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PROPOSITION 2. Let {Th : A€ A} bea family of operators on an infinite-
dimensional Hilbert space H such that the algebra generated by it 18 uniformly
dense in B(H). Then the cardinality of A is at least gdim ¢,

Proof. Since the algebra generated by {Tx : A € A} is uniformly dense
in B(H), the same is true for

Ag = spanQ{T;\(l) . 'T)\(n) : )\(1), R )\(TL) eA;ng N},

which has cardinality at most max{Ro, card A}.

Now choose an orthonormal basis {e; : ¢ € I} of 7. For every subset J
of I let Py denote the projection onto span{e; : j € J}. Forevery J C I we
can find Ty € Ag with ||[Py — Tri| < 1/2. Siunce ||Py — Py =1 for J # J',
we deduce that the mapping J — T from the family of all subsets of I into
Ag is one-to-one, hence card Ay 2 pdim M This implies card A > 24m™H,

ClOROLLARY 2. The C*-algebra generated by a countable family of oper-
ators on @ separable Hilbert space M is always a proper subalgebra of B(H).
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Diffeomorphisms between spheres and hyperplanes
in infinite-dimensional Banach spaces

by

DANIEL AZAGRA (Madrid)

Abstract. We prove that for every infinite-dimensional Banach space X with a
Fréchet differentiable norm, the sphere Sy is diffeomorphic to each closed hyperplane
in X, We also prove that every infinite-dimensional Banach space ¥ having a (not neces-
sarily equivalent) C® norm (with p € NU {oc}) is CF diffeomorphic to ¥ Y {0}.

In 1966 C. Bessaga [1] proved that every infinite-dimensional Hilbert
space H is € diffeomorphic to its unit sphere. The key to proving this
astonishing result was the construction of a diffeomorphism between H
and H \ {0} which is the identity outside a ball, and this construction
was possible thanks to the existence of a ¢ non-complete norm in H. In
[5], T. Dobrowolski developed Bessaga’s non-complete norm technique and
proved that every infinite-dimensional Banach space X which is linearly
injectable into some ¢g(T) is C* diffeomorphic to X \ {0}. More gener-
ally, he proved that every infinite-dimensional Banach space X having a C?
non-complete norm is C? diffeomorphic to X \ {0}, If in addition X has
an equivalent CF smooth norm || - || then one can deduce that the sphere
S={z € X:|z|| = 1} is C? diffeomorphic to any of the hyperplanes in X.
So, regarding the generalization of Bessaga and Dobrowolski’s results to ev-
ery infinite-dimensional Banach space having a differentiable norm (resp. C?
smooth norm, with p € N U {oo}), the following problem naturally arises:
does every infinite-dimensional Banach space with a CF smooth equiva-
lent norm have a CP smooth non-complete norm? Surprisingly encugh, this
seems to be a difficult question which still remains unsolved. Without prov-
ing the existence of smooth non-complete norms we show that every infinite-
dimensional Banach space X with a Fréchet differentiable (resp. C¥ smooth)
norm ||-|| is diffeomorphic (resp. CF diffeomorphic) to X'\{0}, and we deduce
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that the sphere Sx = {z € X : ||zij = 1} is (C?) diffeomorphic to any of the
closed hyperplanes H in X. We also prove that every infinite-dimensional
Banach space ¥ having a (not necessarily equivalent) CP smooth norm is CP
diffeomorphic to ¥\ {0}. Our method of defining deleting diffeomorphisms
can be viewed, in a sense, as an analytical adaptation of Klee’s geometri-
cal approach in [14], which was rediscovered and simplified in [10], where a
recipe for a construction of homeomorphisms removing convex bodies from
non-reflexive Banach spaces is given.

Let us formally state our main result. Recall that a norm in a Banach
space X is said to be Fréchet differentiable (resp. CT smooth) if it is so in

X\ {0}

THEOREM 1. Let (X, || -||) be an infinite-dimensional Banach space with
a CF smooth norm | -||, and let Sx be its unit sphere. Then, for every closed
hyperplane H in X, there exists a CP diffeomorphism between Sx and H.

The argument in the proof of this result is a modification of that in 1],
changing the non-complete norm and the use of Banach’s contraction prin-
ciple for a different kind of non-complete convez function and the following
fized point lemmuo:

LEMMA 2. Let F': (0,00) — [0,00) be a continuous function such that,
for every 8 = o > 0,

F(8)~ P(e) < 3(6—) and lmsupF(t) > 0.

tem0

Then there erists o unique o > 0 such that F(o) = a.

Proof. Note that limg_eo[F(8) — 8] < limgs [F(1)+3(3—1)—0] =
— 00, while lim supg_,o+[#(8) = 5] > 0. Then, from Bolzano’s thecrem we get
an ¢ > 0 such that F(a) = o. Moreover, the first condition in the statement
implies that the function 8 — F(3) — 8 is strictly decreasing, which yields
the unigueness of this .

