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Diffeomorphic Registration using Sinkhorn Divergences

Lucas De Lara, Alberto González-Sanz, and Jean-Michel Loubes

Institut de Mathématiques de Toulouse, Université Paul Sabatier

Abstract

The diffeomorphic registration framework enables to define an optimal matching function between two
probability measures with respect to a data-fidelity loss function. The non convexity of the optimization
problem renders the choice of this loss function crucial to avoid poor local minima. Recent work showed
experimentally the efficiency of entropy-regularized optimal transportation costs, as they are computationally
fast and differentiable while having few minima. Following this approach, we provide in this paper a new
framework based on Sinkhorn divergences, unbiased entropic optimal transportation costs, and prove the
statistical consistency with rate of the empirical optimal deformations.
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1 Introduction

Diffeomorphic deformations describe a large class of computational frameworks whose goal is to find optimal
deformations of the ambient space, defined as a diffeomorphisms generated through flow equations [Joshi and
Miller, 2000, Beg et al., 2005, Younes, 2010]. They amount to solving an optimization problem involving two
terms: an objective loss function characterizing in which sense the deformation should be optimal; a penalization
over the kinetic energy spent by the transformation. The versatility of the problem formulation along with
the appealing mathematical properties of diffeomorphisms made diffeomorphic deformations widely used in
various application fields. In particular, they have been popularized for diffeomorphic registration in medical
image analysis. This task consists of constructing diffeomorphic matching functions between shapes in order to
establish spatial correspondences [Sotiras et al., 2013]. More recently, Younes [2020] proposed to apply flows of
diffeomorphisms in a machine-learning context, where the optimal deformation is designed to render the data
classes linearly separable.

This paper focuses on the diffeomorphic registration problem between two shapes. More specifically, we
address the setting where the shapes are represented by probability measures: a formulation that has received a
growing interest over the past few years to address unlabeled landmarks [Glaunes, 2005, Bauer et al., 2015,
Feydy et al., 2017, Feydy and Trouvé, 2018]. In this case, the objective loss function, referred as the data-fidelity
loss, is defined as a metric between probability measures. Squares of maximum mean discrepancies (MMD),
which are well-known kernel-based distances, became the canonical choice for such settings. In particular, their
use for diffeomorphic registration enjoys a well-established theory [Glaunes et al., 2004, Glaunes, 2005, Younes,
2010]. However, they also suffer from important practical drawbacks.

As pointed out by Feydy et al. [2017], the non convexity of the optimization problem on the diffeomorphic
deformation renders the choice of the loss function crucial to avoid poor local minima, whereas an MMD

1



possesses many. This is why they proposed to use optimal transport metrics as an alternative. More precisely,
they define the data-fidelity loss as the entropy-regularized optimal transportation cost between unbalanced
measures, which has two critical advantages. Firstly, it benefits from the non locality of optimal transport
metrics, leading to few local minima. Secondly, entropic regularization alleviates the computational burden of
standard optimal transport: it allows for fast computation and differentiation of the cost through the celebrated
Sinkhorn’s algorithm [Cuturi, 2013]. Nevertheless, while this alternative loss for diffeomorphic registration
performs better experimentally, it lacks the statistical theory that was proven for squares of MMDs. Moreover,
the entropic regularization induces a well-known bias making the loss not minimal between two identical
measures. The latter issue motivates the employment of a Sinkhorn divergence: a symmetric unbiased version
of the standard entropy-regularized optimal transportation cost. In [Feydy et al., 2019], the authors showed
that Sinkhorn divergences performed significantly better than their biased counterparts for registration purpose.
However, they carried out their analysis using flows of gradients (an approach reviewed by Santambrogio [2017])
instead of flows of diffeomorphisms.

This paper addresses diffeomorphic registration for Sinkhorn-divergence-based fidelity losses from both a
theoretical and practical viewpoint. By leveraging some recent advances on these divergences [Feydy et al.,
2019, Genevay et al., 2019], we show in a statistically-driven approach that the deformation obtained by solving
the optimization problem between empirical measures converges with the parametric rate

√
n to its population

counterpart, where n is the sample size. Additionally, we illustrate the practicality of our method through
numerical experiments. This furnishes a new theoretically and practically grounded framework for diffeomorphic
matching of probability measures.

Related work Several papers bear resemblances with our work as they combine entropic optimal transport
with diffeomorphic registration at some point of their pipeline. Let us underline the major differences with
our framework. The work of Croquet et al. [2021] leverages a Sinkhorn divergence as the data-fidelity loss of a
regularized diffeomorphic-registration engine restricted to flows induced by stationary velocity fields (SVF),
which are notoriously not tailored to match significantly different shapes [Arsigny et al., 2006]. In contrast, our
approach applies to the more flexible large deformation diffeomorphic metric mapping (LDDMM) framework
where the flows are time dependent. In [Shen et al., 2021], the authors also interface entropic optimal transport
with large diffeomorphic deformations but for a different role: optimal transport computes a prior landmark
alignment instead of acting as the data attachment term. The closest approach to ours is the one of Feydy
et al. [2017] who first suggested to use entropic optimal transport as the data-fidelity loss for diffeomporphic
registration. However, they relied on the biased transportation cost between unbalanced measures whereas we
tackle the unbiased divergence between probabilities. Additionally, their work focuses on practical applications
while we also provide theoretical background. Finally, one implementation of time-variant diffeomorphic
registration driven by an unbiased Sinkhorn divergence can be found in a PhD manuscript [Feydy, 2020, Figure
4.6]. In our work, we go further by filling the theoretical gap, as well as by proposing more comprehensive
experiments illustrating the behaviour of these loss functions.

Outline The rest of the paper is organized as follows. In Section 2, we specify the basic mathematical
notations that will be used throughout the paper. In Section 3, we set up the general problem we address by
introducing the diffeomorphic registration framework for arbitrary data-fidelity losses. In Section 4, we present
the necessary background on optimal transport and entropic regularization, in order to properly define Sinkhorn
divergences. Additionally, we study some indispensable regularity properties of entropic optimal transport. In
Section 5, we state our main results, that is the existence and statistical consistency of the optimal deformations.
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In Section 6, we recall the implementation of diffeomorphic registration, and present the numerical experiments
where we benchmark Sinkhorn divergences with other losses. All the proofs are deferred to Appendix B, while
Appendix A recalls key mathematical tools from empirical process theory and Frechet differentiability.

2 Preliminaries and notations

In this section, we introduce the definitions and notations that will be used throughout the paper. The first
part is dedicated to classes of smooth functions; the second one addresses probability measures.

2.1 Smooth functions

Let d1 ≥ 1 and X be an arbitrary subset of Rd1 with non-empty interior denoted by X̊ . For p ≥ 1 and d2 ≥ 1,
we define Cp(X ,Rd2) as the set of p-continuously Frechet-differentiable functions from X to Rd2 . We also
define Lp(Rd1 ,Rd2) the set of symmetric p-multilinear operators from Rd1 to Rd2 . The p-th derivative of some
F ∈ Cp(X ,Rd2) is denoted by F (p). It maps any point x ∈ X̊ to F (p)(x)[·] ∈ Lp(Rd1 ,Rd2). By convention we
set F (0) = F . For any L ∈ Lp(Rd1 ,Rd2), we define the operator norm as

‖L‖op := sup{‖L[δ1, . . . , δk]‖ | δi ∈ Rd1 , ‖δi‖ ≤ 1}

where ‖·‖ is the Euclidean norm. For example, if F ∈ C1(X ,R), then ‖F ′(x)‖op = ‖∇F (x)‖ where ∇F is the
gradient of F . This enables to define, for any F ∈ Cp(X ,Rd2), the functional norm,

‖F‖p,∞ := max
0≤k≤p

∥∥∥F (k)
∥∥∥
∞
,

where ‖F‖∞ := supx∈X ‖F (x)‖, and
∥∥F (k)

∥∥
∞ := supx∈X̊

∥∥F (k)(x)
∥∥
op

for k ≥ 1. In addition, for any R > 0

we denote by CpR(X ,Rd2) the class of functions F ∈ Cp(X ,Rd2) such that ‖F‖p,∞ ≤ R, and write BR for the
centered Euclidean ball of radius R.

2.2 Actions on probability measures

We write E[X] for the expectation of any random variable X. The symbol ⊗ denotes the product of measures.
For two measures µ and ν on Rd, the relation µ� ν means that µ is absolutely continuous with respect to ν,
that is (ν(E) = 0 =⇒ µ(E) = 0) for every measurable set E ⊆ Rd.

We define two kinds of actions involving probability measures. Let µ be a probability measure on Rd and
f : Rd → R be a measurable function. The action of µ on f defines the real number:

µ(f) :=

∫
fdµ = EX∼µ[f(X)].

Now, consider a measurable function F : Rd → Rd. The action of F on µ defines a probability measure called
the push-forward measure, defined as:

F]µ := µ ◦ F−1(·).

If a random variable X follows the law µ, then the image variable F (X) follows the law F]µ. The push-forward
operation enables to write changes of variables. Formally,∫

fd(F]µ) =

∫
(f ◦ F )dµ.
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3 Diffeomorphic measure transportation

In this section we present the necessary background on diffeomorphic registration of probability measures. We
refer to [Younes, 2010] for a complete and precise treatment of this topic. Firstly, we recall how to define
diffeomorphisms through flow equations. Secondly, we introduce the diffeomorphic measure transportation
problem for arbitrary data-fidelity losses.

