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Abstract

Background: Differential networks have recently been introduced as a powerful way to study the dynamic rewiring

capabilities of an interactome in response to changing environmental conditions or stimuli. Currently, such differential

networks are generated and visualised using ad hoc methods, and are often limited to the analysis of only one

condition-specific response or one interaction type at a time.

Results: In this work, we present a generic, ontology-driven framework to infer, visualise and analyse an arbitrary set

of condition-specific responses against one reference network. To this end, we have implemented novel

ontology-based algorithms that can process highly heterogeneous networks, accounting for both physical

interactions and regulatory associations, symmetric and directed edges, edge weights and negation. We propose this

integrative framework as a standardised methodology that allows a unified view on differential networks and

promotes comparability between differential network studies. As an illustrative application, we demonstrate its

usefulness on a plant abiotic stress study and we experimentally confirmed a predicted regulator.

Availability: Diffany is freely available as open-source java library and Cytoscape plugin from http://bioinformatics.

psb.ugent.be/supplementary_data/solan/diffany/.
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Background
In the early days of Systems Biology, when molecular

interaction data was still relatively sparse, all interac-

tions known for a model organism were typically added

to a single large interaction network. Such an integrated

view would combine data from the proteome, transcrip-

tome and metabolome [1–4]. While such studies certainly

proved valuable to gain insights into the general char-

acteristics of molecular networks, they lack the level of

detail required to analyse specific response mechanisms

of the interactome to changing conditions or stimuli. Con-

sequently, differential networks have been introduced to

model the dynamic rewiring of the interactome under spe-

cific conditions [5, 6]. Differential networks only depict
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the set of interactions that changed after the introduc-

tion of a stimulus. Most current research in this field

has focused on a single interaction type such as expres-

sion data [7, 8], genetic interactions [9] or protein com-

plexes [10]. Further, the analysis is usually limited to

the comparison of only two networks [11–13]. At the

same time, several promising studies have constructed

multiple condition-specific networks such as time-course

data [14, 15], tissue-specific networks [16, 17] or stress-

induced co-expression networks [18]. These studies anal-

yse general network statistics such as connectivity scores

or employ machine-learning techniques to identify sig-

nificantly rewired genes. However, due to the black-box

behaviour of the methods and because these studies do

not actually generate and visualise differential networks,

the resulting prioritised gene lists cannot be easily inter-

preted by domain experts. By contrast, we believe it to be

crucial that researchers can visualise and further explore
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the rewiring events in their network context. Unfortu-

nately, there is currently no standardised methodology

that would allow to integrate heterogeneous condition-

specific networks on the one hand, and produce intercom-

parable differential networks on the other hand.

Here, we introduce a novel ontology-based framework

to standardise condition-specific input networks and to

allow an arbitrary number of such networks to be used

in the inference of a differential network. The network

algorithms are designed to cope with a high variety of het-

erogeneous input data, including physical interactions and

regulatory associations, symmetric and directed edges,

explicitly negated interactions and edge weights. Depend-

ing on the application, these weightsmay be used tomodel

the strength of an interaction, determined for instance by

the expression levels of the interacting genes, or they may

represent the probability that an interaction occurs when

dealing with computationally inferred networks such

as regulatory associations derived from co-expression

analysis.

To the best of our knowledge, our integrative frame-

work named ‘Diffany’ (Differential network analysis tool)

is unique in the emerging field of differential network

biology, and we hope its open-source release will facili-

tate and enhance differential network studies. As one such

example, we will present how the reanalysis, with Dif-

fany, of a previously published experimental dataset has

unveiled a novel candidate regulator for plant responses

to mannitol. Experimental validation confirmed that this

regulator, HY5, might indeed be involved in the mannitol-

responsive network in growing Arabidopsis leaves.

Framework
In this section, we detail the various parts of the Diffany

framework (Additional file 1).

