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Abstract

Background: Large microarray datasets have enabled gene regulation to be studied through coexpression analysis.

While numerous methods have been developed for identifying differentially expressed genes between two

conditions, the field of differential coexpression analysis is still relatively new. More specifically, there is so far no

sensitive and untargeted method to identify gene modules (also known as gene sets or clusters) that are

differentially coexpressed between two conditions. Here, sensitive and untargeted means that the method should

be able to construct de novo modules by grouping genes based on shared, but subtle, differential correlation

patterns.

Results: We present DiffCoEx, a novel method for identifying correlation pattern changes, which builds on the

commonly used Weighted Gene Coexpression Network Analysis (WGCNA) framework for coexpression analysis. We

demonstrate its usefulness by identifying biologically relevant, differentially coexpressed modules in a rat cancer

dataset.

Conclusions: DiffCoEx is a simple and sensitive method to identify gene coexpression differences between

multiple conditions.

Background
There are two major classes of approach to the analysis

of gene expression data collected in microarray studies:

either one can identify genes that are differentially

expressed in different conditions, or the patterns of cor-

related gene expression (coexpression). Coexpression

analysis identifies sets of genes that are expressed in a

coordinated fashion, i.e. respond in a similar fashion to

the controlled or uncontrolled perturbation present in

the experiment. Such coexpression is considered as evi-

dence for possible co-regulation and for membership to

common biological processes under the principle of

guilt-by-association [1]. When comparing the transcrip-

tome between two conditions, it is a natural step to

identify differential coexpression to get an even more

informative picture of the dynamic changes in the gene

regulatory networks. Changes in the differential coex-

pression structure of the genes are, for example, a group

of genes strongly correlated in one condition but not in

the other, or one module correlating to another module

in one condition, whereas they are no longer correlated

in the other condition. Differential coexpression may

indicate rewiring of transcriptional networks in response

to disease or adaptation to different environments.

Differential coexpression has been reported in diverse

organisms and across various conditions. For example,

Fuller et al. [2] reported a differentially coexpressed

module in obese mice compared to lean mice; Van Nas

et al. [3] found gender-specific coexpression modules;

Oldham et al. [4] identified gene modules that were dif-

ferentially coexpressed between humans and chimpan-

zees; and Southworth et al. [5] found that aging in mice

was associated with a general decrease in coexpression.

Differential coexpression patterns associated with dis-

eases have been an important focus of research, see

review by De la Fuente et al. [6].

Differential coexpression methods can be divided into

two categories that serve distinct purposes: on the one

hand, targeted approaches study gene modules that are

defined a priori, while, on the other hand, untargeted

approaches aim at grouping genes into modules on the

basis of their differential coexpression status.

* Correspondence: r.c.jansen@rug.nl
1Groningen Bioinformatics Center, University of Groningen, Kerklaan 30, 9751

NN Haren, the Netherlands

Full list of author information is available at the end of the article

Tesson et al. BMC Bioinformatics 2010, 11:497

http://www.biomedcentral.com/1471-2105/11/497

© 2010 Tesson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:r.c.jansen@rug.nl
http://creativecommons.org/licenses/by/2.0


A suitable untargeted method for differential coex-

pression analysis should satisfy the following criteria:

(i) Sensitively detect groups of genes in which the cor-

relation of gene pairs within the group is significantly

different between conditions.

(ii) Sensitively detect changes in correlations between

two groups of genes even when the within-group corre-

lation is conserved across conditions.

(iii) Allow for simple comparison of more than two

conditions.

Criteria (i) and (ii) are illustrated in Figure 1, which

schematically depicts biological scenarios that can give

rise to differential coexpression.

Multiple methods have been proposed to identify such

large-scale correlation patterns [5,7-12]. However, this

early work provided only partial solutions to the

problem of differential coexpression since, with one

recent exception [5], none of the proposed methods

were entirely untargeted. Instead, existing methods can

be divided into two categories: targeted and “semi-tar-

geted” approaches. In targeted approaches, pre-defined

modules are surveyed for correlation changes between

two conditions. For example, Choi et al. [9] proposed a

method that focuses on the analysis of modules based

on known gene annotations, such as GO categories, and

tests the significance of the coexpression changes using

a statistical measure known as dispersion. This has the

advantage of not requiring the gene sets to be highly

correlated in one of the two conditions. However, this

method is targeted in that it relies on the study of

known functional gene sets and is not able to identify

novel, non-annotated modules or modules that would

Figure 1 Illustration of differential coexpression scenarios. Panel A: A gene network is in a coexpressed state in condition 1 as shown by