3.1 Generating diffeomorphic deformations

The diffeomorphic deformation framework can be framed as a fluid mechanics problem, where points in Rd

are transported by a vector field representing a stream varying across time in the ambient space. We begin by
reviewing the corresponding formalism and theory.

For an integer p ≥ 1 let Bp be the space of functions in Cp(Rd,Rd) whose derivatives up to order p vanish to
zero at infinity. This together with the norm ‖·‖p,∞ is a Banach space. Next, denote by V a Hilbert space with
inner product 〈·, ·〉V and norm ‖·‖V , and assume that V is continuously embedded in Bp. This corresponds to
the hypothesis below.

Assumption 3.1. The space V is included in Bp, and there exists a constant cV > 0 such that for any v ∈ V ,

‖v‖p,∞ ≤ cV ‖v‖V .

Physically, a function v ∈ V represents a stationary vector field in the ambient space, specifying the speed
vector v(x) ∈ Rd of the stream running at every position x ∈ Rd. Then, define the class L2

V of vector fields
t ∈ [0, 1] 7→ vt ∈ V indexed by time and space satisfying

∫ 1

0
‖vt‖2V dt < ∞, which is a Hilbert space endowed

with the inner product,

〈v, u〉L2
V

:=

∫ 1

0

〈vt, ut〉V dt.

We recall that a sequence {vn}n∈N in L2
V converges weakly to v if for any u ∈ L2

V ,

〈vn, u〉L2
V
−−−−−→
n→+∞

〈v, u〉L2
V
. (1)

The associated norm in L2
V is given by

‖v‖L2
V

:=

√∫ 1

0

‖vt‖2V dt,

and we use the notation
L2
V,M := {v ∈ L2

V | ‖v‖L2
V
≤M}

for the centered ball of radius M > 0 in L2
V .

We can now turn to the definition of diffeomorphic deformations. Any vector field v ∈ L2
V generates a

deformation φv := (φvt )t∈[0,1], function of both time and space variables, defined as the unique solution to the
following flow equation,

∀x ∈ Rd, ∀t ∈ [0, 1], φt(x) = x+

∫ t

0

vs
(
φs(x)

)
ds. (2)

The parametric curve (φvt (x))t∈[0,1] represents the trajectory across time of a point initially located at φ0(x) =

x ∈ Rd. Remarkably, for every t ∈ [0, 1] the transformation φvt is a p-continuously differentiable diffeomorphism.
Moreover, as a direct consequence of [Glaunes, 2005, Theorem 5], these diffeomorphic transformations are
smooth over compact sets.
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Lemma 3.1 (Smoothness of diffeomorphic deformations). Suppose that Assumption 3.1 holds. Then for any
radius M > 0 and any compact set K ⊂ Rd, there exists a constant R = R((K, d); (V, p);M) > 0 such that for
any v ∈ L2

V,M ,

max
0≤k≤p

{
sup

t∈[0,1],x∈K

∥∥∥(φvt )
(k)

(x)
∥∥∥
op

}
≤ R.

In particular, supx∈K ‖x‖ ≤ R.

In practice, the space of vector fields V is constructed through the choice of a kernel function. This is
enabled by Assumption 3.1 which entails that V is a reproducing kernel Hilbert space (RKHS), characterized
by a unique non-negative symmetric matrix-valued kernel function Ker : Rd × Rd → Rd×d. In particular, the
choice of the kernel function sets the order of regularity p of the vector fields. For instance, the typical choice of
a Gaussian kernel, that is

Ker(x, y) :=
1√

2πσ2
exp

(
−‖x− y‖

2

2σ2

)
Id (3)

where σ > 0 is the bandwidth parameter and Id the identity matrix, leads to p = +∞.

3.2 Diffeomorphic matching of distributions

In general, diffeomorphic deformation frameworks amount to finding solutions to Equation (2) that are optimal
in some sense. In this work, we focus on the diffeomorphic measure transportation framework, which aims at
matching two probability measures.

Formally, let Λ be a positive loss function between probability measures, and set α and β two probabilities
on the ambient space Rd. For a given regularization weight λ > 0, an optimal matching function between α and
β is a diffeomorphism φv solution to (2) where v minimizes

Jλ(v) := Λ(φv1]α, β) + λ‖v‖2L2
V
. (4)

The first term of the objective function (4) is the data-fidelity loss, which tends to match φv1]α with β, while the
second term is the regularizer, which penalizes the kinetic energy spent by the trajectories (φvt )t∈[0,1], keeping
them as close as possible to the identity function. The parameter λ governs the trade-off between the two
contributions. The objective Jλ always admits minimizers provided that the term v ∈ L2

V 7→ Λ(φv1]α, β) ∈ R+

is weakly continuous. For a minimizer v∗, the function φv
∗

1 is an optimal matching between α and β, and the
family (φv

∗

t )t∈[0,1] provides an approximated interpolation between the two measures.
In practical settings, one typically does not have access to the full probability measures α and β but to

empirical observations. This naturally raises the question of estimating an optimal matching function between
α and β on the basis of independent samples. Concretely, let x1, . . . , xn ∼ α and y1, . . . , yn ∼ β be independent
samples, and define the empirical probability measures αn := n−1

∑n
i=1 δxi and βn := n−1

∑n
j=1 δyj . Plugging

these discrete measures in the original objective function (4) leads to the following empirical objective function:

Jλ,n(v) := Λ(φv1]αn, βn) + λ‖v‖2L2
V
. (5)

In Theorem 5.1 we prove under some assumptions that if the data-fidelity loss Λ is a Sinkhorn divergence, a
divergence derived from entropic optimal transport, then any sequence of minimizers {vn}n∈N of the empirical
problem (5) converges up to the extraction of a subsequence to a minimizer of the population problem (4) as
the sample size n increases to infinity.
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4 Entropic optimal transport

In this section, we first briefly present the necessary background on optimal transport and entropic regularization,
in order to properly define Sinkhorn divergences. We refer to [Villani, 2003, 2008, Peyré et al., 2019] for further
insight on these topics. Then, we introduce some properties of these divergences, which will be useful to later
demonstrate the main results of this paper.

4.1 Transportation costs and Sinkhorn divergences

Let α and β be two probability measures on X a subset of Rd, and C : Rd × Rd → R+ a positive ground cost
function. Typically, C(x, y) := ‖x− y‖2. The optimal transportation cost with respect to C between α and β is
defined as,

TC(α, β) := min
π∈Π(α,β)

∫
X×X

C(x, y)dπ(x, y), (6)

where Π(α, β) is the set of couplings admitting α as first marginal and β as second marginal. In particular, for
an integer k ≥ 1 and D a distance on X , the quantity (TDk)

1
k yields a distance between measures referred as

the Wasserstein distance of order k. Transportation costs and optimal transport distances became popular
in many machine-learning-related problems for their appealing geometric properties, but suffer from being
computationally challenging in practice. This triggered a growing literature on fast approximations of (6),
the most popular being entropy-regularized versions, which can be computed through the Sinkhorn algorithm
[Cuturi, 2013]. For ε > 0, the entropy-regularized transportation cost w.r.t. C is defined as

TC,ε(α, β) := min
π∈Π(α,β)

∫
X×X

C(x, y)dπ(x, y) + εKL(π|α⊗ β), (7)

where KL(µ|ν) denotes the Kullback-Leibler divergence between probability measures µ and ν given by∫
log
(

dµ
dν (z)

)
dµ(z) if µ� ν, and +∞ otherwise.

Critically, the entropic transportation cost TC,ε suffers from the so-called entropic bias, that is TC,ε(α, α) 6= 0

in general. As illustrated in [Feydy et al., 2019], this entails that the minimum of TC,ε(α, ·) is not reached at α
but at a shrunken version of α with smaller support, making the entropic cost an unreliable loss function. The
Sinkhorn divergence was originally introduced to fix this undesirable effect. It is formally defined as

SC,ε(α, β) := TC,ε(α, β)− 1

2
TC,ε(α, α)− 1

2
TC,ε(β, β).

As aforementioned, using a non-local similarity measure such as an entropic-optimal-transport cost instead of a
local similarity measure such as a squared MMD leads to fewer local solutions when minimizing (5). Moreover,
it does not suffer from the computational burden of standard optimal transport. This is why Feydy et al. [2017]
advocated the use of the entropy-regularized transportation cost (7) for diffeomorphic registration, providing
empirical evidences of the benefits of this approach. However, they did not rely on the unbiased Sinkhorn
divergences, for which little was known until [Feydy et al., 2019] that demonstrated several key properties. In
particular, if C is continuous, e−

C
ε defines a positive universal kernel, and X is compact, then SC,ε is symmetric

positive definite, smooth and convex in each of its input distributions. Additionally, in contrast to the standard
regularized transportation cost, it metrizes the convergence in law. In particular, these properties hold for
the classical cost functions C(x, y) := ‖x− y‖ and C(x, y) := ‖x− y‖2 defined on compact domains. The goal
of this paper is precisely to use a Sinkhorn divergence for the data-fidelity loss, while providing statistical
guarantees. The demonstrations are based on the dual formulation of entropic optimal transport for which we
derive some important results next.
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4.2 Regularity of the dual formulation

The minimization problem (7) has the following dual formulation,

TC,ε(α, β) = sup
f,g∈C(X ,R)

∫
X
f(x)dα(x) +

∫
X
g(y)dβ(y)− ε

∫
X×X

e
f(x)+g(y)−C(x,y)

ε dα(x)dβ(y) + ε. (8)

The functions f and g are referred as potentials. Note that Equation (8) can also be compactly written as,

TC,ε(α, β) = sup
f,g∈C(X ,R)

(α⊗ β)
(
hf,gC,ε

)
,

where
hf,gC,ε(x, y) := f(x) + g(y)− εe

f(x)+g(y)−C(x,y)
ε + ε. (9)

We call the function hf,gC,ε the global potential. It will play a key role in the proofs.
A remarkable property of entropic optimal transport, investigated in [Genevay et al., 2019, Feydy et al.,

2019], is that the potentials of the dual formulation inherit the regularity of the ground cost function C if the
measures α and β are compactly supported. This setting will be useful to derive statistical guarantees. More
specifically, it allows to restrict the set of feasible potentials to smooth functions regardless of the involved
probability measures, as stated in the next lemma which readily follows from [Genevay et al., 2019, Proposition
1] (see also [del Barrio et al., 2022, Lemma 4.1] for the particular case of the quadratic ground cost).