Network terminology

To perform a differential network analysis, two types of

input data sources are required. First, a reference net-

work R models an untreated/unperturbed interactome,

serving as the point of reference to compare other net-

works to. Second, one or more condition-specific networks

each represent the interactome after a certain treatment,

perturbation or stimulus. We denote them as Ni with i

between 1 and c, and c the number of distinct conditions

that are being compared to the reference state.

Both types of input networks may have edges with

a certain weight associated to them. Such weights in

the networks may be interpreted differently according

to the application for which the framework is used.

For instance, they may model the strength of physical

interactions as determined by expression levels of the

interacting genes. In other cases, when dealing with net-

work data inferred through computational methods, such

as regulatory associations derived from co-expression

data, these weights may instead model the probabil-

ity/confidence that an interaction really does occur.

Whichever the case, the Diffany framework assumes the

weights assigned to the edges are sensible and comparable

to each other.

The two input sources are used to generate a differen-

tial network D (Fig. 1) that depicts the rewiring events

from the reference state to the perturbed interactome.

Further, an inferred consensus network Cmodels the inter-

actions that are common to the reference and condition-

specific networks, sometimes also called ‘housekeeping’

interactions. We do not adopt the latter terminology,

because while some unchanged interactions may indeed

provide information about the cell’s standard machinery

(i.e. housekeeping functions), others may simply refer to

interactions that change under some other condition than

the one tested in the experimental setup.

Interaction ontology

The interaction ontology is a crucial component that

assigns meaning to heterogeneous input data types. Anal-

ogous to the Systems Biology Graphical Notation (SBGN)

[19], this structured vocabulory provides a distinction

between ‘Activity Flow’ interactions and ‘Process’ inter-

actions, modelling regulatory associations and physical

interactions separately. However, in contrast to SBGN,

these complementary interaction classes can be freely

mixed within one network, allowing for a varying level of

modelling detail combined into one visualisation.

In the Diffany framework, a default interaction ontol-

ogy is available, covering genetic interactions, regulatory

associations, co-expression, protein-protein interactions,

and post-translational modifications (Fig. 2). This ontol-

ogy was composed specifically to support a wide range

of use-cases, and is used throughout this paper. However,

the ontology structure itself, as well as the mapping of

spelling variants, can be extended or modified based on

specific user demands. Additionally, when unknown inter-

action types are encountered in the input data, they are

transparently added as unconnected root categories.

Network inference

The interaction ontology defines the root categories for

which consensus and differential edges can be inferred.

For the sake of simplification of the formulae in the fol-

lowing, we define R = N0, and we thus have a set N of

c+ 1 input networks. The union of all nodes in these c+ 1

input networks is represented by G, and an edge of seman-

tic root category S between two nodes X and Y in an input

network Ni as Isxyi. Notice that Isxyi may also refer to a

non-existing or ‘void’ edge when the two nodes X and Y

are not connected by any edge of that semantic category S

in the network Ni.
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(a) (b) (c) (d)

Fig. 1 Differential edges. Artificial example of the inference of differential edges (c) from a reference network (a) and a condition-specific network (b).

Edge thickness refers to the weight of an edge. In Subfigure (c), the top connection (A-B) shows a negative differential edge (‘decreases_regulation’)

occurring because of a switched polarity from positive (green) to negative (red) regulation, while the second and third links (M-N and X-Y) show a

negative differential edge because the original positive edge was decreased or even entirely removed in the condition-specific network. The

thickness of the differential edge represents the difference in weight between the reference and condition edge. Column (d) depicts the corresponding

‘consensus’ edges: both input networks are found to have a regulatory edge between nodes A and B and a positive regulation edge between M

and N, but there is no consensus edge between X and Y

A differential network is then inferred by considering

each possible node pair (X,Y ) in (G × G) and, for each

such pair, constructing the set of input edges Isxy for

each semantic category S. The calculation of differen-

tial and consensus edges E from that set of input edges

Isxy involves the determination of the following edge

parameters:

• edge negation: neg(E) is a boolean value
• edge symmetry: symm(E) is a boolean value