the red background. In condition 2 an important regulator of that network is now inactive and the module is no longer coexpressed. This

scenario is an example of the differential coexpression type described by criterion (i). Panel B: Two pathways are coordinated in condition 1 via

an important hub gene (shown in blue) whose inactivity in condition 2 means the two pathways are no longer coexpressed. This exemplifies

the module-to-module differential coexpression described by criterion (ii).
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only partially match annotated categories. “Semi-tar-

geted” approaches use classical coexpression methods in

one of the conditions to define modules and study

whether these modules are also coexpressed in the sec-

ond condition. DCA (differential clustering analysis) [10]

is an example of a method using one of the two condi-

tions as reference, meaning the clusters under consid-

eration are obtained from one condition and then

studied in the other condition. In order to avoid bias

towards one of the conditions, Ihmels et al. suggested

doing a reciprocal analysis, switching the reference and

target conditions, while Southworth et al. used a third

dataset as reference [5]. A drawback of such “semi-tar-

geted” methods is that the analysis will only focus on

groups of genes that emerge as clusters in at least one

of the conditions, and will therefore potentially miss

more subtle cases. As an example, a weak but significant

condition-dependent correlation structure between a

group of genes that otherwise belong to distinct,

strongly coexpressed and conserved clusters would not

be detected by this approach. A first attempt at an

untargeted approach was introduced by Southworth

et al. [5], who proposed applying hierarchical clustering

using the difference in pairwise correlations between

both conditions as a similarity metric for two genes.

This approach is therefore suited to identifying groups

in which the within-group correlation changes (first cri-

terion), but it cannot be applied to the detection of

module-to-module correlation differences (second criter-

ion). The field of differential coexpression analysis

would therefore benefit from a new, truly untargeted

and sensitive method for identifying differentially corre-

lated modules that would satisfy all three criteria.

Here we present a solution to this problem in the

form of the DiffCoEx approach for untargeted differen-

tial coexpression analysis: a method which applies the

powerful tools of Weighted Gene Coexpression Network

Analysis (WGCNA) to differential network analysis. We

first describe the five steps involved in DiffCoEx and

then, to illustrate the method’s effectiveness, we present

the results of an analysis performed on a publicly avail-

able dataset generated by Stemmer et al. [13].

Algorithm
Our method builds on WGCNA [14,15], which is a fra-

mework for coexpression analysis. Identification of coex-

pression modules with WGCNA follows three steps: first

an adjacency matrix is defined between all the genes

under consideration based on pair-wise correlations.

Then the generalized topological overlap measure [16] is

computed from the adjacency matrix and converted into

a dissimilarity measure. Finally, using this dissimilarity

measure, hierarchical clustering is applied, followed by

tree cutting using either a static or a dynamic height cut.

The resulting clusters form modules of genes in which all

members are strongly inter-correlated.

The principle of DiffCoEx is to apply WGCNA to an

adjacency matrix representing the correlation changes

between conditions. DiffCoEx clusters genes using a

novel dissimilarity measure computed from the topolo-

gical overlap [16] of the correlation changes between

conditions. Intuitively, the method groups two genes

together when their correlations to the same sets of

genes change between the different conditions. The

complete process of our differential coexpression analy-

sis comprises five steps, described below. The notation

X designates a square matrix with the dimension of the

number of genes considered and xij is used to define the

element of X at row i and column j.

Step 1

Build adjacency matrix C[k] within each condition k as

the correlation for all pair of genes (i,j):

C c gene genek
ij
k

i j
[ ] [ ]: cor( , )=

In this step, different correlation measures can be

used, such as the Pearson or Spearman coefficient.

Step 2

Compute matrix of adjacency difference:

D d c c c cij ij ij ij ij: sign( ) * ( ) sign( ) * ( )[ ] [ ] [ ] [ ]= −









1

2

1 1 2 2 2 2




In this matrix, high values of dij indicate that the

coexpression status of genei and genej changes signifi-

cantly between the two conditions. The correlation

change is quantified as the difference between signed

squared correlation coefficients so that changes in corre-

lation which are identical in terms of explained variance

(r2) are given the same weight. This adjacency matrix is

defined such that it only takes values between 0 and 1.

