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 2 

Abstract 27 

Genome-wide gene expression analyses are invaluable tools for increasing our knowledge of biological 28 

and disease processes, allowing a hypothesis-free comparison of gene expression profiles across 29 

experimental groups, tissues and cell types. Traditionally, transcriptomic data analysis has focused on 30 

gene-level effects found by differential expression. In recent years, network analysis has emerged as 31 

an important additional level of investigation, providing information on molecular connectivity, 32 

especially for diseases associated with a large number of linked effects of smaller magnitude, like 33 

neuropsychiatric disorders and their risk factors, including stress. In this manuscript, we describe how 34 

combined differential expression and prior-knowledge-based differential network analysis can be 35 

used to explore complex datasets. As an example, we analyze the transcriptional responses following 36 

administration of the glucocorticoid/stress hormone receptor agonist dexamethasone in C57Bl/6 37 

mice, in 8 brain regions important for stress processing: the prefrontal cortex, the amygdala, the 38 

paraventricular nucleus of the hypothalamus, the cerebellar cortex, and sub regions of the 39 

hippocampus: the dorsal and ventral Cornu Ammonis 1, the dorsal and ventral dentate gyrus. By 40 

applying a combination of differential network- and differential expression- analyses, we find that 41 

these explain distinct but complementary aspects and biological mechanisms of the responses to the 42 

stimulus. In addition, network analysis identifies new differentially connected partners of important 43 

genes and can be used to generate hypotheses on specific molecular pathways affected. With this 44 

work, we provide an analysis framework and a publicly available resource for the study of the 45 

transcriptional landscape of the mouse brain: DiffBrainNet (http://diffbrainnet.psych.mpg.de), which 46 

can identify molecular pathways important for basic functioning and response to glucocorticoids in a 47 

brain-region specific manner. 48 

 49 

 50 

 51 
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 3 

Introduction 53 

High-throughput transcriptomics are extensively employed to study healthy as well as disease-related 54 

tissue expression profiles from in vitro and in vivo model systems or human tissue. Traditionally, 55 

transcriptomic data analysis has been based on differential expression (DE) analysis and has focused 56 

on gene-level associations to phenotypes. In the last decade, gene set enrichment analysis [1] and 57 

network analysis [2–4] have emerged allowing the study of complex associations between sets of 58 

genes, in multiple tissues and for multiple outcomes [5,6,15–17,7–14]. 59 

Network analysis is critical for the study of relationships between genes, and in turn, of molecular 60 

pathways. This is especially true for complex disorders for which risk is conferred by a combination of 61 

many small effects. Strong DE can be expected with major genetic or environmental impacts such as 62 

in cancer [18,19]. For other disorders, for example in neuropsychiatry, risk is driven by multiple 63 

polygenic and interlaced environmental factors that affect a multitude of transcripts, often with only 64 

small effect sizes [20,21]. A combinatorial analysis framework of DE and network analysis has proven 65 

very useful for unraveling additional biology and pathomechanisms of complex disorders [5]. For 66 

example, gene co-expression networks, based on Pearson correlations, along with DE analysis have 67 

been used to study shared and distinct transcriptomic profiles of five major neuropsychiatric disorders 68 

(autism spectrum disorder; schizophrenia, bipolar disorder, major depressive disorder and alcoholism) 69 

leading to the identification of gene modules associated with specific cell-types and disorders [22].  70 

Besides correlation-based methods, which tend to suffer from over-connectivity and low specificity, 71 

several other classes of algorithms are used for network inference [23]. More advanced are, for 72 

example, regression-based or Bayesian methods. While Bayesian methods perform poorly on large 73 

datasets and are more suitable for small networks [23], regression- and other machine learning-based 74 

algorithms require large amounts of samples to confidently infer connections in a high-dimensional 75 

input space. To overcome this limitation of regression-based network inference and increase the 76 

performance on datasets with small amounts of samples, the input space can be reduced by 77 

facilitating prior-knowledge [24]. Prior-knowledge refers to already described functional relationships 78 
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between transcripts or proteins, accessible from publicly available databases. The Knowledge guided 79 

Multi-Omics Network inference approach (KiMONo) implements such a combination of prior-guided 80 

regression-based network inference and was previously shown to be a powerful approach to infer 81 

integrated multi-level networks [3]. 82 

Traditionally the stimulus or disease impact on networks has been modeled by associating modules of 83 

co-expressed genes with disease phenotypes or comparing the number of connections a gene has in 84 

the control and stimulus networks. This has proven challenging given that it is based on the 85 

comparison of networks with different topological characteristics [4]. To tackle this, differential 86 

network (DN) analysis has emerged. DN analysis computes the differential co-expression and 87 

regulatory interactions of many genes in a single network and analyzes biological processes inferred 88 

from one DN [25], thus eliminating the problems arising when trying to compare two or more 89 

networks at different stimulation paradigms. DN analysis offers the possibility to study the directed 90 

multivariate effects of the treatment or disease state on the genes' neighborhoods. Another 91 

advantage of using prior-knowledge network analysis algorithms is that the inferred networks have 92 

the same topological characteristics which results in a more robust calculation of the differential 93 

connections. 94 

In this study, we now leverage the power of DN approaches and calculate regression- and prior-95 

knowledge-based genome-wide networks from RNA expression data of 8 mouse brain regions 96 

following a vehicle or a pharmacological stimulus, and compute differential networks in addition to 97 

differential expression. As a stimulus we used dexamethasone, a synthetic glucocorticoid that is a 98 

preferential agonist of the glucocorticoid receptor (GR). GR is a transcription factor able to elicit a 99 

robust transcriptomic response when bound to its agonists [26], it is an important component of the 100 

stress-axis and has been implicated in risk for stress-related psychiatric disorders [27]. The 8 brain 101 

regions were selected for their implication with the activation of the stress axis and the response to 102 

stress, and include a detailed segmentation of the hippocampal formation (ventral and dorsal 103 

dissections of both Cornu Ammonis 1- CA1 and dentate gyrus- DG), the prefrontal cortex (PFC), the 104 
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amygdala (AMY), the cerebellar cortex (CER) and the paraventricular nucleus of the hypothalamus 105 