Fig. 2 Interaction ontology. Default edge ontology structure, with

activity flow interaction types on the left, and process types on the

right. Root categories are shown with black borders, and have a

default symmetry state: directed (→) or symmetrical (-). Because of

space constraints, not all PTM (post-translational modification)

subclasses are shown

• edge weight: weight(E) is a positive real number
• edge type: type(E) is a String value

Differential networks

The hierarchical structure of the interaction ontology

forms the backbone for the inference of differential net-

works. First, all (affirmative) condition-specific edges in

Isxy for a specific category S are processed to construct a

support tree (Fig. 3). Such an edge provides support not

only for the category it belongs to (e.g. ‘inhibition’), but

also for all super-categories in the tree (in casu, ‘negative

regulation’ and ‘regulation’, cf. left tree in Fig. 3). From the

support tree that is thus generated, it becomes possible to

synthesize the number of condition-specific networks that

support a certain category, and by which weights they do

so (cf. right tree in Fig. 3).

Negated edges in Isxy are interpreted as explicit record-

ings of links that are not present in the interactome, but

otherwise do not influence the support tree. A differen-

tial edge Dsxy is always affirmative (Formula (1)), and is

only symmetrical when all input edges in Isxy are symmet-

rical (Formula (2)). When only some of the edges in Isxy
are symmetrical while others are directed, the symmetri-

cal ones are unmerged into two opposite directed edges of

equal type and weight.

To further determine the type and weight of a differ-

ential edge Dsxy, the reference edge Rsxy is compared to

the produced support tree of the condition-specific net-

works. If the set of values in the support tree (e.g. {0.6,

0.7, 0.8} for ‘regulation’) contains values both below as

well as above the weight of Rsxy, no meaningful differential

edge Dsxy can be deduced, as the response varies in direc-

tionality between the different conditions. This is also the

case when the edges in Csxy all appear to be equal to Rsxy.

Otherwise, when all conditions support a higher weight

than the weight of Rsxy, the minimal difference to those
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(b) (c)(a)

Fig. 3 Evidence summarisation. Example of how the evidence from four different condition-specific networks ((a): C1-C4 from top to bottom) is

summarised using the default edge ontology as backbone (shown only partially). Each condition-specific edge provides support not only for the

category it belongs to (e.g. inhibition), but also for all super-categories in the tree (e.g. regulation (b)). After processing all condition-specific edges

(c), the support tree summarises the number of condition-specific networks that support a certain category, and with which weights they do so

supporting edges determines the increase value shared

among all conditions and is thus used as the weight of

Dsxy (Formula (3)). Similarly, when all conditions support

a lower weight, the minimal difference determines the

decrease value shared among all conditions. For example,

if Rsxy would be a regulation edge of weight 0.9,Dsxy would

be of type decrease_regulation and weight 0.1 according

to the support tree of of Fig. 3. If Rsxy would have weight

0.4 instead, Dsxy would be of type increase_regulation and

weight 0.2.

While a Process edge expresses a physical interaction

and has no polarity, an Activity flow edge can be deter-

mined to have a general ‘positive’ or ‘negative’ effect. This

means that for an edge in the Activity flow category (e.g.

‘positive regulation’) also edges of the opposite category

can be compared (in casu ‘negative regulation’). While in

principle edge weights are positive, in this case the weights

of the opposite category will be converted to negative val-

ues only for calculation purposes. As such, the differential

edge between ‘negative regulation’ of 0.2 (interpreted as

−0.2 for calculation purposes) and ‘positive regulation’ of

0.3 would be of weight 0.5.

neg(Dsxy) = false (1)

symm(Dsxy) =

c
∧

i=0

symm(Isxyi) (2)

weight(Dsxy) =

c
min
i=1

(
∣

∣weight(Isxy0) − weight(Isxyi)
∣

∣

)

(3)

Consensus networks

The inference of consensus networks follows a similar

procedure. To calculate a consensus edge Csxy from a set

of affirmative input edges Isxy, the reference edge Rsxy is

first added to the support tree in a similar fashion as done

previously for the condition-specific edges. The most-

specific edge type with highest weight that is supported

by all input networks is then chosen to define the consen-

sus edge. In the case when all edges in Isxy are negated,

we construct a similar support tree, but one where the

support travels downwards to sub-categories instead of

upwards (e.g. ‘no regulation’ also implies ‘no inhibition’).