Lemma 4.1 (Smoothness of the optimal potentials). Let µ and ν be two measures on a compact set K ⊂ Rd,
and suppose that the ground cost function C belongs to Cq(Rd×Rd,R+) with q ≥ 1. Then, there exists a constant
m = m((K, d); (C, q); ε) > 0 such that

TC,ε(µ, ν) = sup
f,g∈C(K,R)

(µ⊗ ν)
(
hf,gC,ε

)
= sup
f,g∈Cqm(K,R)

(µ⊗ ν)
(
hf,gC,ε

)
.

Naturally, the smoothness of f , g and C renders the global potential hf,gC,ε smooth as well. Combining
Lemma 4.1 with the following result ensures the smoothness of the optimal global potential under smooth
data-processing transformations, such as diffeomorphic transformations.

Proposition 4.1 (Smoothness of the optimal global potential). Let X be a compact subset of Rd, suppose that
the ground cost function C belongs to Cq(Rd×Rd,R+) with q ≥ 1, set p ≥ 1 and write κ := min{p, q}. Then for
any m > 0 and R > 0, there exists a constant H = H(m;R; (C, q); ε; p) > 0 such that for any f, g ∈ Cqm(BR,R)

and T1, T2 ∈ CpR(X ,Rd),
hf,gC,ε ◦ (T1, T2) ∈ CκH(X × X ,R).

We are now ready to state and prove our main results.

5 Main results

This section focuses on the main theoretical contributions of the paper, namely the existence and statistical
consistency of the empirical optimal matching function between α and β when using a Sinkhorn divergence.

Firstly, we show that the objective functions Jλ and Jλ,n with Λ = SC,ε admit minimizers. We recall
that a function Ψ : L2

V → R is weakly continuous if for any sequence {vn}n∈N weakly converging to some
v ∈ L2

V (see (1)), we have Ψ(vn) −−−−−→
n→+∞

Ψ(v). [Glaunes, 2005, Theorem 7] states that Jλ admits a minimum if

7



v ∈ L2
V 7→ Λ(φv1]α, β) is weakly continuous and non negative while [Feydy et al., 2019, Theorem 1] guarantees

the non negativeness of Sinkhorn divergences when e−
C
ε defines positive universal kernel. Therefore, existence

of an optimal matching directly follows from the proposition below.

Proposition 5.1 (Existence of the optimal vector fields). Let α and β be two probability measures on X a
compact subset of Rd, suppose that the ground cost function C belongs to C1(Rd × Rd,R+), and assume that
Assumption 3.1 holds. Then the function v ∈ L2

V 7→ SC,ε(φ
v
1]α, β) is weakly continuous. If additionally e−

C
ε

defines a positive universal kernel, then Jλ for Λ = SC,ε admit minimizers.

The minimizer is not unique in general due to the non convexity of the data-fidelity loss with respect to v.
Uniqueness could be artificially achieved by choosing λ very large, thereby rendering the objective function
strictly convex, but this would make the purpose of the regularization meaningless.

We now turn to our main theorem, which is divided in two items. The first one ensures the convergences of
the empirical solutions to their population counterparts; the second one specifies the speed of this convergence.

Theorem 5.1 (Consistency of the optimal vector fields). Let αn and βn be empirical measures corresponding
respectively to α and β, two probability measures on X a compact subset of Rd, suppose that the ground cost
function C belongs to Cq(Rd ×Rd,R+) with q ≥ 1 and induces a positive universal kernel e−

C
ε . Finally, assume

that Assumption 3.1 holds. If, for any n ∈ N∗, vn denotes a minimizer of Jλ,n for Λ = SC,ε, then the following
results hold.

(i) There exists a minimizer of Jλ denoted by v∗ such that up to the extraction of a subsequence

‖vn − v∗‖L2
V

a.s.−−−−→
n→∞

0 and sup
t∈[0,1]

{∥∥∥φvnt − φv∗t ∥∥∥∞ +
∥∥∥(φv

n

t )−1 − (φv
∗

t )−1
∥∥∥
∞

}
a.s.−−−−→
n→∞

0.

(ii) If κ := min{p, q} > d, then there exists a constant A = A(λ; (X , d); (C, q); ε; (V, p)) > 0 such that

E [|Jλ(vn)− Jλ(v∗)|] ≤ A√
n
.

Note that Glaunes et al. [2004] proved a similar consistency result when the data-fidelity loss is the square of
an MMD, but did not determine the speed of convergence as in (ii). The demonstration of (i) follows the steps of
their proof (see [Glaunes, 2005, Theorem 16]). The idea is to show the convergence of supv∈L2

V,M
|Jλ,n(v)− Jλ(v)|

as n increases to infinity, where L2
V,M contains all the minimizers independently of n. The main challenge

when addressing an entropic optimal transport cost comes from the fact that it does not satisfy a triangle
inequality, nor a data-processing inequality, and is hence harder to control. We remedy to this issue by proving
and applying the following intermediary result:

Proposition 5.2 (Uniform consistency of entropic optimal transport up to smooth data-processing transforma-
tions). Let αn and βn be empirical measures corresponding respectively to α and β, two probability measures on
X a compact subset of Rd, and suppose that the ground cost function C belongs to Cq(Rd × Rd,R+) with q ≥ 1.
Set p ≥ 1 and write κ := min{p, q}. Then, the following results hold:

(i) For any R > 0

sup
T1,T2∈CpR(X ,Rd)

|TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)| a.s.−−−−−→
n→+∞

0.

(ii) If κ > d, then for any R > 0 there exists a constant A = A(R; (C, q); ε; (X , d); p) > 0 such that

E

[
sup

T1,T2∈CpR(X ,Rd)

|TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)|

]
≤ A√

n
.
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Notice that as a direct consequence of the triangle inequality, a similar result holds for SC,ε. Hence, as
diffeomorphisms are smooth on compact sets according to Lemma 3.1, we can apply Proposition 5.2 to control
supv∈L2

V,M
|Jλ,n(v)− Jλ(v)|.

Although Proposition 5.2 is motivated by diffeomorphic registration, we believe it has further interest.
Remark in particular that the objective (4) shares similarities with generative modelling [Goodfellow et al.,
2014]; an input distribution α is passed through a parametric function φv1 meant to generate a target distribution
β by minimizing a certain loss Λ. In particular, generative modelling using the Wasserstein-1 distance or a
Sinkhorn divergence has proved to be efficient for diverse applications [Arjovsky et al., 2017, Genevay et al.,
2018]. The main difference in (4) comes from the parameter v being infinitely dimensional, and characterizing a
diffeomorphism instead of a neural network. However, Proposition 5.2 is general enough to be applied in the
context of generative modelling with Sinkhorn divergences, in order to derive statistical guarantees for smooth
generators.

Remark 5.1. Proposition 5.1 and Theorem 5.1 do not hold for TC,ε instead of SC,ε because v 7→ TC,ε(φv1]α, β)

is not lower bounded on L2
V . We also emphasize that it is preferable to use a Sinkhorn divergence in practice,

since it does not suffer from the aforementioned entropic bias. In particular, the experiments from the next
section illustrate that debiasing leads to more accurate registrations.

Remark 5.2. Item (ii) in Proposition 5.2 resembles classical sampling complexity bounds of entropic optimal
transport such as [Genevay et al., 2019, Theorem 3], [Séjourné et al., 2019, Theorem 7] and [Mena and
Niles-Weed, 2019, Corollary 1]. Our result differs critically by handling a supremum over a class of smooth
push-forward maps within the expectation, which enables to prove item (ii) in Theorem 5.1.

6 Implementation

This section addresses the practical aspects of diffeomorphic registration through Sinkhorn divergence. Firstly,
we briefly recall how to compute a minimizer of Jλ,n for an arbitrary loss Λ. Then, we illustrate the procedure
for Sinkhorn divergences on numerical experiments.

6.1 Resolution procedure

This subsection introduces the basic knowledge for solving a diffeomorphic registration problem. It is meant to
keep the paper as self-contained as possible. Several minimization strategies coexist, corresponding to different
parametrizations of the optimization problem 5. We refer to [Younes, 2010, Section 10.6] for a complete overview
of the resolution procedures.

