHT*(2/(ICHI+1)))=MGROUP-MNAER OF vORNS
gomat(4H So . SE12.5/(6E12.5)) LEmGTH OF LIST AS ABOVE
HE FIRST ELEMEMT OP A\&EAY STRPL IS THE
CURRENT (PI) WEIGNTED TRANSPORT CROSS SECTION
THE LEGENDRE EXPANSION COEFPICIENT FACTOR (2L+1)
IS mOT TMCLUDED IN STEPL(J,B)

```

```

            TME LFGENDRE EXPANSION COEFFICIENT FACTOR (2L+1)
            IS NOT IMCLUDFED IN STOTPL(J,L).
    spis(J)
smitm(J)
CoISO(J)
smalf(J)
sm2M(J)
SND(J)
(PRESENTT IF IND.GT.O)
SNT(1) (M.T) (PRE.SENT IF INT.GT.O)

```
ISOTOPE CHI DATA (60 RECORD)
PRESENT IF ICHI.GT.I
((CHIISO(K,J), K=1,ICHI),J=1, NGROUP), (ISOPEC(I), I=1, NGROUP)
NGROUP*(ICHI +1)=NUMEER OF WORDS
PORMAT(6H 6D , 5E12.5/(6E12.5)) CHIISO
PORHAT(1216) , SE12.5/(6E12.5)) CHIISO
ISOPEC
CHIISO(K,J) FRACTION OF NEUTRONS EMITTED INTO GROUP J AS A
RESULT OF FISSION IN ANY GROUP, USING SPECTRUN \(X\) -
ISOPEC(I) ISOPEC(I)=K IMPLIES THAT SPECTRUM \(X\) IS USE
 TO CALCULATE EMISSION SPECTRUM FROM FISSION
 IN GROUP

8- THFTA-R
9- UNIFORM TRIANCULAR
10- hexagonat. (a mesh point in each hFXAGONAL ELEMENT)
11- R-THETA
12- R-THETA-Z
13- R-THETA-AL
13- R-THETA-ALPHA
13- R-THET
14- \(X-Y-Z\)
14- X-Y-Z
15- THETA-R-2
15- THETA-R-2
16- THETA-R-ALPHA
17- UNIFORM TR:ANGULAR-z
17- UNIFORM TR:ANGULAR-Z
18- HEXAGON-Z (HTSH POINTS AS IN \(10-\)
18- HEXAGON-Z (HESH PO
ABOVE)
NMMER OF zONES (EACH hOMOGENEOUS IN NEUTRONICSPROBLEM - A ZONE CONTAINS ONE OR more regions) MIMBER OF REGIONS
NUMBER OF ZONE CLASSIfICATIONS (EDIT PURPOSES) NUMBER OF FIRST DIMENSION COARSE MFSH INTERVALSNUMBER OF SECOND DIMENSION COARSE MESH

INTERVALS. NCINTJ.EQ. 1 FOR ONE DIMFNSIONAL CASE.
number of third dimension coarse mesh intervalsNCINTK.EQ.: FOR ONE AND TWO DIMENSIONAL cases.
number of first dimension fine mesh intervals
number of second dimension fine mesh intervals -
NINTJ.EQ. 1 FOR ONF. DIMENSIONAL CASF.
number of third dimfnsion fine mesh interval.
NINTK.EQ. 1 FOR ONE AND TWO DIMENSION CASES.-
FIRST BOINDARY ON FIRST DIMENSION
0 - ZERO FLUX (DIFFUSION)
1 - reflected
2 - EXTRAPOLATED (DIFFUSION - DFL PHI/PHI =-C/D WHERE \(C\) IS GIVEN AS BNDC BEIOW
AND D IS THE GROUP DIFFUSION CONSTANT,
TRANSPORT - NO RETURN)
3 - repeating (periodic) with oppositt fact--
4 - repeatinc (periodic) WITH NEXT ADJACENTface.
5 - inverted repeating along this face.
(180 DEGREF ROTATION)
6 - ISOTROPIC RETURN (TRANSPORT)
Note: for rf.peating conditions (3,4,5) - LET il denote firstboundary on first dimension, i2 the second boindary on the FIRST DIMENSION, II THE FIRST BOUNDARY ON THF. SECOND
dIMENSION, F.TC. THEN THESE REPEATING BOUNDARY CONDITIONS ONI.Y APPLY TO BOUNDARIES II,I2,J1, AND J2. GOING IN ORDER OF [1,.11,12,J2. THF FIRST BOUNDARY WHICH IS INVOLVED CARRIES THF DESIGNATOR DEFINING THF REPFATING CONDITION.

IIRST BOUNDARY ON THIRD DIMENSION AST BOUNDARY ON THIRD DIMENSION MAMEER OF Buckling specifications 0 - MONE
- SImGLE VALUE APPLIES EVERYHERE
.EO.NZONE- ZONE DEPENDENT
wazone - data is given over all zones for THE FIRST EMERGY GROUP, THEN FOR THF. MEXT GROUP. TO END OF LIST. IF M.LT. MGROUP THEN THE M-TH GROUP DATA APPLIES TO ALL ADDITIONAL GRNUPS. APFLIES TO ALL ADDI
(2.LE.M.LE. MGROUP)
MAMER OF CONSTANTS FOR EXTERNAL DOUNDARIES 0 - MONE
- SIMGLE VALUE USED EVERYMERE
- INDIVIDUAL value given for each

IMDIVIDUAL VALUE GIVEN FOR EACH EXTERMAL EOUNDARY. THE ORDERING OF THF values is the samp as the orderimg of THE BOUNDARY CONDITIONS.
6*M - SIX VALUES GIVEN FOR FIRST ENERGY GROUP (ORDERED AS DESCRIBED ABOVE), TMEN 6 FOR THE NEXT GROUP, TO END OF LIST. (2.LE.N.LE.NGROUP).
IF M.LT. NGROUP THEN THE M-TH GROUP dataAPPLIES TO ALL REMAINIMG GROUPS.
REGION ASSIGNHENTS
O- TO COARSE MESH
OR-
ON OF FIRST FINE MESH INTERVAL IN JLAR GEOMETRIES. NTRIAG=2 ONLY.

COARSE MESH BOUNDARIES. SECOND DIMFRSION number of enually spaced finf mfish intervals PER COARSE hesh INTERVAL, SECOND DIMENSION. -
NCINTJ+1, NUMBER OF SECOND DIMENSION COARSE MFISH BOUNDARIES
FOR UNIFORH-TRIANGULAR-HESH GEOMETRY (IGOM - 9) THF. LF.M.TH (L) OF THF Side of a mesh trianglef must be, given BY THF EXPRESSION

VGLE(1.1) POINTS AWAY FROM FIRST SION AXIS, I.E., NO INTERNAL MESH - NTERSECTS THE ORIGIN.
\(\cdots\) ele \((1,1)\) points toward the first
.NSION AXIS, I.E., AN INTERNAL MESH
reserved INTERSECTS THE ORIGIN.

\section*{one dimensional coarse mesh interval boundaries and fine mesh intervals (2D record) \\ PRESENT IF IGOM.GT. 0 AND IGOM.le. 3 \\ (XMESH(I),I=1,NCENDI),(IPINTS(I),I=1,NCINTI)}

NCINDI*MULT+NCINTI
XGESH COARSE MESH BOUNDARIES, FIRST DIMENSION IFINTS NUMBER OF EOUALLY SPACED FINE MESH INTERVALS
NCANDI NCINTI +1 NIDRER OF FIRST DIMENSION COARSE MES soundaries

UNITS ARE CM for linear dimensions and radians for angular DIMENSIONS
THO dImensional coarse mesh interval boundaries and fine MESH INTERVALS (3D RECORD)
PRESENT IF IGOM.GE. 6 AND IGOH.LE. II
(XMESH (I), \(\mathrm{I}=1\), NCBNDI) , (YMFSH(J\(), \mathrm{J}=1\), NCBNDJ),
l(IFINTS(I), I-1,NCINTI),(JFINTS(J),J=1,NCINTJ)
(NCBNDI+NCBNDJ)*MULT+NCINTI+NCINTJ
\begin{tabular}{lc}
MMESH & COARSE MESH BOUNDARIES, SECOND DIMFNSION \\
JFINTS & NUMRER OF ESUALLY SPACED FINE MFSH INTERVALS \\
& PER COARSE MESH INTERVAL, SECOND DIMFNSION. \\
NCBND.S & NCINTJ+1, NUMRER OF SECOND DIMENSION COARSE \\
& MF.SH BOUNDARIES
\end{tabular}
\(\qquad\)

I - simgle value used everymerf
.GT. 1 - VALUES ARE GIVEN BY ENERGY GROUP GITH NON-BLACK CONDITION INDICATED BY zeRo emtry - last value applies to ADDITIOMAL GROUPS
Maner of zones which are black ansorbers ThIAMGULAR/HEXACONAL GEOMETRY OPTION

0 - RECION OF SOLUTION IS A RHOMBUS IN HICH THE IST AND 2ND OTAENS ON AXES pegion of at an anci is a lum ins in
 UHICH THF IST AND 2ND DIMENSION AXE. IMTERSECT AT AN ANGLE OF 60 begrre.s.
- RFGION OF SOLUTION IS A RECTANGLE. THESOUNDARIES II AND 12 BISECT MESH TRIAMCLES. SEE NKhPT RELOU. (tGON-9,17 ONL.Y)
3 - region of solution is an mquilattral. 60 DEGREF THIANGLF. (ICOHe9. 17 ONLY)
- REGION OF SOLUTION IS A 30-6O DFGREE RIGAT TRIANGLE IN WHICH THE IST AND 2NDdimension axes intersect at the 30 DEGREF AMCLE. (IGOH-9. 17 ONL.Y)
5 - RFGION OF SOLUTION IS A RHOMBIS IN GHICH THE IST AND 2ND DIMENSION AXE.S INTERSECT AT AN aNGLE OF 30 DE.CREES. (ICOM-9.17 ONLY)

\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
I CONTROLS INTERMEDIATE PASS PARAMETER EDITS \\
F CONTROLS final pass parameter edits
\end{tabular} \\
\hline & the integres I and f are assigned one of the \\
\hline & FOLLOWING VALUES \\
\hline & O...noedits \\
\hline & 1...PRINT EDITS \\
\hline & 2....WRITE EDITS TO AUXILIARY OUTPUT FILE \\
\hline & 3...URITE EDITS TO BOTH PRINT AND AUXILIARY \\
\hline \(\mathrm{NRCH}(4)\) (IEDTQ* & SEARCH QUANTITY EDIT OPTION \\
\hline & TWO DIGIT NUMEER (IF) WHERE \\
\hline & I CONTROLS INTERMEDIATE PASS QUANTITY EDITS \\
\hline & F CONTROLS FINAL PASS OUANTITY EDITS \\
\hline & the integers i and f arg assigned one of the \\
\hline & pollohing values \\
\hline & 0.... NOEDITS \\
\hline & 1...PRINT EDITS \\
\hline & 2... Write edits to auxiliary output file \\
\hline & 3...WRITE EfITS to both print and auxiliary \\
\hline & OUTPUT FILE \\
\hline NRCH(5) *IBOUND* & Search parameter range sentinel \\
\hline & O... Range not exceeded \\
\hline & N...range exceeded n times \\
\hline NRCH(6) *IHIST(1)* & Previous pass-1 (N) AND METHOD (M) \(=10 \mathrm{N+H}\) \\
\hline NRCH(7) \# 1 HIST(2) & PREVIOUS PASS (N) AND METHOD (\(M\)) \(=10 \mathrm{~N}+\mathrm{M}\) \\
\hline NRCH(8) *IHIST(3) & PRESENT PASS (N) AND METHOD (M)=10N+M \\
\hline NRCH(9) *ICONV* & SEARCH TERHIHATION SENTINEL \\
\hline & O...initial,izen value \\
\hline & 1...SEARCH CONVERGED \\
\hline & 2...SEARCH TERMINATED, MAXtMum Search passes \\
\hline & ACHIEVED \\
\hline & 3...POOR CHOICE OF SEARCH PARAMETERS \\
\hline & 4...INSUFFICIENT TIME for next searich pass \\
\hline & 5...nEUTRONICS TERMINATED FOR INSUFPTCIENT TIM \\
\hline & 6...restart, previous termination ccimition \\
\hline & UNKNOLN \\
\hline NRCH (10) & Reserved \\
\hline SRCHI (1)*KFFFF(1)* & Previous pass-1 multiplication factor \\
\hline SRCH1 (2)*KFFF(2)* & PrEvinus pass multiplication factor \\
\hline SRCHI (3)*KEFF (3)* & most recent multiplication factor \\
\hline SRCHI (4)*DXNM2* & Previnus pass -1 dX \\
\hline SRCHI(5)*DXNM1* & Previols pass dx \\
\hline SRCHI (6)*DXNTH* & most kecent dx \\
\hline SRCHI (7)\#DKNM2* & Previous pass-1 K-effective chance \\
\hline SRCHI (8)*DKNMI* & Previous pass K-Effrctive chance \\
\hline SRCHI(9)*DKNTH* & most recent k-effective change \\
\hline
\end{tabular}
the integres I and f are assigned one of the FOLLOWING VALUES
O... NOEDITS
1...PRINT EDITS
2... WRITE EDITS TO AUXILIARY OUTPUT FILE

OUTPUT FILE
SEARCH QUANTITY EDIT OPTION

I CONTROLS INTERMEDIATE PASS QUANTITY EDITS
F

FOLLOHING VALUES
O... NOEDITS
2...WRITE EDITS TO AUXILIARY oUTPUT FILE
3...WRITE EfITS to both print and auxiliary OUTPUT FILE

Parnitier range sentinel
N. . . RANGE EXCEEDED N TIMES

NRCH(6) *IHIST(1)*PREVIOUS PASS-1 (N) AND METHOD (M) =10N+M
NRCH(7) *IHIST(2)*PREVIOUS PASS (N) AND METHOD (M) - \(10 \mathrm{~N}+\)

\(C C\)
\(C C\)
\(C C\)
\(C C\)
nNS, the maximum number of nuclides in any NUCLIDE SET, HENCE IN ANY SUBZONE. SUBZONF O ZONE ASSIGNMENTS ARE, INDICATE.D IN THF. NZSZ array given in record 30 of data set ndxsrf.

C. 10 PLDINT

CR FILE IDENTIFICATION

WITH M AS THE BLOCK INDEX, JL=(M-1)*((NINTJ-1)/NBLOK +1\()+1\) AND JU-MINO(NINTJ,JUP) WHERE JIIP=M\# ((NINTJ-1)/NBLOK +1)

PWR(I.J) POWER DENSITY BY INTERVAL, WATTS/CC

DIF3D CODE-DEPENDENT BINARY INTERFACE FILE DESCRIPTIONS

\section*{ \\ IRFTRN}
tEDF(1)
the optimin overrelaxation factor estimation process for each inner (within group) tteration matkix.
NUMBER OF OPTIMUM OVERRELAXATION FACTORS flag indicating cause of outer Iteration TERMINATION
O...INItIAL VALUE, PRIOR TO OUTER ITERATIONS 1...oIter iterations converced
2... maximal number of outer iterations PERFORGED
3...TIME LIMIT

PROBLEM DF.SCRIPTION EDIT (IN ADDITION TO USER infut specifications which are always edited O...NO EDITS
1...PRINT EDITS
2...WRITE EDITS TO AUXILIARY OUTPUT FILE 3..-WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE ...NO EDITS
...PRINT EDITS
2...URITE EDITS TO AUXILIARY oUTPUT fILE 3...URITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE
GEOMETRY (ZONE TO MESH INTERVAL) MAP EDIT 0...M EDITS

\section*{....PRINT EDITS}
2...VRITE EDITS to auxiliary output file 3...VRITE EDITS TO BOTH PRIST AND AIIXILIARY OUTPUT FILE

\section*{aCROSCOPIC CROSS SECTION EDIT}

ENTER TWO DIGIT NUMBER SP WHERE
s controls the scattering cross sections edit
P CONTROLS THE PRINCIPAL CROSS SECTIONS EDIT
the integers s and P should de assigned one of the polloving values (leading zfroes are. IRRELEVANT)
0....m EDITS
1....PRINT EDITS
2... brite edits to adxilitary output file 3...WRITE EDITS TO SOTH PRINT AND AIXILIIARY output file
salance edits
ENTER 3 DIGIT NUMBER GBR WHERE
G CONTROLS GROUP Balance fidits integrated over THF. REACTOR
Controls region balance f.dit by group
Controls region batance fidit total.
(INCLUDIN. NET PRODUCTION and fenfrgy medians)-
the intggers c, b, and r should be assignfod
one of the following values (leading zeroes are irrfievant)
O...NO EDITS
1...PRINT EDITS
2....WRITE EDITS TO AUXILIARY OUTPUT FILE
3... WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILES
power EDITS
fiNTER 2 dIGIT NUMBER RM WHERE
r controls region poher and average poner EDITS
m CONTROLS poher density by mesh interval EDIT (PWDINT)
the integers r and m should be assigned one of the following values (leading zeroes are
IRRELEVANT)
0...NO EDITS
1...PRINT EDITS
2...WRITE EDITS TO AUXILIARY OUTPUT FILE
3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE
total flux edits
ENTER 3 DIGIT INTEGER RMB WHERE
R CONTROLS TOTAL FLUX EDIT By REGION and group INCLUDING GROUP AND REGION TOTALS
h CONTROLS TOTAL FLUX EDIT by MESH INTERVAL INTEGRATED OVER GROUP
b control.s total flux edit by mesh interval and Group (rtflux or atflux)
the integers r, m, and b shotild be assigned one of the folloning values (lfading zeroes are trrelevant)
O...NO EDITS
1....PRINT EDITS
2....WRITE EDITS TO AUXILIARY OUTPUT FILE
3....WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE
TONE AVERAGED FLUX EDIT
0...NO EDITS
.... PRINT EDITS
2...URITE EDITS to auxiliary output file
3....WRITE EDITS TO BOTH PRINT AND AUXIt.IARY gITPUT FILF.
region averaged flux fidit
0...NO EDITS
1...PRINT EDITS
2...WRITE EDITS TO AUXILIARY OUTPUT FILE
3...WRITE EDITS TO BOTH PRINT AND AUXILIARY output file
standard interface files to be written in
\begin{tabular}{|c|c|}
\hline & ADDITION TO RTFLUX AND/OR ATFLUX 0... NONE \\
\hline & 1...URITE PWDINT \\
\hline & 2...VRITE RZFLUX \\
\hline & 3...Write both phdint and rzflux \\
\hline nouteo & NUMBER OF OUTER (POWER) ITERATIONS BEFORE, \\
\hline & ASYMPTOTIC EXTRAPOLATION OF NEAR CRITICAL \\
\hline & SOURCE PROBLEM. \\
\hline IOFLUX & flat fuix guess sentinel. \\
\hline & 0...flat flux guess - 1.0 \\
\hline & 1...flat flux guess = 0.0 \\
\hline MOEDIT & print file master control flag \\
\hline & O... PRINT GENERAL RUN INFORMATION AND \\
\hline & REQUESTED EDITS \\
\hline & I...suppress all output except diagnostic \\
\hline & EDITS AND THE ITERATION HISTORY \\
\hline & 2...suppress all output excepp diagnostic edits \\
\hline MOD3ED & djedit file master Control flag \\
\hline & O...VRITE REQUESTED EDITS ON DJEDIT FILE \\
\hline & 1...do NOT WRITE DJEDIT FILE \\
\hline ISRHED & master nidutronics edit sentinel during \\
\hline & Criticality searches only. \\
\hline & -1...SUPPRESS ALL DIF3D EDITS EXCEPT ITERATION \\
\hline & history and error diagnostics. \\
\hline & O...edit infut data on lSt search pass, output \\
\hline & FLUX INTEGRALS UPON CONVERCENCE OR UPON \\
\hline & achieving the maximum search pass limit. \\
\hline & N...Also edit specified difid edits every n-th \\
\hline & SEARCh Pass. \\
\hline NSN & SN ORDER (TRANSPORT OPTION) \\
\hline nsmax & maximum allowed number of line sweeps per line \\
\hline & PER inNer iteratton (transport option). \\
\hline IAPRX & ORDER OF NODAL APPROXIMATION IN HEX-PLANF. \\
\hline & (NODAL HEXAGONAL GEOMETRY OPTION) \\
\hline & 2...NH2 APPROXIMATION \\
\hline & 3...NH3 APPROXIMATION \\
\hline & 4...NH4 APPROXIMAT:ON \\
\hline 1APRXZ & ORDER OF modal apprcximation in z-direction \\
\hline & (NODAL HEXAGONAL GEOMFITRY OPTION) \\
\hline & 2... QUADRATIC APPROXIMATION \\
\hline & 3...CUBIC APPROXIMATION \\
\hline NCMI & Coarseemesh rebalance accelfrration control \\
\hline & (NODAL HEXAGONAL GEOMFTRY OPTION) \\
\hline & -1....NO COARSE-MESH REBAI.ANCE ACCELFRATION \\
\hline & .GF.o... number \(0^{-}\)- Coarse-mpish rf.balance iterations \\
\hline & PER OUT: TTERATION \\
\hline ISEXTR & ASYMPTOTIC SOL .CE EXTRAPOLATION OF OUTER \\
\hline & ITERATIONS (NODAL HEXAGONAL GEOME:TRY OPTION) \\
\hline & O... APPLY asymptotic sourcf extrapolation to \\
\hline & outer iterations \\
\hline & 1... NO ASYMPTOTIC SOURCE EXTRAPOLATION \\
\hline NZSWP & minber of axtal partial. Current surf.eps per \\
\hline & group per nuter iteration (modal hexaconal \\
\hline & geometry option) \\
\hline
\end{tabular}

LINK EDIT INSTRUCTIONS FOR LBM 370 SYSTEMS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
//LINKIBM JOB USER=B20245, \\
// CLASS=U TTME=5, REGION=1000K, MSGCLASS=W
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{//*} \\
\hline \multicolumn{2}{|l|}{//* \#\#***} \\
\hline \multicolumn{2}{|l|}{//*} \\
\hline \multicolumn{2}{|l|}{* this job link edits the load modules stpoil anc siosub in} \\
\hline \multicolumn{2}{|l|}{//* THE LIBRARY ¢NESCLIB.} \\
\hline \multicolumn{2}{|l|}{//* the job runs in a region size of 1000K.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{//* *****れ**}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{//* EXECUTE LINKAGE EDITOR.} \\
\hline \multicolumn{2}{|l|}{} \\
\hline //STEP1 & EXEC PGM=IEWL, PARM='DCBS,LIST,MAP,OVLY,SIZE=(1000K,100K)' \\
\hline //SYSLIB & DD DISP=SHR,DSN=SYS1.AMDLIB \\
\hline & DD DISP-SHR,DSN=SYS1.FORTLIB \\
\hline //SYSLIN & DD DSN=60BJECT,DISP=(OLD, DELETE) \\
\hline & DD DDNAMESYSIN \\
\hline //SYSLMOD & DD DSN-\&NESCLIB(STP021), \\
\hline & DISP=(NEW, CATLG), UNIT=PERM, \\
\hline & SPACE-(TRK, (100, 20,1), RLSE) , DCB-BLKSIZE=6144 \\
\hline //SYSPRINT & T DD SYSOUT=A \\
\hline //SYSUT1 & DD SPACE=(CYL, 20), UNIT=(SASCR, SEP=(SYSLIN,SYSLMOD)) \\
\hline \multicolumn{2}{|l|}{//SYSIN DD*} \\
\hline \multicolumn{2}{|l|}{Entry main} \\
\hline INSERT & LINKRO,LINKR1 \\
\hline InSERT & REED, SEEK \\
\hline INSERT & ERROR, FFORM, FFORMI, FFORM2, LINES, TIMER, S SKPHL \\
\hline InSERT & INTSET, FLTSET, IEQUAT, FEQUAT \\
\hline INSERT & FOINTR, BULK, FREE, IPTERR, WIPOUT, TPT2, PUTM , ILAST, PURGE \\
\hline INSERT & ABEND, SQUEZE, INITIO \\
\hline InSERT & SIO, RECFF, TRACER, ZEROIO, SIOERR, SIOHU6, SIOTRC \\
\hline insert & JOBID, SECOND, LOCATE, TABLES, PTERR, LCMSIZ, BFLAGS \\
\hline INSERT & PRTI1, PRTI 2, PRTR1, PRTR2, PRTECM, STATUS, REDEFM \\
\hline INSERT & REDEF, IGET, PUTPNT, GETPNT \\
\hline INSERT & TIME, CLOCX\#, Date \\
\hline INSERT & JGT,MY:CM, FRELCM, LOCF, LOCFWD, IGTLCM, IGTSCM \\
\hline INSERT & IOPUT, FTITLE, ARRAY, STFARC \\
\hline overlay l & leveli \\
\hline INSERT & SCAN \\
\hline overlay l & Leveli \\
\hline INSERT & STUFF, STUPF1 \\
\hline overlay l & Leveli \\
\hline INSERT & \multirow[t]{2}{*}{GNIP4C, ANIPO1, ANIP02, ANIP14, ANIP 23, GETZON, GETSZN
BCDFLT,} \\
\hline INSERT & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline CWERIAY & 1,Evel. 2 \\
\hline instert & ranipl \\
\hline overiay & Levfl 3 \\
\hline insert & ANIP03, ANIP04, ANIPOS, ANIPO6 \\
\hline ovirriay & 1.EVEIL. 3 \\
\hline inspret & ANTPIIX, ANIP07, ANIP09, CHEK09, ANIPIO \\
\hline overitay & 1.EVET. 3 \\
\hline Insert & ANIPII, ANIPI2, ANIP15, ANIP34 \\
\hline overtay & Lf.VF.L. 2 \\
\hline insert & FGf.ons, Lochex, Sf.thex \\
\hline ovfrrtay & Lfvefl \\
\hline Insert & GETHGT,GETREG \\
\hline overtay & LEVEL3 \\
\hline insert & GF.THSH, CMESH, FMFSH \\
\hline OVE:RLAY & Lfevel3 \\
\hline insert & g.etbuc,getbc \\
\hline overtay & levelj \\
\hline INSERT & GETMR, RCMESH, TRIGOM, VOLREG, REDMSH \\
\hline overlay & L.EVELL 2 \\
\hline insert & f.c.ods \\
\hline OVERLAY & Level. 3 \\
\hline INSERT & MAKMSH \\
\hline overtay & Levels \\
\hline Instert & Prgatod, prntix \\
\hline nverliay & Level3 \\
\hline INSPr.RT & ANIP43,MPGEOD, MSHMAP \\
\hline nutirlay & level3 \\
\hline insert & TRIPLT, HEXPIC, HEXPC1, HEXPC2, HEXPC3, HEXPC6, HFXPC7 ,HEXPC \\
\hline dvertay & Level. 4 \\
\hline insfret & HEXPC4 \\
\hline nuprriay & LEVE14 \\
\hline INSFPT & HFXPC5 \\
\hline OVE:RLAY & Level 3 \\
\hline instrt & ORTMAP, ORTPC1, ORTPC2, ORTPC3, ORTPC4 , ORTPCS, ORTPC6, ORTPC \\
\hline overtay & level2 \\
\hline INSEPT & RANIP2,ANIP13,GETMAT, GETISO, ANIP39, GETSET \\
\hline ovferlay & level2 \\
\hline insert & FADF,NS, SORT13, VALU2D, SET2D, INDEX, EDTMAT, SORT14. WNDXSR \\
\hline ovf.riay & Leveliz \\
\hline insert & RCDXST, RWIS \\
\hline ovf.rlay & LEvEL2 \\
\hline imsert & WRSRCH \\
\hline iwUSİAY & L.EVEL 3 \\
\hline IMEVRT & ANIP2I, ANIP22,SRC144, ANIP24, SRCH3D, ANIP25,SRCH6D, ANIP26 \\
\hline inviki.ay & l.evela \\
\hline IMSFRT & FidSRC: \\
\hline IWYRİAY & 1.EVET. 2 \\
\hline Imeser & WRSORC \\
\hline cheriay & t.evfil 3 \\
\hline I Wet:RT & ANIP19, ANIP4T, ANIP41, ANIP42 \\
\hline fivtritiay & t.everi. 3 \\
\hline IWspler & Sordat, Sortar, Sormsh, Sornze, Sordif \\
\hline
\end{tabular}
```