In this case, the least-specific edge type with the highest

weight that is supported by all, will represent the con-

sensus edge, which will also be negated (Formula (4)).

When Isxy contains both affirmative and negated edges,

no consensus edge will be deduced between nodes X

and Y.

As described above, consensus edges are defined by

retrieving a weight value that is supported by all input,

thus effectively applying a ‘minimum’ operator to the

input weights (Formula (6)). However, it is also possible

to apply the maximum operator, which will identify the

highest weight that is supported by at least one input net-

work, thus simulating a ‘union’ operation rather than an

‘intersection’ between the given input edges. More sophis-

ticated weighting mechanisms will be implemented in

the future, depending on the applications in which the

framework will be used.

neg(Csxy) =

c
∧

i=0

neg(Isxyi) (4)

symm(Csxy) =

c
∧

i=0

symm(Isxyi) (5)

weight(Csxy) =

c
min
i=0

weight(Isxyi) (6)
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Post-processing

An optional post-processing step is to automatically

remove all inferred edges in the differential and/or con-

sensus networks below a user-defined weight threshold.

The exact value of this threshold should be chosen based

on the input data and the edge weight normalisations

of the original resources. For example, the differential

weights could be indexed against the null distribution

of values expected when the reference and condition-

specific networks would represent equal replicates [6].

Fuzzy inference

The differential inference methods as described above can

identify a rewiring event that is common to all conditions,

as compared to one reference network. However, in some

cases it might be beneficial to allow for one or more mis-

matches. Such a relaxed constraint enables for instance

the retrieval of rewiring events that occur in three out

of four conditions, thus allowing a more ‘fuzzy’ or less

stringent mode of comparison.

For the calculation of consensus networks, similar

relaxed criteria can be applied. In this case, it can be

specified whether or not the reference network always

needs to ‘match’ or not. If this is set to ‘true’, a consensus

edge will always need support from the reference network

specifically. Otherwise, all input networks are treated as

equals.

Implementation

Diffany is implemented in Java 1.6 and the code, released

under an open-source license, contains extensive in-line

documentation as well as detailed javadoc annotationsa.

JUnit tests ensure proper behaviour of the algorithms also

after code refactoring. A GitHub repository provides ver-

sion control, public issue tracking and a wiki with docu-

mentation. For instance, the framework could be extended

by adapting more complex statistical scoring strategies

[7, 12] into the ontology-based backbone. As this is a

non-trivial task, we encourage others to contribute to this

effort through the online GitHub repository.

The code base is structured in a modular fashion, with

various methods for network cleaning, building and refin-

ing the ontology structure, applying custom edge filters,

and so on. It is straightforward to extend the available

functionality with additional network algorithms or filter-

ing steps. By keeping semantics separate from function-

ality throughout the code, it becomes straightforward to

create a custom ontology for any given project. On top of

this core library, we have also implemented a Cytoscape

plugin (‘app’) for the new Cytoscape 3 framework [20],

providing an intuitive user interface and allowing straight-

forward integration with other network inference/analysis

tools such as ClueGO [21], BINGO [22] or GeneMANIA

[23]. Finally, a commandline interface supports large-scale

bioinformatics studies through the generation of dif-

ferential networks in straightforward tab-delimited file

formats.

Results
By design, the framework presented here can deal with

any mixed input networks of negated edges, different

edge weights, directed as well as symmetrical edges and

a variety of edge types. Herein lays the main strength of

our framework that is thus applicable to a wide range of

comparative network studies.