(PVN). We combined DN with DE analysis in order to provide an analysis framework for transcriptomic 106 

data and a resource of all levels of information. This public resource is named DiffBrainNet 107 

(DiffBrainNet access: http://diffbrainnet.psych.mpg.de). We provide examples of how DiffBrainNet 108 

can be used to study the molecular landscape of the brain and unravel biological mechanisms of 109 

response to dexamethasone and GR activation in a brain region-specific manner. 110 

 111 

Materials and Methods 112 

Experimental animals 113 

All experiments and protocols were performed in accordance with the European Communities' Council 114 

Directive 2010/63/EU and were approved by the committee for the Care and Use of Laboratory 115 

animals of the Government of Upper Bavaria. All mice were obtained from the in-house breeding 116 

facility of the Max Planck Institute of Psychiatry and kept in group housed conditions in individually 117 

ventilated cages (IVC; 30cm x 16 cm x 16 cm; 501 cm2) serviced by a central airflow system (Tecniplast, 118 

IVC Green Line – GM500). Animals had ad libitum access to water (tap water) and standard chow and 119 

were maintained under constant environmental conditions (12:12 hr light/dark cycle, 23 ± 2 °C and 120 

humidity of 55%). All IVCs had sufficient bedding and nesting material as well as a wooden tunnel for 121 

environmental enrichment. Animals were allocated to experimental groups in a semi-randomized 122 

fashion, data analysis and execution of experiments were performed blinded to group allocation. 123 

3-months old C57Bl/6n male mice (n=15 animals per condition) were injected intraperitoneally with 124 

dexamethasone at a dose of 10 mg/kg body weight (treatment) or 0.9% saline as control (vehicle). 125 

Four hours later the mice were sacrificed, the brain was perfused with a solution of Heparin in 0.9% 126 

saline, extracted and snap-frozen in butanol on dry ice and kept in -80oC until further use. The brains 127 

were cut in 250μm coronal slices and 8 brain regions were isolated following the stereotaxic 128 

coordinates of the mouse brain atlas [28]. In detail, the following brain regions were isolated: cingulate 129 

cortex 1 and 2 (bregma 2.34 to -0.22), from now on referred-to as prefrontal cortex (PFC); 130 
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paraventricular nucleus of the hypothalamus (PVN; bregma -0.58 to -1.22); amygdala (AMY; bregma 131 

0.02 to -0.94); dorsal Cornu Ammonis 1 (dCA1; bregma -1.22 to -2.80); ventral Cornu Ammonis 1 132 

(vCA1; bregma -2.92 to -3.88); dorsal dentate gyrus (dDG; bregma -0.94 to -2.80), ventral dentate 133 

gyrus (vDG; bregma -2.92 to -3.88) and cerebellar cortex (CER; bregma -5.80 to -6.24). Brain punches 134 

were kept in dry ice while cutting and then in -80oC until the RNA extraction was performed. 135 

 136 

RNA extraction 137 

RNA was extracted using an automated Chemagic 360o instrument with an integrated dispenser and 138 

the chemagic RNA Tissue Kit (CMG-1212) following manufacturer’s instructions. In short, Chemagic 139 

360o RNA extraction is based on the use of magnetic beads that bind the nucleic acids which are then 140 

isolated using magnetized metal rods. Homogenization of the tissue was achieved using rotating 141 

zirconium beads. Washing steps and subsequent elution of the RNA was achieved by switching off the 142 

magnet while the rods continue to rotate in a buffer of preference. DNA was digested using DNase I 143 

and proteins using Proteinase K. RNA concentration was measured using a Nanodrop and the quality 144 

was measured using Tapestation RNA ScreenTapes (High Sensitivity RNA ScreenTapes, Cat No. 5067-145 

5579). 146 

 147 

RNA sequencing 148 

3’ tag RNA sequencing libraries were prepared using the QuantSeq 3’ mRNA Fwd kit (Lexogen) 149 

following manufacturer’s instructions with the addition of unique molecular identifiers (UMIs- UMI 150 

Second Strand Synthesis Module for QuantSeq FWD) for the tagging of individual transcripts. Libraries 151 

were single-end sequenced on an Illumina HiSeq4000 sequencer using 75bp long reads for a total 152 

coverage of an average of 10M reads per library. Five samples were excluded from sequencing and/ 153 

or further analysis due to technical issues with the library preparation: two dexamethasone-treated 154 

dCA1 samples, one dexamethasone-treated PFC sample, one control PVN sample and one control 155 

vCA1 sample.  156 
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RNA sequencing analysis 157 

The quality of sequencing data was analyzed with FastQC v0.11.4 [29] and adapter trimming was 158 

performed with cutadapt v1.11 [30]. Unique molecular identifiers were extracted with UMI-tools 159 

v.0.5.4 [31], before the reads were aligned with the mouse reference genome (mm10, Ensembl release 160 

84) using STAR v2.6.0a [32]. Afterwards, reads were deduplicated with UMI-tools and gene expression 161 

was quantified with featureCounts v1.6.4 [33]. The subsequent analysis was performed in R version 162 

4.0.5 [34]. All genes that were not detected in at least one full treatment group were removed from 163 

the dataset leaving 12,976 genes. Subsequently, genes with less than 10 counts across all samples 164 

within each brain region were excluded (detailed numbers of genes per brain region in Table S1). To 165 

identify outliers, we performed a principal component analysis (PCA) on the samples of each brain 166 

region and treatment group separately. Samples with a distance of more than 2.5 standard deviations 167 

from the mean in the first principle component were excluded (numbers of outliers per brain region 168 

and treatment group in Table S1). Surrogate variable analysis (SVA)[35] was applied to account for 169 

unwanted variation in the data. 170 

 171 

Differential expression (DE) analysis 172 

Significant surrogate variables (exact numbers in Table S1) were included as covariates in the DE 173 

analysis. The expression data was normalized and transformed using the vst function of DESeq2 174 

v1.30.1 [36] for SVA and subsequent network analysis. DE analysis between the two treatment groups 175 

was performed for each brain region individually.  We tested for DE with DESeq2 using the Wald test 176 

and reported the genes with a false discovery rate (FDR) below 10% as significant. 177 