OVEfLAY LEVF:L3
NSERT ADS,ADSI,ADS2,ADS3
giERLAY LEvEL?
INSERT WRS,WRSO.WRS1,WRS2
OvERLAY LEVELS
INSFRT FDSOOD
NVERLAY LEVEL2
NERLAY LEVFLL
INSERT WRRODS,ANLP44,SORROD,MAKROD,WRTROD,EDTROD
NE,RLAY LEUELI
NSERT HMGC4C
NSERT RE,T,HMGPT
OVERLaY LEvEL2
INSERT OVL1,RDNDX,EDTISO,IDLRI3,ISOR14,RDATDN,ATDN3
verlay LfVEL.2
INSF:RT OVL2,SCAT,ISORS8, EDTR5,EDTR6, EDTR8, FISPEC,MAXBND,SVSCAT
INSERT UPDATE,FARSET,ZROSET
ovERIAAY LEVEL2
INSERT OVL3,WREC1,WREC2,WREC3,WREC4
averlay level,2
INSERT OVL4,SVXS,EDFPUS,EDTXSI,EDTXS2
jvERLAY LEvELl
INSERT MODCXS,ANIP35,ANIP37,DOMODS,COPIER
ovf.rlay leveli
INSERT BCDINP,RADF3D,PDIF3D
ovERLAY LEvELI
INSERT SRCH4C,GETBSO,GETALP,GETDIM,GETCON,SRCHX,PARAB
INSERT DMDBSO,DMDALP,DMDDIM,DMDCON,MODESQ,MODDIH,MODCON
overlay leveli
INSERT CONTRL,IOCOM, NHIOCH, VERNUH, NHCNTL,SPECS, IOCOMC, IOCOMD
INSERT NHIOPC,NHIOPD,DERUG,CFTABL.
INSERT DIF3D,VOLUME,START,WDIF3D,GETBND,AREAS, REVRSE
INSERT DFFICF,OPENCF,CLOSCF,PURGCF, BLKGET, PNTGET, DEFIDF, OPENDF
INSERT DEFICF,OPENCF,CLOSCF,PURGCF,BLKGET, PNTGET,DEFIDF,OPENDF
NSERT CLOSDF,STATCF,PCRED
INSERT LINKR2
OVERLAY LEVEL2
INSERT BININP,RATFIX,RCMPXS,RDIFID,RFIXSR,RGEODS,RLABEL,RRTFLX
INSERT RSFARC,ADSCTM,FORMSH,RNHFLX,RCMPXS,FORMCM
INSERT RSSFARC
INORRT SSINIT,EDITCR
OVERLAY LEvEL3
INSERT FDINIT,NSCORE,SSDISK
OVEP AY LEVEL3
IN KT ZMINIT,INEDIT, FORIMTZ, REGMAP
F.RIAY LEvEl,
INS:RT NHINIT,NHGEOM,HEXMAP,GETIJ,NHTMAP, NHPNT, NHCCPT, NHINED,NHCORE
INSERT NHDISK
gVERLAY LEVEL3
INSERT XSINIT,XSGETI,XSGETZ,XSEDIT
ovfRl,AY L.EVEI.2
INSFRT SSTATE,SCTSRC,TRISRC,TSWEEPP,PSWFEPP,TOTSRC,SORINV,ROUSRC
NSERT FISSRC,OSWE.EP,OUTEDO,CHEBE,DACOSH, FILCPY, ZEROBA
OVERIAY lfvEL3
NSERT DXSREV,XSCREV,NHSIGA
OVERT.AY LEVELS
INSERT DFDCAL, FDCAL, ORTFDC,TRIFDC
ovi.RI.ay leveli
OVERLLAY LEVEL2

```

INSERT FSRCIN, DORPES,ORPES1, ORPES2, RFLXIN,ORPIN1,MLTPLY,ORPIN2 OVERLAY LEVEL
INSERT DOUTRI, OUTER1,CHEBY1, INNERI
overlay Level3
INSERT DOUTR2,OUTER2,CHEBY2,FISSD2,IFISD2, INNER2,SCTSD2,TOTSD2
OVERLAY LEVEL2
INSERT NHSST, NHOEDO, INVERT, NHXSEC
OVERLAY LEVEL3
INSERT DNHCCC, NHCC2D, NHCC3D, NHTVLC, NHINNR
OVERLAY LEVEL3
INSERT DNHSTT,FXREAD,FXINIT,FSINIT
OVERLAY LEVEL3
INSERT DNHOUT,OUTR1,OUTR2,OUTR3,OUTR4,OUTR5, ACCEL, ACCL3D
INSERT LEAK3D,SRCFIS,SRCSCT,SRCHEX, PCHEX, PCHEXB, SRCZ1, SRCZ2, PCZ
INSERT PCZB, FLXHEX, FLXZ, FSUPDT, CMATTRX, BKRING , AXLEAK, CMSOLV, FSERRN
INSERT CONVCK,NHSFCM
overlay levelj
INSERT DNHFIN,NHEDDM, CPYFIL, NHVOL, FXSHAP
overlay level2
INSERT DSSTOU,TWODTB,TWODPR,EDITDM, BRED,DSEQUA
INSERT SCALPK, WPKEDT,NHSHAP, NHPEAK,NHPKED
overlay level3
INSERT DSSTOI, BKILHGT, FORMMR, POWINT, SSTOU1, WPOWER, APWADD, RPWADD
INSERT OFTSRF,TRISRF
overlay level3
INSERT DSSTO2,SSTOU2,EDCORE, WFLUX,ORTBAL, RPSADD, TRIBAL
NSSERT WNHFLX,HEXBAL
OVERLAY LEVEL3
INSERT FLXINT, BALINT, DSSTO 3, FLXRZ, ADDVEC, DIVVEC, APSADD, BALBUF
INSERT ABLADD,RBLADD,RBLFIS,RBLMED,WRZFLX
/*

//* EXECUTE LINKAGE EDITOR.

//STEP7 EXEC PGM=IELL,PARM='DCBS,LIST,MAP,RENT,SIZE=(230
//SYSLIB DD DISP=SHR,DSN=SYSI.AMDLIB
\(\begin{array}{lll}/ / S Y S L I B & \text { DD } & \text { DISP=SHR,DSN=SYSI.AMDLIB } \\ / / & \text { DD } & \text { DISP=SHR,DSN=SYS1.FORTLIB }\end{array}\)
\(\left.\begin{array}{lll}/ / & \text { DD } & \text { DISP=SHR,DSN=SYS1.FORTLIB } \\ / / S Y S L I N & \text { DD } & \text { DSN= } \\ \hline 00 B J E C T, D I S P=(O L D, D E L E T\end{array}\right)\)
\(/ /\) DD DDNAME=SYSIN
//SYSLMOD DD DSN=6NESCLIB(SIOSUB),DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD SPACE=(CYL,20),UNIT=(SASCR,SEP=(SYSLIN,SYSLMOD))

\section*{SEGMENTED LOADER INSTRUCTIONS FOR SEGLINK ON THE CDC 7600}

SFGLD \(30,7,400,20000 . x \times X x X X\)
:〈complle source and pass LGo flle to SEGLINK〉
SFL, 170000,100000.
SEGLINK (F-LGO, P=FTN4LIB, B-DIF3D,LO=BEX)
-
EXIT.
```