Genetic networks

To evaluate the implementation of our novel framework,

we have applied it first to a small, artificial network avail-

able in previous literature (Fig. 4). Using the original

inference as inspiration (Fig. 4a) to model the input net-

works (Fig. 4b-c), Diffany produced differential and con-

sensus networks (Fig. 4d-e). Remarkably, compared to the

inference of [6], the consensus network generated by Dif-

fany contains one additional edge: the (weak) unspecified

genetic interaction (gi) between A and B. Indeed, because

our framework is ontology-driven, it can recognise the

fact that ‘positive gi’ and ‘negative gi’ are both subclasses of

the more general category ‘genetic interaction’. As a result,

there is an edge of type ‘unspecified genetic interaction’

between nodes A and B in the consensus network.

In cases where such general, unspecified edges without

polarity are unwanted, it is trivial to remove them from

the network in a post-processing filtering step. However,

we believe this additional information can be valuable

when combined with the information in the differential

networks themselves, as the presence or absence of such

a generic consensus edge helps distinguishing between

the three different cases as depicted in Fig. 1. Specifi-

cally, this generic regulatory edge provides evidence for

the fact that both the reference and condition-specific net-

work contain a regulatory edge between nodes A and B,

but with opposite polarity, as is the case in the top exam-

ple in Fig. 1. Given that the differential edge presents

an increase in regulation, this means that the reference

network contained a negative (down-) regulation, and

the condition-specific network a positive (up-) regulation.

When instead the consensus edge would not have this

general, unspecified edge, as in the case of the bottom

example in Fig. 1, this would mean that the condition-

specific network simply did not have any link between the

two nodes.

Heterogeneous data

The second example presents the application of the Dif-

fany inference tool to heterogeneous input networks, fur-

ther illustrating the power of the Interaction Ontology.

Here, a differential and a consensus network are generated
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(a)

(b) (c) (d) (e)

Fig. 4 Artificial differential network of genetic interactions. A comparison of Diffany results with a previously published (artificial) differential network

involving positive (alleviating) and negative (aggrevating) genetic interactions. a: The original picture by [6]. The reference network is denoted as

‘Condition 1’ and the condition-specific network as ‘Condition 2’. The differential network is displayed at the right, and the consensus network at the

bottom (‘Housekeeping interactions’). b-e: The differential d and consensus networks e produced by Diffany from the same input data. Because

they do not contribute to an enhanced understanding of the molecular rewiring, unconnected nodes are not included in the networks

from reference and condition-specific networks obtained

through integrating various interaction and regulation

types (Fig. 5). Notice how directionality, different edge

types and weights can all be mixed freely in the networks.

Mannitol-stress in plants

To demonstrate the practical utility of our framework,

we have used Diffany to reanalyse a previously published

experimental dataset measuring mannitol-induced stress

responses in the model plant Arabidopsis thaliana [24].

In this study, nine-days-old seedlings were transferred to

either control medium, or medium supplemented with

25 mM mannitol. At this developmental stage, the third

true leaf is very small and its cells are actively prolif-

erating. RNA from these young leaves was extracted at

1.5, 3, 12 and 24 h after transfer. The expression data

were processed with robust multichip average (RMA)

as implemented in BioConductor [25, 26]. Further, the

Limma package [27] was applied to identify differentially

expressed (DE) genes at two FDR-corrected P-values: 0.05

and 0.1, giving rise to two sets of DE genes for each

time-point (Table 1 and Additional file 2).

Input networks

To determine the set of genes (nodes) relevant to this

study, we have first taken all differentially expressed genes

across all time-points, using the strict 0.05 FDR threshold.

Next, all the PPI neighbours of these genes were extracted

from CORNET [28, 29] and added, with the exception of

non-DE PPI hubs, as the inclusion of such hubs would

extend our networks to irrelevant nodes. Analysis showed

that for instance 10 % of all nodes account for 70 % of all

PPI edges, and we have removed the bias towards such

generic hubs by automatically excluding proteins with at

least 10 PPI partners. Note that such hubs will still appear

in the networks when they are differentially expressed

themselves.