 178 

DiffBrainNet 179 

Network inference  180 

Networks were generated for vehicle- (referred-to as "vehicle") and dexamethasone-treated 181 

(referred-to as "treatment") samples separately for each brain region using the network inference 182 
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method: KiMONo [3]. KiMONo uses prior information from existing biological databases that provide 183 

the edges among the transcripts, as a basic network layout. Different omic layers (here only 184 

transcriptomic data) are then used on top of the prior basic-network layout to fit the edge weights in 185 

the network. Edge weights can thereby take on a value smaller than a predefined threshold which 186 

leads to the removal of the edge from the network (Fig 1). More specifically, KiMONo uses a 187 

multivariate regression approach with sparse group lasso penalization to model the expression levels 188 

of the transcripts. The possible predictors in the regression model are inferred from the gene’s 189 

connections in a prior network. In the inferred directed gene expression networks, the nodes 190 

represent transcripts of the input data and the edge weights are the beta coefficients (β-value) fitted 191 

by the regression approach (S1B Fig). A β-value > 0 indicates that two genes’ expression levels are 192 

correlated positively, while a β-value < 0 indicates that two genes’ expression levels are correlated 193 

negatively. Significant surrogate variables identified during DE analysis were used as covariates for 194 

network inference and treated as a separate group in the regression penalization (Table S1). The r2 195 

value assigned to each regression model is used as a confidence score to indicate the goodness of fit 196 

of the model. In the vehicle and treatment networks, all interactions with an absolute β-value < 0.01 197 

or an r2 value < 0.1 and the connections to the surrogate variables were excluded. 198 

As a prior network we used FunCoup 5 [37], a database which contains about 6.7 million interactions 199 

between 19,771 genes in the mouse organism and that is provided as a framework to infer genome-200 

wide functional couplings based on data of 10 different evidence types: physical protein interactions, 201 

mRNA co-expression, protein co-expression (based on the human protein atlas), genetic interaction 202 

profile similarities, shared regulation by transcription factor binding, shared regulation by miRNA 203 

targeting, subcellular colocalization, domain interactions, phylogenetic profile similarity, quantitative 204 

mass spectrometry data and gene regulatory data inferred from transcription factor bindings. 205 

FunCoup provides the edges of the basic network layout and KiMONo computes the weights of these 206 

edges fitted from the expression of the transcripts in each brain region and treatment paradigm. 207 

 208 
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Differential network analysis 209 

A differential network (DN) for each brain region was calculated by combining the vehicle and 210 

treatment network using the DiffGRN approach [25] which describes differential relationships 211 

between two genes. Thereby, differential gene interactions were calculated from the regression’s β-212 

values and their standard errors using a z-test: 213 

𝑧!" =	
𝛽!"# 	− 	𝛽!"$

&𝑆𝐸(𝛽!"# )% 	+ 	𝑆𝐸(𝛽!"$ )%
 214 

where βT
xy and βV

XY are the β-values of genes X and Y in the treatment and vehicle networks, 215 

respectively. A z-value > 0 indicates either a stronger positive correlation (0 < βV
XY < βT

XY), a weaker 216 

negative correlation (βV
XY < βT

XY < 0) or a switch from negative to positive correlation (βV
XY < 0 < βT

XY) 217 

between genes X and Y from vehicle to treatment network. A z-value < 0 indicates a stronger negative 218 

correlation (βT
XY < βV

XY < 0), a weaker positive correlation (0 < βT
XY < βV

XY) or a switch from positive to 219 

negative correlation (βT
XY < 0 < βV

XY) between genes X and Y from vehicle to treatment network. Z-220 

values > 0 can be described as relative changes in gene expression leading to a more positive 221 

correlation (termed positive regulatory effect), while z-values < 0 can be described as relative changes 222 

in gene expression leading to a more negative correlation (termed negative regulatory effect) (S1B 223 

Fig). Differential interactions with an FDR adjusted p-value ≥ 0.01 associated with the z-score were 224 

excluded. 225 

 226 

Hub gene analysis 227 

We defined key regulators in the vehicle, treatment and differential networks, termed vehicle-, 228 

treatment- and differential- hub genes accordingly. The measure that we used to identify these key 229 

genes was the node-betweenness implemented in the igraph package, which describes the number 230 

of shortest paths going through a node [38]. Since we build the networks on top of a prior network, 231 

the node-betweenness in the networks (vehicle, treatment, differential) is driven by the prior network. 232 

We therefore normalized the node-betweenness as follows, 233 
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node-betweennessNorm&'()*+,-(𝑔𝑒𝑛𝑒	𝑋) =
node-betweenness&'()*+,-(𝑔𝑒𝑛𝑒	𝑋)

node-betweenness&'()*+,.+/*+(𝑔𝑒𝑛𝑒	𝑋)
 234 

where node-betweennessnetworkA(gene X) is the node-betweenness of gene X in network A (e.g. DN of 235 

one brain region) and node-betweennessnetworkPrior(gene X) is the node-betweenness of the same gene 236 

X in the prior network. We defined all genes with a node-betweenness greater than 10,000 and a 237 

normalized node-betweenness greater than 1.0 as hub genes and compared them between brain 238 

regions as well as with the DE genes identified in the DE analysis. 239 

 240 

Gene set enrichment analysis 241 

Enrichment of DE genes or differential hub genes was performed using FUMA GENE2FUNC [39]  242 

analysis based on Gene Ontology (GO, [40,41]),  KEGG [42–44], Reactome [45] and genes carrying 243 

single nucleotide polymorphisms (SNPs) with genome-wide association to a variety of traits (analysis 244 

references the NHGRI-EBI GWAS Catalog [46] (https://www.ebi.ac.uk/gwas/) most recently updated 245 

on 18 September 2021). Default parameters were used in FUMA, with all genes expressed above 246 

threshold in all brain regions (n=12,830 genes) as the background list. To account for differentially 247 

sized input gene lists, only terms with at least 10% (unless stated otherwise) of the input genes 248 

overlapping with the term genes were considered and p-values were corrected using the Benjamini-249 