The soft threshold parameter b is taken as a positive

integer and is used to transform the correlation values

so that the weight of large correlation differences is

emphasized compared to lower, less meaningful, differ-

ences. b should be regarded as a tuning parameter, and

in practice it is advisable to try different values of b. In

WGCNA, it is recommended to choose b so that the

resulting coexpression network follows an approximate

scale-free topology [14]. However the “scale-free” topol-

ogy nature of biological networks has been disputed

[17], and another way is to consider the soft threshold

parameter as a stringency parameter: using high values

of b means putting less emphasis on smaller changes in
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correlation, and therefore being more statistically strin-

gent. Accordingly, since larger sample sizes come with

higher statistical significance of small correlation

changes, smaller values of the soft threshold can be

used as the sample size increases. In practice, we view

the soft threshold parameter as a tuning parameter, and

we always check the significance of the result afterwards,

both statistically and using biological criteria relevant in

each specific study.

Step 3

Derive the Topological Overlap [16] based dissimilarity

matrix T from the adjacency change matrix D.

T t

d d d

d d d

ij

ik kj ij

k

ik

k

jk

k

ij

:

min ,

= −

( ) +













+ −

∑

∑ ∑
1

1

The use of the topological overlap measure to con-

struct a dissimilarity metrics allows the identification of

genes that share the same neighbors in the graph

formed by the differential correlation network as defined

by the adjacency matrix created in Step 2. Intuitively, a

low value of tij (high similarity) means that genei and

genej both have significant correlation changes with the

same large group of genes. This group of genes consti-

tutes their “topological overlap” in the differential corre-

lation network and may, or may not, include genei and

genej. This property allows DiffCoEx to satisfy both cri-

teria (i) and (ii) as stated earlier. On the one hand, if

genei and genej are part of a module of genes coex-

pressed in only one condition (criterion (i), illustrated in

Figure 1A), then the topological overlap between genei
and genej in the difference network consists of all the

genes within that module. On the other hand, if genei
and genej are equally inter-correlated in both conditions

but correlate with the genes in a distinct module in only

one condition (criterion (ii), illustrated in Figure 1B),

then the topological overlap between genei and genej in

the difference network consists of the genes in that

other module. In both cases genei and genej will there-

fore be grouped together: in the first case forming a dif-

ferentially correlated module, and in the second case

forming a module with differential module-to-module

correlation with another group of genes.

We note that since the adjacency matrix takes values

between 0 and 1, the dissimilarity matrix computed here

also takes values between 0 and 1, as shown in [14].

Step 4

The dissimilarity matrix T is used as input for clustering

and modules are identified.

The clustering can be done using standard hierarchical

clustering with average linkage, followed by module

extraction from the resulting dendrogram, either using a

fixed cut height or with more elaborate algorithms such

as the dynamicTreeCut [18]. Alternative clustering tech-

niques, such as Partitioning Around Medoids (PAM)

[19], may be used in this step.

Step 5

Assess the statistical significance of coexpression

changes.

This is necessary because DiffCoEx uses user-defined

parameters: the soft threshold b used to transform the

adjacency matrix in Step 2 and the clustering para-

meters in Step 4 (tree cutting settings, for example).

Unsuitable settings may lead to the detection of clusters

with non-significant differential coexpression.

The statistical significance of differential coexpression

can be assessed using a measure of the module-wise

correlation changes such as the dispersion statistic [9],

the t-statistic [12], or the average absolute correlation.

Permutations or simulations of the data can be used to

generate a null distribution of those statistics by provid-

ing estimates of the extent of differential correlation

that can be expected to occur by chance. An example of

implementing a permutation procedure to assess the sig-

nificance of differential coexpression using the disper-

sion statistics is presented in Additional File 1.

Variants

Extending the DiffCoEx method to multiple conditions

This method can easily be extended to the study of dif-

ferential coexpression over more than two conditions.

The only required change is in Step 2, where the matrix

of adjacency differences should be replaced with the fol-

lowing: supposing we have calculated C[1],...,C[k],...,C[n]

the correlation matrices for gene pairs in each of the n

different conditions:

D d
n

c c c

ij

ij
k

ij
k

ij

k

:
sign( )*( )[ ] [ ] [ ]

=
−

−















∑1

1 2

2 0


where

c
n

c cij ij
k

ij
k

k

[ ] [ ] [ ]sign( ) * ( )0 21
= ( )∑

For two conditions, one can verify that this formula-

tion is equivalent to that proposed earlier in Step 2.

