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Abstract. Using the relation between diffeomorphisms in the bulk and Weyl transformations on
the boundary, we study the Weyl transformation properties of the bulk metric on-shell and of the
boundary action. We obtain a universal formula for one of the classes of trace anomalies in any
even dimension in terms of the parameters of the gravity action.

PACS number: 1125

1. Introduction

The AdS/CFT correspondence offers remarkable insights into non-perturbative phenomena in
gauge theories [1]. Many of the proposed tests of the correspondence rely on the symmetry
algebras being isomorphic.

Among the tests going beyond the mapping of the algebraic structure, the correct mapping
of the trace anomalies is one of the most impressive [2—4]. On the supergravity side the
correspondence involves a classical calculation: one solves the equation of motion using the
metric at the boundary as an initial condition. The action evaluated for this classical solution
gives the effective action in terms of the boundary metric. Taking a Weyl variation of the
effective action gives the anomalous terms. An anomaly appears in a classical calculation due
to the apparently infrared logarithmically divergent terms obtained when the action is evaluated
with the classical solution. For the five-dimensional Einstein action with a cosmological
constant the coefficients of the two independent trace anomaly structures match correctly the
trace anomalies of the four-dimensiomél = 4 super-Yang—Mills theory calculated in the
large4V limit.

In this paper we study further the structure of this correspondence. Following Penrose
[5] and Brown and Henneaux [6], we remark that the Weyl transformations of the boundary
metric can be understood as a certain subgroup of the bulk diffeomorphisms. This observation
allows us to derive a general transformation rule for the bulk metric when the boundary metric
is changed by a Weyl transformation. In the following we will call it the ‘PBH transformation’.
The transformation does not use the solution of the equation of motion explicitly and, therefore,
it is valid for a general bulk effective action including all the stringy corrections. We analyse
the action evaluated for this general bulk metric and we uncover some universal properties of
the trace anomaly which follow from it. In particular, the coefficient of the Euler structure
present in any dimension (the so-called type A trace anomaly) has a universal dependence on
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the action, being given by the value of the action evaluated for the AdS solution. This allows
us to calculate this particular trace anomaly for a general bulk action. The universal structure
we find has general features reminiscent of the descent equations for the axial anomaly and
probably has implications for the general understanding of the structure of trace anomalies,
independent of the AAS/CFT correspondence.

In section 2 we discuss the algebraic structure of the PBH transformation. In section 3 we
classify the terms in the effective action using the symmetry. The relation between the terms
in the effective action and trace anomalies and a general formula for the type A trace anomaly
are discussed in section 4. The general conclusions we have reached and possible implications
and open questions are discussed in the last section.

Most of the results of this paper have already been presented at Strings 991. Meanwhile
several papers with some overlap have appeared [7].

2. The PBH transformation

Consider a manifold itd+1) dimensions with a boundary whichis topologicaly Following
Fefferman and Graham [8], one can choose a set of coordinates in whigh+thedimensional
metric has the form

2 v 12 d,O 2 1 i j
ds“ =G dX*dX" = —( — ) + —g;j(x, p)dx'dx’. (2.1)
4\ p P
Hereu,v=1...,d+1andi,j = 1,...,d. The coordinates are chosen such {hat O

corresponds to the boundary. We will assume ghais regular afp = 0, whereg;; (x, p = 0)
is the boundary metric.
We now look for thoséd + 1)-dimensional diffeomorphisms which leave the form of the

metric invariant. We make the ansatz
p=pe? ~p(1-20(x")),
xi — x/i +ai(x/’ P,)-

2.2)

Theda'(x’, p’) are infinitesimal, and are restricted by the requirement of form invariance of
the metric. We will work toO (o, a’). We insert (2.2) into (2.1) and require that the dp’
components of the metric vanish. This gives

dpa’ = %lzgijaja. (2.3)

With the boundary condition’ (x, p = 0) = 0 this integrates to

a(x,p) = %12/ dp’ g (x, p)djo (x). (2.4)
0
Performing the diffeomorphism defined by (2.2), will generally transform:

88ij(x, p) = 20 (1 — pd,)gij(x, p) + Via;(x, p) + Vja;(x, p). (2.5)

The covariant derivatives are with respect to the mejricx, o) wherep is considered as a
parameter.

Equations (2.2), (2.4) and (2.5) define the PBH transformation, i.e. a subgroup of bulk
diffeomorphisms which leave the metric in the form (2.1) and which on the boundary reduce
to a Weyl transformation.