Hochberg (FDR) method [47] to account for multiple comparisons. We used an FDR cut off of 5% for 250 

statistical significance.  251 

 252 

Shiny app 253 

To make these data and analyzes searchable by all interested scientists, we created DiffBrainNet, 254 

which is accessible online at http://diffbrainnet.psych.mpg.de. The app was written in R (v4.0.5) [34], 255 

uses the shiny package (v1.7.1) [48] and several additional freely available packages (org.Mm.eg.db 256 

v3.14.0, shinythemes v1.2.0, ggplot2 v3.3.5, plotly v4.10.0, visNetwork v2.1.0, data.table v1.14.2, 257 

dplyr v1.0.7, stringr 1.4.0) and is hosted with ShinyProxy[49]. The source code of the app is available 258 
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via github https://github.molgen.mpg.de/mpip/DiffBrainNet. The app can also be run locally using a 259 

docker image available on Docker Hub https://hub.docker.com/r/ngerst/diffbrainnet.  260 

 261 

Results 262 

DiffBrainNet: a brain-region specific resource and analysis framework for transcriptomic responses to 263 

glucocorticoid receptor activation 264 

In this work, we set out to provide a resource of brain-region-specific transcriptome analyses at the 265 

gene- and network- level exploring the effects of a 4-hour 10mg/kg dexamethasone administration in 266 

8 different mouse brain regions (Fig 1 top and S1A Fig). We used RNA sequencing to measure gene 267 

expression across the whole transcriptome and detected 12,976 genes across the 8 brain regions 268 

(exact numbers of transcripts per brain region in Table S1), with 12,830 genes being common across 269 

all 8 brain regions (Table S2).  270 

Network analysis unravels the effects of relative gene expression changes that may not be detected 271 

at the individual DE genes. Therefore, gene expression networks for each condition per brain region 272 

were calculated with regression analysis based on a prior network using KiMONo [3]. As a prior 273 

network we used FunCoup 5.0 [37] which contains experimental data on about 6.7 million interactions 274 

between 19,771 mouse genes, of which 11,083 genes were also detectable in our dataset (5.4 million 275 

interactions). We inferred a DN per brain region by comparing the β-values of the regression analysis 276 

between the vehicle and treatment networks with a z-test, following the DiffGRN [25] approach. In 277 

addition, we also performed differential expression (DE) analysis to assess the gene-level responses 278 

to glucocorticoid receptor activation between vehicle and treatment (Fig 1 middle).  279 

To examine if the DE genes are also the ones with the highest co-regulatory responses in the DNs we 280 

identified differential hub genes, i.e. genes with normalized node-betweenness above 1 (Fig 1 281 

bottom).  Furthermore, to identify pathways that are regulated by DE genes and/or differential hub 282 

genes we used enrichment analyses of GO terms, KEGG and Reactome pathways and GWAS significant 283 
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genes. By applying this analysis framework, we were able to compare the transcriptomic responses 284 

across 8 brain regions on multiple complementary levels. 285 

All data can be explored in an interactive online resource, called DiffBrainNet 286 

(http://diffbrainnet.psych.mpg.de). In the following, we illustrate results obtained from analyses using 287 

DiffBrainNet. 288 

 289 

Differential network analysis provides biological information beyond single gene-level analysis 290 

We used our framework of combined DE and DN analysis to study the transcriptomic responses to 291 

glucocorticoids (GCs) across the eight brain regions in DiffBrainNet. Principal component (PC) analysis 292 

of the gene expression data showed that PC1 and PC2 explain 62% of the variance. The brain regions 293 

are separated by PC1 and PC2 whereas samples of the same brain region are comparable with respect 294 

to the first two PCs (Fig 2A). Treatment conditions were separated by PC4 and PC5 when PC analysis 295 

was applied on the samples of all brain regions together (Fig 2B). Over all 8 brain regions, we observed 296 

2,092 DE genes (FDR adjusted p-value < 0.1) following dexamethasone administration of which 172 297 

were shared DE across all brain regions (Fig 2C, Table S3). The majority of DE genes of each brain region 298 

were regulated in more than one region and only the minority (5.4-26.6%) was specific to a single 299 

brain region (S2A Fig, Tables S4-S11). The upregulated shared DE genes across all brain regions (N=129) 300 

were significantly enriched for biological processes related to cell death, response to stimulus, signal 301 

transduction and cell proliferation, whereas the downregulated ones (N=43) were enriched for 302 

developmental terms such as neurogenesis, cell differentiation and tissue morphogenesis (S2B Fig, 303 

Table S12).  304 

In addition to DE analysis we performed DN analysis across the 8 brain regions and compared numbers 305 

and enrichment patterns of differential hub genes. We observed a total of 755 differential hub genes. 306 

The majority (over 73%) of these differential hub genes were shared between at least 2 brain regions 307 

(Fig 2D and S2C, Tables S13-S20), however, there were 7 differential hub genes shared across all 308 
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investigated brain regions (Sox5, Lpar1, Thy1, Mcam, Nell2, Rab3c, Zic1) (Fig 2D and S2D, Table S21 309 

and S22). Of all the 755 differential hub genes, only 174 were also DE genes in any brain region. 310 

To further explore how DE genes and differential hub genes may relate to different biology, we 311 

compared the unique sets of these genes for the PFC, which was the brain region with the largest 312 

fraction of unique DE genes (n=920 total DE genes of which 245 (26.6%) were unique to PFC, Fig 2C, 313 

Table S11). PFC, together with AMY, was also the brain region with the highest fraction of unique 314 

differential hub genes (n=293 total differential hub genes of which 29 (9.9%) were unique in PFC, Fig 315 

2D, Table S13). None of these 29 unique differential hub genes was also a DE gene in the PFC. A GO 316 

enrichment analysis on the unique DE and unique differential hub genes of the PFC respectively 317 

indicated that the biological functions related to these two sets of genes are distinct (Tables S23 and 318 