A less sensitive variant to detect more striking patterns

If one is interested in picking up only coexpression

changes that affect genes forming highly coexpressed
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modules in at least one of the conditions, the formula in

Step 2 can be adapted so that the method uses the dif-

ference between the two transformed correlation

matrices (with the soft threshold parameter b) as shown

below:

D d c c c cij ij ij ij ij: sign( ) * ( ) sign( ) * ( )[ ] [ ] [ ] [ ]= −
1

2

1 1 2 2 

This will make the method less sensitive to subtle

coexpression changes, but may help in extracting more

strikingly differentially coexpressed modules.

Variant without the topological overlap

As with WGCNA, the use of a topological overlap-based

metrics makes the approach very sensitive, since it con-

siders the correlation changes to all other genes to

determine the similarity between two genes. The

method can be simplified by replacing the dissimilarity

matrix T of Step 4 by a dissimilarity measure derived

directly from the adjacency matrix D:

T Dalt = 1 –

This will make DiffCoEx focus only on within-module

differential coexpression (criteria (i)) and not on mod-

ule-to-module differential coexpression (criteria (ii)).

This variant is computationally more efficient since the

topological overlap computation is omitted.

Results
We present here the results of our method as used on a

previously published dataset. We identify modules of

genes that are differentially coexpressed and, by using

gene set enrichment analysis, we provide evidence for

their biological relevance.

Dataset

Our dataset (Gene Expression Omnibus GEO GSE5923)

contains Affymetrix gene expression profiles of renal

cortex outer medulla in wild-type- and Eker rats treated

with carcinogens. The dataset is a time course as the

rats were treated with Aristolochic Acid (AA) or Ochra-

toxin A (OTA), respectively, for 1, 3, 7 or 14 days. In

total, the dataset consists of 84 arrays measuring 15,923

probe sets. Details about the experimental settings are

available in the original paper [13].

Eker rats are predisposed to renal tumor because they

are heterozygous for a loss-of-function mutation in the

tuberous sclerosis 2 (Tsc2) tumor suppressor gene.

Stemmer et al. [13] compared the transcriptional

responses of the rats to the carcinogens and found that

the expression levels of genes belonging to a number of

cancer-related pathways were affected differently in the

mutant compared to the wild-type rats. In our

re-analysis of the data, we switched the focus from dif-

ferential expression to differential coexpression in an

attempt to identify functional modules responding to

carcinogen treatment with a different coexpression sig-

nature in mutant Eker rats compared to wild type rats.

Analysis

We applied the DiffCoEx method to the quantile nor-

malized data [20]. A duplicate set of 12 controls present

only for Eker rats was discarded in order to have a sym-

metric experimental setting among wild-type- and Eker

rats. We used the Spearman rank correlation in order to

reduce sensitivity to outliers, and the hierarchical clus-

tering and module assignment was performed using

dynamicTreeCut [18]. The detailed algorithm and R

code used in this analysis are given in Additional File 1.

Findings

The results of the analysis are summarized in Figure 2A.

We identified a total of 8 differentially coexpressed

modules comprising a total of close to 1800 genes (1887

probe sets, 1796 unique genes). The modules were given

color names as indicated in Figure 2A. Four of these

modules (totaling 1361 genes) were significantly more

highly correlated in the mutant Eker rats than in the

wild-type rats, while only the red module (36 genes)

and, to a lesser extent, the green module (116 genes)

follow the opposite pattern. This striking asymmetry

might reflect the greater fragility of the Eker rats to car-

cinogens: in Eker rats, treatment with carcinogens leads

to much more coordinated perturbation of the tran-

scriptome than in wild-type rats.

The cases of the black, orange and green modules

illustrate an interesting characteristic of DiffCoEx: the

method is able to identify module-to-module correlation

changes. Interestingly, the black module is not differen-

tially correlated in the wild-type rats compared to the

Eker rats. Instead, what qualifies the black module as a

differentially coexpressed module is its very significant

drop in correlation with the genes in the blue and pur-

ple modules in the wild-type rats compared to the Eker

mutants (see Figure 2A). Similar patterns can be

observed for the orange and green modules. This prop-

erty makes DiffCoEx a sensitive approach for detecting

any type of large-scale correlation change.