* TREE STRUCTURE DEFINITION WITH IMPLICIT INCLUDES

```
* TREE STRUCTURE DEFINITION WITH IMPLICIT INCLUDES
**
**
OOOT TRFF. D3DRIV-(SCAN,STUFP,GNIP4,HAG4,MODCXS, BCDINP,SRCH4C,BININP
OOOT TRFF. D3DRIV-(SCAN,STUFP,GNIP4,HAG4,MODCXS, BCDINP,SRCH4C,BININP
,SSINI,SSTAT,NHSS,DSSTO,UDOITI,UDOIT2,UDOITY;UDOIT4)
,SSINI,SSTAT,NHSS,DSSTO,UDOITI,UDOIT2,UDOITY;UDOIT4)
GNIP4 TREE GNIPGC-(RNTPI,FGEOD,EGEOD,RANIP2,FADENS,BCDXST,WSRCH,WSORC
GNIP4 TREE GNIPGC-(RNTPI,FGEOD,EGEOD,RANIP2,FADENS,BCDXST,WSRCH,WSORC
,WRRODS)
,WRRODS)
RNIPI TREE RANIPI-(ANIPO3,ANIPHX,ANIPII)
RNIPI TREE RANIPI-(ANIPO3,ANIPHX,ANIPII)
FGFOD TREE FGEODS-(GETHGT,GETMSH,GETBUC,GETMR)
FGFOD TREE FGEODS-(GETHGT,GETMSH,GETBUC,GETMR)
EGEOD TREE FGEODS-(MAKMSH,PRGFOD,ANIP43,HEXMP,ORTMAP)
EGEOD TREE FGEODS-(MAKMSH,PRGFOD,ANIP43,HEXMP,ORTMAP)
HEXKP TREE HEXMAP-(HEXPC4, HEXPCS)
HEXKP TREE HEXMAP-(HEXPC4, HEXPCS)
USRCH TREE WRSRCH-(ANIP21,EDSRCH)
USRCH TREE WRSRCH-(ANIP21,EDSRCH)
WSORC TREE WRSORC-(ANIPI9,SORDAT,ADS,WRS,EDSORC)
WSORC TREE WRSORC-(ANIPI9,SORDAT,ADS,WRS,EDSORC)
HMC4 TREE HMG4C-(OVLL ,OVL2,OVL3,OVL4)
HMC4 TREE HMG4C-(OVLL ,OVL2,OVL3,OVL4)
*
*
SSINI TREE SSINIT-(FDINIT,ZMINIT,NHINIT,XSINIT)
SSINI TREE SSINIT-(FDINIT,ZMINIT,NHINIT,XSINIT)
SSTAT TREF. SSTATE-(DXSREV,DFDCAL,DORPES,DOUTRI,DOUTR2)
SSTAT TREF. SSTATE-(DXSREV,DFDCAL,DORPES,DOUTRI,DOUTR2)
NHSS TRE.E NHSST-(DNHCCC,DNHSTT,DNHOUT,DNHFIN)
NHSS TRE.E NHSST-(DNHCCC,DNHSTT,DNHOUT,DNHFIN)
NHSS
NHSS
DSSTO TREE DSSTOU-(DSSTO1,DSSTO2,DSSTO3)
DSSTO TREE DSSTOU-(DSSTO1,DSSTO2,DSSTO3)
** EXPLICIT SEGMENT DEFINITIONS
** EXPLICIT SEGMENT DEFINITIONS
**
**
D3DRIV INCLUDF: D3DRIV,CRED,DOPC,DRED,DREDI,DRED2,ERROR,FFQUAT,FFORM,EC
D3DRIV INCLUDF: D3DRIV,CRED,DOPC,DRED,DREDI,DRED2,ERROR,FFQUAT,FFORM,EC
,HV,ECZERO, FFORHI, FFORM2, FLTSET, IEQUAT, IGTLCM, JGTSCM, FREICM, LOCFWD, INTSE
,HV,ECZERO, FFORHI, FFORM2, FLTSET, IEQUAT, IGTLCM, JGTSCM, FREICM, LOCFWD, INTSE
T, IN2I.IT, IINES, POINTR, PUTPNT, BULK, FREE,WIPOUT,GETPNT, IGET, IPT2, PUTM, IPT
T, IN2I.IT, IINES, POINTR, PUTPNT, BULK, FREE,WIPOUT,GETPNT, IGET, IPT2, PUTM, IPT
,FRR,ILAST, REDEF, REDEFH, PURGF, STATUS, PRTII, PRTI2, PRTR1, PRTR2, PRTECM, REED
,FRR,ILAST, REDEF, REDEFH, PURGF, STATUS, PRTII, PRTI2, PRTR1, PRTR2, PRTECM, REED
#,ZFROIO, SFEK, SEKPHL, SPACE, SQUEZF,, SRLAR,TIMER,DIF3D,START, VOLUME,WDIF3D
#,ZFROIO, SFEK, SEKPHL, SPACE, SQUEZF,, SRLAR,TIMER,DIF3D,START, VOLUME,WDIF3D
,GETBND,AREAS, REVRSE,DEFICF,OPENCF,CLOSCF, PURGCF, BLKGET, PNTGET, DFFIDF,OP
,GETBND,AREAS, REVRSE,DEFICF,OPENCF,CLOSCF, PURGCF, BLKGET, PNTGET, DFFIDF,OP
,FNDF, CLOSDF,STATCF, CODECD, READEC, WRITEC, PCRED
,FNDF, CLOSDF,STATCF, CODECD, READEC, WRITEC, PCRED
stuFF
stuFF
*
*
GNIP4C INCLIDFE GNIP4C,ANIPOI,ANIPN2,ANIPI4,ANIP23,GETZON,GETSZN
GNIP4C INCLIDFE GNIP4C,ANIPOI,ANIPN2,ANIPI4,ANIP23,GETZON,GETSZN
ANYPO3 INCLUDE. ANIPO3,ANIP04,ANIPOS,ANIPOG
ANYPO3 INCLUDE. ANIPO3,ANIP04,ANIPOS,ANIPOG
ANIPHX INCLUDE ANIPHX,ANIPO7,ANIPIO,CHEKO9,ANIPIO
ANIPHX INCLUDE ANIPHX,ANIPO7,ANIPIO,CHEKO9,ANIPIO
ANIPII INCLUDE ANIPII,ANIPI2,ANIPIS,ANIP34
ANIPII INCLUDE ANIPII,ANIPI2,ANIPIS,ANIP34
*
*
* EXPRICIT SEGENT DEFINITIONS
* EXPRICIT SEGENT DEFINITIONS
ClUDE STUFF,STUFF
```

ClUDE STUFF,STUFF

```
```

WHSST IMCLUDE NHSST,NHOEDO, INVFRT,NHXSEC
WHCCC INCLIJDE DNHCCC,NHCC2D,NHCC2D,NHCC3D,NHTVLC,NHINNR
DNHSST INCLUDE DNHSST,ITXREAD,FXINIT,FSINIT
DNHOUT INCLUDE DNHOUT,OUTR1,OUTR2,OUTR3,OUTR4,OUTR5,ACCEL,ACCL3D, LEAK3
,D,SRCFIS,SRCSCT,SRCHEX, PCHEX,PCHEXB,SRCZI,SRCX2,PCZ, PCZB, FLXHEX, FLXZ, FS
,UPDT, CMATRX , BKRING, AXLEAK ,GMSOLV, FSERRN, CONVCK, NHSFCM
DNHFIN INCLUDE DNHFIN,NHEDDM,CPYFIL,NHVOL, FXSHAP
*
DSSTOU INCLUNE DSSTOU,TWODPR,TWDDTA, BRED,DSEOUA,EDITDH,SCALPK,WPKEDT
,NHSRAP,NHPEAK.
OSSTOI INCLUDE DSSTOI, FORMMR, BKLUGT,SSTOUI, POWINT, RPWADD, APWADD,WPOWER
ORTSRF.TRISRF
OSSTO2 [NCLUDE DSSTO2,EDCORE,SSTOU2,RPSADD,WFLUX,ORTBAL,TRIPAL,WNHFLX,
DSSTO3 INCLUDE OSSTO3,ADDVEC,DIVVEC,BALINT,RBLADD,RBLMED,RBLFIS,ABLADE,
APSAADD, FLXINT, FLXRT, WRT.FLX
*
** clobal conmon mlock declarations
GLOBAL STPARC, PTITLE, IOPUT, ARRAY, VERNUM, IOCOM, SPECS, CONTRL, IOCO
MD, DEEUGG, IOCGONC, SINGLE, POINTS, PNARES, LOCATE, TNAMES , IDENT, LABSPC, FILEID,
,NHCNTL,NHIOCH,NHIOPC,NHIOPD
GNIP\&C GLOBAL BCDFLT,BCDINT,ISIZES
HEXMAP GLOBAL HEXPC
ORTMAP CLOBAL ORTPC
HIGGCC GLOBAL REF,HMGPTR
OSSTOU GLOBAL EDITDM
OSSTOS GlOBAL EATBUF
**
** END OF SEGLINK INPUT
END 03DRIV

```

\section*{Appendix F. 2}

\section*{TYPE 01 OVERLAY DIRECTIVES FOR THE LDR LOADER ON THE CRAY-1}

FILE, \$BLD.
OVLDN, DIF3D.
SBCA,?7??. (ADDRESS OF LONGEST OVERLAY MUST BE OBTAINED FROM LOADER OUTPUT)
ROOT, D3DRIV, CRED, DOPC, DRED, ERROR, FEQUAT, FFORM, FFORM1, FFORM2 , FLTSET ROOT, D3DRIV, CRED, DOPC, DRED, ERROR, FEQUAT, FFORM, FFORM
IEQUAT, IGTLCM, JGT, FRELCM, LOCF, LOCFWD, INTSET, IN2LIT,
IEQUAT, IGTLCH, JGT, FRELCH, LOCF, LOCFWD, INTSET, IN2LIT,
LINES, POINTR, PUTPNT, BULK, FREE, WIP PET, REDEFH, PURGE,STATUS, PRTI 1 , PRTI 2, PRTR1, PRTR2, PRTECM, REED
ILAST, REDEF , REDEFH, PURGE, STATUS, PRTI1, PRTI2, PRTR1, PRTR2, PRTECH, REED,
ZEROIO, SEEK, SEKPHL, SPACE, SOUEZE, SRLAB, TMER,DIFF, GETBND, AREAS, REVRSE, DEFICF, OPENCF, OPENDF , CLOSDF, STATCF, CODECD, PCRED.
POVL, 1, SCAN.
POVL, 2, STUFF,STUPFI.
POVL, 3, GNIP4C, ANIPO1, ANIPO2, ANIP14, ANIP23, GETZON, GETSZN, CPYLBG
SOVL, 1 , RANIP1, ANIPO3, ANIPO4, ANIPOS, ANIPO6,
ANIPHX, ANIPO7, ANIPO9, CHEK09, ANIPIO,
ANIP11, ANIP12, ANIP15, ANIP34.
SOVL, 2 , FGEODS, LOCHEX, SETHEX
GETHGT, GETREG,
GETMSH, CAESH, FMESH, SRFLT ,
GETBUC, GETBC,
GETMR, RCHESH, TRIGOM, VOLREG, REDMSH.
SOVL, 4, EGEODS, MAKMSH, PRGEOD, PRNTIX,
ANIP43, HPGEOD, MSHMAP,
TRIPLT, HEXPIC, HEXPC1, HEXPC2, HEXPC3, HEXPC6, HEXPC7, HEXPC4, HEXPC5
ORTMAP, ORTPC1, ORTPC2, ORTPC3, ORTPC4, ORTPC5, ORTPC6.
SOVL, 4 , RANIP2, ANIPI3, GETMAT, GETISO, ANIP39, GETSET.
SOVL, 5, FADENS, SORT13, VALU2D, SET2D, INDEX, EDTMAT, SORT14, WNDXSR.
SOVL, 6, BCDXST, RWISOT, RWDELY, RWDY1, E.TDY2.
SOVL, 8, WRSRCH, ANIP21, ANIP22,SRCH4D, ANIP24, SRCH3D, ANLP25, SRCH6D, ANIP26, EDSRCH.
SOVL, 7, WRSORC, ANIP19, ANIP40, ANIP41, ANIP 42 ,
SORDAT, SORLAB, SORMSH, SORNZN, SORDIF,
ADS,ADS1,ADS2,ADS3.
TRS,WRSO,WRS1,WRS2,
edsorc.
POVL, 4 , HAG4C.
SOVL, \(1,0 V L 1\), RDNDX, RDATDN, ATDN3, ISOR14, EDTISO, IDLR13.
SOVL, 2 , OVL 2 , ISOR 58 , SVSCAT, FARSET, ZROSET, UPDATE, MAXBND, FISPEC, EDTR5, EDTR6,EDTR8.

SOVL 3 , OVL 3 , WREC1, WREC2, WREC3, WREC4
SOVL, \(4,0 \vee L 4\), SVXS, EDTXS1,EDTXS2, EDFPWS.
POVL, 5, MODCXS , ANIP35, ANIP37, DOMODS, COPIER.
POVL, 21 BCDINP, RADF3D, PDIF3D.
POVL, 6, SRCH4C, GETBSQ, GETALP, GETDIM, GETCON, SRCHX, PARAB , DMDBSQ, DMDALP , DMDDIM, DHDCON,MODBSQ,MODDIM, MODCON.
POVL, 22, BININP, RDIF3D, RLABEL, RSEARC, RCMP XS , ADSCTM, RGEODS , FORHSH,
FORMCH, RRTFLX, RATFLX, RFIXSR, RNHFLX.
OVL 23 ,SSINIT, EDITCR
SOVL, 1 , FDINIT, SSCORE,SSDISK
SOVL, 2, ZMINIT, INEDIT, FORAMZ, REGMAP.
SOVL, 3, NHINIT, NHGEOM, HE XMAP, GETIJ, NHZMAP , NHPNT , NHCCPT , NIINED, NHCORE HDISK.
SOVL, 4, XSINIT, XSGET1, XSGET2, XSEDIT
POVL, 24, SSTATE, CHEBE, DACOSH, OUTEDD, FILCPY, OSWEEF, PSWEEP, TSWEEP
SORINV,FISSRC,TOTSRC, SCTSRC, ROWSRC,TRISRC, ZEROBA, RBOSOR, RBOSRC. SOVL, 1 , DXSREV, XSCREV, NHSIGA.
SOVL, 2,DFDCAL, FDCAL, ORTFDC, TRIFDC
SOVL, 3,DORPES, ORPES1, ORPIN1, RFLXIN, FSRCIN, ORPES2 , ORPIN2, MLTPLY
SOVL,4, DOUTRI, OUTER1, INNER1, CHEBY1.
SOVL, 5, DOUTR2, OUTER2, INNER2,CHEBY2, IFISD2, SCTSD2, TOTSD2, FISSD2.
OVL, 25 , NHSST, NHOEDO, INVERT, NHXSEC.
SOVL, 1, DNHCCC, NHCC2D, NHCC3D, NHTVLC, NHINNR
SOVL, 2 , DNHSTT, FXREAD, FXINIT, FSINIT.
SOVL, 3, DNHOUT, OUTR1 ,OUTR2 , OUTR3 , OUTR4 , OUTR5 .
ACCEL, ACCL3D, LEAK3D,
RCFIS, SRCSCT,
SRCHEX, PCHEX, PCHEXB, SRCZ1, SRCZ2, PCZ, PCZB ,
FLXHEX, FLXZ, FSUPTD, CMMTRX, BKRING, AXIEAK,
CMSOLV, FSERRN, CONVCK.
SOVL, 4, DNHFIN, NHEDDM, CPYFIL, NHVOL, FXSHAP
POVL, 29, DSSTOU, TWODPR, TWODTB, BRED, DSEOUA, SCALPK, WPKEDT, NHSHAP, NHPEAK, NHPKED.
SOVL, 1,DSSTOI , FORMAR , BKLWGT, SSTOU1, POWINT , RPWADD , APWADD, WPOWER , ORTSRF TRISRF.
SOVL, 2, DSSTO2, EDCORE, SSTOU2, RPSADD, WFLUX, ORTBAL, TRIBAL, WNHFLX, HEXBAL SOVL, 3,DSSTO3, ADDVEC, DIVVEC, BALINT, RBLADD, RBLMED, RBLFIS , ABLADD, APSADD, FLXINT, FLXRZ, WRZPLX.

\section*{Appendix G}

\section*{SAMPLE PROBLEM OUTPUT}

\section*{G. 1 Sample Problem 1 (entire output)}

\section*{G.1-2}

\section*{G.1-3}
\(09 \quad 28 \quad 40.0 \quad 1087.5 \quad 10 \quad 135.0\)
09 Z 8175.0
```