S24). While the biological processes with the highest enrichment for unique DE genes were mostly 319 

related to development and signaling (Fig 2E), the top terms for the unique differential hub genes 320 

were mainly global terms related to response to stress or stimulus (Fig 2F; n=14 terms). This suggests 321 

that DE and DN analyses reveal different but complementary information about the transcriptional 322 

response to the stimulus. 323 

To show the added value of DN analysis we focused on Abcd1, a member of the ABC protein family 324 

known to actively transport GCs [50,51]. Abcd1 is the unique differential hub gene that has by far the 325 

highest normalized node-betweenness in the PFC (normalized node-betweenness = 5,829, second 326 

highest is 4,013 for Slc39a3, Table S13) and many differential correlations, though it is not a PFC DE 327 

gene (FDR= 0.935; Fig 3A). However, in its DN there are 4 PFC DE genes (FDR < 0.1) and 7 genes that 328 

have a nominal DE p-value < 0.05 (Fig 3B, Table S25). By focusing at the pathways level, enrichment 329 

analyses of the DN of Abcd1 supports a more general role of ABC transporters in the response to GCs 330 

(Fig 3C and D, Table S26). In addition, Abcd1 is directly or indirectly connected to two other differential 331 

hub genes, Tm7sf2 and Pex5l, suggesting that it is related to large interconnected DNs (Fig 3B). These 332 

smaller changes in the expression of genes that have in common their connectivity with Abcd1 333 

culminate in this gene's status as a differential hub gene above the significance threshold, in spite of 334 
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its too-subtle change at the individual expression level. Since biologically it is established that no gene 335 

works independently within a cell, these findings highlight the added value of network analysis to 336 

unravel distinct but complementary aspects of transcriptomic responses that can lead to specific 337 

molecular pathways identification. 338 

  339 

Differential network analysis supports the biological understanding of differentially expressed genes  340 

Our next aim was to utilize DN to add an extra layer of interpretation to DE results, especially when 341 

the number of DE genes is insufficient for direct pathway analysis, indicating that the individual gene-342 

level effects are very small. The vCA1 region of the hippocampus had the least number of unique DE 343 

genes from all brain regions with only 5.4% (n=25) of the total vCA1 DEGs (n=466) being unique to this 344 

region (Fig 2C and 4A and Table S8). Enrichment analysis at the GO level did not yield enriched terms 345 

(S3 Fig, FDR < 0.05 and Table S27). We next used these 25 unique DE genes as seeds in DiffBrainNet 346 

and found their differential neighbors, resulting in a DN containing 745 nodes, the 25 unique vCA1 DE 347 

genes and 720 differential neighbors (Table S28). This DN was enriched for genes associated via GWAS 348 

with autism spectrum disorder and depleted from genes associated with schizophrenia and general 349 

cognitive ability (Fig 4B and Table S29). These genes were now significantly enriched for GO terms 350 

associated with nervous system processes, cell morphogenesis, ion transport and synaptic signaling 351 

(Fig 4C and Table S30). This indicates that very small effects on multiple genes resulted in altered 352 

molecular connectivity in vCA1. This was not detected at the gene-level with DE analysis, but it was 353 

detected at the network-level with DN analysis.  354 

We next focused on the top enriched GO term based on the gene ratio, "regulation of trans-synaptic 355 

signaling" (FDR = 8.71x10-22), and visualized the genes that were both part of the vCA1 DE genes 356 

network and associated with this term (Fig 4D). At the center of this DN was Grm4, which encodes a 357 

metabotropic glutamate receptor. Grm4 showed many differential connections to other differential 358 

hub and DE genes including Cacna1a, which encodes a subunit of voltage-dependent calcium channels 359 

important for communication between neurons and synaptic signaling [52]. This trans-synaptic 360 
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signaling network responded to dexamethasone by a number of changed correlations including 361 

several differential hub genes, beyond Grm4 and Cacna1a, namely Cspg5, Brsk1, Nlgn3, Rab3a and 362 

Grin2b. This combination of DE and DN analysis was instrumental to identify potential biological 363 

responses to dexamethasone in the vCA1 region that were not readily detectable through DE analysis 364 

alone. 365 

 366 

DiffBrainNet can support exploring network changes related to candidate genes 367 

We next sought to use our resource and analytical framework to investigate biological processes and 368 

pathways regulated by genes previously associated with risk for psychiatric disorders. DiffBrainNet 369 

provides the opportunity to study how genes of interest are co-regulated in different brain regions at 370 

vehicle-treated and after a stimulus, in this case glucocorticoid exposure. Here, we focused on 371 

understanding which biological processes were co-regulated by Tcf4 (Transcription factor 4), a gene 372 

encoding a transcription factor with genome-wide significant associations to a number of different 373 

psychiatric disorders including schizophrenia, major depressive disorder and autism spectrum 374 

disorders [53] and for which mutations have been shown to cause neurodevelopmental disorders like 375 

for example Pitt-Hopkins syndrome [54]. 376 

We used DiffBrainNet to better understand this interaction by investigating the biological pathways 377 

co-regulated by Tcf4 in the DNs reflecting changes associated with GR activation. Tcf4 showed 378 

significant DE with dexamethasone in three of the brain regions, the amygdala, the vDG and the dDG, 379 

but in all brain regions the direction of change was the same (decrease following dexamethasone 380 

treatment; Fig 5A). While Tcf4 did not show statistically significant DE in the PFC, previous work in this 381 

brain region using co-expression network analysis in human postmortem brain samples [55], has 382 

identified Tcf4 as a master regulator in schizophrenia. When constructing a DN around Tcf4 in the PFC, 383 

we identified 26 differentially connected genes including connections to DE genes (n=4) as well as 384 

differential hub genes (n=3, Fig 5B). The Tcf4 PFC DN was enriched for genes that have been associated 385 

in GWAS with schizophrenia, autism and other neurobehavioral traits (Fig 5C and Table S31). This 386 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.21.489034doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.489034
http://creativecommons.org/licenses/by-nd/4.0/