Following Choi et al. [9], significance of the coexpres-

sion differences was assessed by comparing the disper-

sion index values of each module in the data with the

null distribution obtained from permuted (scaled) data

(see Additional File 1 for details and Additional File 2:

Figure S1 for an overview of the permutation results).

In 1000 permutations, none of the blue, brown, purple,

red or yellow modules obtained as high a dispersion

value as that obtained from the non-permuted data,
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Figure 2 Differentially coexpressed modules between carcinogen-treated Eker rats and wild-type rats. Panel A: Comparative correlation

heat map. The upper diagonal of the main matrix shows a correlation between pairs of genes among the Eker mutant rats (the red color

corresponds to positive correlations, blue to negative correlations). The lower diagonal of the heat map shows a correlation between the same

gene pairs in the wild-type controls. Modules are identified in the heat map by black squares and on the right side of the heat map by a color

bar. The brown bands on the right side indicate the mean expression of the modules in the Eker rats (first column) and the wild-type rats

(second column); darker colors indicate higher mean expression levels. Panel B: Expression variation (scaled) in the Eker mutants (left) and the

wild-type rats (right) of the genes in the yellow module which are annotated in KEGG with “pancreatic cancer”. In the Eker rats the variation of

these genes is tightly correlated, whereas for the wild-type rats it is much more random.
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indicating a significance p-value < 0.001. Module-to-

module coexpression changes were tested by assessing

the significance of the correlation changes between the

genes from each possible module pair, using a similar

“module-to-module” dispersion measure and generating

null distributions from the same permutation approach.

Additional File 2: Figure S1 shows that the coexpression

change between the black and blue modules, for exam-

ple, is highly significant since no permutation yielded as

high a dispersion value.

In the next step, the biological significance of the

modules was surveyed using gene-set enrichment analy-

sis. We submitted each of the modules to GeneTrail

[21] and identified many significantly over-represented

GO or KEGG terms among the gene annotations. A

subset of some of the most interesting findings is pre-

sented in Table 1, while complete lists are available as

Additional File 3. Interestingly, the black module was

enriched for genes involved in “response to xenobiotics”,

while the blue module contained many genes associated

with “metabolic processes”. Finally, the yellow module

was strongly enriched for genes known to be involved in

cancer pathogenesis.

In Figure 2B, the expression data for the 13 genes of

the yellow module, which were associated with the “pan-

creatic cancer” KEGG annotation, illustrate what differ-

ential coexpression is: a difference in the coordination

of the variation of a group of genes between two condi-

tions. In the Eker rats, these cancer genes show

coordinated variation, whereas in the wild-type rats this

coordination is absent.

Implementation

This analysis was carried out using the R statistical

package with the WGCNA [15] library, on a Linux com-

puter with 128 GB physical memory. Large memory

(around 10 GB) is required to compute correlation

matrices for over 10,000 genes. For module definition,

hierarchical clustering was combined with dynamicTree-

Cut [18] using a minimum size of 20 genes. Details of

the process and code can be found in Additional File 1.

Discussion and conclusions
The method we present here has the advantage of com-

paring two (or more) datasets in a global, unbiased and

unsupervised manner. It represents a major improve-

ment over earlier two-way comparisons, in which clus-

tering was first performed in one condition and the

coexpression of the genes in the resulting clusters was

then assessed in the other condition. Moreover, Diff-

CoEx is very sensitive because (i) it does not require dif-

ferentially coexpressed modules to be detected as

coherent, coexpressed modules in one of the two condi-

tions; instead, only the difference in coexpression is con-

sidered to define the module; and (ii) it can identify all

types of large-scale correlation changes, including mod-

ule-to-module correlation changes. Using a simulation

study (see Additional File 4), we demonstrate examples

Table 1 Annotations enriched in differentially coexpressed modules

Module Category Subcategory Expected Observed fdr

Black

KEGG Metabolism of xenobiotics by cytochrome P450 1.367 12 <0.001

KEGG Metabolic pathways 22.494 40 <0.001

GO Glutathione transferase activity 0.364 9 <0.001

Blue

KEGG Lysosome 3.373 12 0.008

KEGG Metabolic pathways 31.541 48 0.026

GO Mitochondrion 35.764 67 <0.001

Brown GO Intracellular transport 8.481 22 0.038

Green
GO Mitochondrion 10.234 26 0.003

GO Oxidation reduction 4.015 15 0.003

Orange GO Xenobiotic metabolic process 0.079 5 <0.001

Purple No significant enrichment

Red KEGG Endometrial cancer 0.201 3 0.015

Yellow

KEGG Pancreatic cancer 3.344 14 <0.001

KEGG Renal cell carcinoma 3.702 10 0.043

KEGG Pathways in cancer 14.75 27 0.022

GO Protein localization 33.676 64 <0.001

GO Melanosome 2.995 11 0.009

GO Cell projection 33.886 59 0.002

GO Small GTPase mediated signal transduction 14.342 31 0.003

Selected annotations enriched among the genes of each differentially coexpressed modules and associated false discovery rates (fdr). The over-representation