6.1.1 Gradient descent over the time-dependent momentum

To practically minimize Jλ,n, one must first write the optimal vector fields v in a finite parametric form,
and then perform a gradient descent on the coefficients of this decomposition. Recall that Assumption 3.1
implies that V is a RKHS, thereby characterized by a unique matrix-valued symmetric positive kernel function
Ker : Rd ×Rd → Rd×d. For simplicity, we address the case of the Gaussian kernel defined in 3. Statistically, the
bandwidth parameter σ represents the correlation between the morphed points; physically, it quantifies the
fluid viscosity. When σ is small, the points have independent trajectories; when it is large, the points move as a
whole.
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The RKHS viewpoint enables to parametrize the optimal vector fields through a kernel trick. Firstly, note
that the minimization of Jλ,n can be formulated as an optimal control problem. It amounts to solving

min
v∈L2

V

Λ(αn(1), βn) + λ‖v‖2L2
V

; subject to αn(t) = φvt ]αn for any t ∈ [0, 1]. (10)

Then, since the constraint involves a finite number n of trajectories, the so-called reduction principle (see
[Glaunes, 2005, Theorem 14]) entails that any solution to problem 10, that is any minimizer of Jλ,n, can be
written as,

vnt (x) =

n∑
i=1

Ker (x, zai (t)) ai(t),

where the momentum a := (a1, . . . , an) denotes n unspecified time functions of L2([0, 1],Rd), and the control
trajectories za := (za1 , . . . , z

a
n) are defined by

zai (t) = xi +

∫ t

0

n∑
j=1

Ker(zai (s), zaj (s))aj(s)ds. (11)

This enables to recast (10) as minimizing,

Eλ,n(a) := Λ

(
1

n

n∑
k=1

δzak(1), β

)
+ λ

∫ 1

0

n∑
i,j=1

ai(t) ·Ker
(
zai (t), zaj (t)

)
aj(t)dt, (12)

where · denotes the Euclidean inner product. The gradient of Eλ,n was originally derived in [Glaunes et al.,
2004] for the MMD case, and re-expressed in [Glaunes, 2005, Younes, 2020] for more general settings. It can be
written as ∇Eλ,n(a) = 2λa− pa where pa := (pa1 , . . . , p

a
n) denotes n functions of L2([0, 1],Rd) satisfying for any

i ∈ {1, . . . , n} and t ∈ [0, 1],

pai (t) := ∇zai (1)Λ

(
1

n

n∑
k=1

δzak(1), β

)

− 1

σ2

∫ 1

t

n∑
j=1

Ker
(
zai (t), zaj (t)

) [
ai(t) · paj (t) + aj(t) · pai (t)− 2λai(t) · aj(t)

] (
zai (t)− zaj (t)

)
. (13)

In order to practically track all the functions of the continuous time variable, one must discretize the time scale
[0, 1] into τ sub-intervals of equal sizes, which recasts a, za and pa as (τ + 1)× n× d tensors. Then, equations
(11) and (13) are successively solved at each iteration of the gradient descent by solving the associated discrete
dynamical systems. By plugging the solutions za and pa into the formula of ∇Eλ,n(a) one can update the
variable a with a ←− a − ξ × (2λa − pa) where ξ denotes the step size. The computational complexity of an
iteration is in O(n2dτ). However, the dynamical systems can be parallelized in the number of points and the
dimension. At the end of the process, we obtain the following deformation,

φa,τt (x) := x+
1

τ

t−1∑
s=0

n∑
j=1

Ker(x, zaj (s))aj(s). (14)

This approach handles any data-fidelity loss Λ as long as it is differentiable with respect to the data points of
the discrete distributions. Both Sinkhorn divergences and squares of MMDs satisfy this property.
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6.1.2 Geodesic shooting of the initial momentum

A widely used variant of the above approach is the geodesic shooting of the initial momentum which relies on
the equations satisfied at the minimum to uniquely constrain the time-dependent solution a(·) by its initial
value, allowing for optimizing solely over a(0).

More specifically, as demonstrated in [Miller et al., 2006], the Hamiltonian viewpoint of the control problem
yields the following joint dynamic of the optimal control trajectories and momentum:

zai (t) = xi +

∫ t

0

n∑
j=1

Ker
(
zai (s), zaj (s)

)
aj(s)ds,

ai(t) = a(0)− 1

2
∇zai (t)

∫ t

0

 n∑
j=1

ai(s) ·Ker
(
zai (s), zaj (s)

)
aj(s)

 ds. (15)

This entails that both the control trajectories and the momentum at any instant t are fully characterized by
a(0). Slightly abusing notations we write za = za(0).

Additionally, the kinetic energy remains constant along optimal solutions, implying that∫ 1

0

n∑
i,j=1

ai(t) ·Ker
(
z
a(0)
i (t), z

a(0)
j (t)

)
aj(t)dt =

n∑
i,j=1

ai(0) ·Ker (xi, xj) aj(0). (16)

Therefore, (16) together with (15) enable to recast the functional (12) to minimize as

E0
λ,n(a(0)) := Λ

(
1

n

n∑
k=1

δ
z
a(0)
k (1)

, β

)
+ λ

n∑
i,j=1

ai(0) ·Ker (xi, xj) aj(0), (17)

which is a well-defined function of the time-invariant parameter a(0) ∈ Rn×d only. After minimizing (17) using
a gradient-descent-based method, one can shoot the obtained a(0) along the discretized system (15) to generate
the optimal control trajectories za(·) and time-dependent momentum a(·). Then, the trajectory of any new
point x ∈ Rd at any time t ∈ [0, 1] can be computed by integrating the flow equation as in (14).

Naturally, for a non-convex program such as (5) the quality of the output solution may heavily depend on
the chosen resolution procedure. In the coming experiments, we compare the deformations obtained with both
solving strategies.

6.2 Numerical experiments

We present a series of numerical experiments on synthetic and real 2-D and 3-D shapes. The objective is to
illustrate the practical benefits of using a Sinkhorn divergence as the data-fidelity loss. Our Python code1

operates with the GeomLoss package [Feydy et al., 2019] to compute the losses and their gradients by automatic
differentiation, and the KeOps package [Charlier et al., 2021] to handle kernel-reduction operations. It is largely
inspired by the example codes from these librairies’ websites.2

6.2.1 2-D dataset

In [Feydy et al., 2019], the authors proposed an alternative measure registration framework based on the gradient
flow of the data-fidelity loss. It amounts to updating the source distribution αn := n−1

∑n
i=1 δxi by carrying

1https://github.com/lucasdelara/lddmm-sinkhorn/
2https://www.kernel-operations.io/geomloss/ and https://www.kernel-operations.io/keops/
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out a gradient descent on Λ(αn, βn) with respect to the positions x1, . . . , xn. This model-free method enables
to faithfully match one distribution to another, even when the supports have irregularities such as holes. In this
section, we firstly adapt their experiments, more precisely the ones from the example section of the GeomLoss
package website, by using diffeomorphic deformations instead of gradient flows.

The objective is matching two blob-like point clouds in dimension 2. We proceed as follows. Firstly, we
learn the optimal matching between two samples of size n = 1, 000 using each of the two previously described
procedures. Secondly, we display the obtained time interpolation between two new independent samples of size
m = 2, 000. In order to benchmark the influence of the data-fidelity loss, we consider a fixed setting where V
is defined through a Gaussian kernel with bandwidth σ = 0.175, the regularization has weight λ = 10−8, and
the time scale is uniformly divided into τ = 16 intervals. Then, we compare the results for different losses:
(unbiased) Sinkhorn divergences, biased entropic transportation costs, and squared Gaussian maximum mean
discrepancies. Recall that the squared Gaussian MMD with bandwidth parameter θ > 0 is defined as,

MMD2
θ(µ, ν) :=

∫
Rd×Rd

exp

(
−‖x− y‖

2

2θ2

)
d(µ− ν)(x)d(µ− ν)(y).

The ground cost function for the Sinkhorn divergences is always C(x, y) := ‖x− y‖2 throughout the experiments.
Figures 1 to 3 compare the optimal matchings obtained with respectively the gradient descent on the momentum
(GDM) and geodesic shooting (GS) for different values of the relevant parameters ε and θ. Note that whatever
the minimization strategy, we used a fixed number of iterations with a constant learning rate, and initialized the
momentum with the zero tensor. Also, while we programmed a standard gradient descent for GDM, we relied
on the PyTorch [Paszke et al., 2019] in-built L-BFGS solver for the geodesic shooting. The results are arranged
as follows: Figure 1 shows the deformations for both Sinkhorn divergences and (biased) entropic transportation
costs optimized with GDM; Figure 2 is the counterpart of Figure 1 for GS; Figure 3 displays the deformations
generated by Gaussian maximum mean discrepancies for both resolution procedures.

Firstly, we observe from Figures 1 and 2 that entropic optimal-transport metrics yield consistent results
across minimization strategies. In contrast, the registration for maximum mean discrepancies depicted in
Figure 3 varies with the chosen methods. This instability of the optimization problem underlines that MMDs
give more local minima.

