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Abstract

We describe a method of constructing parametric statistical models of
shape variation which can generate continuous diffeomorphic (non-folding)
deformation £elds. Traditional statistical shape models are constructed by
analysis of the positions of a set of landmark points. Here we analyse the pa-
rameters of continuous warp £elds, constructed by composing simple para-
metric diffeomorphic warps. The warps are composed in such a way that
the deformations are always de£ned in a reference frame. This allows the
parameters controlling the deformations to be meaningfully compared from
one example to another. A linear model is learnt to represent the variations
in the warp parameters across the training set. This model can then be used
to generalise the deformations. Models can be built either from sets of anno-
tated points, or from unlabelled images. In the latter case, we use techniques
from non-rigid registration to construct the warp £elds deforming a refer-
ence image into each example. We describe the technique in detail and give
examples of the resulting models.

1 Introduction

This paper proposes a method of building generative statistical models of diffeomorphic
(ie smooth, invertible) deformation £elds. It is part of a larger programme aimed at ex-
ploiting the synergy between work on constructing statistical models of shape and that on
non-rigid registration.

Statistical models of shape variation [5] have been shown to be powerful tools for im-
age interpretation. Most approaches to constructing such models assume (either explicitly
or implicitly) that the object shape can be represented by a set of points which exist on all
examples, and essentially de£ne the correspondences across those examples.

The act of annotating a training set with such points is essentially the same as the goal
of non-rigid image registration, widely used in the medical image analysis community. In
such cases the aim is to £nd the deformation £eld which maps one image into another.
Such a £eld de£nes a dense correspondence between two images. Given a set of such
dense correspondences, one can build a statistical model of the deformation £eld [11].

When registering two images one usually assumes that similar structures are present
in each. Since in general the ordering should not be important, it is desirable that the
deformation £eld be smooth and invertible (so that every point in one image has a corre-
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sponding point in the other). Such smooth, invertible transformations are called diffeo-
morphisms. 1

In the non-rigid registration literature there are a variety of ways of constructing dif-
feomorphic maps between pairs of images. The diffeomorphism is either achieved by
placing constraints on the Jacobian of more arbitrary warps [3, 11, 2] or by composing
many simple diffeomorphisms [6].

There has been little attention paid to generating parameterisable diffeomorphisms
suitable for representing the statistics of shape change across a set of examples.

Point-based statistical models of shape [5] give us a parameterised representation of
the movement of a set of landmark points. If we could interpolate the deformation £eld
between the points we would have a statistical model of continuous deformation. Unfor-
tunately, interpolating in such a way as to ensure the resulting mapping is diffeomorphic
is dif£cult.

For instance, the simplest approach, that of piecewise linear interpolation using a
triangulation of the points, is clearly unsatisfactory. Not only is the resulting deformation
£eld not smooth, it is quite likely to fold up on itself (see for instance, Figure 1).

A A

Figure 1: Problems when interpolating with triangles. If point A moves as shown, the
triangle ¤ips and there is no longer a 1-1 mapping between the two regions.

Smoother interpolation schemes such as Thin-Plate Splines [1] are also prone to tear-
ing space. However, Twining et al.describe Geodesic Interpolating Splines, which are
capable of constructing a diffeomorphism between and two sets of landmark points [13].
Unfortunately the method requires a relatively complex optimisation, so is not very ef£-
cient for large numbers of points.

Thus a conceptually simple approach, that of using a standard point based statistical
model, then interpolating to estimate the diffeomorphism between the mean shape and
points generated by the model, can be rather slow.

In this work we describe how we can construct statistical models of continuous defor-
mation £elds in such a way that they can only generate smooth invertible mappings. The
key to the approach is to create parameterised deformations by composing simple diffeo-
morphic functions, then to apply statistics in the space of the parameters, rather than to the
point positions directly. It is possible to generate functions such that linear interpolation
in the parameter space always leads to legal deformations.

In the following we will describe the construction of parameterised diffeomorphic
warps, how their parameters can be estimated and how one can model their parameters
given a training set of registered data. We will give examples of the models and discuss
how such models can be used.