analysis was conducted using GeneTrail. The complete results are available in Additional File 3.
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of differential coexpression patterns that can be uncov-

ered using DiffCoEx but that were missed by existing

approaches.

Differential coexpression provides information that

would be missed using classical methods focusing on

the identification of differentially expressed genes. For

example, as Figure 2A shows, many of the differentially

coexpressed clusters display few differences between the

two conditions in terms of mean overall expression.

This indicates that the changes in correlation that we

observed cannot be explained by the genes being not

expressed, and therefore not correlated in one of the

two conditions.

Differential coexpression may be caused by different

biological mechanisms. For example, a group of genes

may be under the control of a common regulator (e.g. a

transcription factor or epigenetic modification) that is

active in one condition, but absent in the other condi-

tion. In such a case, the correlation structure induced

by variation in the common regulator would only be

present in the first condition. Another possible interpre-

tation relates to the presence or absence of variation in

some factors driving a gene module. To observe correla-

tion of a group of genes responding to a common fac-

tor, this factor needs to vary. In the absence of variation

of the driving factor, no correlation can be observed,

even though the actual biological links that form the

network are not altered. It is therefore important to

ensure that the perturbations which give rise to varia-

tion within each condition are: (i) biologically relevant

(as opposed to batch effects, for example) and (ii) com-

parable in nature and amplitude.

DiffCoEx provides a simple and efficient approach to

study how different sample groups respond to the same

perturbations. These perturbations can be either well

characterized and controlled, or stochastic and

unknown. In our example analysis, on top of random

physiological fluctuations present in any dataset, there

was a controlled perturbation induced by the time-

course treatment with different carcinogens present.

Since the carcinogen treatment is a controlled experi-

mental factor, it is possible to use classical methods to

study the transcriptomic changes it induces rather than

using DiffCoEx. However, a fundamental advantage of

using DiffCoEx in such a case is that it requires no

model assumptions and is a quick and efficient

approach. Differential coexpression approaches are even

more useful when the variation among the samples in

one condition is caused by uncontrolled factors, whose

effects cannot easily be dissected. A typical example

would be genetic variation present in a natural popula-

tion or an experimental cross. DiffCoEx constitutes a

valuable tool of broad applicability now that such

genetic studies are becoming increasingly important for

studying gene regulatory networks [22-24].

Additional material

Additional file 1: Step-by-step R analysis for applying DiffCoEx. This

file contains the documented R source code used to perform the

analysis described in the main text as well as the simulation study

described in Additional file 4.

Additional file 2: Significance assessment of module-to-module

coexpression changes using permutations. This figure summarizes the

results of the significance analysis. 1000 permutations of the samples

between the two conditions were performed, and for each of the

permuted datasets, the dispersion value (a measure of correlation

change for groups of genes) was computed for each module, and for

every possible module pair. The number of permutations yielding a

higher dispersion value than that of the original data was recorded and

is displayed in this figure. The figure, for example, indicates that the

within-module dispersion value for the black module reached a higher

value with permuted data than with original data 249 times. The within-

module coexpression change was therefore not significant (p = 0.249) for

the black module and this is indicated with a light grey shading.

Similarly, the figure shows that no permutations reached as high a value

as the original data for the purple to black dispersion, meaning that the

black module was significantly differentially coexpressed with the purple

module, and this is indicated with dark grey shading.

Additional file 3: Differentially coexpressed modules and

enrichment analysis results. This Excel file has separate sheets for the

gene lists for each of the differentially coexpressed modules and the

results of the enrichment analysis conducted using GeneTrail.

Additional file 4: Simulation study showing the sensitivity of

DiffCoEx. This file details the result of a simulation study performed to

illustrate a scenario in which DiffCoEx will outperform other, less

sensitive, methods.
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