 16 

supports the observation that Tcf4 networks are relevant for schizophrenia and adds the additional 387 

layer of the importance of Tcf4 networks in the context of stress. Interestingly, the differential Tcf4 388 

network was not only enriched for GO terms related to development, but also autophagy and 389 

chromatin organization (Fig 5D and Table S32). 390 

In contrast to the PFC, Tcf4 was significantly downregulated in the dorsal and ventral dentate gyrus 391 

(Fig 5A). Tcf4 is highly expressed in the hippocampal formation from the end of prenatal life and 392 

throughout adulthood [53]. We now aimed to use DiffBrainNet to investigate whether Tcf4 being 393 

differentially expressed in the vDG and dDG of the hippocampal formation would have specific effects 394 

on each sub region’s molecular connectivity. From the 55 members of the Tcf4 vDG and dDG DNs (Fig 395 

5E), 20 are known Tcf4 targets and/or protein interactors, according to the CHEA and TRANSFAC 396 

transcription factor targets databases [56,57] and the Pathway commons protein-protein interactions 397 

datasets [58]. An additional 11 genes are predicted Tcf4 targets according to the MotifMap [59] and 398 

TRANSFAC [57] (S4 Fig and Table S33) (datasets assembled by the Harmonizome database, [60]). While 399 

most of the differential connections in this network were regulated in the same direction in both the 400 

vDG and the dDG, we also observed specific differential connections (n=24) that were regulated in an 401 

opposite manner between the two brain regions (Table S34 and selected ones in Fig 5F). Tcf4 402 

connections with the group of Zic genes, Zic1, Zic2 and Zic3, suggested a positive regulatory effect (see 403 

Methods for explanation of term and S1B Fig) in vDG and a negative regulatory effect in dDG. Zic genes 404 

have been reported to play an important role in body pattern formation via the Wnt pathway [61], a 405 

pathway that has been extensively associated with Tcf4 [62,63]. In addition, Tcf4 had a positive 406 

regulatory connection with Runx2, another Wnt pathway effector [64], in dDG and a negative 407 

regulatory connection with it in vDG, suggesting that dexamethasone may mediate Tcf4 effects on the 408 

Wnt pathway in a DG sub region-specific way. These types of analyses represent a thorough approach 409 

to hypothesis generation for further follow-up experiments of these effects. 410 

 411 

 412 
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Discussion 413 

The information provided by transcriptomic studies is far richer than a list of differentially expressed 414 

genes. Here, we have derived RNA expression from 8 mouse brain regions at vehicle and treatment 415 

(GCs) conditions and present DiffBrainNet, a resource and analytical framework, that provides access 416 

to DE and DN results. DiffBrainNet allows for direct synthesis and comparisons of the transcriptional 417 

landscape of all 8 brain regions at all conditions (Fig 6A). DiffBrainNet permits the search of DE genes 418 

unique to one brain region or common to any region combination at multiple FDR and fold-change 419 

cutoffs, the generation of plots and the chance to download the data (Fig 6C and 6D). In addition, 420 

DiffBrainNet offers the possibility to visualize the control (vehicle-treated), treatment 421 

(dexamethasone-treated) and differential networks in a single brain region and in any region 422 

combination, the ability to compare hub genes on all treatment levels at multiple node-betweenness 423 

thresholds and to download the network plots and data (Fig 6B and 6D).  424 

Comparing networks between two conditions is associated with a number of issues, as highlighted by 425 

De la Fuente [4] and described below. Comparison of networks uses mainly the node degree, which is 426 

a measure of a gene's number of connections in two networks. This approach is highly dependent on 427 

the threshold that is used for the edges that are included in the two different networks and has proven 428 

challenging, since it is unclear how to choose comparable thresholds for two different networks. We 429 

sought to overcome this challenge by computing a single DN. We established a two-step method in 430 

order to differentially analyze networks. First, we used KiMONo to compute prior knowledge-based 431 

networks at vehicle-treated and following dexamethasone administration (treatment) conditions. 432 

Second, DNs were computed using DiffGRN. DiffGRN uses a z-test to calculate differential gene 433 

interactions based on the regression β-values of gene pairs at the vehicle and treatment network (S1B 434 

Fig) [25]. This approach provides differential interactions, thus eliminating the problem of having to 435 

compare two networks. This way we could pinpoint not only which genes but also which interactions 436 

of specific genes mediate the network changes. Moreover, by using prior-knowledge guided networks 437 

(KiMONo) [3], in which the expression of each gene is modeled by using the genes/proteins connected 438 
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to it in a prior network as possible predictors in the regression model,  we could compute vehicle and 439 

treatment networks of the same topological layout. This allowed for an even more robust comparison 440 

and reliable calculation of the z-values for the DN. 441 

The use of biological knowledge in the form of a prior network, upon which the vehicle and treatment 442 

networks are built, is a substantial difference of KiMONo as compared to other network approaches 443 

such as weighted correlation network analysis (WGCNA) [2], which are built using correlation matrices 444 

without the use of prior- biological knowledge.  DiffBrainNet is limited by a restricted search space, 445 

since it can only model interactions present in the prior network we chose to use. In the present 446 

analysis and the DiffBrainNet resource, we used FunCoup 5 to build our prior network [37]. FunCoup 447 

infers functional associations of genes or proteins using various data types and sources, including 448 

transcription factor binding sites, cellular and subcellular colocalization and protein-protein 449 

interactions. The use of such functional associations on the gene or protein level inferred by a variety 450 

of experimental data as prior-knowledge for predicting networks reduces the risk of false positives 451 

since the search space is restricted to known interactions and adds functional protein-level 452 

information to the transcriptomic data. Since, we provide the source code of all analysis 453 

(https://github.molgen.mpg.de/mpip/DiffBrainNet), a suitable prior network according to each 454 

research question can be chosen thus providing flexibility and specificity in hypothesis testing. By using 455 

prior-knowledge, the network metrics (node-degree, node-betweenness, modularity) are influenced 456 

by the prior network. To overcome this, we used normalized node-betweenness for all our analyses, 457 

which is defined as the node-betweenness in the calculated network divided by the prior network 458 

node-betweenness. 459 

The combination of both gene- and network level analysis enriches our understanding of 460 

transcriptomic data and of biological implications. We showed that differential prior knowledge-based 461 

network analysis can unravel different and complementary aspects of the transcriptomic responses to 462 

a treatment as compared to individual gene-level analysis (DE). For example, we showed that in the 463 