STUFF


```
A.NIP3 VERSION = 1, MAXIMUM CARD TYPE = 43, NOSORT CARDS = 0
 CARDS-PER-CARD-TYPE = 11 1, 1, 1
```

            THIS FILE CONTAINS UNFORMATTED CARDS.
    01 **** SAMPLE PROBLEM 1 **** 2D SNR BENCHMARK - RODS IN - FDO6
02001110000
$03-70$
$04-7404$
XU . $5000 \quad 14$
YU . 500014
TCORE IC OC
TROD CR CF
TOTAL IC OC RB CR CF

| M1 | I1 | 1.0 |
| :--- | :--- | :--- |
| M2 | I2 | 1.0 |


| M3 | 12 | 1.0 |
| :--- | :--- | :--- |


| $M 4$ | 14 | 1.0 |
| :--- | :--- | :--- |
| $M 5$ | 15 | 1.0 |


| $M 5$ | 15 | 1.0 |
| :--- | :--- | :--- |
| $M 6$ | 16 | 1.0 |

5


| sturf | BC | FILES | FORMED | Prom | BLOCK | STP021 | 1/05/84 | 2221.700 | PAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 |  | 35 |  |  |  |  |  |  |  |
| 30 | CF | 4 |  |  |  |  |  |  |  |
| 43 |  | 0.6 |  |  |  |  |  |  |  |




| $1.72336 \mathrm{E}+09$ | $4.02463 \mathrm{E}+08$ | $7.97003 \mathrm{E}+07$ | $3.15946 \mathrm{E}+07$ | 1.05 | $\mathrm{E}+078.00$ | $\mathrm{E}+0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| 100. |  |  | 0. |  | 0. |  | 0.0 |  | 0.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 10 | - 20 |
| 1 | 1 | 2 | 3 | 4 | 1 | 1 | 1 | 1 |  |  |
| 5D . 11587 |  | . 21220 |  | . 46137 |  | . 34571 |  | . 11587 |  |  |
| 21220 |  | $137$ |  |  |  | $359 \text { E- }$ | 31.830 | 0758E-03 | 3 |  |

$.17305 \mathrm{E}-01$. $39123 \mathrm{E}-02$. $18286 \mathrm{E}-02$. $36334 \mathrm{E}-02$. $92415 \mathrm{E}-02 \quad 3.036066$
$2.912173 \quad 2.881874 \quad 2.879511$


STUPF
BCD FILES FORMED PROM BLOCK STP021

| 100. | 0.0 | 0.0 |  | 0.0 | 0.0 | 0.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 00 | 0 | 00 | 000 | 011 | 0 | 200 |
| 1 | 12 | 3 | 41 | 111 | 11 |  |  |
| 5D. 13317 | . 25355 |  | . 58044 | . 54168 | . 13317 |  |  |
| . 25355 | . 58044 |  | . 54188 | . $186696 \mathrm{E}-02$ | 2.126433E-01 | . 634405 | -01 |
| . 16868 |  |  |  |  |  |  |  |
| 7 D 0.0 | 0.0 |  | . 022946 | 0.0 | . 37687 | E-02 |  |
| . $10320 \mathrm{E}-05$ | 50.0 |  | . $86815 \mathrm{E}-02$ | . 70361 E-11 | . $10489 \mathrm{E}-07$ |  |  |
| 4D 16 | GFK |  |  |  |  |  |  |
| 100. | 0.0 |  | . 0 | 0.0 | 0.0 | 0.0 |  |
| $0 \quad 0$ | 00 | 0 | $0 \quad 0$ | 000 | 01 | 0 | 200 |
| 1 | 12 | 3 | 41 | 111 | 1 |  |  |
| 5D . 072206 | . 11487 |  | . 32642 | . 19272 | . 072206 |  |  |
| . 11487 | . 32642 |  | . 19272 | .216305z-03 | . $16880 \mathrm{E}-03$ | . 11468 | E-02 |
| . 78660 E-03 |  |  |  |  |  |  |  |
| $7 \mathrm{0.0}$ | 0.0 |  | . 012942 | 0.0 | . 12871 | E-02 |  |
| . 68780 E-06 | 0.0 |  | . 34533 E-02 | . $43633 \mathrm{E}-11$ | . $69903 \mathrm{E}-08$ |  |  |

SUBROUTINE STUFP USED 2048 WORDS OF CORE
CP TIME 0.38 SECONDS, PP TIKE- 0.0 SECONDS

| 100000010 | IMAING | NO. OF HORDS OF main memory requested |
| :---: | :---: | :---: |
|  | tBULKG | NO. OF HORDS OF BULK MEMORY REQUESTED |
|  | IPRNTG | BPOINTER TRACE AND DUHP CONTROL ( $0 / 1 / 2 / 3$, NEITHER/DUMP/TRACE/BOTH) |
|  | IGMEDT | GEOMETRY PROCESSING EDIT CONTROL ( $0 / 1 / 2 / 3$, NO EDITS/PRINT EDITS/EDITS TO |
|  | IMAPR | REGION MAP OPTION ( $0 / 1 / 2 / 3$, NO MAP/PRINT MAP/MAP TO AUXILIARY FILE/BOTH) |
|  | IMAPZ | ZONE (COHPOSITION) MAP OPTION ( $0 / 1 / 2 / 3$, SEE IMAPR) |
| I |  | *** MODEL DESCRIPTION *** |
| 9 | IGOM | GEOMETRY TYPE, TRIANGULAR |
| 6 | NZONE | NO. OF LONES (COMPOSITIONS) |
| 5 | NREG | NO. OF REGIONS |
| 1 | NZCL | NO. OF ZONE CLASSIPICATIONS |
| 31 | NCINTI | NO. OF IST DIMENSION COARSE MESH INTERVALS |
| 16 | NCINTJ | NO. Of 2ND dimens ion Coarse mesh intervals |
| 31 | NINTI | NO. OF IST DIMENSION FINE MESH INTERVALS |
| 16 | NINTJ | NO. CP 2ND DIMENSION FINE MESH INTERVALS |
| 4 | IMBI | FIRST BOUNDARY CONDITION, FIRST DIMENSION, PERIODIC, NEXT FACE ClOCKWISE |
| 2 | IMB2 | LAST BOUNDARY CONDITION, FIRST DIMENSION, EXTYAPOLATED |
|  | JMB1 | FIRST GOUNDARY CONDITION, SECOND DIMENSION, PFRIODIC, SEE [MBI |
| 2 | JMB2 | LAST BOUNDARY CONDITION, SECOND DIMENSION, EXTRAPOLATED |
| 1 | NBS | NO. OF BUCKLING SPECIPICATIONS |
| 24 | NBCS | NO. OF CONSTANTS FOR EXTERNAL BOUNDARIES |
| 1 | NIBCS | NO. Of CONSTANTS FOR INTERNAL BOUNDARIES |
| 0 | NZWBB | NO. OF 8LACKNESS THEORY ZONES |
| 0 | NRASS | 0/I, REGION ASSIGNMENTS TO COARSE/FINE MESH |
| 1 | NTRIAG | OUTER BOUNDARY SHAPE, 60 DEGREE RHOMBUS |
| 1 | NTHPT | ORIENTATION OF ( 1,1 ) MRSH TRIANGLE - POINTS AWAY PROM 15 ST DIMENSION AXIS |
| . $1200 \mathrm{D}+01$ | Flat | HEXAGON FLAT-TO-FLAT DISTANCE |
| .4665D+00 | SIDE | LENGTH OP MESH-TRIANGLF. SIDE |

EXTERNAL BOUNDARY CONDITION CONSTANTS C (D* DEL PHI = - C* PHI), BY GROUP LAST VALIJE SHOWN IS USED POR RZMAINING GROUPS
LAST TRIAG BOUNDARY

| $15.00000 \mathrm{D}-01$ |
| :--- |$\quad 25.00000 \mathrm{D}-01$

LAST BOUNDARY

| $15.00000 \mathrm{D}-01$ |
| :--- | $25.00000 \mathrm{D}-01$




INTERNAL BOUNDARY CONDITION CONSTANTS C (D * DEL PHI - - C * PHI), BY GROUP LaSt Value shown is used for ramaining groups
10.0

REGIONS COHPRISING AREAS

| AREA | REGION | RPGGION | REGION | REGION | RRGION | REGION | REGION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. NAME | NO. NANE | NO. NAME | NO. NAME | MO. NAME | MO. NAME | MO. MANE | \%0. NAME |
| 1 TCORE | 1 IC | 2 OC |  |  |  |  |  |
| 2 TROD | 4 CR | 5 Cr |  |  |  |  |  |
| 3 TOTAL | 1 IC | 20 C | 3 Rs | $4 C R$ | 5 CF |  |  |



GN1P4C Generated Calcomp 780 Plot of 2D SNR Benchmark Model

descriftion of miclide set i ane
isotopes imcluotd $11 \begin{array}{lllllll}12 & 13 & 16 & 15 & 16\end{array}$


## G.1-8


** ${ }^{*}$ THE FOLLOWING BINARY FILES HAVE BEEN GRITTEN ***
FILE NAME VERSION NO. LOGICAL UNIT

| ISOTXS | 1 | 27 |
| :--- | :--- | :--- |
| GEODST | 1 | 26 |
| LABELS | 1 | 20 |
| ZNATDN | 1 | 29 |
| NDXSRF | 1 | 28 |


| ELAPSED CP TIME - | 0.86 SECONDS |
| :--- | ---: |
| ELAPSED PP TIME | 0.0 SECONDS |
| MAIN CORE REQUIRED - | 542 HORDS |
| MAIN CORE REQUESTED - | 10000 WORDS |
| BULK CORE REQUIRED - | 0 WORDS |
| BULK COE REQUESTED - | 0 WORDS |

G.1-9
 ** END OF HPG4C ***
 INPUT FILE DIF3D , VERSION 1, USER IDENTIPICATION = HAS BEEN PROCESSED. inPut file compxs, version 1, user identification - has been processed. INPUT FILE GEODST, VERSION 1, USER IDENTIFICATION = $1 / 05 /$ hAS BEEN PROCESSED. INPUT FILE LABELS, VERSION 1, USER IDENTIFICATION = 1/05/ HAS BEEN PROCESSED.

| PROCEDITRE PARAMETERS | DEFAULT CYLINDERS | RECOMAENDED CYLINDERS | $\begin{aligned} & \text { DISK } \\ & \text { TYPE } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| ZONCYL | 1 | 1 | 3330 |
| FLXCYL | 1 | 1 | 3330 |
| PSICYL | 5 | 1 | 3330 |
| FDCCYL | 20 | 1 | 3330 |
| PSUCYL | 3 | 0 | 3330 |
| SRFCYL | 12 | 1 | 3330 |
| DMY 1CYL | 21 | 2 | 3330 |
| DHY2CYL | 7 | 3 | 3330 |
| DMY5CYL | 4 | 1 | 3330 |
| RTCYL | 5 | 1 | 3350 |
| ATCY | 5 | 1 | 3350 |


*AH DIF3D Storage at Location ***


*** IISER INPUT SPECIFICATIONS POR THIS PROBLEM ***

storage, iteration, time limits

| 3600 | maxsiz | mo. of words requested for fCh data storace container |
| :---: | :---: | :---: |
| 6000 | maxble | MO. OP mords requested for ech data stornge containen |
| 4500 | minesz | MINIMM DESIRED (PLANE-BLOCK) RECORD LENGTH (IN WORDS) FOR COnCURRENT INRER ITERATION |
| 30 | notericx | maximun momber of outer iterations allowzd (-1/-2 bypass outers/and slor facton calculation) |
| 1000000000 | LIMTIM | maximm processor tire (seconds) alluned |
| 50 | indiax | MAXIMNM MUABER OF iterations peraitted during the optimu overrelayation factor estimation procedur |

edit options (region integral edits include area edits)

| 1 | IEDP(1) | 0/1/2/3 | mone/PRINT/AUXILIARY/BOTS | PROBLEM DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 0 | IEDP(2) | 0/1/2/3 | MONE/PRINT/AUXILITARY/BOTH | CPOAETRY REGION MAP |
| 0 | IEDP(3) | 0/1/2/3 | MONB/PRINT/AUXILIARY/BOTH | GEOMETEY ZOME MAP |
| 11 | 1207(4) | 0/1/2/3 | MONE/PRINT/AUXILIARY/8OTH | MACROSCOPIC CROSS SRCTIONS (SCATTERING+PRINCIPAL, PRINCIPAL ONLY) |
| 111 | IEDP(5) | 0/1/2/3 | NONE/PRINT/AUXILILARY/BOTH | malance integrals by (Group, region and gnoup region) |
| 10 | IEDP(6) | 0/1/2/3 | MONE/PRINT/AUXILIARY/BOTH | POLER (REGION INTEGRALS, dENSITY BY MESH CELL) |
| 100 | IEDP(7) | 0/1/2/3 | NONE/PRINT/AUXILIARY/BOTH | flux (region integrals, by nesh cell, by mesh cell and grour) |
| 1 | IEDF(8) | 0/1/2/3 | HONE/PRINT/AUXILIARY/BOTH | zone averaged rlux |
| 0 | IEDP(9) | 0/1/2/3 | MONE/PSINT/AUXILIARY/BOTH | hegion avermged flux |
| 0 | IxDP(10) | 0/1/2/3 | WONE/PLDINT/k2FLUX/80TH | FILES TO EE GRITTEN |
| 0 | IgRHED | -1/0/N | HONS/INPUT-1ST PASS, OUTPUT | Last suarch pass/nequested edits (above) every n-th search pass |


| 1.0000000-07 | 2Ps1 | desired eigenvalue convergence |
| :---: | :---: | :---: |
| 1.0000000-05 | EPS2 | desined pointwise pissiow sounce convengence |
| 1.000000p-05 | EPS ${ }^{\text {d }}$ | destied averace pissiom source convence |


| 1.0000000400 | EfR | K-EPFECTIVE OP Reactor |
| :---: | :---: | :---: |
| 1.000000D-03 | FISHIN |  |
| 4.0000000-02 | PSIMRM | Imier iteration eraon reduction facton per outer iteration |
| 5,0000000-01 | Hoctw | STEADY STATE REACTOR POWER (WATTB) |

## G.1-11

DIP3D $4.07 / 83 \quad$ *** SAMPLE PROBLEM 1 **** 2D SNR BENCHMARK - RODS IN - FDO6 $\quad 1 / 05 / 84222.100$ PAGE 19


PROBLEM GEOMETRY - 2-DIMENSIONAL TRIANGULAR
RHOMBIC BOUNDARY WITH 60 DEGREE (SIXTH CORE) SYMAETRY
TRIANGLE SIDE LENGTH $=\mathbf{6 . 4 6 6 4 9 6 D + 0 0}$

## boundary conditions (ORIGIN at lower left)

## 0 - ZERO FLUX 1 - ZERO CURRENT 2 - EXTRAPOLATED 3 - PERIODIC OPPOSITE FACE <br> 4 - periodic next adjacent pace 5 - inverted periodic a long face

$X$ - LEFT
X - RIGHT
Y - FRONT
$\mathbf{Y}$ - BACK
4
2
4
2
boundary condition 2 is applied to mesh cell surfaces adjacent to excluded background cells.