Secondly, Figures 1 and 2 clearly exhibit the entropic bias: in contrast to Sinkhorn divergences, standard
entropic transportation costs shrink the morphed distribution for large values of the regularization parameter
ε, leading to unacceptable registrations. However, choosing a too large ε for the unbiased divergence yields a
blurry, poorly accurate solution. As expected, debiasing becomes less critical as the regularization diminishes,
and both entropic losses provide sharp matchings for small values of ε. Note also that there is no need to
decrease ε below a certain threshold to ensure accurate deformations.

Finally, Figure 3 indicates that the consistency of the results between resolution procedures weakens as the
bandwidth of the Gaussian kernel decreases. This is due to Gaussian maximum mean discrepancies ignoring
disparities smaller than θ. As such, setting a large bandwidth facilitates the registration but degrades the quality
of the matching. In contrast, a small bandwidth allows for sharper registration but induces more local minima.
This aspect is epitomized for θ = 0.1 in the experiments: with the gradient descent on the time-dependent
momentum, the morphed points end up diverging, trapped into minimizing the auto-correlation contribution of
the MMD, while geodesic shooting produces a fine matching.

All in all, our experimental observations about the role of the losses are similar to the ones made by
Feydy et al. [2019] in the context of gradient flows. Critically, compared to their approach, we work with a
transformation that is smooth at any time. This regularity constraint reduces the flexibility of the matching,
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which leads to a less accurate fitting than gradient flows. This affects particularly the anomalous parts of the
targeted support, namely the holes and the tail. In contrast, regularity enables the deformation to generalize to
any new out-of-sample observations. Additionally, it prevents from tearing the mass apart. The color map on
the distribution αm(t) enables to track the location of the moved points through time. Notice that, as a direct
consequence of the smoothness, the chromatic continuity between morphed points is preserved throughout the
process.

Before turning to more complex 3-D shapes, let us push further the quality analysis of local minima on
this illustrative dataset. In the sequel, we consider the same setting as before, and focus on the optimal
matchings obtained by geodesic shooting for Sinkhorn divergences and Gaussian maximum mean discrepancies
with different parameter values. However, instead of initializing the optimized variable a(0) to zero, we now
study the stability and accuracy of the solutions over various initial values. More specifically, we rely on a
warm-start strategy: solutions from the above experiments are reused as starting points in the solver. The
results are gathered in Figure 4, which reports the final matchings obtained with different initializations along
with their associated loss values.

Let us firstly analyze the results for the losses that previously gave the finest registrations: the Sinkhorn
divergence with ε = 10−4 (rows 1 and 5) and the Gaussian MMD with θ = 0.1 (rows 3 and 7). As anticipated,
the matchings vary with the initialization. Visually, this phenomenon is stronger for the MMD than for the
Sinkhorn divergence and the quality of the final matchings remains quite accurate for the optimal-transport loss.
By checking the loss values, we note that the warm start downgrades the solutions for both losses, except for the
MMD using initialization via SC,ε with ε = 10−4 which gets significantly closer to the global minimum. In sum,
it seems that the entropic divergence induces fewer or better local minima. Regarding the Sinkhorn divergence
with ε = 1 (rows 2 and 6) and and the MMD with θ = 0.5 (rows 4 and 8), which previously yielded imprecise
matchings, they have analogous behaviours with respect to warm start. We observe that the results are less
robust to initialization and can be significantly improved by using already accurate solutions as starting points,
underlining that the registrations obtained with the initialization to zero corresponded to bad local minima.

6.2.2 3-D surfaces

In a second time, we implement the diffeomorphic matching of two shapes embedded in R3: the source is
the unit sphere while the target is the centered scaled Stanford bunny,3 both encoded through the associated
uniform distributions. Similarly to the above experiments, we firstly learn the diffeomorphism on a training set
of size n = 5, 000 using geodesic shooting for various losses, and then display the final matching on a testing set
of size m = 10, 000. The setup is characterized by σ = 0.05, λ = 10−8, and τ = 16. The results can be found in
Figure 1. We make comparable observations to before. Powering diffeomorphic registration with a Sinkhorn
divergence instead of the biased regularized cost avoids the shrinkage effect of the entropic bias for large values
of ε, and the matchings are accurate for both losses when ε is small. The Gaussian MMD requires a small
bandwidth θ to potentially fit the bunny, but the solution falls into a poor local minima where several morphed
points are not attracted by the target. Note also that, due to their regularity, the deformations tend to smooth
the sharpest edges of the target bunny.

3http://graphics.stanford.edu/data/3Dscanrep/
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(a) Source (b) Target

(c) SC,ε : ε = 1 (d) SC,ε : ε = 10−2 (e) SC,ε : ε = 10−4

(f) TC,ε : ε = 1 (g) TC,ε : ε = 10−2 (h) TC,ε : ε = 10−4

(i) MMD2
θ : θ = 1 (j) MMD2

θ : θ = 0.1 (k) MMD2
θ : θ = 0.5

Figure 1: 3-D diffeomorphic matchings. Both shapes (a) and (b) are centered scaled.
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7 Conclusion

We proposed to use Sinkhorn divergences as the fidelity loss in diffeomorphic registration problems. We
derived the statistical theory, and illustrated the efficiency of this method compared to past approaches based
on MMDs or biased entropic transportation costs. As such, this paper paves way for accurate and smooth
measure registration with certifiable asymptotic guarantees. Moreover, carrying out this work led us to further
investigate the dual formulation of entropic optimal transport, complementing recent papers on the subject.
A first avenue for extension could be to consider the registration of unbalanced measures using Sinkhorn
divergences, which would align with the work of Feydy et al. [2017]. A second one could be to derive sharper
rates of convergences. Notably, [del Barrio et al., 2022] which demonstrates faster convergence rates for the
empirical entropic transportation potentials and [Chizat et al., 2020] which shows that debiasing decreases the
approximation error of optimal transport induced by entropic regularization could serve as inspirations.
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A Preliminary results

This section recalls some useful results. Section A.1 contains a brief reminder on entropy numbers of classes of
functions, in order to derive an upper bound on empirical processes; Section A.2 focuses on the chain rule for
composite Frechet derivatives up to arbitrary high orders.

A.1 Empirical processes

In the proof of Proposition 5.2, we will bound the sampling error between the empirical entropic transportation
cost and its population counterpart by a centered empirical process indexed by a class of smooth functions.
Recalling the theory introduced in [Van Der Vaart and Wellner, 1996, Koltchinskii, 2011], we present in this
subsection intermediary results on such processes.

Let X be a compact convex subset of Rd. For any probability measure µ on X and r ≥ 1, we define the
Lr(µ)-norm on C(X ,R) as ‖h‖r,µ :=

( ∫
|h|rdµ

)1/r. In empirical process theory, the complexity of classes of
functions is commonly evaluated through the so-called covering and bracketing numbers. Let H be a class
of function included in C(X ,R), and ε > 0 a constant. The covering number N(ε,H, Lr(µ)) is defined as the
minimal number of Lr(µ)-balls of radius ε needed to cover the class of functions H. The center of the balls need
not belong to H, but must have finite norm. Additionally, given two functions l and u with finite norm but not
necessarily in H, the bracket [l, u] is the set of all functions h such that l ≤ h ≤ u. An (ε, Lr(µ))-bracket is a
bracket [l, u] such that ‖l − u‖r,µ ≤ ε. Then, the bracketing number N[ ](ε,H, Lr(µ)) is the minimal number of
(ε, Lr(µ))-bracket needed to cover H.

These numbers have essential applications in statistics. The supremum of a centered empirical process
indexed by a class of functions with a finite bracketing number converges uniformly almost-surely to zero.
Moreover, with a sharper control on the bracketing number, one can derive the following convergence rate:

Proposition A.1. Let µn be an empirical measure of a probability measure µ corresponding to a compact
convex subset X of Rd, and set H > 0 a constant. Consider the class of functions H := CκH(X ,R) for some
integer κ ≥ 0. If κ > d/2, then there exists a constant A = A((H,κ); (X , d)) such that,

E
[

sup
h∈H
|µn(h)− µ(h)|

]
≤ A√

n
.

Proof. Combining [Koltchinskii, 2011, Theorem 2.1] with [Koltchinskii, 2011, Theorem 3.11], we directly have
that,

E
[

sup
h∈H
|µn(h)− µ(h)|

]
≤ 2× c√

n
E
∫ 2σn

0

√
logN(ε,H, L2(µn))dε,

where c > 0 is some constant and σn := suph∈H µn(h2). By definition of H, it follows that σn ≤ H2. Besides,
we can upper bound the covering number in the right term by the bracketing number N[ ](2ε,H, L2(µn)) (see
[Van Der Vaart and Wellner, 1996, page 84]). In addition, according to [Van Der Vaart and Wellner, 1996,
Corollary 2.7.2], there exists a constant ρ = ρ((H,κ); (X , d)) > 0 such that,

logN[ ](2ε,H, L2(µn)) ≤ ρ(2ε)−d/κ.

Note that the right term does not depend on µn. All in all,

E
[

sup
h∈H
|µn(h)− µ(h)|

]
≤ 2c√

n
E
∫ 2H2

0

√
ρ(2ε)−d/κdε.
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The integral is finite as κ > d/2. Consequently, the upper bound defines a constant A = A((H,κ); (X , d)). This
concludes the proof.

Remark that the convexity assumption on the compact domain X is not restrictive, as it suffices to extend
the probability measure µ on the convex hull of X .