Subsequently, all regulatory neighbours of the extended

node set were added, using both the AGRIS TF-target

data [30] and the kinase-target relations from PhosPhAt

[31]. From the kinase-target relations, hubs with at least

30 partners were excluded, removing mainly MAP kinase

phosphatases (MKPs) which are involved in a large num-

ber of physiological processes during development and

growth [32]. Finally, we also added DE genes from the
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(a) (b)

(c) (d)

Fig. 5 Artificial differential network of heterogeneous data. More complex calculation of differential (c) and consensus (d) networks from the

reference (a) and condition-specific (b) networks. Notice how directionality, different edge types and weights can all be mixed freely in the networks

second, less stringent result set (FDR cut-off 0.1), if they

could be directly connected to at least one of the genes

found up until that point. This approach allows us to

explore also those genes that are only slightly above the

strict 0.05 FDR cut-off, while reducing noise by excluding

those that are not connected to our pathways of interest.

In general, this two-step methodology as well as the hub

filtering was found to produce more meaningful results.

However, both steps are optional and can be removed

Table 1 Number of differentially expressed genes per dataset

Time point FDR 0.05 FDR 0.1

1.5 h 58 78

3 h 314 456

12 h 435 581

24 h 1500 1913

TOTAL 1638 2155

from the pipeline when using the Diffany library in other

studies.

The reference network was then defined by generat-

ing all PPI and regulatory edges between the node set as

determined in the previous steps. All edges in the ref-

erence network were given weight one, a default value

used when no overexpression is measured (yet). This

resulted in a reference network of 1393 nodes and 2354

non-redundant edges, of which 56 % protein-protein

interactions, 24 % TF regulatory interactions and 20 %

kinase-target interactions.

Subsequently, each time-specific network was con-

structed by altering the edge weights according to the

expression levels of the corresponding nodes/genes mea-

sured at that time point. All interactions with at least one

significantly differentially expressed gene as interaction

partner is thus down- or upweighted. To define differen-

tial expression, the less stringent criterium (0.1 FDR) is

used here. For instance, the activation of a non-DE gene by
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a gene that is differentially expressed at that specific time

point, would get a weight proportional to the fold change

of that differentially expressed activator. By contrast, an

edge would be removed (weight zero) when the edge does

not fit the expression values at this time point, for instance

when an activator is overexpressed but the target is under-

expressed. This allows us to remove the interactions that,

even though reported in the public interaction data, are

probably not occurring in this specific context.

As a final result, the information on differentially

expressed genes has now been encoded in the edge

weights of the time-specific networks. By comparing them

to the generic reference network, the Diffany algorithms

will now be able to produce differential and consensus

networks which depict the changes in expression val-

ues across the time measurements. In the following, we

describe these results and provide interpretations that

show-case how this type of analysis may lead to novel

insights.

Differential network for one condition

With the statistically significant DE values translated into

input networks, the differential networks can then be

generated by either comparing the reference network to

each time-specific network individually, or by comparing

all time-specific networks against the reference network

simultaneously.

As an example of the first mode of comparison, Fig. 6

depicts the differential network after 1.5 hours, illustrat-

ing the rewiring events occurring in this short time frame

after the induction of mannitol stress. At this early time

point, it is rather unlikely that the expression of the DE

genes was affected by subsequent transcriptional cas-

cades. By including transcription factors upstream of the

DE genes in the network even if they are not DE them-

selves, it is possible to identify new putative regulators

as compared to previous analysis methods. For example,

HY5 and PIL5 might be suitable candidates, as they con-

tain a putative phosphorylation site and are thus likely to

be posttranslationally regulated.

To further investigate the possibility that HY5 would

be a transcriptional regulator under mannitol stress, we

validated the Diffany results by measuring the expression

level of the proposed HY5-target genes in the grow-

ing leaves of WT and HY5 loss-of-function mutants.

These genes, except ARL, were all underexpressed in hy5

mutants as compared to WT, confirming that HY5 is

indeed involved in the regulation of the MYB51, EXO,

RAV2 andTCH3 expression in growing Arabidopsis leaves

(Additional files 3 and 4).