1In cases where structures appear or disappear between one image and the next, we believe that these should
be explicitly modelled as creation or destruction processes – such processes will not be addressed in this paper.



1.1 Related Work

Rueckert et al.[11] describe statistical shape models in which deformation is represented
by the control points of a B-spline. Since the B-spline is linear in the control point po-
sitions, the resulting model is essentially identical to the original PDMs of Cootes et
al.[5]. Such a model is prone to generating non-diffeomorphic deformations. However,
one could use the constraints on the control point displacements described by Chio and
Lee [2] to ensure that B-spline based deformations are diffeomorphic.

The work by Pizer’s group on medial representations (M-Reps) [12] explores mod-
elling compound structures and their deformation. In work by Fletcher et al.[8] they
investigate statistically modelling the variation in shape in such a way as to preserve cor-
respondence.

2 Representing Diffeomorphisms

We can construct complex diffeomorphic functions by composing simple diffeomorphisms.
Let f (x|φi) be a diffeomorphic mapping controlled by parameters φi. We de£ne

f1 f2(x) = f1( f2(x)).
We can de£ne the composition of a set of diffeomorphisms as

F(x|Φ) = f1 f2... fn−1 fn(x) (1)

where the parameter vector Φ is simply a concatenation of the parameter vectors for
each individual function, {φi}. As long as the component functions are all diffeomorphic,
so is F .

In the following we will consider diffeomorphisms of the form

fAF(x|Φ) = fA f1 f2... fn−1 fn(x) (2)

in which fA(x) is an af£ne transformation, and each f i is a parameterised diffeomorphic of
increasing complexity and decreasing scale. In particular, we use grid based deformations,
in which the deformation of a region is controlled by the position of a set of grid nodes
(see Appendix A). We use a coarse grid with few nodes for f1, and increase the number
of nodes for each subsequent £ner deformation f i.

Note that these deformations are similar to the B-spline free form deformations used
by Rueckert et al.[11]. However, that work effectively represents the deformation £eld
with the £nal, single grid based warp, and doesn’t necessarily force the result to be dif-
feomorphic.

The ordering of the transformations is important. To apply a warp to a structure in the
reference frame, we £rst apply the £nest (small scale) deformations f n. We then apply
deformations of increasing scale. Finally we apply an af£ne transformation. The grid
based warps described in Appendix A are controlled by the position of the nodes. If
we apply the deformations in a £ne-to-coarse manner, each grid is always de£ned in the
reference frame, and the displacements of each node can be represented in this frame.
This means that it is reasonable to compare the parameters for different deformations, as
they are computed in the same domain. It is this property which will allow us to perform
meaningful analysis on the parameter vectors when building the models of deformation
(see the next section).



This £ne-to-coarse approach can be considered as applying a series of object-centred
deformations. We £rst make small changes to the object, then make increasingly large
changes, carrying the smaller changes along - see Figure 2. If we applied the coarser
warps £rst then the £ner warps would affect different parts of the reference object each
time, depending upon which coarse warps are used.

f1(x|φ1) f1(x|−φ1) f2(x|φ2) f2(x|−φ2)

f1( f2(x|φ2)|φ1) f1( f2(x|−φ2)|φ1) f1( f2(x|φ2)|−φ1) f1( f2(x|−φ2)|−φ1)

Figure 2: Example of composing warps. f1 is a coarse warp, f2 a £ne scale warp. By
applying f2 £rst we make small changes to the shape, which are then carried along when
we apply f1.

3 Estimating Diffeomorphisms

We will consider estimating the parameters for the compositional warps described above
for two cases; one in which we have a set of landmark positions on a reference shape and
a target shape, and one in which we have only un-annotated images (one reference, one
target). In both cases we wish to £nd the parameters of the compositional warp, φA (the
af£ne component) and Φ (the non-rigid components), which best match the reference to
the target data.

3.1 Estimating from Sets of Points

Suppose we have a set of points on a reference shape. Assume (for notational conve-
nience) that their co-ordinates are concatenated together into the vector X. Suppose we
also have a set of points in the target shape, X′. We wish to £nd the parameters which
minimise | fAF(X|Φ)−X′|2.