T http://strings99.aei-potsdam.mpg.de/cgi-bin/viewit.cgi?speaker=Theisen
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We assume that'(x, p) andg;;(x, p) have power-series expansions in the vicinity of
p =0, i.e. we write

a'(x.p) =) aj,(x)p" (2.6)
n=1
and
gij (X, p) =Y 8uij (X" 2.7)
n=0

For a general bulk metric the coefficients in the expansion are arbitrary. If, however, the metric
is the solution of an equation of motion, the coefficients of the expansion are all expressible
in terms of the boundary metrigo);;. This result was proven by Fefferman and Graham for
the equation of motion following from the Einstein action with a cosmological term; we will
assume that it holds for any action which admits an AdS solution. dFam even integer,
the expansion fog also has logarithmic terms. Using dimensional regularizationdiren-
integer) these terms are absent in the Fefferman—Graham case; we assume that this feature
also holds for the general case. The coefficients in the expansign(ef p) are covariant
tensors built from the boundary metrigy);; (x) = g;j(x, p = 0), since general covariance
in 4 dimensions is explicitly kept. Moreover, by a simple scaling argurggpicontains 2
derivatives with respect to thevariables. The PBH transformation implies that the behaviour
of gy under a Weyl transformation of the boundary metric is known. This determines to a
great extent the expressions frggm, in terms of covariant tensors built gfg,;;. We now
perform the calculation outlined above.

We first express they,, in terms of theg,,. The first few terms are

i 132 ij

auy = 31°8)9;0,
P 1520

ap) = —31°¢@)9j0,

i 1721 4ik j i 19 (2.8)
a@ = sl°[gmsan’ — 890,
j 1721 ij ik i 4 ik j i kol
ale = 31°[—8% T eh 8ok’ + 8k gwr’ — 8w k8w 18k ]V o
The variations ofg, under a Weyl transformation of);; are easily obtained by

combining (2.2), (2.4) and (2.5) with the expansion (2.7). Again we give just the first few
terms:

880)ij = 208(0)ij>

0 0)
dgwij = Viaw; *+ Vawi, (2.9)

;O © ) o o
88@ij = —208ij tapy Vi8wij t Viaw; + Vjaai + gwikVjaay + 8wk Via-

. O . . .
The covariant derivativey; is with respect tqg. These equations can be integrated with
respect tar. For the first two non-trivial terms in the expansion (2.7) we find

12

1
ij = Rij — Rg)ij |
g(l)J d_z[ J Z(d—l) g(o)]}

. A 1
4 ijkl 4 klm
gij = cl"CijuC"" gyij + col "Cirgm C;"™ + = 4{_8(d iy ViV;R

1, 1

1
t o VAR — e VRg 0 — 5= R Ruj (210
4(d —-2) 7 8d-1) d-2) 8ij 2(d — 2) kjl ( )
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1

d—4 +———  _RR; + ————
d-Dd—-22""" 4d-2)?2

+
2(d — 2)?
3d 2
T 16 — D)2 — 22" 80 }
Here the curvatur®, the Weyl tensor ir/ dimensionsC and the covariant derivativé are
all those of the boundary metrigo, T.

Starting from g, there are solutions to the homogeneous equations, i.e. curvature
invariants which transform homogeneously under Weyl transformations. For example, there
are two free parameters f@g,. Of course we have complete agreement with the explicit
calculation of [3].

We stress that the above expressions do not assume any specific form of the action. The
dependence on the action enters only through the arbitrary coefficients of the homogeneous
terms. Our goal will be to extract the universal (i.e. independent on the arbitrary coefficients)
information about the trace anomalies.

R*Rji R¥ Ry g0)ij

3. The PBH transformation and the effective boundary action

We now study the implications of the symmetry defined above for a general gravitational action
S which is invariant unde(d + 1)-dimensional diffeomorphisms:

S = 12 fddﬂx VG f(R(G)), (3.1)

Kq+1

where f is a local function of the curvature and its covariant derivatives. For the application
we have in mind, we must choog& R) such thatAd S,., with radius/ is a solution of the
equations of motion. If we insert (2.1) into (3.1) we obtain an expression of the form

25,18 = 31 f dp d'x p~ P71 /g0, (x) b(x, ), (3.2)

where the specific form df(x, p) does depend ofi(R).
Since the integrand is a scalar under diffeomorphisms, the action satisfies