PFC neither of the differential hub genes were also DE genes and that DE and DN analyses revealed 464 
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distinct aspects of the transcriptomic responses. The DE genes explained effects mainly on signaling 465 

and development whereas the members of the DN explained mainly the cellular responses to the 466 

stimulus, GCs which are the main stress hormones, and stress. 467 

DNs can be used to resolve underlying biological responses that are not detected by DE analysis. We 468 

identified Abcd1 as the top differential hub gene in the PFC, which was not detected as a DE gene 469 

itself. ABC proteins are actively transporting GCs, including dexamethasone across the blood brain 470 

barrier and the placenta [50,51]. ABC transporters, synaptic biology and neuropsychiatric phenotypes 471 

have been previously associated in the literature. Abcd1- deficient microglia have been correlated with 472 

synaptic loss and axonopathy [65] pointing to an Abcd1-dysregulated network association with 473 

synaptic signaling problems. Abcb1, another member of the ABC transporters family, has been 474 

associated with stress adaptation and potential mediation of stress-related psychiatric disorders 475 

phenotypes [66]. These findings highlighted that the exclusive analysis of transcriptomic data at the 476 

gene-level does not capture all aspects of the transcriptional response to a stimulus, and the DN 477 

analysis can unravel distinct but complementary aspects that can lead to specific molecular pathways 478 

identification. 479 

Finally, networks can be used for hypothesis generation and testing by choosing a suitable prior 480 

network. This approach can be exploited to generate hypotheses regarding the interactive effects of 481 

environmental exposures and the molecular underpinnings of specific genes. Using DiffBrainNet we 482 

analyzed the effects of dexamethasone on the co-expression network of a major psychiatric risk gene, 483 

Tcf4, in 3 different brain regions. Tcf4 is expressed in the cortex, the hippocampus and the 484 

hypothalamic and amygdaloid nuclei predominantly at the end of prenatal life decreasing to lower 485 

expression levels throughout adulthood [53] and was shown to regulate neural progenitor cell 486 

maintenance and proliferation [67]. Animal models of gain and loss of function of Tcf4 have shown its 487 

relevance for cognition, sensorimotor gating and neuroplasticity [68]. In addition, gene x psychosocial 488 

stress interactions have been reported for Tcf4 [69], but little is known about relevant molecular 489 

pathways and brain regions for this interaction. With DiffBrainNet we showed that Tcf4 mediates GCs 490 
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effects in two sub-regions of the hippocampal formation, ventral and dorsal DG, at the gene- and at 491 

the network- levels since it is DE in those but only at the network-level for the PFC where is not a DE 492 

gene. The PFC DN of Tcf4 was enriched for terms that include autophagy. The connection of Tcf4 and 493 

autophagy has been previously described in the literature [62] but this is to our knowledge, the first 494 

report of a potential role of Tcf4 in stress-related regulation of autophagy. This approach can be 495 

extended to the investigation of a wide spectrum of different gene lists - produced by GWAS studies 496 

for example - both at vehicle and after glucocorticoid exposure in a brain region-specific manner using 497 

DiffBrainNet. The results can be used to design more focused experiments to resolve targeted 498 

molecular mechanisms implicated in the pathogenesis of brain disorders. 499 

In summary, through DN analysis we were able to identify specific molecular connectivity patterns 500 

governing transcriptomic responses to glucocorticoids that are not unraveled when investigating the 501 

differential gene expression levels alone. In our dataset, we inferred DNs in 8 mouse brain regions 502 

including a detailed segmentation of the hippocampal formation.  With this work, we introduce 503 

DiffBrainNet, a resource and an analytical framework that includes both gene expression data and 504 

prior-guided genome-wide networks in these 8 brain regions at control (vehicle-treated), following 505 

GCs stimulation and at the differential level. DiffBrainNet can be used to pinpoint molecular pathways 506 

important for the basic function and response to GCs in a brain-region specific manner. It can also 507 

support the identification and analysis of biological processes regulated by brain and psychiatric 508 

diseases risk genes at the control and differential levels. We made these complex datasets and 509 

analyses available to all interested researchers via DiffBrainNet (access: 510 

http://diffbrainnet.psych.mpg.de, Fig 6). 511 

 512 

Data availability 513 

Raw and normalized gene expression data generated in this study are provided at GEO under 514 

GSE190712 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190712). Differential 515 

expression and differential network data can be downloaded from our resource DiffBrainNet. 516 
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Code availability 517 

Data analysis scripts and scripts that were used to generate the manuscript figures is available via 518 

github: https://github.molgen.mpg.de/mpip/DiffBrainNet. The source code of the shiny app is 519 