For small numbers of points there are likely to be multiple possible solutions, as sim-
ilar deformations can be represented by grids at different scales. We thus tackle the prob-
lem in a greedy fashion:

• Find the af£ne parameters φA which minimise | fA(X)−X′|2

• For £xed φA £nd φ1 to minimise | fA f1(X)−X′|2

• For £xed φA,φ1 £nd φ2 to minimise | fA f1 f2(X)−X′|2

• Repeat for subsequent functions, £xing previous parameters



3.2 Estimating from Images

Given a pair of unlabelled images, I0 and I1, we wish to £nd the parameters of the de-
formation which best matches one onto the other. We will use a modi£ed version of
Rueckert’s free-form non-rigid registration algorithm [11]. In the results section below
we demonstrate that the compositional technique described here is able to accurately reg-
ister a pair of images.

Let X be a set of points densely placed on image I0 (for instance, the pixel positions).
Let s0 = I0(X) be the intensities sampled at these positions in image I0. Let s1 = I1(W (X))
be the intensities sampled at warped positions, W (X) in image I1.

We will assume that the quality of match between two images is evaluated using a
function Q(s0,s1). In the experiments which follow we use a simple sum of absolute
differences, which gives some robustness to outliers. However we could equally use
mutual information (MI), normalised MI, or other statistical measures.

The registration process proceeds as follows:

• Find the parameters φA of the af£ne transformation which best maps I0 onto I1 by
minimising Q(s0, I1( fA(X|φA)))

• Set the estimate of the deformation to be F0(X) = fA(X).

• Generate a new image, I(1)
1

by applying the inverse of the transformation F0(X) to
I1. This can be done by simply writing the samples s1 = I1(F0(X)) into the grid
positions X in a new image. I(1)

1
is thus the image I1 projected back into the frame

of image I0

• Find the parameters φ1 of the diffeomorphism f1(X|φ1) which best maps I0 onto
I(1)
1

by minimising Q(s0, I
(1)
1

( f1(X|φ1)))

• Set the estimate of the deformation to be F1(X) = F0 f1(X).

• Generate a new image, I(2)
1

by applying the inverse of the transformation F1(X)

• Repeat, optimising each transformation fi in turn, updating Fi = Fi−1 fi and recom-

puting the back-warped image I(i+1)
1

The computation of the intermediate images I(1)
1

is necessary for ef£ciency. For the
optimisations with few parameters, we use Nelder-Mead Downhill Simplex [10]. For the
larger grid optimisations we estimate the gradient of the objective function by displacing
each node in turn, then perform a line search along that direction (the approach used by
Rueckert et al.[11]).

The £nal result is the set of all parameters of the warp Fn(X) = fA f1... fn(X).
This approach gives us a method of registering a pair of images using a diffeomorphic

mapping. In addition, it ensures that since at each stage the warps are de£ned in the
reference frame (image I0), parameters from different warps to different images can be
compared.



4 Statistical Models of Diffeomorphisms

Suppose we have a set of training images. If we choose one as a reference, and choose
a suitable class of compositional warps (such as the grid-based deformations), we can
use the method described above to £nd the diffeomorphic deformation from the reference
image into every other image. Each such deformation is summarised by the af£ne param-
eters, φA,i and the parameters controlling the non-rigid warps, concatenated into vectors
Φi.

Shape is usually de£ned as the geometric properties of an object invariant to some
transformation (commonly similarity or af£ne). When constructing a statistical shape
model from a set of points, Procrustes Analysis [7] is used to remove the effect of such
global transformation. In our case the af£ne transformation is encoded in the parameters
φA. Since we are usually only interested in the non-rigid components, we will discard the
af£ne terms (note however that in some cases we may wish to retain information about
size or skew, in which case we can decompose the af£ne component appropriately).