To further explore if HY5 is involved in leaf growth reg-

ulation under mannitol stress, phenotypic analysis was

performed on hy5 mutants under both long term and

short term mannitol treatment. The hy5 seedlings were

clearly hypersensitive to stress, with decreased leaf size

under long term and short term stress, and showed com-

plete bleaching upon long term mannitol stress (Fig. 7,

Additional file 4). These biological results demonstrate

that HY5, which has been identified with Diffany as a

putative regulator of mannitol stress, might indeed be

involved in the mannitol-responsive network in growing

Arabidopsis leaves.

Next to the identification of new putative regulatory

links, the differential PPI edges make it possible to under-

stand complex formation under specific conditions. For

example, the EBF2 sub-complex presents a nice exam-

ple of how the induction of one protein is sufficient to

increase the activity of a whole complex. The EBF2 is

a stress-responsive E3-ligase involved in the posttransla-

tional regulation of the ethylene-responsive factors EIN3

and EIL1 [33, 34]. In this differential network, EBF2 forms

a complex with these two targets, which are induced by

mannitol as well. However, some of the other members of

the SCF-complex, such as CUL1, SKP1, ASK1 and ASK2,

are missing from the differential network. As these SCF-

complexes are involved in many cellular processes, their

specificity being defined by the E3-ligase, we can spec-

ulate that the other members of the complex are highly

abundant and not specific to mannitol-stress. Their auto-

matic removal from the differential network thus allows

the user to focus on the truly interesting genes for this

specific stress condition.

Differential network for all conditions

The second mode of comparison allows to simultaneously

compare all condition-specific networks to one reference

network. In this specific case, such an analysis models

the stress-specific, but time-independent response. Fig. 8

shows these rewiring interactions. Strikingly, mainly the

overexpressed genes (yellow nodes) remain differentially

expressed throughout the time-course experiment, while

this is only the case for a few of the underexpressed genes

(blue nodes). This implies that in this context, the upreg-

ulation of genes is a more stable and long-term process.

For instance, the upregulation of TCH3 by HY5 is

present because TCH3 is overexpressed at all time points

and its upregulation by HY5 may thus play a signifi-

cant role in the overall stress response. To validate this

biologically, the expression level of TCH3 and other pre-

viously mentioned HY5 target genes was measured in

WT and hy5 mutants, 24 h upon transfer to control

or mannitol-supplemented medium (Additional file 4).

While the induction of TCH3, MYB51 and ARL could be

clearly observed in WT plants, a more variable but less

pronounced upregulation was observed in hy5 mutants.

Thus, HY5 might be involved in the regulation of TCH3,

MYB51 and ARL under mannitol, although it is probably

not the sole regulator of these targets, but instead acts in
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Fig. 6Mannitol-induced stress response at 1.5 h. Analysis of the mannitol-induced stress response, depicting the generated differential network at

the 1.5 h time point: increase/decrease of regulation in dark green and red respectively, increase/decrease of PPI in light green and orange,

increase/decrease in phosphorylation in blue and purple. It is important to note that in these differential networks the arrows point to rewiring

events: a decrease of regulation for instance (red arrows) does not necessarily point to an inhibition, but may also indicate a discontinued activation.

Diamond nodes represent proteins with a known phosphorylation site, and proteins with a kinase function are shown with a black border. Blue and

yellow nodes identify underexpressed and overexpressed genes respectively

Fig. 7 Phenotype of the hy5 mutant on mannitol-stress. Rosettes of

WT (left) and hy5 mutants (right) on control medium (top panel) and

mannitol-supplemented medium (bottom panel). Plants are 22 days

old. Scalebar = 1 cm

parallel with other regulators previously identified in the

early mannitol-response of growing Arabidopsis leaves

[24, 35].

Finally, we can apply a less stringent criterium to the

inference of differential networks by only requiring that

three out of four time points need to match for a rewiring

event to be included in the differential network (Fig. 9).