22,8 =11 / do d?x p~ 27 /g0 (x) b(x, p)

= %l/dp’ dx’ p’_(d/z)_l‘/gio)(x’) b (x',p). (3.3)

On a solution of the equation of motidr(x, p) becomes a functional gf, and therefore
using (3.3) for the diffeomorphisms (2.2) we obtain its behaviour under a Weyl transformation:

0) .
8b(x, p) =b'(x, p) — b(x, p) = —20(x) p dpb(x, p) + V;(b(x, p)a' (x, p)). (3.4)

Using the explicit expression (2.4), it is now straightforward to showihet o) satisfies the
Wess—Zumino (WZ) consistency condition:

/ d’x /20 (0185,6 — 0285,b) = 0. (3.5)

We will see below thab(x, p) may be considered as a generating function for Weyl anomalies
in all (even) dimensions.

t We use the following curvature convention¥; [V;]V; = —R,-jklvl andR;; = R,-kj".
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In order to explicitly use the Weyl transformation properties we expand the generating
functionb(x, p) in a power series ip:

bx,p) =) bu(x)p". (3.6)
n=0

Using (3.6) thep integrations can be performed explicitly and the boundary adtiexpressed
in terms of thep,,:

<
kGaS = Z;) " /ddx\/mbn(x). 3.7)

For b(x, p) evaluated on a solutiog(x, p) the coefficientsb,(x) become scalar local
functionals ofg). The PBH transformation (3.4) gives the transformatior,afc) under
a Weyl transformation:

8b, = —2nob, +V; (i b,,,a;'n_m)>. (3.8)
m=0
Explicitly, for the first few coefficients, we find
3bo =0,
8by = —20by + g12b0540, (3.9)
8by = —doby — % [RVV;V;o — $ROc].

3b3, which is a rather unwieldy expression, contains the two arbitrary paranagtansic, in
8(2)ij-

The Weyl variation determines to a certain extent the dependenggofon g. We
will argue in the next section that local expressionsipwhich satisfy (3.9) can always be
found. We give here again only the first few explicit expressions:

bg = constant
12
=bp———R,

04 — 1) (3.10)
_ by
" 32(d-2)(d—3)

by

bz Ey+cl*CijiCY,
where as befor€;y; is the Weyl tensor corresponding g@ in d dimensions andty, is the
Euler density, which is defined ih = 2n dimensions as

Ep, = zin Rijjaty - Ri”jnk"l”Eiljlizjz...inj,,Eklllmk,lln_ (3.11)
Once the product of the epsilon tensors has been expressed in terms of products of the metric,
this expression makes sense in any dimension.

Again, starting from the second coefficigntthere are an increasing number of solutions

to the homogeneous equations which enter with free parameters. These arbitrary coefficients
and those appearing in the integrationsgf,, will appear in the expressions féb,, for
n > 2%. In the next section we will discuss the various constraints on these coefficients
following from their relation to trace anomalies.

T For instance, the homogeneous equadibyn = —60 b3 has three solutions. In additiohz depends on the two
parameters already present in the inhomogeneous piég.of
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The coefficient®, depend on the action through the constarand through the constants
which enter through the solutions to the homogeneous equationsg Weican obtain a general
formula. Indeed, if we write the action (3.1) in the form

22,8 = f do dx VG f(R(G)) = 31 / dp dx p=“9271 /g F(R(G)) (3.12)
then
bo = If (R)|p=0 = Lf (AdS), (3.13)

where in the latter expressighis to be evaluated at the action 4f S,.; space with
1
Ryvpe = l_z(leGw — GuoGp). (3.14)

To see this one simply has to realize tat f (R) has an expansion in positive powersaind
that only the most singular (in) contributions ofR,,,,, contribute taby. It is straightforward
to show that this contribution is as given in (3.14).

We see, therefore, that the effective action of the boundary metric has a structure
determined to a large extent by the action of the Weyl transformations which in turn are
fixed by the PBH transformation. The specific form of the bulk action manifests itself through
a set of constantdiy which has the universal structure given by (3.13) and the coefficients of
the terms involving the Weyl tensors in (3.8) and (3.10).

We remark that the general expressions (3.10), being based on symmetry considerations,
do not assume that the action which gives the equation of motion which detergniceso)
and the action which determingshould be the same, provided both are diffeoinvariant. The
explicit expression (3.13) fdfy needs of course the identity of the two actions.