To build a statistical model, we simply apply Principal Component Analysis (PCA) to
the warp parameter vectors Φi. Where appropriate we should apply a pre-scaling to the
elements of each Φi so that they are commensurate. This scaling should be chosen so that
changing each parameter causes a similar amount of movement of the resulting warp. For
instance, with grid based warps, moving one node in a 3 x 3 grid by one unit has a four
times larger effect than moving one node by the same amount in a 6 x 6 grid. Therefore
the parameters controlling the coarser grid should be weighted 4 times more than those of
the £ner grid.

By selecting a suitable subset of the principal components, we generate a compact
linear model with a relatively small number of modes;

Φ = Φ̂+Pb (3)

where Φ̂ is the mean of the training set, P contains the t most signi£cant eigenvectors and
b is the vector of shape parameters.

This model can be used to generate new diffeomorphic warps by £rst computing the
warp parameters, then plugging these into the composition of warps. To ensure that the
result is indeed diffeomorphic, we must apply constraints to the parameters Φ. In the case
of grid-based warps, this simply involves testing each parameter to ensure it is within a
£xed range (see Appendix A). The linear nature of the model ensures that we can use
the approach to interpolate between two known diffeomorphic warps by moving along a
straight line in Φ-space. This will not generate any illegal parameter values.

The full model of deformation is thus controlled by the global af£ne parameters, φA
and the model parameters b,

W (x) = fA(F(x|Φ̂+Pb)|φA) (4)

Examples of such models are shown below.

4.1 Examples from Sets of Points

Figure 3 shows the £rst three modes of variation of a model trained on deformations
estimated from sets of points annotated on a set of face images. A composition of four



grid-based warps was used, with 2x2, 4x4, 8x8 and 16x16 nodes respectively. 51 faces
images taken from the XM2VTS database were used [9]. The nodes at the edges are
assumed £xed, so these warps have 2, 18, 98 and 450 degrees of freedom respectively,
giving a total of 528. The model explaining 95% of the variation has 33 degrees of
freedom.

Figure 3 shows the continuous deformation of space (using an arbitrary grid) and the
effect on the points describing the main features in the reference image.

For comparison Figure 4 shows the £rst 3 modes of a linear statistical shape model
trained on the point positions (a PDM) [5] (in this case 21 dimensions are suf£cient to
capture 95% of the variance in the training set). The diffeomorphic mode has captured
the same sorts of variation.

−3σ1 +3σ1 −3σ2 +3σ2 −3σ3 +3σ3
Mode 1 Mode 2 Mode 3

Figure 3: Modes of diffeomorphic shape model trained on sets of face points

Mode 1 Mode 2 Mode 3

Figure 4: Modes of shape model (PDM) trained on sets of face points

4.2 Examples from Unlabelled Images

We used the non-rigid registration technique described in section 3.2 to £nd the warps
from the £rst face image to subsequent images. We then built a statistical model of the
warp parameters. Figure 5 shows the £rst three modes of the resulting model of diffeo-
morphic shape variation. The method has successfully captured similar forms of variation
to the models built from annotated landmarks. However, the variation seems a little less
’extreme’ (eg around the chin), suggesting that the non-rigid registration has been more
conservative when matching.

We can evaluate the quality of the non-rigid registration by projecting the reference
points to each target image in turn using the found deformation £eld. These points can
then be compared with manual annotations on the same images. We measure the distance
from each point to the equivalent curve on the target image, and obtain a mean error of



1.7 pixels (s.d.0.6 pixels). The faces are about 100 pixels wide. This suggests that the
compositional method is giving good results.

−3σ1 +3σ1 −3σ2 +3σ2 −3σ3 +3σ3
Mode 1 Mode 2 Mode 3

Figure 5: Modes of diffeomorphic shape model trained on warps from non-rigid registra-
tion of face images

Figure 6 shows the model resulting from applying the technique to a set of 16 MR
brain slices. Again, the method has automatically registered the images and found the
main modes of variation. Comparing the registration with manual annotation for the
central brain structures, we £nd a point to curve error with a mean of 1.7 pixels (s.d. 0.5
pixels). The brains are about 150 pixels across.