EXTRAPOLATED BOUNDARY CONDITION CONSTANTS C
(DEL PHI/PHI $=\mathrm{C} / \mathrm{D}$, LAST VALUE USED FOR REMAINING GROUPS

| GROUP | TRIAG $=0.0$ | TRIAG $=0.0$ | 00 | 0.0 |
| :---: | ---: | :---: | :---: | :---: |
| 1 | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}=01$ | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}-01$ |
| 2 | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}-01$ | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}=01$ |
| 3 | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}-01$ | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}=01$ |
| 4 | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}-01$ | $4.692000 \mathrm{D}-01$ | $4.999999 \mathrm{D}=01$ |

INTERNAL BLACK bOUNDARY CONDITION CONSTANT C FOR ALL GROUPS (DEL PHI/PHI = C/D
0.0

DIF3D $4.07 / 83$ **** SAMPLE PROBLEM 1 **** 2 D SNR BENCHMARK - RODS IN - PD06 $1 / 05 / 84$ 2222.100 PAGE 20 BUCKLING SPECIFICATION FOR ALL ZONE

```
BUCKLING = 0.0
```

REGION NMMBER AND ASSIGNHENT TO ZONE

| REGION |  | ZONE <br> No. | ZONE <br> NAME | REGION |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | $\begin{aligned} & \text { ZONE } \\ & \text { NAME } \end{aligned}$ | REGION |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | ZONE <br> NAME | REGION |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | $\begin{array}{ll} \mathrm{E} & \text { ZONE } \\ \hline & \text { NAME } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | NO. | NAME |  |  | NO. | NAME |  |  | NO. | NAME |  |  |
| 1 | IC | 1 | M1 | 20 C |  | 2 | M2 | 3 | RB | $3 \mathrm{M3}$ |  | 4 |  |  | M5 |
| 5 | CF | 6 | M6 |  |  | CR |  |  |  |  |  |  |  |  |  |


| NO. OF COMPOSITIONS | $\mathbf{-}$ |  |
| :--- | :--- | :--- |
| NO. OF PRECURSOR FAMILIES | - | 0 |
| NO. OF ENERGY GROUPS | $=$ | 4 |
| MAXIMIM NO. OF DONNSCATTER GROUPS | $=$ | 3 |
| MAXIMUM NO. OF UPSCATTER GROUPS | $=$ | 0 |
| MAXIMUM ENBRGY BOUND (EV) | $=1.05000 \mathrm{D}+07$ |  |
| MINIMUM ENERGY BOUND (EV) | - | 0.0 |


| GROUP <br> NO. | NEUTRON VELOCITY <br> (CMM/SEC) | MAXIMUM ENERGY <br> (EV) | MAX DOWNSCATTER |
| :---: | :---: | :---: | :---: | :---: |$\quad$ MAX UPSCATTER



## G.1-13

| DIF3D | $4.0 \quad 7 / 83$ | **** SAM | MPLE PROBLEM | M 1 \#*** 2 D SNR BENCHMARK - RODS IN - FDO6 |  |  | 1/05/84 2222.100 |  | PAGE 23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ************* |  | EDIT OF FISSI | SIONABLE COMPOSI | ITION 2 (M2 | ) IN COMPXS |  | *******れ**** |  |
|  | ABSORPTION | DIRECTIONAL | DIFFUSION CO | COEFFICIENTS | REMOVAL | FISSION | FISSION | NEUTRONS | POWER CONVER. |
| Group | CROSS SECTION | D] | D2 | D3 | CROSS SECTION | CROSS SECTION | SPECTRUA( CHI ) | PER FISSION | FACTOR |
| 1 | S.5153100-03 | $2.876539 \mathrm{D}+00$ | 2.8765390400 | 2.876539D+00 | $2.878200 \mathrm{D}-02$ | $4.853100 \mathrm{D}-03$ | $7.680000 \mathrm{D}-01$ | $3.0790630+00$ | 1.565516D-13 |
| 2 | $4.477260 \mathrm{D}-03$ | 1.571363D+00 | $1.5713630+00$ | 1.571363D+00 | $6.049101 \mathrm{D}-03$ | $2.637700 \mathrm{D}-03$ | $2.3200000-01$ | $2.914926 \mathrm{D}+00$ | 8.508711D-14 |
| 3 | $1.5168600-02$ | 7.127076D-01 | $7.127076 \mathrm{D}-01$ | $17.127076 \mathrm{D}-01$ | $1.951000 \mathrm{D}-02$ | $5.133200 \mathrm{D}-03$ | 0.0 2 | $2.884945 \mathrm{D}+00$ | $1.655871 \mathrm{D}-13$ |
| 4 | 3.371400D-02 | 9.429781D-01 | $9.4297810-01$ | $19.429781 \mathrm{D}-01$ | $3.371400 \mathrm{D}-02$ | 1.3238000-02 | 0.0 | $2.8825350+00$ | $4.270324 \mathrm{D}-13$ |


| INTO GROUP | FROM GROUP |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | $2.326200 \mathrm{D}-02$ |  |  |  |  |
| 3 | 1 | $4.645100 \mathrm{D}-06$ | 2 | $1.571800 \mathrm{D}-03$ |  |  |
| 4 | 1 | $4.996800 \mathrm{D}-08$ | 2 | $4.072400 \mathrm{D}-08$ | 3 | $4.341401 \mathrm{D}-03$ |



|  | ABSO | ORPTION | DIRECTIONAL | DIFFUSION CO | COEFFICIENTS | REKOVAL | FISSION | FISSION | NEUTRONS | POWER COHVER. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GROUP | CROSS | SECTION | D1 | D2 | D3 | CROSS SECTION | CROSS SECTION | SPECTRUM( CHI) | PER PISSION | FACTOR |
| 1 | 3.884 | 070D-03 | $2.2856100+00$ | $2.285610 \mathrm{D}+00$ | - 2.285610D+00 | $3.595900 \mathrm{D}-02$ | $2.768800 \mathrm{D}-03$ | $7.680000 \mathrm{D}-0$ ! | $2.7964100+00$ | $8.931614 \mathrm{D}-14$ |
| 2 | 3.107 | 1810D-03 | $1.171934 \mathrm{D}+00$ | 1.1719345+00 | - 1.171934D+00 | $5.885500 \mathrm{D}-03$ | $4.4347010-05$ | 2.320000D-01 | $2.440977 \mathrm{D}+00$ | 1.430549D-15 |
| 3 | 1.014 | $4390 \mathrm{D}-02$ | $6.324751 \mathrm{D}-01$ | 6.324751D-01 | $16.324751 \mathrm{D}-01$ | $1.604100 \mathrm{D}-02$ | $1.227400 \mathrm{D}-04$ | 0.0 | $2.4231710+00$ | 3.959356D-15 |
| 4 | 1.334 | 902D-02 | 8.183573D-01 | 8.183573D-01 | $18.183573 \mathrm{D}-01$ | $1.334902 \mathrm{D}-02$ | $3.495200 \mathrm{D}-04$ | 0.0 | 2.4229510400 | $1.127484 \mathrm{D}-14$ |
| SCATTERING CROSS SECTION (TOTAL) |  |  |  |  |  |  |  |  |  |  |
| INTO GROUP PROH GROUP |  |  |  |  |  |  |  |  |  |  |
| $2113.2071000-02$ |  |  |  |  |  |  |  |  |  |  |
| 3 1 3.8880000-06 |  |  |  | $22.7776000-03$ |  |  |  |  |  |  |
|  | 4 | 14 | 503900D-08 | $29.001798 \mathrm{D}-08$ 3 5.897101D-03 |  |  |  |  |  |  |

## G. 1-14




| GROUP | ABSORPTION | directional | diffusion C | CoEfficients | removal | OOWER CONVERSION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cross section | DI | D2 | D3 | cross section |  |
|  |  |  |  |  |  |  |
| 1 | 1.866960D-03 | $2.503066 \mathrm{D}+00$ | $2.503066 \mathrm{D}+00$ | $2.503066 \mathrm{D}+00$ | $2.4814000-02$ | 0.0 |
| 2 | $1.264330 \mathrm{D}-02$ | $1.314665 \mathrm{D}+00$ | $1.314665 \mathrm{D}+00$ | $1.314665 \mathrm{D}+00$ | $1.641200 \mathrm{D}-02$ | 0.0 |
| 3 | $6.344050 \mathrm{D}-02$ | 5.7427700-01 | $5.742770 \mathrm{D}-01$ | $5.742770 \mathrm{D}-01$ | $7.212200 \mathrm{D}-02$ | 0.0 |
| 4 | 1.6868000-01 | 6.153695D-01 | 6.153695D-01 | $6.153695 \mathrm{D}-01$ | $1.686800 \mathrm{D}-01$ | 0.0 |

scattering cross section (total)
INTO GROUP FROM GROUP

| GROUP | FROM | GROUP |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | $2.294600 \mathrm{D}-02$ |  |  |  |  |  |
| 3 | 1 | $1.032000 \mathrm{D}-06$ | 2 | $3.768700 \mathrm{D}-03$ |  |  |  |
| 4 | 1 | $1.048900 \mathrm{D}-08$ | 2 | $7.036100 \mathrm{D}-12$ | 3 | $8.681498 \mathrm{D}-03$ |  |

## G.1-15



outer iterations completed at iteration 15, iterations have converged

```
K-EPPECTIVE = 1.12728040833
```

to restart this calculation, input following values
DOMINANCE RATIO (SIGBAR) $=6.577679231397 \mathrm{D}-01$

maximem power density $2.68379 \mathrm{D}-04$ OCCurs at mesh cell. $(\mathrm{I}, \mathrm{J}, \mathrm{K})=(1,1,1)$
peak poner density is calculated ay sampling the average flux values on the cell surfaces and within the cell.


DIF3D 4.0 $7 / 83 \quad$ **** SAMPLE PROBLEM 1 **** 2D SNR BENCHMARK - RODS IN - PDO6 $\quad 1 / 05 / 84 \quad 2222.300$ PAGE 31
REGION AND AREA BALANCE INTEGRALS for REAL K-EFF PROBLEM WITH ENERGY RANGE (EV) -(8.000d+05,1.050D+07) FOR GROUP 1

| REGION |  | ZONE | ZONE | CAPTURE | FISSION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME | NO. | NAME | RATE | Rate |
| 1 | IC | 1 | M1 | $3.96700 \mathrm{D}+08$ | $2.24737 \mathrm{D}+09$ |
| 2 | OC | 2 | M2 | $2.18171 \mathrm{D}+08$ | $1.59890 \mathrm{D}+09$ |
| 3 | RB | 3 | M3 | $9.42088 \mathrm{D}+07$ | $2.33885 \mathrm{D}+08$ |
| 4 | CR | 5 | M5 | $9.67696 \mathrm{D}+07$ | 0.0 |
| 5 | CF | 6 | M6 | $9.23891 \mathrm{D}+06$ | 0.0 |
|  | totals |  |  | 8.15089D+08 | $4.08015 \mathrm{D}+09$ |
| Area | AREA |  |  | CAPTURE | FISSION |
| NO. | NAME |  |  | RATE | RATE |
| 1 | TCORE |  |  | 6.148710 +08 | $3.84627 \mathrm{D}+09$ |
| 2 | TROD |  |  | $1.06009 \mathrm{D}+08$ | 0.0 |
| 3 | TOTAL |  |  | 8.15089D+08 | $4.080150+09$ |