This results in more robust network inference, as the

differential network would remain the same when some

noise would be introduced at one of the time points. Addi-

tionally, this method provides a more complete view on

the rewiring pathway occurring in response to osmotic

stress in plants. All these different settings and options are

also available when generating the differential networks

through the Cytoscape plugin.

Discussion and conclusion
We have developed an open-source framework, called

Diffany, for the inference of differential networks from an

arbitrary set of input networks. This input set always con-

tains one reference network which represents the inter-

actome of an untreated/unperturbed organism, while all

other networks are condition-specific, each modelling the

interactome of the same organism subjected to a spe-

cific environmental condition or stimulus. Differential

networks allow focusing specifically on the rewiring of
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Fig. 8Mannitol-induced stress response across all time points (strict). Analysis of the mannitol-induced stress response, showing the differential

network generated by comparing the reference network to all four time points simultaneously, and calculating the overall differential rewiring.

Color coding as in Fig. 6

the network as a response to such stimuli, by modelling

only the changed interactions. At the same time, interac-

tions that remain (largely) the same are summarised in a

‘consensus’ network that provides insight into the basic

interactions that are not influenced by changes of internal

or external conditions. The analysis of these differential

and consensus networks provides a unique opportunity

to enhance our understanding of rewiring events occur-

ring for instance when plants undergo environmental

stress, or when a disease manifests in the human body.

Fig. 9Mannitol-induced stress response across all time points, allowing for one mis-match per edge. Analysis of the mannitol-induced stress

response, showing the differential network generated by comparing the reference network to all four time points but allowing a match when only

three out of four time points share the same response. Color coding as in Fig. 6, pink arrows depict an increase in dephosphorylation. In this figure,

only regulatory interactions are shown as the addition of PPI data would obscure the visualisation
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Further, the fact that the framework can compare an

arbitrary number of condition-specific networks to one

reference network at the same time, forms a powerful tool

to analyse distinct but related conditions, such as differ-

ent human diseases that may share a defected pathway,

or various abiotic stresses influencing a plant in a similar

fashion.

In comparison to previous work in the emerging field

of differential network biology, Diffany is the first generic

framework that provides data integration functionality

in the context of differential networks. To this end, we

have implemented an Interaction Ontology which enables

seamless integration of different interaction types, pro-

vides semantic interpretation, and deals with heteroge-

neous input networks containing both directed and sym-

metrical relations. This ontology forms the backbone for

the implementation of the network inference methods

that produces differential networks. As in any Systems

Biology study or application, a known challenge involves

the issue of non-existing edges: an interaction may be

missing from the network because it was experimentally

determined that no association occurred, or it may simply

be that there is a lack of evidence for the interaction, not

actually excluding its existence. To deal with these cases,

Diffany allows the definition of negated edges, which are

explicit recordings of interactions that were determined

not to happen under a specific condition.

To provide easy access to the basic functionality of

inference and visualisation of differential and consensus

networks, we have developed a commandline interface

and a Cytoscape plugin. The Cytoscape plugin allows to

generate custom differential networks as well as repro-

duce the use-cases described in this paper. All relevant

code is released under an open-source license.

Finally, we have illustrated the practical utility of Dif-

fany on a study involving osmotic stress responses in

Arabidopsis thaliana. The resulting differential networks

were found to be concise and coherent, modelling the

response to mannitol-induced stress adequately. The

analysis of these differential networks and a prelimi-

nary experimental validation has led to the identifica-

tion of new candidate regulators for early mannitol-

response, such as PIL5 andHY5, which likely contribute to

the fast transcriptional induction of mannitol-responsive

genes. Further detailed biological validation, including

for instance ChIP experiments and experimental sys-

tems biology approaches, are necessary to confirm the

role of HY5 in this context and fully unravel the early

stress-induced rewiring events of this complex regulatory

network.

Endnote
aAPI at http://bioinformatics.psb.ugent.be/

supplementary_data/solan/diffany/.
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