available via github as well: https://github.molgen.mpg.de/mpip/DiffBrainNet_ShinyApp. 520 
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Figure 1: Schematic representation of experimental and analytical steps. DiffBrainNet is a resource 
of differential expression and differential networks in 8 mouse brain regions. (Experiment) C57Bl/6 
mice were treated intraperitoneally with 10mg/kg Dexamethasone or 0.9% saline as vehicle for 
4hours. Eight different brain regions were isolated: amygdala – AMY, cerebellar cortex – CER, 
prefrontal cortex – PFC, paraventricular nucleus of the hypothalamus – PVN, dorsal Cornu Ammonis 1 
– dCA1, ventral Cornu Ammonis 1 – vCA1, dorsal dentate gyrus – dDG, ventral dentate gyrus – vDG. 
(Analysis) We performed RNA sequencing in the 8 brain regions, followed by differential expression 
analysis (DE) and differential prior-knowledge-based genome-wide network analysis (DN). (Results) 
DiffBrainNet includes differential expression results and network results for all brain regions. 
DiffBrainNet logo was created with BioRender.com. 
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Figure 2: Differential network analysis provides distinct biological information from differential 
expression: the case of PFC. (A) Principal component (PC) analysis plot of PCs 1 and 2 explaining 
variance associated with brain region. (B) PC analysis plot of PCs 4 and 5 explaining variance associated 
with treatment group. (C) Upset plot comparing differentially expressed genes with FDR adjusted p-
value smaller than 0.1 across 8 brain regions. (D) Upset plot comparing differential hub genes with a 
normalized node-betweenness above 1.0 across 8 brain regions. Proportions of intersection size bars 
coloured in yellow indicate genes that are also significantly DE genes in at least one of the 
intersection’s brain regions. (E) Dot plot for the top 14 GO terms most highly enriched for the unique 
DE genes and (F) for the unique differential hub genes in the PFC. 
(GO terms enrichment analyses are done with at least 10% of the input genes having to overlap with 
the genes of the term.) 
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Figure 3: ABC transporters mediate dexamethasone response in the PFC at the network level. 
(A) Normalized expression of Abcd1 in all brain regions at vehicle and after dexamethasone 
administration. Abcd1 is not differentially expressed in any of the 8 regions. (B) Abcd1 gene 
neighborhood in the differential network of the PFC. (C) KEGG and Reactome pathway enrichments 
for Abcd1 and its differential neighbors in PFC. Bold labeled terms highlight a more general 
involvement of the ABC transporters pathway in the PFC response to glucocorticoids. (D) Network 
representation of the ABC transporters differential pathway.  
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Figure 4: Differential network analysis supports the biological understanding of differential 
expression: the case of vCA1. (A) Number of unique and shared DE genes in vCA1 and number of 
unique and shared differential hub genes in vCA1. vCA1 has the least unique DE genes but the third 
highest percentage of unique differential hub genes of the eight brain regions. (B) Unique vCA1 DE 
genes and their differential neighbors are enriched for genes that carry SNPs associated with the 
GWAS traits schizophrenia, autism spectrum disorder or schizophrenia and general cognitive ability. 
(C) GO biological processes enrichment analysis of unique vCA1 DE genes and their neighbors. (D) 
Differential neighborhood of the genes that are part of the GO term regulation of trans-synaptic 
signaling and connected with the vCA1 unique DE genes. (GO terms enrichment analysis is done with 
at least 10% of the input genes having to overlap with the genes of the term. GWAS enrichment 
analysis is done with 16 of the input genes having to overlap with the genes of the term.)  
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Figure 5: DiffBrainNet can support exploring network changes related to candidate genes: the case 
of Tcf4. (A) Tcf4 is differentially expressed in the ventral and dorsal dentate gyrus (v/dDG) and in the 
AMY after 10mg/kg intraperitoneal dexamethasone treatment for 4 hours. (B) Tcf4 DN in PFC. (C) Tcf4 
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PFC DN is enriched for genes that carry SNPs associated with the GWAS traits schizophrenia, autism 
spectrum disorder or schizophrenia, adventureness and general risk tolerance among others. (D) GO 
biological processes enrichment analysis shows that members of the Tcf4 PFC differential network are 
associated with development, neuronal differentiation, RNA biosynthetic processes and gene 
expression but also with regulation of autophagy (bold). (E) Differential network of Tcf4 in both vDG 
and dDG (left). Zoom-in on a highly interconnected part of the DG Tcf4 DN (right). Coloured with red 
are all the connections with a positive regulatory effect in dDG and a negative regulatory effect in vDG, 
coloured in black are all the connections with a negative regulatory effect in dDG and a positive in vDG 
and coloured in green is one of the connections that has a positive regulatory effect in both areas. (F) 
Tcf4 molecular pathways that are co-regulated in an opposite manner in vDG and in dDG. Tcf4 
connections with the Zic transcripts and with Satb2 and Nfia have a positive regulatory effect in vDG 
and a negative one in dDG whereas Tcf4 connections with Runx2, Egr1 and R3hdm4 have a negative 
regulatory effect in vDG and a positive in dDG.  
(Enrichment analyses are done with at least 10% of the input genes having to overlap with the genes 
of the term.)  
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Figure 6: DiffBrainNet: a resource of gene expression and network data for 8 mouse brain regions. 
(A) DiffBrainNet includes gene expression and network data for 8 mouse brain regions at baseline, 
dexamethasone and differential levels. (B) DiffBrainNet provides network data for all 8 brain regions 
alone or in combination at baseline, treatment and differential levels. The data can be downloaded 
and plotted in the app. (C) DiffBrainNet provides gene expression data for all 8 brain regions. The data 
can be downloaded and plotted in the app. (D) The data both at the network- and the gene- levels can 
be downloaded using different thresholds of significance, fold change and node betweenness. 

Gene 2

Gene 1

A

B Volcano plot of one brain region Expression levels of one gene

Transcriptomic data of 8 mouse brain regions at baseline and after 
dexamethasone treatment. The 8 brain regions include the PFC, the PVN, 
the AMY, the CER, the dCA1, the vCA1, the dDG and the vDG.

Gene-level data and graphs at baseline and differential expression 
levels of all 8 brain regions alone or in combination.

Network data and graphs at baseline, dexamethasone and differential 
levels in all 8 brain regions alone or in combination.

Filtering and downloading options at multiple levels of significance, 
fold change and node betweenness.

Freely available R shiny app

A

B

C

D

D

C

Differential connection
in one area

Differential connection
in multiple areas

Differential gene neighbourhoods of two transcripts in 4 brain regions

Fi
lte

r t
he

 d
iff

er
en

tia
l e

xp
re

ss
io

n 
da

ta
 &

do
w

nl
oa

d 
th

e 
re

su
lti

ng
 ta

bl
e

Fi
lte

r t
he

 n
et

w
or

k 
da

ta
 &

do
w

nl
oa

d 
th

e 
re

su
lti

ng
 ta

bl
e

Produce upset plots summarising
multiple brain regions results

Brain
region 1

Brain
region 2

Brain
region 4

Brain
region 3

DE gene
Differential hub gene
no DE & no differential hub

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.21.489034doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.489034
http://creativecommons.org/licenses/by-nd/4.0/