A.2 Frechet derivative

The proof of Proposition 4.1 requires bounding the Frechet derivatives of arbitrary high orders of composite
functions. We rely on the generalization of Faà di Bruno’s formula proposed by Clark and Houssineau [2013] to
carry out the computation.

Let F : Rd2 → Rd3 and G : Rd1 → Rd2 be two differentiable functions up to order k ≥ 1. Denote by Ω(k)

the set of partitions of {1, . . . , k}, and write |·| for the cardinality of a set. For any δ := (δ1, . . . , δk) ∈ (Rd1)k,
x ∈ Rd1 , and ω := {ω1, . . . , ω|ω|} ∈ Ω(k), we define δGωi(x) := G(|ωi|) [(δj)j∈ωi ] for every 1 ≤ i ≤ |ω|. Then,
according to [Clark and Houssineau, 2013, Theorem 2],

(F ◦G)(k)(x)[δ1, . . . , δk] =
∑

ω∈Ω(k)

F (|ω|)(G(x))
[
δGω1

(x), . . . , δGω|ω|(x)
]
. (18)

This results implies a chain rule on the operator norms of derivatives of composite functions, which will greatly
simplify the computations of later proofs.

Proposition A.2. Let F : Rd2 → Rd3 and G : Rd1 → Rd2 be two differentiable functions up to order k ≥ 1.
Then, for any x ∈ Rd1 ,∥∥∥(F ◦G)(k)

(x)
∥∥∥
op
≤

∑
ω∈Ω(k)

∥∥∥F (|ω|)(G(x)
)∥∥∥
op
×

∏
1≤i≤|ω|

∥∥∥G(|ωi|)(x)
∥∥∥
op
.

Proof. According to the triangle inequality and (18)∥∥∥(F ◦G)(k)(x)
∥∥∥
op
≤

∑
ω∈Ω(k)

sup
‖δ1‖,...,‖δk‖≤1

∥∥∥F (|ω|)(G(x))
[
δGω1

(x), . . . , δGω|ω|(x)
]∥∥∥.

Then, we can bound the right term of this inequality by,∑
ω∈Ω(k)

∥∥∥F (|ω|)(G(x))
∥∥∥
op
×

∏
1≤i≤|ω|

sup
‖δ1‖,...,‖δk‖≤1

∥∥δGωi(x)
∥∥
op
.

In addition, note that for any x ∈ Rd1 ,

sup
‖δ1‖,...,‖δk‖≤1

∥∥δGωi(x)
∥∥ ≤ ∥∥∥G(|ωi|)(x)

∥∥∥
op
.

Therefore, ∥∥∥(F ◦G)(k)
(x)
∥∥∥
op
≤

∑
ω∈Ω(k)

∥∥∥F (|ω|)(G(x)
)∥∥∥
op
×

∏
1≤i≤|ω|

∥∥∥G(|ωi|)(x)
∥∥∥
op
.
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B Proofs of the main results

This sections details all the mathematical proofs of the paper.

Proof of Lemma 3.2. Let us start with a preliminary remark. For any v ∈ L2
V , it follows from Assumption 3.1

that
∫ 1

0
‖vt‖p,∞dt ≤ cV

∫ 1

0
‖vt‖V dt. Besides, by Cauchy-Schwarz inequality

∫ 1

0
‖vt‖V dt ≤ ‖v‖L2

V
, leading to∫ 1

0
‖vt‖p,∞dt ≤ cV ‖v‖L2

V
.

We now turn to the proof. Recall that by definition φvt (x) = x +
∫ t

0
vs ◦ φvs(x)ds. Consequently, by the

triangle inequality we have for any compact set K ⊂ Rd that

sup
t∈[0,1],x∈K

‖φvt (x)‖ ≤ sup
x∈K
‖x‖+

∫ 1

0

‖vs‖∞ds ≤ sup
x∈K
‖x‖+ cV ‖v‖L2

V
.

Therefore,
sup

v∈L2
V,M ,t∈[0,1],x∈K

‖φvt (x)‖ ≤ sup
x∈K
‖x‖+ cVM.

Moreover, combining [Glaunes, 2005, Theorem 5] with the preliminary remark, we know that for any 1 ≤ k ≤ p,
there exist two positive constants ck and c′k such that for any v ∈ L2

V ,

sup
t∈[0,1]

∥∥∥(φvt )
(k)
∥∥∥
∞
≤ ck exp

(
c′k‖v‖L2

V

)
.

Hence,
sup

v∈L2
V,M ,t∈[0,1]

∥∥∥(φvt )
(k)
∥∥∥
∞
≤ ck exp (c′kM) .

Then, setting

R((K, d); (V, p);M) := max

{
max

1≤k≤p
{ck exp(c′kM)}, sup

x∈K
‖x‖+ cVM

}
concludes the proof.

Proof of Lemma 4.1. Let µ and ν be probability measures on a compact set K ⊂ Rd. In a first time, let us show
that optimal potentials (f, g) ∈ C(K,R)×C(K,R) for TC,ε(µ, ν) can be chosen as universally-bounded Lipschitz
functions. The optimality condition on the potentials (see for instance [Genevay, 2019]) can be written as,

exp

(
−f(x)

ε

)
=

∫
K

exp

(
g(y)− C(x, y)

ε

)
dν(y).

Remark that since C is continuously differentiable, f is therefore continuously differentiable. Differentiating
both sides of this expression leads to,

∇f(x) =

∫
K

∇1C(x, y) exp

(
f(x) + g(y)− C(x, y)

ε

)
dν(y),

where ∇1 denotes the gradient with respect to x, the first variable of C. Let us define Γf,gC,ε(x, y) :=

exp
(
f(x)+g(y)−C(x,y)

ε

)
. According to the primal-dual relationship [Genevay, 2019, Proposition 7], an opti-

mal solution π to the primal problem has the expression,

dπ(x, y) = Γf,gC,ε(x, y)dµ(x)dν(y).
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Since by definition π ∈ Π(µ, ν), we consequently obtain that
∫
K

Γf,gC,ε(x, y)dν(y) = 1. Therefore,

‖∇f‖∞ ≤ sup
x,y∈K

‖∇1C(x, y)‖.

A similar argument can be made for g. This shows that f and g are `-Lipschitz with ` = `((K, d);C) > 0.
Now, note that for any constant c ∈ R, the pair (f + c, g − c) is still a pair of optimal potentials. As a
consequence, they can be chosen without loss of generality such that f(x0) = 0 for a given x0 ∈ K. Thus, using
the Lipschitz property we get f(x) ≤ `‖x− x0‖, hence ‖f‖∞ ≤ `diam(K). To bound g, we use [Genevay et al.,
2019, Proposition 1] which states that infx∈K{f(x)− C(x, y)} ≤ g(y) ≤ supx∈K{f(x)− C(x, y)}. This entails
that ‖g‖∞ ≤ ‖f‖∞ + supx,y∈K |C(x, y)| ≤ `diam(K) + supx,y∈K |C(x, y)|. All in all, there exists a constant
`1 = `1((K, d);C) such that f and g are `1-bounded and `1-Lipschitz continuous.

Analogously, one can bound the successive derivatives of f and g up to order q, the maximum order or
differentiability of C, using [Genevay et al., 2019, Proposition 1]. In particular, this result ensures that for any
1 ≤ k ≤ q, both

∥∥f (k)
∥∥
∞ and

∥∥g(k)
∥∥
∞ are bounded by a polynomial in ε−1 whose coefficients depend only on

C and K. This implies that there exists a constant m = m((K, d); (C, q); ε) > 0 such that f and g belong to
Cqm(K,R).

Proof of Proposition 4.2. Let m > 0 and R > 0. Set f, g ∈ Cqm(BR,R). Note that the function hf,gC,ε belongs to
Cq(BR ×BR,R). In a first time, we do not focus on any data processing operations, and show that hf,gC,ε and its
derivatives up to order q are uniformly bounded. By definition,

hf,gC,ε(x, y) = f(x) + g(y)− ε exp

(
f(x) + g(y)− C

(
x, y
)

ε

)
+ ε.

Before going further, we define the constant

C∞(R) := max
0≤k≤q

{
sup

(x,y)∈BR×BR

∥∥∥C(k)(x, y)
∥∥∥
op

}
(19)

Then, using the triangle inequality and the bounds on f, g and C we obtain,∥∥∥hf,gC,ε∥∥∥∞ ≤ ‖f‖∞ + ‖g‖∞ + ε exp

(
‖f‖∞ + ‖g‖∞ + C∞

ε

)
+ ε ≤ 2m+ ε exp

(
2m+ C∞

ε

)
+ ε.