| D $4.0 \quad 7 / 83$ |  |  |  | **** SAMPLE PROBLEM 1 **** |  | 2D Snr benchmark - rods in - foot |  |  |  | 1/05/84 2222 | 2.300 Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REGION | AND A | Area ba | balance | Integrals for | REAL K-EFF P | Problem WITH EN | energy | rgy range (ev) | ) $\quad=\left(1.000 D^{+}\right.$ | 04,8.0000+05) | FOR GROUP |
| REGION |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | zone | $\begin{gathered} \text { NET } \\ \text { LEAKAGE } \end{gathered}$ | $+\underset{\text { RATE(1) }}{\text { ABSORPTION }}+$ | $+\quad \begin{gathered} \text { SCATTER } \\ \operatorname{OUT}(2) \end{gathered}$ | - | $\begin{aligned} & \text { SCATTER } \\ & \text { IN } \end{aligned}$ | $\begin{gathered} \text { FISSION - } \\ \text { PRODUCTION(3) } \end{gathered}$ | External SOURCE | balance |
| No. | NAME |  | NAME |  |  |  |  |  |  |  |  |
| 1 | IC |  | M1 | $3.74742 \mathrm{D}+09$ | $1.05298 \mathrm{D}+10$ | $4.648160+09$ |  | $1.35550 \mathrm{D}+10$ | $5.37046 \mathrm{D}+09$ | 0.0 | -4.343700402 |
| 2 | OC |  | M2 | $2.62129 \mathrm{D}+09$ | $6.58375 \mathrm{D}+09$ | $2.31137 \mathrm{D}+09$ |  | $7.66388 \mathrm{D}+09$ | $3.85253 \mathrm{D}+09$ | 0.0 | $4.53192 \mathrm{D}+02$ |
| 3 R | RB |  | M3 | -7.60597D+08 | $1.91529 \mathrm{D}+09$ | $1.71184 \mathrm{D}+09$ |  | $2.70909 \mathrm{D}+09$ | $1.57433 \mathrm{D}+08$ | 0.0 | $2.75525 \mathrm{D}+01$ |
|  | CR |  | 5 M5 | -2.71777D+09 | $3.00993 \mathrm{D}+09$ | $8.97197 \mathrm{D}+08$ |  | $1.18935 \mathrm{D}+09$ | 0.0 | 0.0 | -3.16520D+00 |
| 5 | CF |  | M6 | $2.12795 \mathrm{D}+08$ | $3.94190 \mathrm{D}+07$ | $3.00570 \mathrm{D}+08$ |  | $5.52784 \mathrm{D}+08$ | $0.0$ | 0.0 | -1.69340D+01 |
| totals |  |  |  | $3.10313 \mathrm{D}+09$ | $2.20782 \mathrm{D}+10$ | $9.86914 \mathrm{D}+09$ |  | $2.56701 D+10$ | $9.38042 \mathrm{D}+09$ | 0.0 | $2.62747 \mathrm{D}+01$ |
| $\begin{gathered} \text { AREA } \\ \text { NO. } \end{gathered}$ | Area |  |  | NET + | + ABSORPTION + | + Scatter | - | SCATTER - | PISSION | external - | balance |
|  | NAME |  |  | Leakage | rate(1) | OUT(2) |  | IN | PRODUCTION(3) | SOURCE |  |
| 1 | TCORE |  |  | $6.36871 \mathrm{D}+09$ | $1.71136 \mathrm{D}+10$ | $6.95954 \mathrm{D}+09$ |  | $2.12189 \mathrm{D}+10$ | $9.22298 \mathrm{D}+09$ | 0.0 | $1.88213 \mathrm{D}+01$ |
| 2 | TROD |  |  | -2.50498D+09 | $3.04935 \mathrm{D}+09$ | $1.19777 \mathrm{D}+09$ |  | $1.74214 \mathrm{D}+09$ | 0.0 | 0.0 | -2.00992D+01 |
| 3 | total |  |  | 3.10313D+09 | $2.20782 \mathrm{D}+10$ | $9.86914 \mathrm{D}+09$ |  | $2.56701 \mathrm{D}+10$ | 9.38042D+09 | 0.0 | $2.62747 \mathrm{D}+01$ |
| (1) ABSORPTION - CAPTURE + PISSION |  |  |  |  |  |  |  |  |  |  |  |
| (2) SCATTER OUT - TOTAL OUTSCATTER - ( $\mathrm{N}, 2 \mathrm{~N}$ ) SOURCE |  |  |  |  |  |  |  |  |  |  |  |
| (3) 8 | FISSION PRODUCTION |  |  | - PISSION SOURC | CE / K-EFF |  |  |  |  |  |  |
| REGION |  | zONE | ZONE | leakage | leakage | leakage |  | Buckling (4) | BUCKLING(4) |  | BUCKLING(4) |
| NO. | name | NO. | name | planar | Y |  |  | total | PLANAR | Y | $\mathbf{z}$ |
| 1 | IC |  | MI | $3.74742 \mathrm{D} \div 09$ | $8.49477 \mathrm{D}+08$ | 0.0 |  | 8.29053D-04 | 8.29053D-04 | 1.87932D-04 | 0.0 |
|  | OC |  | M2 | $2.62129 \mathrm{D}+09$ | $5.90552 \mathrm{D}+08$ | 0.0 |  | $1.13443 \mathrm{D}-03$ | 1.13443D-03 | $2.555760-04$ | 0.0 |
|  | RB |  | M3 | -7.60597D+08 | $2.795710+07$ | 0.0 |  | -1.05311D-03 | -1.053110-03 | $3.87088 \mathrm{D}-05$ | 0.0 |
| 4 | CR |  | $5 \mathrm{M5}$ | -2.71777D+09 | -8.74492D+08 | 0.0 |  | -8.68365D-03 | -8.68365D-03 | -2.79412D-03 | 0.0 |
| 5 |  |  | M6 | $2.12795 \mathrm{D}+08$ | $8.81135 \mathrm{D}+07$ | 0.0 |  | $3.14020 \mathrm{D}=04$ | 3.14020D-04 | $1.30028 \mathrm{D}-04$ | 0.0 |
|  | totals |  |  | $3.10313 \mathrm{D}+09$ | 6.81608 D 408 | 0.0 |  | 3.632090-04 | $3.63209 \mathrm{D}-04$ | 7.97793D-05 | 0.0 |
| area | Area |  |  | leakage | leakage | leakage |  | buckling (4) | BuCKLING(4) | BuCKLING(4) | Buckiling (4) |
| No. | NAME |  |  | plamar | Y | D ( $\mathrm{g}^{\text {\# }}$ 2) ${ }^{\text {) }}$ |  | TOTAL | Planar | Y | 2 |
|  | TCORE |  |  | $6.368710+09$ | $1.44003 \mathrm{D}+09$ | 0.0 |  | $9.32353 \mathrm{D}-04$ | $9.32353 \mathrm{D}-04$ | $2.10814 \mathrm{D}-04$ | 0.0 |
| 2 | TROD |  |  | -2.50498D+09 | -7.86378D+08 | 0.0 |  | -2.52868D-03 | -2.52868D-03 | -7.93820D-04 | 0.0 |
| 3 | TOTAL |  |  | $3.10313 \mathrm{D}+09$ | $6.81608 \mathrm{D}+08$ | 0.0 |  | 3.632090-04 | 3,63209D-04 | $7.97793 \mathrm{D}-05$ | 0.0 |



DIF3D $4.07 / 83$ **** SAMPLE PROBLEM 1 **** 2D SNR BENCHMARK - RODS IN - FDO6 $1 / 05 / 84$ 2222.300 PAGE 33 REGION AND AREA BALANCE INTEGRALS FOR REAL K-EFF PROBLEM WITH ENERGY RANGE (EV) e(1.000D+04,8.000D+05) POR GROUP 2

| REGION |  | ZONE | ZONE | CAPTURE | FISSION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME | No. | NAME | RATE | RATE |
| 1 | IC | 1 | M1 | $5.268030+09$ | $5.26182 \mathrm{D}+09$ |
| 2 | OC | 2 | M2 | $2.70505 \mathrm{D}+09$ | $3.87870 \mathrm{D}+09$ |
| 3 | RB |  | M3 | $1.88795 \mathrm{D}+09$ | $2.73302 \mathrm{D}+07$ |
| 4 | CR | 5 | M5 | $3.00993 \mathrm{D}+09$ | 0.0 |
| 5 | CF | 6 | M6 | $3.94190 \mathrm{D}+07$ | 0.0 |
|  | totals |  |  | $1.29104 \mathrm{D}+10$ | $9.16785 \mathrm{D}+09$ |
| AREA | Area |  |  | CAPTURE | FISSION |
| NO. | NAME |  |  | RATE | RATE |
| 1 | TCORE |  |  | $7.97308 \mathrm{D}+09$ | 9.14052D +09 |
| 2 | TROD |  |  | $3.04935 \mathrm{D}+09$ | 0.0 |
| 3 | total |  |  | $1.29104 \mathrm{D}+10$ | $9.16785 \mathrm{D}+09$ |




region and area balance integrals for real k-Eff problem with energy rance (ev) =(1.000d+03, $1.000 \mathrm{D}+04$ ) for group 3

| REGION |  | ZONE | 20NE | CAPTURE | FISSION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | NamE | No. | JAME | Rate | Rate |
| 1 | IC | 1 | M1 | $2.42017 \mathrm{D}+09$ | 9.46062D+08 |
| 2 | OC | 2 | M2 | $1.22352 \mathrm{D}+09$ | 6.25843D+08 |
| 3 | RB | 3 | M3 | 8.42730D+08 | $1.03218 \mathrm{D}+07$ |
| 4 | CR | 5 | M5 | I. $00188 \mathrm{D}+09$ | 0.0 |
| 5 | CF | 6 | M6 | $2.88988 \mathrm{D}+07$ | 0.0 |
|  | totals |  |  | $5.51720 \mathrm{D}+09$ | 1.58223D+09 |
| AREA | area |  |  | capture | FISSION |
| NO. | NAME |  |  | RATE | Rate |
| 1 | TCORE |  |  | $3.64369 \mathrm{D}+09$ | 1.571900+09 |
| 2 | TROD |  |  | $1.030780+09$ | 0.0 |
| 3 | total |  |  | $5.51720 \mathrm{D}+09$ | 1.58223D+09 |


region and area balance integrals for real K-eff problem with energy range (ev) - (0.0 , 1.000d+03) for group 4



(1) ABSORPTION - CAPTURE + FISSION
(2) SCATTER OUT = TOTAL OUTSCATTER - ( $\mathrm{N}, 2 \mathrm{~N}$ ) SOURCE $\quad$ in, 2 N ) SOURCE - SCATTER IN - SCATTER OUT (3) FISSION PRODUCTION = FISSION SOURCE / K-EFF

| REGION |  | ZONE | ZONE | Leakage | leakage | leakage | BUCKLING(4) | BUCKLING(4) | BUCKLING(4) | buCxLing (4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME | NO. | name | PLANAR | $Y$ | $\mathrm{D}^{\text {( }}$ ( $\mathrm{B}^{* * 2}$ ) | TOTAL | Planar | Y | 2 |
| 1 | 1 C | 1 | M1 | $5.38937 \mathrm{D}+09$ | 1.248150+09 | 0.0 | 8.41426D-04 | 8.41426D-04 | 1.94869D-04 | 0.0 |
| 2 | OC | 2 | M2 | $5.75074 \mathrm{D}+09$ | $1.37453 \mathrm{D}+09$ | 0.0 | $1.71042 \mathrm{D}-03$ | 1.71042D-03 | 4.08821D-04 | 0.0 |
| 3 | RB | 3 | M3 | -2.72048D+09 | -3.18132D+08 | 0.0 | -2.75617D-03 | -2.75617D-03 | -3.22305D-04 | 0.0 |
| 4 | CR | 5 | M5 | -4.33264D+09 | $-1.42650 \mathrm{D}+09$ | 0.0 | -9.57270D-03 | -9.57270D-03 | -3.15176D-03 | 0.0 |
| 5 | CP | 6 | M6 | -8.16137D+07 | $2.572300+05$ | 0.0 | -8.97364D-05 | -8.97364D-05 |  |  |
| 2.82 | $31 \mathrm{D-07}$ | 0.0 |  |  |  |  |  |  |  |  |
|  | totals |  |  | $4.00538 \mathrm{D}+09$ | $8.78309 \mathrm{D}+08$ | 0.0 | 3.30576D-04 | 3.30576D-04 | 7.24895D-05 | 0.0 |
| area | area |  |  | leakage | leakage | leakage | BUCKLING(4) | BUCKLING(4) | BUCKLING(4) | BUCKLING(4) |
| No. | NAME |  |  | Planar | Y |  | TOTAL | Planar | $Y$ | 2 |
| 1 | TCORE |  |  | 1. $114010+10$ | $2.62268 \mathrm{D}+09$ | 0.0 | $1.14056 \mathrm{D}-03$ | $1.140560-03$ | $2.68518 \mathrm{D}-04$ | 0.0 |
| 2 | TROD |  |  | -4.41425D+09 | -1.42624D+09 | 0.0 | -3.24080D-03 | -3.24080D-03 | -1.047100-03 | 0.0 |
| 3 | total |  |  | $4.00538 \mathrm{D}+09$ | $8.78309 \mathrm{D}+08$ | 0.0 | £.30576D-04 | $3.30576 \mathrm{D}-04$ | $7.24895 \mathrm{D}-05$ | 0.0 |

[^8]

## G.1-22



| REGION |  | $\begin{gathered} \text { 2ONE } \\ \text { NO. } \end{gathered}$ | $\begin{aligned} & \text { ZONE } \\ & \text { NAME } \end{aligned}$ | vOLUME (CC) | total plux <br> (NEUTRON-CM/SEC) | peak flux (1) (NEUTRON/CA2-SEC) | total fast flux <br> (nEUTRON-CM/SEC) | PEAK fast flux (1) <br> (NEUTRON/CH2-SEC) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | NAME |  |  |  |  |  |  |  |
| 1 | IC | 1 | M1 | $1.43043 \mathrm{D}+03$ | $3.75825 \mathrm{D}+12$ | $3.52624 \mathrm{D}+09$ | $1.93993 \mathrm{D}+12$ | $1.82299 \mathrm{D}+09$ |
| 2 | OC | 2 | M2 | $1.52096 \mathrm{D}+03$ | $1.93981 \mathrm{~d}+12$ | $2.14926 \mathrm{D}+09$ | $1.02726 \mathrm{D}+12$ | $1.12598 \mathrm{D}+09$ |
| 3 | RB |  | M3 | $1.95552 \mathrm{D}+03$ | $8.075200+11$ | 1.20060D+09 | $3.76921 \mathrm{D}+11$ | $6.14409 \mathrm{D}+08$ |
| 4 | CR | 5 | M5 | $2.17280 \mathrm{D}+02$ | $3.07019 \mathrm{D}+11$ | $1.72130 \mathrm{D}+09$ | $1.64804 \mathrm{D}+11$ | $9.09090 \mathrm{D}+08$ |
| 5 | CF | 6 | M6 | $1.086400+02$ | $3.06595 \mathrm{D}+11$ | $2.96550 \mathrm{D}+09$ | $1.53529 \mathrm{D}+11$ | $1.49456 \mathrm{D}+09$ |
|  | totals |  |  | $5.23283 \mathrm{D}+03$ | $7.11919 \mathrm{D}+12$ | $3.52624 \mathrm{D}+09$ | $3.66244 \mathrm{D}+12$ | $1.82299 \mathrm{D}+09$ |
| aren | area |  |  | VOLUME | total flux | peak flidx (1) | total fast flux | Peak fast flux (1) |
| No. | NAME |  |  | (CC) | (NEUTRON-CM/SEC) | (NEUTRON/CM2-SEC) | ( NEUTRON-CM/SEC) | (NEUTRON/CM2-SEC) |
| 1 | TCORE |  |  | $2.95139 \mathrm{D}+03$ | $5.69805 \mathrm{D}+12$ | $3.52624 \mathrm{D}+09$ | $2.96719 \mathrm{D}+12$ | $1.82299 \mathrm{D}+09$ |
| 2 | TROD |  |  | $3.25920 \mathrm{D}+02$ | $6.13613 \mathrm{D}+11$ | $2.96550 \mathrm{D}+09$ | $3.18333 \mathrm{D}+11$ | $1.49456 \mathrm{D}+09$ |
| 3 | total |  |  | $5.23283 \mathrm{D}+03$ | 7.11919D+12 | $3.52624 D+09$ | $3.66244 \mathrm{D}+12$ | $1.02299 \mathrm{D}+09$ |

(1) peak flux calculations are computed by sampling average fluxes on the surface and within each mesh cell.

| region |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | ZONE <br> NAME | $\begin{gathered} \text { GROUP } \\ 1 \end{gathered}$ | $\begin{gathered} \text { GROUP } \\ 2 \end{gathered}$ | $\begin{gathered} \text { GROUP } \\ 3 \end{gathered}$ | GROUP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | name |  |  |  |  |  |  |
| 1 | IC | 1 | M1 | $5.744360+11$ | 2.877S1D+12 | $2.60379 \mathrm{D}+11$ | $4.59194 \mathrm{D}+10$ |
| 2 | OC | 2 | M2 | $3.29459 \mathrm{D}+11$ | $1.47049 \mathrm{D}+12$ | $1.21921 \mathrm{D}+11$ | 1.79392D+10 |
| 3 | RB | , | M3 | 8.44717D+10 | $6.16281 D+11$ | $8.40951 \mathrm{D}+10$ | $2.26716 \mathrm{D}+10$ |
| 4 | CR | 5 | MS | $5.183270+10$ | $2.38065 \mathrm{D}+11$ | $1.57924 \mathrm{D}+10$ | 1.32833D+09 |
| 5 | CF | 6 | M6 | $4.27124 \mathrm{D}+10$ | $2.33525 \mathrm{D}+11$ | $2.51995 \mathrm{D}+10$ | $5.15786 \mathrm{D}+09$ |
|  | TOTALS |  |  | $1.08291 \mathrm{D}+12$ | $5.43587 \mathrm{D}+12$ | $5.07387 \mathrm{D}+11$ | $9.30165 \mathrm{D}+10$ |
| area | area |  |  | Group | GROUP | GROUP | GROUP |
| No. | NAME |  |  | 1 | 2 | ) | 4 |
| 1 | TCORE |  |  | $9.03896 \mathrm{D}+11$ | $4.348000 \mathrm{D}+12$ | $3.82300 \mathrm{D}+11$ | $6.385860+10$ |
| 2 | TROD |  |  | $9.45451 \mathrm{D}+10$ | $4.715900+11$ | $4.09919 \mathrm{~d}+10$ | $6.48619 \mathrm{D}+09$ |
| 3 | total |  |  | $1.08291 \mathrm{D}+12$ | $5.43587 \mathrm{D}+12$ | $5.07387 \mathrm{D}+11$ | $9.30165 \mathrm{D}+10$ |