In the next section we will exploit the relation between the effective action and trace
anomalies in order to constrain the ambiguities, on one hand, and to extract universal properties
of the trace anomalies from the effective action, on the other hand.

4. Trace anomalies and the effective action

We start this section with a brief summary of the general structure of trace anomalies (cf
[9-11]) and the appearance of trace anomalies in boundary actions [3].

The trace anomalies can be characterized by the anomalous Weyl variation of a
diffeoinvariant effective action depending on a metricdin= 2n dimensions. This action
reflects the properties of a conformally invariant matter theory and it is obtained, in principle,
by coupling the matter to a classical background metric and integrating the matter fields out.

In general, the effective action is a non-local functional of the metric. Its Weyl variation,
however, representing an anomaly is necessarily local. The second variation of the action,
i.e. the first variation of the anomaly, is a symmetric functional of the two infinitesimal Weyl
parameters. This integrability condition is the Wess—Zumino condition the anomaly must
satisfy.

The above stated structure offers a general classification of trace anomalies in any even
dimension:

(a) There is always the type A anomaly whose expression is the Euler characteristic in
the respective dimension. This type does not reflect any real logarithmic ultraviolet
divergence. In dimensional regularization, however, out of the term in the effective action
giving rise to it, a piece having a simple pole im-24 multiplying the Euler characteristic,
can be separated, giving a clear signature for this type of anomaly.
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(b) There is an increasing (with dimension) number of type B anomalies: they originate
in true logarithmic divergences in correlators of lower order than the anomalous ones.
Their signature is an expression whicheigactlyWeyl invariant. The simplest way to
construct Weyl-invariant expressions is through the contraction of Weyl tensors but there
are invariants starting with covariant derivatives of Weyl tensors, etc. In dimensional
regularization, these terms appear directly in the effective action multiplying poles in
2n —d.

In addition there are cohomologically trivial local expressions, i.e. obtained by Weyl
variations of local, Weyl non-invariant, pieces in the effective action. These terms, representing
arbitrary real parts (subtraction constants) in the underlying matter theory, cannot contain any
dynamical information and their explicit form depends on the regularization chosen.

Going now back to (3.7) we observe tlhatappears multiplying a pole im2-d: therefore
b, is a trace anomaly id = 2n dimensions, i.e. it could be expanded as a linear combination
of a type A and the type B appropriate to the dimension and cohomologically trivial terms.
Indeed, as mentioned in the previous sectionpffesatisfy the WZ condition, equation (3.5).

A first conclusion we could reach is that equation (3.8) always has a solution in terms of
local expressions which are linear combinations of types A and B, and are cohomologically
trivial. Of course this puts constraints on the terms which could appear on the right-hand side
of (3.8).

We will be more interested, however, in the way we could extract universal information
about trace anomalies from the effective action. The anomaly of type A is a clear candidate for
this type of information. Indeed, as we remarked before, terms involving contractions of Weyl
tensors (i.e. type B) appear with arbitrary coefficients,intherefore we could not expect any
simple, general expression for type B.

In order to isolate the general expression we are looking for in type A, we use the following
simple observation: an exactly Weyl-invariant expression vanishes identically for a metric
which is conformally flat, i.e. which has the form

8)ij = eXP(2¢) J;;. (4.1)

Therefore, the terms with arbitrary coefficients in the various recursion relations (‘the
homogeneousterms’) will disappear. Consequently, the unambiguous solution of the equations
for a metric of the form (4.1) will give us information about the surviving type A anomaly.

We will expand the solutions in powers ¢fdefined in (4.1). In particular, the Euler
characteristic il = 2n starts with thexth power of¢:

1 o
Eon = o Risjutat - -« Ri g, €00 bl
=nl2" (8;,0,¢) - (3,0;,p)8+" +O(p"™). (4.2)

Now, our main problem is to isolate the contribution of the type A anomaly (proportional to
the Euler characteristic) from the cohomologically trivial pieces. We rewrite the basic recursive
relation (3.8) in an integrated form by multiplying it by an infinitesimal Weyl parameter
the variation being with a new Weyl parameser

fddxvg(O)(x)6152bn = —Zn/ddx V&0 (x) 0102b,
n—1
_ / d'x /20 () Vior Y budly . (4.3)

m=0
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wherea’ containss,. For a metric of the form (4.1) and expanding in powers dfis easy to
see thab, starts with a term containingpowers ofp and that:’ starts with terms as follows:

agy = 31%90 +O0(¢),
aiy = —314(8:0;0)9;0 + O?), (4.4)
alsy) = 31°(8;84) (39;9)0,0 + O(¢).