Notice that the upper bound does not depend on the choice of f and g. We prove similar bounds for arbitrary
high orders of derivatives using the chain rule. We divide the problem by studying the function,

Γf,gC,ε : (x, y) ∈ BR ×BR 7→ exp
f(x) + g(y)− C(x, y)

ε
,

which is κ-continuously differentiable. Using Proposition A.2 with F = exp, we obtain for any 1 ≤ k ≤ q,∥∥∥(Γf,gC,ε)(k)
(x, y)

∥∥∥
op
≤
∣∣∣Γf,gC,ε(x, y)

∣∣∣ ∑
ω∈Ω(k)

∏
1≤i≤|ω|

ε−1
∥∥∥f (|ωi|)(x) + g(|ωi|)(y)− C(|ωi|)(x, y)

∥∥∥
op
,

Then, ∥∥∥∥(Γf,gC,ε

)(k)
∥∥∥∥
∞
≤ exp

(
2m+ C∞(R)

ε

) ∑
ω∈Ω(k)

ε−|ω|(2m+ C∞(R))|ω|. (20)

We now turn back to hf,gC,ε. Since
(
hf,gC,ε

)(k)

= f (k) + g(k) − ε
(

Γf,gC,ε

)(k)

we finally have∥∥∥(hf,gC,ε)(k)
∥∥∥
∞
≤ 2m+ exp

(
2m+ C∞(R)

ε

) ∑
ω∈Ω(k)

ε−|ω|+1(2m+ C∞(R))|ω|.
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By defining,

H0(m;R; (C, q); ε) := (2m+ ε) + ε exp

(
2m+ C∞(R)

ε

)
× max

0≤k≤q

 ∑
ω∈Ω(k)

ε−|ω|(2m+ C∞(R))|ω|

 ,

we conclude that ∥∥∥∥(hf,gC,ε)(k)
∥∥∥∥
q,∞
≤ H0.

We now include data processing transformations. Set T1, T2 ∈ CpR(X ,Rd). It follows from the regularity
of hf,gC,ε that hf,gC,ε ◦ (T1, T2) ∈ Cκ(X × X ,R). Since T1(x), T2(y) ∈ BR, and because hf,gC,ε is bounded by H0 on
BR × BR, the function hf,gC,ε ◦ (T1, T2) is bounded on X × X regardless of the choice of f, g, T1 and T2. Here
again, we use the chain rule to build higher-order bounds. From Proposition A.2 applied with F = hf,gC,ε and
G = (T1, T2) it follows that for any 1 ≤ k ≤ κ,∥∥∥(hf,gC,ε ◦ (T1, T2)

)(k)
(x, y)

∥∥∥
op
≤

∑
ω∈Ω(k)

∥∥∥(hf,gC,ε)(|ω|) ◦ (T1, T2)(x, y)
∥∥∥
op
×

∏
1≤i≤|ω|

∥∥∥(T1, T2)(|ωi|)(x, y)
∥∥∥
op
. (21)

Then, remark that for any 1 ≤ k ≤ κ,∥∥∥(T1, T2)(k)(x, y)
∥∥∥2

op
= sup
‖δi‖≤1

∥∥∥(T1, T2)(k)(x, y)(δ1, . . . , δk))
∥∥∥2

≤ sup
‖δi‖≤1

∥∥∥T (k)
1 (x)(δ1, . . . , δk)

∥∥∥2

+ sup
‖δi‖≤1

∥∥∥T (k)
2 (y)(δ1, . . . , δk)

∥∥∥2

=
∥∥∥T (k)

1 (x)
∥∥∥2

op
+
∥∥∥T (k)

2 (y)
∥∥∥2

op

≤ 2R2.

We can therefore bound the right term of (21), leading to∥∥∥(hf,gC,ε ◦ (T1, T2)
)(k)
∥∥∥
∞
≤

∑
ω∈Ω(k)

H0 ×
∏

1≤i≤|ω|

√
2R = H0

∑
ω∈Ω(k)

(
√

2R)|ω|.

We conclude by defining

H(m;R; (C, q); ε, p) := H0(m;R; (C, q); ε)× max
0≤k≤κ

 ∑
ω∈Ω(k)

(
√

2R)|ω|

 ,

which leads to, ∥∥∥hf,gC,ε ◦ (T1, T2)
∥∥∥
κ,∞
≤ H.

Proof of Proposition 5.1. Let {vn}n∈N be a sequence of vector fields in L2
V weakly converging to some v ∈ L2

V .
[Glaunes, 2005, Proposition 4] implies that for every x ∈ X ,∣∣∣φvn1 (x)− φv1(x)

∣∣∣ −−−−−→
n→+∞

0. (22)

Next, we aim at showing that this entails φv
n

1 ]α
w−−−−−→

n→+∞
φv1]α, where w denotes the weak* convergence of

probability measures. Firstly, note that as a consequence of the uniform-boundedness principle [Rudin, 1991,
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Theorem 2.5], the weak convergence of {vn}n∈N to v implies that there exists M > 0 such that {vn}n∈N ∪{v} ⊂
L2
V,M . Hence, according Lemma 3.1, there exists some R = R((X , d); (V, p);M) > 0 such that the measures
{φvn1 ]α}n∈N, φv1]α, and β are all probabilities on BR. Secondly, recall that showing the weak* convergence of
amounts to check that for any bounded test functions h ∈ C(BR,R) we have that

∫
hd(φv

n

1 ]α) −−−−−→
n→+∞

∫
hd(φv1]α).

Let h ∈ C(BR,R) be a bounded function and use the push-forward change-of-variable formula to write∫
hd(φv

n

1 ]α) =
∫

(h ◦ φvn1 )dα. By continuity of h and according to (22), the sequence of functions {h ◦ φvn1 }n∈N
converges point-wise to h ◦ φv1. In addition, as h is bounded, this sequence is dominated by a constant. We can
therefore apply the dominated convergence theorem to obtain that φv

n

1 ]α
w−−−−−→

n→+∞
φv1]α.

We conclude the proof using [Feydy et al., 2019, Proposition 13], which states that TC,ε (and consequently
SC,ε) is weak* continuous w.r.t. each of its input measures, provided that the ground cost function C is Lipschitz
on their compact domains. This condition readily follows from the continuity of the derivative of C on the
compact set BR ×BR. Therefore, v 7→ SC,ε(φ

v
1]α, β) is weakly continuous on L2

V . If additionally e
−Cε defines a

positive universal kernel, then v 7→ SC,ε(φ
v
1]α, β) is non negative according to [Feydy et al., 2019, Theorem 1],

which implies through [Glaunes, 2005, Theorem 7] that Jλ for Λ = SC,ε admits minimizers.

Proof of Proposition 5.3. Let R > 0. In a first time, we demonstrate the following Glivenko-Cantelli theorem
(i):

sup
T1,T2∈CpR(X ,Rd)

∣∣TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)
∣∣ a.s.−−−−−→
n→+∞

0.

In a second time, when κ = min{p, q} ≥ d, we show the following rate of convergence (ii):

E sup
T1,T2∈CpR(X ,Rd)

∣∣TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)
∣∣ ≤ A√

n
,

where A > 0 is a constant. In both cases, the key idea of the proof is to note that the quantity

sup
T1,T2∈CpR(X ,Rd)

∣∣TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)
∣∣

is the supremum of a centered empirical process indexed by a class of smooth functions, and as such can be
controlled via classical results from empirical process theory (see Section A.1).

Let T1 and T2 be two arbitrary functions in CpR(X ,Rd). By definition, the image sets T1(X ) and T2(X ) are
contained in BR. Thus, using the dual formulation, the entropic transportation costs can be written as,

TC,ε(T1]αn, T2]βn) = sup
f,g∈C(BR,R)

(T1]αn ⊗ T2]βn)(hf,gC,ε),

TC,ε(T1]α, T2]β) = sup
f,g∈C(BR,R)

(T1]α⊗ T2]β)(hf,gC,ε).

We apply Lemma 4.1 with µ = T1]α and ν = T2]β which are probability measures on BR. This implies that
there exists a constant m = m(BR; (C, q), ε) > 0 such that

TC,ε(T1]αn, T2]βn) = sup
f,g∈Cqm(BR,R)

(T1]αn ⊗ T2]βn)(hf,gC,ε)

= sup
f,g∈Cqm(BR,R)

(αn ⊗ βn)(hf,gC,ε ◦ (T1, T2)),
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where we used the push-forward change-of-variable formula. Proceeding similarly with the empirical measures
we get,

TC,ε(T1]α, T2]β) = sup
f,g∈Cqm(BR,R)

(T1]α⊗ T2]β)(hf,gC,ε)

= sup
f,g∈Cqm(BR,R)

(α⊗ β)(hf,gC,ε ◦ (T1, T2)),

Then, by using a classical error decomposition, we can control the difference between these two terms as follows,

|TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)| ≤

sup
f,g∈Cqm(BR,R)

|(αn ⊗ βn)(hf,gC,ε ◦ (T1, T2))− (α⊗ β)(hf,gC,ε ◦ (T1, T2))|.

After taking the supremum in CpR(X ,Rd) on both sides of this inequality we get,

sup
T1,T2∈CpR(X ,Rd)

∣∣TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)
∣∣ ≤

sup
T1,T2∈CpR(X ,Rd);f,g∈Cqm(BR,R)

∣∣∣(αn ⊗ βn)(hf,gC,ε ◦ (T1, T2))− (α⊗ β)(hf,gC,ε ◦ (T1, T2))
∣∣∣.

The right term of this inequality can be seen as a centered empirical process indexed by the class of functions
{hf,gC,ε ◦ (T1, T2) | T1, T2 ∈ CpR(X ,Rd); f, g ∈ Cqm(BR,R)}. Empirical process theory provides convergence
guarantees when the index class is regular enough. Besides, we know from Proposition 4.1 that there exists a
constant H := H(R; (C, q); ε, p) > 0 such that this class is included in CκH(X × X ,R). Therefore,

sup
T1,T2∈CpR(X ,Rd)

|TC,ε(T1]αn, T2]βn)− TC,ε(T1]α, T2]β)| ≤ sup
h∈CκH(X×X ,R)

|(αn ⊗ βn)(h)− (α⊗ β)(h)|.