**** SAMPLE PROBLEM 1 **** 2D SNR BENCHMARK - RODS IN - PDO6
real zone flux averages for k-eff problem with energy range (ev)

1/05/84 2222.300 PAGE 42 ,1.050D+07)

| ZONE | ZONE | VOLUME | avg. TOTAL PLUX | GROUP | GROUP | GROUP | GROUP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME | (CC) | (NEUTRON/CA2-SEC) | 1 | 2 | 3 | 4 |
| 1 | M1 | 1.43043D+03 | $2.62736 \mathrm{D}+09$ | $4.01584 \mathrm{D}+08$ | $2.01164 \mathrm{D}+09$ | 1.82029D+08 | 3.21019D+07 |
| 2 | M2 | 1.52096D+03 | $1.27538 \mathrm{p}+09$ | $2.166130+08$ | $9.66815 \mathrm{D}+08$ | 8.01603D+07 | $1.17947 \mathrm{D}+07$ |
| 3 | M3 | $1.95552 \mathrm{D}+03$ | 4.12944D+08 | $4.31965 \mathrm{D}+07$ | $3.15149 \mathrm{D}+08$ | 4.30039D+07 | $1.15937 D+07$ |
| 4 | M4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5 | M5 | $2.17280 \mathrm{D}+02$ | $1.413010+09$ | $2.38553 \mathrm{D}+08$ | 1.09566D+09 | $7.26822 \mathrm{D}+07$ | $6.113440+06$ |
| 6 | M6 | $1.08640 \mathrm{D}+02$ | $2.82211 \mathrm{D}+09$ | $3.93155 \mathrm{D}+08$ | $2.14953 \mathrm{D}+09$ | $2.31954 \mathrm{D}+08$ | 4.74766D+07 |
|  | TOTALS | $5.23283 \mathrm{D}+03$ | 1.36049D+09 | $2.06946 \mathrm{D}+08$ | $1.03880 \mathrm{D}+09$ | $9.69622 \mathrm{r}+07$ | 1.777561+07 |

## G.1-23

# *** the following binary files have been hritten *** 

file name version no. logical unit

| RTFLUX | 1 | 30 |
| :--- | :--- | :--- |
| DIF3D | 1 | 18 |

computing time sumpary
binary fille infut processing
initialization and input editting
steady state real flux calculation
edit real calculation output
steady state adjoint flux calculation
edit adjoint calculation output
hodal mathematical-adjoint calculation
total for this step
total elapsed computing time (sec)

CENTRAL PROCESSOR (SEC)

| 0.10 |  |  |
| :--- | :--- | :--- |
| 0.20 | 0.0 |  |
| 1.55 | 0.0 |  |
| 0.77 | 0.0 |  |
| 0.0 | 0.0 |  |
| 0.0 | 0.0 |  |
| 0.0 | 0.0 |  |
| 2.65 | 0.0 |  |
| 4.89 |  | 0.0 |
|  |  | 0.0 |

0.20
0.0
0.0
0.0
0.0
0.0
0.0
0.0 =
4.89

## G.2-1

## G. 2 Sample Problem 2 (selected pages)



external boundary condition constants c (d * del phi - - c * phi), by group
last value shohn is used por remaining groups


INTERNAL GOUNDARY CONDITION CONSTANTS $C$ ( $D$ * DEL PHI = - $C$ * PHI), BY GROUP last value shoun is used por remaining groups
10.0

| AREA | REGIONS COMPRISING AREAS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Region | REGION | REGION | REGION | REGION | REGION | REGION |
| NO. NARE | NO. NAME | No. NAME | NO. NAME | NO. NAME | NO. NAME | NO. NAME | NO. NAME |
| 1 TCORE | 1 IC | 2 OC |  |  |  |  |  |
| 2 TROD | 4 CR | 5 CF |  |  |  |  |  |
| 3 total | 1 IC | 2 OC | 3 RB | 4 CR | 5 CF |  |  |

## G. 2-2


boundary condition 2 is applied to mesh cell surfaces adjacent to pxcluded background cells.

EXTRAPOLATED BOUNDARY CONDITION CONSTANTS C (DEL PHI/PHI - C/D , last value used for remaining groups

| GROUP | HEX$=0.0$ <br> 1 <br> 2 |
| :---: | ---: |
| 3 | $4.692000 \mathrm{D}-01$ |
| 4 | $4.692000 \mathrm{D}-01$ |
| 4 | $4.692000 \mathrm{D}-01$ |
|  |  |

HEX | a |
| :---: |
| $4.999999 \mathrm{D}-01$ |
| $4.999999 \mathrm{D}-01$ |
| $4.999999 \mathrm{D}-01$ |
| $4.999999 \mathrm{D}-01$ |

$=0.0$
$4.692000 \mathrm{D}-01$
$4.692000 \mathrm{D}-01$
$4.692000 \mathrm{D}-01$
$4.692000 \mathrm{D}-01$

- 0.0
4.999999D-01 $4.999999 \mathrm{D}-01$ $4.999999 \mathrm{D}-01$
4.999999D-01
internal black boundary condition constant c for all groups (DEL PHI/PHI - C/D
0.0

DIF3D 4.0 7/B3 **** SAMPLE PROBLEM 2 **** 2D SNR BENCHMARK - RODS IN - NODAL $\quad 1 / 05 / 842222.500$ PAGE 53 buckling specification for all zone

BUCKLING = 0.0

REGION NUMBER AND ASSIGNMENT TO ZONE

| REGION |  | $\begin{aligned} & \text { ZONE } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { ZONE } \\ & \text { NARE } \end{aligned}$ | REGION |  | ZONE NO. | ZONE NAME | REGION |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | $\begin{aligned} & \text { ZONE } \\ & \text { NAME } \end{aligned}$ | REGION |  | $\begin{aligned} & \text { ZONE } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { ZONE } \\ & \text { NAME } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME |  |  | NO. | NAME |  |  | NO. | NAME |  |  | NO. | NAME |  |  |
| 1 | IC | 1 | 11 | 2 | OC | 2 | M2 | 3 | RB | 3 | M3 | 4 | CR | 5 | M5 |

## G.2-3

*** DIF3D (NODAL HEXAGONAL GEOMETRY OPTION) ***
*** NODAL PARAMETERS ***
4 IAPRX ORDER OF NODAL APPROXIMATION IN HEX-PLANE
IAPRXZ ORDER OF NODAL APPROXIMATION IN Z-DIRECTION
NCMI
ISEXTR
NZSWP

## NUMBER OF COARSE-MESH REBALANCE ITERATIONS PER OUTER ITERATION (-1 = NO COARSE-MESH REBALANCE)

 $0 / 1$ YES/NO ASYMPTOTIC SOURCE EXTRAPOLATION APPLIED TO OUTER ITERATIONS NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PER GROUP PER OU゙: `R ITERATION*** PROBLEM DESCRIPTION ***

| NO. OF RINGS OF HEXAGONS | $=$ | 11 |
| :--- | ---: | ---: |
| NO. OF 6O DEGREE SECTORS | $=$ | 1 |
| NO. OF HEXAGONS IN PLANE | $=$ | 56 |
| NO. OF ACTIVE HEXAGONS IN PLANE | $=$ | 49 |
| NO. OF AXIAL PLANES | - | 1 |
| NO. OF HEXAGONAL-Z NODES | $=$ | 56 |
| NO. OF UNIQUE NODE TYPES | $\pm$ | 5 |

DIF3D $4.07 / 83$ **** SAMPLE PROBLEM 2 **** 2D SNR BENCHMARK - RODS IN - NODAL $1 / 05 / 84222.600$ PAGE 55

| *** | DIF3D (NODAL |
| :---: | :---: | :---: | :---: |
| OPTION) | CYLINDER ALLOCATION | ***

## G.2-4






## G.3-1

## G. 3 Sample Problem 3 (selected pages)




## G.3-2

| DIF3D 4.0 | 7/83 |  |  | **** SAMPLE PROBLEM 3 **** |  | 3d SNR benchmark - rods in - nodal |  |  |  | 1/05/84 2223.600 PAGE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | REGION AND |  | nd area | POWER INTEGRALSvolume | FOR K-EFF PRO | problem with e | energy | gy range (ev) | - 0.0 | ,1.050D+07) |  |
| region |  | $\begin{aligned} & \text { ZONE } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { ZONE } \\ & \text { NAME } \end{aligned}$ |  | Integration (1) | 1) POWER |  | OWER DENSITY | PEAK DENSITY | peak to avg. | POLER |
| No. | NAME |  |  | (CC) | WEIGHT FACTOR |  |  | (Watts/CC) | (WATTS/CC)(2) | POWER DENSITY | FRACTION |
| 1 | AB | 4 | M4 | 2.36111D+05 | $1.00000 \mathrm{D}+00$ | $6.84613 \mathrm{D}-03$ |  | $2.89954 \mathrm{D}-08$ | $1.75349 \mathrm{D}-07$ | $6.04747 \mathrm{D}+00$ | $1.36923 \mathrm{D}=02$ |
| 2 | IC | 1 | MI | $1.35891 \mathrm{D}+05$ | $1.00000 \mathrm{D}+00$ | $2.63252 \mathrm{D}-01$ |  | $1.93723 \mathrm{D}-06$ | $3.03072 \mathrm{D}-06$ | $1.56446 \mathrm{D}+00$ | $5.26504 \mathrm{D}-01$ |
| 3 | OC | 2 | M2 | 1.444910+05 | $1.000000+00$ | 2.18689D-01 |  | $1.51351 \mathrm{D}-06$ | $2.89593 \mathrm{D}-06$ | 1.91338 D 400 | $4.37379 \mathrm{D}-01$ |
| 4 | RB | 3 | M3 | $3.42216 \mathrm{D}+05$ | $1.00000 \mathrm{D}+00$ | $1.12126 \mathrm{D}-02$ |  | $3.27647 \mathrm{D}-08$ | $2.68292 \mathrm{D}-07$ | $8.18846 \mathrm{D}+00$ | 2.24252D-02 |
| 5 | CF | 6 | M6 | $3.36784 \mathrm{D}+04$ | $1.00000 \mathrm{D}+00$ | 0.0 |  | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  | 5 | MS | $2.33576 \mathrm{D}+04$ | $1.00000 \mathrm{D}+00$ | 0.0 |  | 0.0 | 0.0 | 0.0 | 0.0 |
|  | TOTALS |  |  | $9.15745 \mathrm{D}+05$ | 0.0 | $5.00000 \mathrm{D}-01$ |  | $5.46003 \mathrm{D}-07$ | $3.03072 \mathrm{D}-06$ | $5.55074 \mathrm{D}+00$ | $1.00000 \mathrm{D}+00$ |


| REGION |  | ZONE | 20NE | peak index | PEAK index | Peak index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME | No. | NAME, | ' X ' | 'Y' | 'z' |
| 1 | AB | 4 | M4 | $1.000000+00$ | $1.00000 \mathrm{D}+00$ | $2.00000 \mathrm{D}+00$ |
| 2 | 1 C | 1 | Ml | 1.00000D+00 | $1.00000 \mathrm{D}+00$ | $4.00000 \mathrm{D}+00$ |
| 3 | oc | 2 | M2 | $6.00000 \mathrm{D}+00$ | $1.00000 \mathrm{D}+00$ | $4.000000+00$ |
| 4 | RB | 3 | M3 | $8.00000 \mathrm{D}+00$ | $1.00000 \mathrm{D}+00$ | $4.00000 \mathrm{D}+00$ |
| 5 | CF | 6 | M6 | 0.0 | 0.0 | 0.0 |
| 6 | CR | 5 | HS | 0.0 | 0.0 | 0.0 |
|  | totals |  |  | $1.00000 \mathrm{D}+00$ | $1.00000 \mathrm{D}+00$ | $4.00000 \mathrm{D}+00$ |



## G. 4 Sample Problem 4 (selected pages)


*** DIP3D STORAGE ALLOCATION ***


LOCATION OF SCRATCH fILES dURINE STEADY STATE CALCULATION

 outer iteration sumbary real solution k-eff. problem

| OPTIMI2RD |  |  | NNER | iteration | Strategy |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GROUP No. | OPTIHUM OHECA | No. OF INNERS |  | GROUP MO. | OPTIMUH OHEGA | NO. OF INRERS | group NO. | OPTIMUM oriega | NO, 0 P INNERS | $\begin{aligned} & \text { GROUP } \\ & \text { No. } \end{aligned}$ | OPTIHUM oneca | No. Of IMNERS |
| 1 | 1.527240400 | 10 |  | 2 | 1,665030+00 | 14 | 3 | 1.399340400 | 7 | 4 | 1.478890400 | 8 |


| OUTER <br> IT. RO, | REL. POINT <br> ERROR | REL. SUK <br> ERROR | EIGENVALUE <br> CHANGE | POLY, <br> ORDER | DOM. RATIO <br> USED | DOM. RATIO <br> ESTIMATED | R-EFFRCTIVE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$2 \quad 6.733313 \mathrm{D}-01 \quad 2.024667 \mathrm{D}-01 \quad 2.106814 \mathrm{D}-02 \quad 0 \quad 0.0 \quad 9.913276 \mathrm{D}-01 \quad 9.82312139 \mathrm{D}-01$
$3 \quad 4.764514 \mathrm{D}-01 \quad 7.901021 \mathrm{D}-02 \quad 1.674584 \mathrm{D}-02 \quad 0 \quad 0.0 \quad 4.377587 \mathrm{D}-019.9905798 \mathrm{D}=01$
$4 \quad 1.888638 \mathrm{D}-01 \quad 4.227813 \mathrm{D}-02 \quad 7.057055 \mathrm{D}-03 \quad 1 \quad 4.377587 \mathrm{D}-01 \quad 4.377587 \mathrm{D}-011.00611504 \mathrm{D}+00$
$5 \quad 5.631559 \mathrm{D}-02 \quad 2.0390710-02 \quad 3.679833 \mathrm{D}-03 \quad 2 \quad 4.377587 \mathrm{D}-01 \quad 6.037430 \mathrm{D}-01 \quad 1.009794870+00$
$6 \quad 2.921216 \mathrm{D}-02 \quad 9.729249 \mathrm{D}-03 \quad 1.783028 \mathrm{D}-03 \quad 3 \quad 4.377587 \mathrm{D}-01 \quad 6.227869 \mathrm{D}-01 \mathrm{~J} .01157190 \mathrm{D}+00$
$7 \quad 1.7351530-02 \quad 6.993231 \mathrm{D}=03 \quad 7.183110 \mathrm{D}-04 \quad 1 \quad 6.227869 \mathrm{D}-01 \quad 6.2278690-01 \quad 1.012296210+00$
$8 \quad 7.8816100-03 \quad 2.3860630-03 \quad 3.0476750-04 \quad 2 \quad 6.227869 \mathrm{D}-01 \quad 6.411442 \mathrm{D}-011.01260098 \mathrm{D}+00$

| 9 | $2.209185 D-03$ | $7.1903800-04$ | $1.613694 D-04$ | 3 | $6.2278690-01$ | $6.430465 D-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1.012762350+00$ |  |  |  |  |  |  |

$2.072171 \mathrm{D}-03 \quad 2.77807 \mathrm{BD}-04 \quad 3.904903 \mathrm{D}-05 \quad 1 \quad 6.430465 \mathrm{D}-01 \quad 6.430465 \mathrm{D}-011.01280140 \mathrm{D}+00$

$1.513701 \mathrm{D}-04 \quad 5.4945870-05 \quad 2.4344340-06 \quad 3 \quad 6.430465 \mathrm{D}-01 \quad 6.8555750-01 \quad 1.012508500400$

| 2,044381D-04 2.275005D-05 -2.503817D-06 1 6.855575D-01 6.8555750-01 1.01280599D+00 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |


| 3.648853D-05 | 1.2829830-05 | -1.27011sb-06 | 2 | $6.8535750-01$ | $7.1341720-011.012804720+00$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