Using induction it is straightforward to prove that (4.4) generalizes as expected, i.e. that the
term of ordem has the form

. 12
ay = ()" [0%)" 1y 950 + 0", (4.5)

Now, in an expansion i# of b, the cohomologically trivial pieces come from the Weyl variation
of a local expression containimg+ 1 powers ofp. The variation replaces each figddn turn

by o1. Consequently, the result will be symmetric under the interchange ofeadth o;.
The Euler characteristic multiplied ka4 does not share this symmetry property. Therefore,
if we antisymmetrize equation (4.3), i.e. if from the equation multiplied:bye subtract
terms, wherer; was interchanged with each factband witho», respectively, we will be left
on the left-hand side with the contribution of the Euler term onlyt.

We can now specialize even further and pick one particular term in the Euler characteristic
e.g. the contributiom!2"(0¢)". This term will give a contributionr; o, (Cg)"t to the
integrand of the left-hand side of (4.3), antisymmetrized of course, and with a numerical
coefficient following from our normalizations.

We can try to match this term with terms on the right-hand side of (4.3). From the explicit
form of ' we see that all terms on the right-hand side except the(tast 1)th one in the
sum, will have two partial derivatives not contracted int@Ja In the last term, however,
we have, after a partial integration, a contribution to the integrand of the égtia,b, 1
antisymmetrized. Again the antisymmetrization projects out fbgm all contributions but
the Euler one irin — 1)th order ing. In particular, th&[¢)"~* contribution toE5(,—1) matches
the left-hand side nicely.

Therefore, we obtained a recursion relation between the Euler contributions alone, in
different orders. Reintroducing the numerical factors we left out in the previous argument, the
recursion can be easily solved and we obtain for the Euler contribution the general formula

lanO

bn = >——kEy
221 (22

+ cohomologically trivial terms (4.6)

Using the expression (3.13) fép evaluated forl = 2n we now have a general formula
for the type A trace anomaly in any even dimension corresponding to a given gravity action
which admits an AdS solution. We have to think about the gravity action given abstractly as a
polynomial in the curvature without specifying the dimension. The specific form of the action
enters in determining the radius of the AdS solution and then in the evaluation of the action on
the solution, to giveébg. All the factors depending on the dimensi@r= 2 in the expression
for the coefficient of the type A anomaly are then explicit.

As we remarked already in the previous section the symmetry considerations do not
require that the action which determingsnd that which determingsshould be the same.
The universal dependence on the dimension appears, however, only if the two actions are
identified.

T The term witho interchanged witlr, automatically cancels the original term, this being the content of the WZ
condition; we could have left it out and changed the normalization-tol.
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5. Discussion

Through the PBH argument the Weyl transformations of the effective boundary theory can
be understood to follow from the diffeomorphisms of the bulk theory. The dependence on
the ‘odd’ variablep in the bulk gets translated into the dependence on the dimerisgiarg)

playing the role of a generating function for the type A trace anomalies in various dimensions.

The final result is very similar in spirit to the ‘elliptic genus’ which gives, through the
‘descent equations’, a unifying expression for the chiral anomaly in various dimensions. The
elliptic genus gives an expression for the chiral anomaly of gauge theories with chiral fermions
in various dimensions which have the same gauge group and representation content of the
fermions. In this analogy there is, however, a part we really do not understand, i.e. which
is the common feature of the conformal field theories in various dimensions whose trace
anomalies are represented by the same gravitational action? It is tempting to conjecture that
general properties such as, for example, the ‘flow’ as measured by the anomaly coefficient, are
common in these theories. This would suggest that the type A anomaly coefficitnt i
related tar in d = 2 gives the right generalization of thetheorem as first proposed by Cardy
[12].

Beginning withhs the Euler characteristic appears accompanied by cohomologically trivial
terms which are determined by the recursion relations. We do not understand the physical
significance, if any, of these terms. More generally, it would be interesting to study the exact
mathematical structure of the ‘cohomological’ equations (2.4), (2.9) and (3.9).

Finally, the special role the type A anomaly plays in the discussion suggests that it should
be singled out for the understanding of the non-leadipgy Torrections in the AdS/CFT
correspondence which are still not under control [13]. We postpone the discussion of this
problem to a later publication.
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