Let us set H := CκH(X × X ,R). According to [Van Der Vaart and Wellner, 1996, Corollary 2.7.2] and [Van
Der Vaart and Wellner, 1996, Theorem 2.4.1], H is a so-called (α ⊗ β)-Glivenko-Cantelli class of functions,
meaning that

sup
h∈H
|(αn ⊗ βn)(h)− (α⊗ β)(h)| a.s.−−−−−→

n→+∞
0.

This implies (i). In addition, by Proposition A.1, if κ ≥ (2d)/2 then there exists a positive constant A :=

A(R; (C, q); ε; (X , d); p) such that,

E
[

sup
h∈H
|(αn ⊗ βn)(h)− (α⊗ β)(h)|

]
≤ A√

n
.

This proves (ii).

Before proving Theorem 5.1, we need the next intermediary result:

Lemma B.1. Under the assumptions of Theorem 5.1, there exists a positive constant M = M(λ; (X , d); (C, q); ε)

such that {⋃
n∈N

arg min
v∈L2

V

Jλ,n(v)

}
∪ arg min

v∈L2
V

Jλ(v) ⊆ L2
V,M .
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Proof. The proof generalizes an argument made for a squared MMD in [Glaunes, 2005, Theorem 16] to a
Sinkhorn divergence. Let n ∈ N and set vn a minimizer of Jλ,n. Notice that the vector flow uniformly equal to
zero generates the identity function, that is φ0

t = I for any t ∈ [0, 1]. Thus, by definition of a minimizer and by
non negativity of the Sinkhorn divergence, we readily have that

λ‖vn‖2L2
V
≤ Jλ,n(vn) ≤ Jλ,n(0) = SC,ε(αn, βn).

Therefore, ‖vn‖2L2
V
≤ λ−1SC,ε(αn, βn). To conclude, let us bound uniformly the right-term of this inequality.

According to Lemma 4.1 applied with αn and βn there exists a constant m = m((X , d); (C, q); ε) such that,

TC,ε(αn, βn) = sup
f,g∈Cqm(X ,R)

(αn ⊗ βn)
(
hf,gC,ε

)
.

Moreover, for any x, y ∈ X ,

hf,gC,ε(x, y) = f(x) + g(x)− εe
f(x)+g(y)−C(x,y)

ε + ε ≤ m+m+ 0 + ε.

Thus,
TC,ε(αn, βn) ≤ 2m+ ε.

The same bound holds for the two auto-correlation terms of the Sinkhorn divergence, namely TC,ε(αn, αn) and
TC,ε(βn, βn). Therefore, the triangle inequality leads to

SC,ε(αn, βn) ≤ 4m+ 2ε.

Consequently,

‖vn‖2L2
V
≤ 4m+ 2ε

λ
.

To conclude, we setM(λ; (X , d); (C, q); ε) :=
√

4m+2ε
λ . Note that this bound does not depend on n. As such, the

minima {vn}n∈N all belong to L2
V,M . A similar reasoning for v∗ a minimizer of Jλ shows that all the minimizers

of Jλ also belong to L2
V,M .

Proof of Theorem 5.2. Let M > 0 be arbitrary (for now). Set v ∈ L2
V,M and compute

|Jλ,n(v)− Jλ(v)| = |SC,ε(φv1]αn, βn)− SC,ε(φv1]α, β)|.

According to Lemma 3.1, there exists a constant R = R((X , d); (V, p);M) such that for any φ ∈ {φvt | t ∈
[0, 1], v ∈ L2

V,M}, the restriction φ|X and the identity function I both belong to CpR(X ,Rd). This leads to

sup
v∈L2

V,M

|Jλ,n(v)− Jλ(v)| ≤ sup
T1,T2∈CpR(X ,Rd)

|SC,ε(T1]αn, T2]βn)− SC,ε(T1]α, T2]β)|. (23)

From here, let us demonstrate the convergence of the minima, that is item (i). According to Lemma B.1,
there exists M = M(λ; (X , d); (C, q); ε) > 0 such that all the minimizers of Jλ,n belong to L2

V,M . Next, we
show that any weakly-converging subsequences of {vn}n∈N tend to a minimizer of Jλ. Set v∗ a minimizer of
Jλ, and let {un}n∈N be a subsequence with limit u. First, let’s show that limn→+∞ Jλ,n(un) = Jλ(u). By the
triangle inequality, |Jλ,n(un)− Jλ(u)| ≤ |Jλ,n(un)− Jλ(un)|+ |Jλ(un)− Jλ(u)|. The first term tends to zero
by Proposition 5.2 and (23) specified with M(λ; (X , d); (C, q); ε), while the second term tends to zero according
to Proposition 5.1 which ensures the weak continuity of Jλ. Second, note that the optimality condition entails
that Jλ,n(un) ≤ Jλ,n(v∗), and that limn→+∞ Jλ,n(v∗) = Jλ(v∗). Then, at the limit Jλ(u) ≤ Jλ(v∗), meaning
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that u is a minimizer of Jλ. Therefore, any weakly-converging subsequence {un}n∈N of {vn}n∈N tends to a
minimizer u of Jλ.

To conclude on the convergence of the generated diffeomorphisms, we rely on [Glaunes, 2005, Remark 1],
stating that

sup
t∈[0,1]

{∥∥∥φunt − φut ∥∥∥∞ +
∥∥∥(φu

n

t )−1 − (φut )−1
∥∥∥
∞

}
≤ 2cV ‖un − u‖L2

V
exp

(
cV ‖u‖L2

V

)
.

We showed that ‖un − u‖L2
V
−−−−→
n→∞

0. Consequently, the upper bound tends to zero as n increases to infinity.
This completes the proof of (i).

Item (ii) readily follows from Proposition 5.2 stating that if κ ≥ d, then there exists for any M > 0 a
constant A = A(λ; (X , d); (C, q); ε; (V, p);M) > 0 such that

E

[
sup

v∈L2
V,M

|Jλ,n(v)− Jλ(v)|

]
≤ A√

n
.

To conclude, recall that both {vn}n∈N and v∗ belong to L2
V,M for the constant M from Lemma B.1, and apply

the classical deviation inequality

Jλ(vn)− Jλ(v∗) ≤ 2 sup
v∈L2

V,M

|Jλ,n(v)− Jλ(v)|.
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SC,ε t = 0 t = 4 t = 8 t = 12 t = 16/16

ε = 1

ε = 10−2

ε = 10−4

ε = 10−6

TC,ε t = 0 t = 4 t = 8 t = 12 t = 16/16

ε = 1

ε = 10−2

ε = 10−4

ε = 10−6

Table 1: Optimal-transport-driven 2-D diffeomorphic registration optimized by GDM. The colored distribution
is αm(t), while the blue distribution is βm.
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SC,ε t = 0 t = 4 t = 8 t = 12 t = 16/16

ε = 1

ε = 10−2

ε = 10−4

ε = 10−6

TC,ε t = 0 t = 4 t = 8 t = 12 t = 16/16

ε = 1

ε = 10−2

ε = 10−4

ε = 10−6

Table 2: Optimal-transport-driven 2-D diffeomorphic registration optimized by GS. The colored distribution is
αm(t), while the blue distribution is βm.
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GDM t = 0 t = 4 t = 8 t = 12 t = 16/16

θ = 1

θ = 0.5

θ = 0.1

GS t = 0 t = 4 t = 8 t = 12 t = 16/16

θ = 1

θ = 0.5

θ = 0.1

Table 3: 2-D diffeomorphic registration driven by MMD2
θ. The colored distribution is αm(t), while the blue

distribution is βm.
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Loss
Init

Zero SC,ε

ε = 10−4

SC,ε

ε = 1

MMD2
θ

θ = 0.1

MMD2
θ

θ = 0.5

SC,ε

ε = 10−4

SC,ε

ε = 1

MMD2
θ

θ = 0.1

MMD2
θ

θ = 0.5

SC,ε

ε = 10−4
7.35 · 10−5 1.01 · 10−4

(+37, 4%)
9.77 · 10−5

(+32, 9%)
7.72 · 10−5

(+5, 0%)

SC,ε

ε = 1
1.61 · 10−6 3.06 · 10−8

(−98, 1%)
5.26 · 10−8

(−96, 7%)
3.60 · 10−8

(−97, 8%)

MMD2
θ

θ = 0.1
3.39 · 10−4 1.01 · 10−4

(−70, 2%)
4.06 · 10−4

(+19, 8%)
3.59 · 10−4

(+5, 9%)

MMD2
θ

θ = 0.5
1.55 · 10−6 6.30 · 10−8

(−95, 9%)
3.34 · 10−6

(+115, 5%)
1.23 · 10−7

(−92, 1%)

Table 4: 2-D diffeomorphic matching optimized by GS with warm start. A row specifies the studied loss while
each column refers to an initialization. Except for the first column which indicates the initialization to zero, the
columns correspond to a solution from the previous experiments. The first four rows show the final matchings
while the last four rows give the associated loss values with their growth rates compared to the initialization via
zero; row-wise-minimal loss values are written in bold.
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