$1.588739 \mathrm{D}-05 \quad 4.165014 \mathrm{D}-06 \quad-3.767691 \mathrm{D}-07 \quad 3 \quad 6.8555750-01 \quad 6.992496 \mathrm{D}-01 \quad 1.012804340400$
$1.772728 \mathrm{D}-05 \quad 1.480040 \mathrm{D}-06 \quad-5.197528 \mathrm{D}-07 \quad 1 \quad 6.992496 \mathrm{D}-01 \quad 6.992496 \mathrm{D}-011.012803630+00$
3.512971D-06 6.225556D-07-1.714384D-07 $\quad 2 \quad 6.992496 \mathrm{D}-01 \quad 7.110809 \mathrm{D}=011.01280365 \mathrm{D}+00$ $1.5301630-062.493004 \mathrm{D}-07-4.614461 \mathrm{D}-00 \quad 3 \quad 6.99249 \mathrm{D}-01 \quad 6.9901360-011.01240360 \mathrm{D} 400$
outen itenations completed at iteration 1a, itgRatioms mave conveaced
R-EPFECTIVE = 1.01280360172

## G.4-2

DIF3D $4.0 \quad 1 / 84$
**** SAMPLE PROBLEM 4 **** 3D SNR BENCHPARK - RODS IN - PDO636
1/23/84 1610.200 PAGE 109
to restart this calculation, input following values


MAXIMUM POWER DENSITY 3.01935D-06 OCCURS AT MESH CELL ( $1, \mathrm{~J}, \mathrm{~K}$ ) $=(1,1,18$ (1,
peak poner density is calculated by sampling the average flux values on the cell surpaces and hithin the cell.

| DIF3D 4. | 1/84 |  | **** SAMPLE PROBLEM 4 *** |  |  | 3d Snr benchmark - rods in - foob 36 |  |  | 1/23/84 1613.800 | 0 page 110 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CION | and area | POLER INTEGRALS | $S$ POR K-EFF PRO | OBLEM WITH EN | energy range (Ev) | -(0.0 | ,1.050D+07) |  |
| RPGION |  | $\begin{array}{r} \text { ZONE } \\ \text { NO. } \end{array}$ | ZONE <br> NAME | volume (CC) | INTEGRATION(1) <br> WEIGHT FACTOR | $\begin{gathered} \text { POLWER } \\ \text { (WATTS) } \end{gathered}$ | POURR DENSITY <br> (WATTS/CC) | PEAK DENSITY <br> (WATTS/CC)(2) | PEAK TO AVG. POUER DENSITY | POWER FRACTION |
| No. | NAME |  |  |  |  |  |  |  |  |  |
| 1 | AB | 4 | M4 | $2.36111 \mathrm{D}+05$ | $1.00000 \mathrm{~d}+00$ | $6.79240 \mathrm{D}-03$ | 3 2,87678D-08 | 1.76254D-07 | 6.12676D+00 | $1.35848 \mathrm{D}-02$ |
| 2 | IC | 1 | M1 | $1.35891 \mathrm{D}+05$ | $1.00000 \mathrm{D}+00$ | 2.62993D-01 | $1.1 .93533 \mathrm{D}-06$ | $3.01935 \mathrm{D}-06$ | $1.56012 \mathrm{D}+00$ | $5.25986 \mathrm{D}-01$ |
| 3 | OC | 2 | M2 | $1.44491 \mathrm{D}+05$ | $1.00000 \mathrm{D}+00$ | 2.19122D-01 | 1 1.51651D-06 | 2.89991 D-06 | $1.912230+00$ | $4.38244 \mathrm{D}-01$ |
| 4 | RB | 3 | M3 | $3.42216 \mathrm{D}+05$ | $1.00000 \mathrm{D}+00$ | $1.10924 \mathrm{D}-02$ | $23.24135 \mathrm{D}-08$ | 2.64958D-07 | $8.17431 \mathrm{D}+00$ | $2.21849 \mathrm{D}-02$ |
| 5 | CF | 6 | M6 | $3.36784 \mathrm{D}+04$ | $1.00000 \mathrm{D}+00$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6 |  | 5 | MS | $2.33576 \mathrm{D}+04$ | $1.00000 \mathrm{D}+00$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | totals |  |  | 9.15745D+05 | 0.0 | $5.00000 \mathrm{D}-01$ | $15.460040-07$ | 3.01935D-06 | 5.52991 +00 | $1.00000 \mathrm{D}+00$ |


(2) the peak power density is calculated by sampling the average flux on the cell surfaces and within the cell.

| REGION |  | $\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$ | ZONENAME | PEAK ${ }^{\prime} \mathrm{X}$ ' | PEAK INDEX | PEAK ${ }^{\prime} \mathrm{Z}^{\prime}$ ' |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | NAME |  |  |  |  |  |
| 1 | AB | 4 | M4 | $1.00000 \mathrm{D}+00$ | 1.00000D+00 | $8.00000 \mathrm{D}+00$ |
| 2 | IC | 1 | M1 | $1.00000 \mathrm{D}+00$ | $1.000000+00$ | $1.80000 \mathrm{D}+01$ |
| 3 | OC | 2 | M2 | 1.00000D+01 | $5.00000 \mathrm{D}+00$ | $1.70000 \mathrm{D}+01$ |
| 4 | RB | 3 | M3 | $1.40000 \mathrm{D}+01$ | $7.00000 \mathrm{D}+00$ | $1.70000 \mathrm{D}+01$ |
| 5 | CF | 6 | M6 | 0.0 | 0.0 | 0.0 |
| 6 | CR | 5 | M5 | 0.0 | 0.0 | 0.0 |
|  | totals |  |  | $1.000000+00$ | $1.00000 \mathrm{D}+00$ | $1.80000 \mathrm{D}+01$ |

```
 G.5-1
G.5 Sample Problem (selected pages)
```



GNIP4C Generated Calcomp 780 Plot of 2D IAEA Benchmark Model

## G.5-2


locatlon of scratch files duhing steany state chaculation




## G.5-4



## G.6-1

## G. 6 Sample Problem 6 (selected pages)

GNIP4C $11 / 83$ **** BENCHMARX PROBLEM 6 **** IAEA 3D BENCHMARK $10 . \operatorname{CM}$ MESH $1 / 05 / 84 \quad 1628.000 \quad$ PAGE 44 REACTOR COMPOSITION MAP



location of scratch files during steady state calculation

| pILE CONTENTS | No. OP RECORDS | RECORD LENGTH | $\begin{aligned} & \text { FILE } \\ & \text { LENGTH } \end{aligned}$ | LOCATION | RECORDS <br> IN CORE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NEW PISSION SOURCE | I | 10982 | 10982 | CORE | 1 |
| OLD PISSION SRC. 1 | 1 | 10982 | 10982 | CORE | 1 |
| OLD PISSION SRC. 2 | I | 10982 | 10982 | CORE | I |
| TOTAL SOURCE | I | 10982 | 10982 | CORE | 1 |
| COMPOSITION MAP | 1 | 5491 | 5491 | CORE | 1 |
| fux iterate | 2 | 10982 | 21964 | CORE | 1 |
| CROSS SECTIONS | 2 | 60 | 120 | CORE | 1 |
| FINITEDIFF. COEFS. | 2 | 43928 | 87856 | CORE | 1 |




## G.6-3

DIF3D $4.0 \quad$ 7/83
由H由* BENCHMARK PROBLEM 6 *** IAEA 3D SENCHMARK 10. CM MESH
1/17/84 1044.900
PAGE 65
OUTER ITERATIONS COMPLETED AT ITERATION 48, ITERATIONS HAVE CONVERGED

```
K-EPPECTIVE = 1.02905621257
```

TI RESTART THIS CALCULATION, INPUT FOLLOWING VALUES

| DOMINANCE RATIO (SIGBAR) $=9.873501094068 \mathrm{D}-01$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OPTIMIZED | OVER | -relaxation | PACTORS |  |  |  |  |
| GROUP | OPTIMUM | GROUP | OPTIMUM |  | GROUP | OPTIMUN | GROUP | OPTIMIM | group | OPTIMUM |
| N0. | OMF.GA | NO. | OHEGA |  | NO. | OHEGA | NO. | OMEGA | NO. | OMEGA |
| 1 | . 165650400 | 2 | I. $08039 \mathrm{D}+$ |  |  |  |  |  |  |  |

MAXIMIN PONER DENSITY $4.29119 \mathrm{D}-07$ OCCURS AT MESH CELL (I,J,K) $=(4, \quad 3,16$ (
PEAK POWER DENSITY IS CALCULATED RY SAMPLING THE AVERAGE FLUV VALUES ON THE CELL SURFACES hND HITHIN THE CELL.

(3) derived from data in the axial column of mesh cells that intersects the reactor peak power density locailon

Internal:

| C. H. Adams | H. H. Hummel | D. Shaftman |
| :--- | :--- | :--- |
| C. L. Beck | R. N. Hwang | D. M. Smith |
| E. S. Beckjord | R. E. Kaiser | K. S. Smith |
| J. C. Beitel | H. Khalil | J. L. Sneigrove |
| S. K. Bhattacharyya | T. Kraft | C. G. Stenberg |
| H. Bigelow | R. D. Lawrence | W. J. Sturm |
| R. N. Blomquist | W. K. Lehto | S. F. Su |
| M. M. Bretscher | R. M. Le11 | B. J. Toppe1 |
| S. B. Brumbach | L. G. LeSage | A. Travelli |
| J. E. Cahalan | J. R. Liaw | R. B. Turski |
| S. G. Carpenter | M. J. Lineberry | A. J. Ulrich |
| B. R. Chandler | D. J. Malloy | R. Vilim |
| Y. I. Chang | J. E. Matos | D. C. Wade |
| P. J. Collins | H. F. McFarlane | D. P. Weber |
| R. J. Cornella | R. D. McKnight | W. L. Woedruff |
| D. C. Cutforth | D. Meneghetti | S. T. Yang |
| T. A. Daly | L. E. Meyer | B. S. Yarlagadda |
| J. R. Deen | F. Moszur | ANL Patent Dept. |
| K. L. Derstine (10) | A. Olson | ANL Contract File |
| D. R. Ferguson | Y. Orechwa | ANL Libraries (2) |
| K. E. Freese | E. M. Pennington | TIS Files (6) |
| E. K. Fujita | P. J. Persiani | AP Division File |
| P. J. Garner | P. A. Pizzica |  |
| J. M. Gasiflo | R. B. Pond |  |
| E. M. Gelbard | J. R. Ross |  |
| G. L. Grasseschi | R. R. Rudolph |  |
| G. M. Greenman | G. K. Rusch |  |
| H. Henryson | R. W. Sciaefer |  |
| R. Hosteny | J. E. Schofield |  |

## External:

DOE-TIC, for distribucion per UC-79d (117)
Manager, Chicago Operations Office, DOE
Director, Technology Management, DOE-CH
Director, DOE-BRP (2)
Applied Physics Division Review Comittee:
P. W. Dickson, Jr., Clinch River Breeder Reactor Project, Oak Ridge
W. E. Kastenberg, University of California
K. D. Lathrop, Los Alamos National Laboratory
N. J. McCormick, University of Washington
D. A. Meneley, Ontario Hydro
J. E. Meyer, Massachusetts Inst. Technology
A. E. Wilson, Idaho State University
H. Alter, Office of Breeder Technology, DOE

Advanced Reactor Library, Westinghouse Electric Co., Madison, Pa
M. Becker, Rensselaer Polytechnic Inst.
R. A. Bernett, Westinghouse Hanford Co.
F. W. Brinkley, Los Alamos National Laboratory
S. P. Congdon, General Electric Co.
C. Cowan, General Electric Co.
H. L. Dodds, Technology for Energy Corp.
R. Doncals, Westinghouse Electric Corp.
J. J. Dorning, University of Illinois
M. J. Driscoll, MIT
C. Durston, Combustion Engineering
R. Ehrlich, General Electric Co.
H. Farrar IV, Atomics International

Fast Breeder Dept. Library, General Electric Co.
Y. C. Feng, General Electric Co., San Juse
G. F. Flanagan, Oak Ridge National Laboratory
N. M. Greene, Oak Ridge National Laboratory
D. R. Harris, Rensselaer Polytechnic Inst.
A. Hartman, General Electric Co., Sunnyvale
P. B. Hemmig, Reactor Development and Demonstration, DOE
A. F. Henry, MIT
J. Kallfelz, Georgia Institute of Technology
R. Karam, Georgic: Institute of Technology
W. Y. Kato, Brookhaven National Laboratory
R. J. LaBauve, Los Alamos National Laboratory
J. Lewellen, Reactor Development and Demonstration, DOE
E. E. Lewis, Northwestern University
M. D. Libby, NUSCO
R. MacFarlane, Los Alamos National Laboratory
F. C. Maienschein, Oak Ridge National Laboratory
D. R. Marr, Los Alamos National Laboratory
D. R. Mathews, GA Technologies
D. R. McCoy, Los Alamos National Laboratory (3)
H. A. Morowitz, Tarzana, CA
D. Moses, Oak Ridge National Laboratory
J. Naser, Electric Power Research Inst.

National Energy Software Center, ANL (10)
R. J. Neuhold, Reactor Development and Demonstration, DOE
R. D. 0'Dell, Los Alamos National Laboratory
D. Okrent, University of California
K. Ott, Purdue University
O. Ozer, Electric Power Research Inst.
A. M. Perry, Oak Ridge National Laboratory
C. Porter, Westinghouse Electric Corp.
J. Prabulos, Combustion Engineering
R. Protsik, General Electric Co.
A. B. Reynolds, University of Virginia
W. A. Rhoades, Oak Ridge National Laboratory
P. Rose, Brookhaven National Laboratory
D. H. Roy, Babcock and Wilcox Co.
R. Schenter, Westinghouse Hanford Co.
P. Soran, Los Alamos National Laboratory
E. R. Specht, Atomics International
S. Stewart, General Electric, Co.
L. E. Strawbridge, Westinghouse Electric Corp.
R. J. Tuttle, Atomics Internationsl
D. R. Vondy, Oak Ridge National Laboratory
J. E. Vossahlik, GRP Consulting, Inc.
C. Weisbin, Oak Ridge National Laboratory
J. White, University of Lowell


[^0]:    *Homogenization formulas defining the macroscopic cross section quantities appearing in Eq. (2.1) and Eq. (2.2) are defined in Section 3.6. Note that DIP3D permits $x$-vectors, only; $x$-matrices are not permitted.

[^1]:    *NTHPT denotes the orientation of the ( $1,1,1$ ) triangle in the region of solution, see the GEODST file description in Appendix C.2.

[^2]:    *The user is expected to specify an initial configuration [ $M(0)$ ] and [ $B(0)$ ] that is reasonably close to the desired solution, and is expected to specify search parameter constraints that avoid non-physical onfigurations.

[^3]:    *The issue of whether to compute a prompt or a total fission spectrum depends on the ISOTXS file supplied by the user. HMG4C simply uses the fission spectrum data as they exist on ISOTXS.

[^4]:    ${ }^{\text {a See }}$ Table 3.2 for additional parameter definitions.
    ${ }^{\mathrm{b}}$ On the LBL system default system buffer sizes are overridden by the FBSIZE and GBSIZE control cards.
    $\mathrm{c}_{\text {MACHUPn }}$ is the estimated maximum storage avallable to the user for the ECM container ( $n=E$ ) or $F C M$ container ( $n=F$ ).

[^5]:    aFile usage ( $\mathrm{I}=$ Input, $0=0$ utput, $\mathrm{R}=$ Restart, $\mathrm{S}=$ Modified by SRCH4C)
    binary input files ultimately required by DIF3D.
    can be created from ISOTXS, NDXSRF and ZNATDN by HMG4C.
    $\mathrm{d}_{\text {Binary }}$ output files required by DIF3D (RTFLUX and/or ATFLUX).
    e Binary output files required by DIF3D nodal option (NHFLUX and/or NAFLUX).

[^6]:    a4 group $31 \times 16 \times 18$ sixth-core model of the original triangular-geometry SNR benchmark problem (see Section 5.3.1).
    $b_{m_{g}}\left(\varepsilon_{i n}\right)$ is the number of inner iterations in group $g$ required to achieve an error reduction factor of $\varepsilon_{\text {in }}$.

[^7]:    aFiles A.UDOIT and UDOIT (versions 1,2 and 3 ) are available in the SEEK table and intended for UDOIT module applications.

[^8]:    (4) BUCKLING - B**2 - LEAKAGE / (D*FLUX*VOLUME) $1 /$ CM $^{* *}$ 2