−3σ1 +3σ1 −3σ2 +3σ2 −3σ3 +3σ3
Mode 1 Mode 2 Mode 3

Figure 6: Modes of diffeomorphic shape model trained on warps from non-rigid registra-
tion of MR brain slice images

5 Discussion

The key to the models is the method of generating parameterised classes of diffeomor-
phisms by composing relatively simple basis functions. Though we have presented results
with a particular type of grid-based interpolating warp, a wide range of alternatives could
be used. One obvious choice would be the B-splines used to such success by Rueckert et
al.[11], as long as suitable constraints are used to ensure diffeomorphisms [2].

Of course, a difference choice of basis functions will lead to a different model. It is
hoped that models built with different but suitably expressive bases will be able to gener-
ate similar sorts of deformation £elds, though this remains an area of active investigation.

The grid-based warps limit the sorts of deformation that the method can generate. This
means it cannot necessarily get a perfect match to known corresponding points. However,
using suf£ciently £ne grids should allow the matching to be ’close enough’.

Though results here are presented for 2D examples, the extension to 3D is straightfor-
ward.



The compositional non-rigid registration method described in Section 3.2 was shown
to give accurate results, and will be useful in its own right. However, it is a greedy
algorithm and potentially prone to local minima. In further work we will investigate its
performance more and compare it with alternative registration schemes.

The eventual aim is to use the models in image interpretation. The models appear
capable of representing shape variation in a compact form, and should allow fast robust
model matching to new images, in the same way that linear models of point position have
proved very useful. We are exploring using fast gradient approximation techniques such
as that exploited by the Active Appearance Model algorithm [4] for driving the image
matching with the models. It is hoped that this will lead to more rapid estimation of
deformation between images.

6 Conclusions

We have described a method of modelling diffeomorphic shape deformation statistically,
leading to a parameterised model capable of synthesising diffeomorphisms ef£ciently.
The resulting models have modes of variation similar to those of linear models of point
position, but unlike the latter, explicitly de£ne a full diffeomorphic deformation £eld.
We anticipate that the models will £nd wide application in the £elds of modelling and
interpretting deformable objects, particularly in the medical £eld.
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A Grid-Based Diffeomorphisms
We consider diffeomorphic warp £elds represented by deformations of a grid of control points.

The general approach is that the nodes of a regular grid are displaced by some amount, and that
displacement is propagated (or interpolated) to estimate the displacement at intermediate positions.

Consider the case in which we are interested in the region [0,n + 1][0,m + 1], into which we
have placed nxm nodes at integer positions. If the nodes at (i, j) in the reference frame are displaced
by di j , then this implies a deformation of the region as

d(x,y) = k(x− i)k(y− j)di, j +k(i+1− x)k(y− j)di+1, j
+k(x− i)k( j +1− y)di, j+1 +k(i+1− x)k( j +1− y)di+1, j+1

(5)

where i ≤ x < i + 1 and j ≤ y < j + 1, and k(r) is a kernel function used to interpolate the de-
formation. Note that if k(r) = 1− |r|, then we have bilinear interpolation. However, this is not
diffeomorphic since it is not smooth (there are discontinuities in the gradient at integer boundaries).

For a smooth, invertable mapping, it can be shown that k(r) must satisfy

k(0) = 1 k(−1) = k(1) = 0
k′(−1) = k′(1) = 0 k(r) = k(−r)

(6)

and that certain limits are placed on the displacements of the nodes.
The simplest polynomial kernel with these properties is k(r) = (1− r2)2.



An interesting alternative function is

k(r) = 0.5(1+ cos(πr)) (7)

The nice thing about the latter function is that k(r) + k(1− r) = 1, which means that if four
neighbouring nodes are displaced by the same amount then all the points in the enclosed square are
translated by that amount, with no other distortions occurring.

By examining the Jacobian of the deformation (5) we can show that the with this trigonometric
kernel the deformation is guaranteed to be diffeomorphic if no node is displaced more than 1

π ≈
0.3183 along x or y. Thus we can construct a parameterised diffeomorphism of the form f (x|φ) =
d(x,y) where the parameters φ are the 2nm ordinates of the displacements of the nodes. Note that
this can easily be extended to 3D if required.
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