The key to the proof of Theorem 1 is the following

PROPOSITION 3. Let (X, | - ||) be a non-reflevive infinite-dimensional
Banach space with a CP smooth norm || - ||. Then there exists a CF diffeo-
morphism o between X and X \ {0} such that p(z) = = whenever |jz]| = 1.

Proof. Since X is not reflexive, according to James’ theorem [13], there
exists a continuous linear functional T : X — R such that 1" does not attain
its norm. We may assume | T|| = 1, so that T(z) < ||z| for every x # 0, and
there exists a sequence (yx) of vectors such that |yx| =1 and

sl = Tu) = 1~ Tye) < 1745+
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for every k € N. Define w : X — R by
w(z) = ||l - T(z)-

Note that w(z) = 0 if and only f & = 0, w(z+y) < w(z)+wly) and w(rz) =
rw(z) for each r > 0, although w is not a norm in X because w{z) # w(—x)
in general. Now, let + : [0, 00) — [0, 1] be a non-increasing ¢°° function such
that v = 1in [0,1/2], v = 0 in [1, 00) and sup{ly'(¢)| : t €[0,00)} < 4, and
define the following deleting path p: (0,00) — X:

p(t) =Y 12" )y
fmal

It is quite clear that p is a well defined C* path such that p(t) = 0 for ‘
¢ > 1. Let y be an arbitrary vector in X and let F : (0,00) — [0,00) be
defined by F(a) = w(y — p(a)) for & > 0. Let us see that F(o) satisfies the
conditions of Lemma 2. If 3 > a then v{(2¥*a) —v(218) = 0 because -y is
non-increasing, and also v(2¥-1a) — v(2518) < 4|2F~1a — 2571 §| because
sup{|¥(t)] : t € [0,00)} £ 4 Note also that the property wiz+y) £
w(z) + w(y) implies that w(z) — w(y) < w{z - y), as well as w(}_jey 2) <
Ve wlzk) for every convergent series S po1 #k- Taking this into account
and recalling the positive homogeneity of w we may deduce

F(8) — F(a) = w(y — p(8)) — w(y — p(a))
< w{(y — p(8)) - (v — p())) = w{p(c) — p(B))

o0

= w32+ a) = (@)

k=1

< 3 w((v(@ a) = v(2FB))k)

i

(y(2"tar) = (2577 8) ) ()

<

4|25 o - 2571 Blw ()

s 108 F18 18

H]

o 1 1
25+ w(y)|B ~ o £ zzkﬂzmlﬁ ~ol=5(B~-a)
k=1

£
=

=

for every 8 > «, so that the first condition in Lemma 2 is satisfied. Let
us check that F also satisfies the second condition. Tet M >0 and.choose
ky € N such that Z;f"ml T(y;) > M.+ T(y) (this is clearly possible, as
T(ye) — 1 when k — oo). Then, if 0 < @ < 1/2%, 7(277"a) = 1or
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.., kg, which implies

F(a) = w(y —p(a)) = |y ~ p(a)l| - T(y) + T(p(a))

> ~T(y) + T(p(e)) = =T(y) + > v(2* )T (ux)
k=1
ko ko
> ~T(y) + > 4@ a)T(y;) = =T() + D Ty;)
j=1 J=1

> ~T(y) + M +T(y) = M

for every o > 0 such that ¢ < 1/2%°. This proves that

lim F(t) = +oc.
t— Ot

So, according to Lemma 2, the equation F(a) = o has a unique solution.
This means that for any y € X, a number a(y) > 0 with the property

w(y — pla(y))) = aly)

is uniquely determined. This implies that the mapping

(w) =z + plw(z))

is one-to-one from X \ {0} onto X, with

¥ y) =y —plefy)).

As w and p are CP, so is 1). Let #(y, o) = o — w(y — p{er)). Since for any
y € X we have y — p(a(y)) # 0, the mapping & is differentiable on a
neighbourhood of any point (yp, a(yo)) in X x (0, 00). On the other hand,
since F(8) — F(a) < 1(8—a) for 8> o >0, it is clear that F'(a) < § for
every « in a neighbourhood of a(y), and so

0P(y, @)

1
= — , —
Do =1-Fla}21 2>(),

Thus, using the implicit function theorem we deduce that the map y —
afy) is of class C? and therefore 4 : X \ {0} — X is a ¢7 diffeomorphism.
Tet b : X — X \ {0} be the inverse of 1. It should be noted that h(z) =
whenever w(z) = ||z|| = T'(z) > 1. In order to conclude the proof we only
need to compose h with a C? difeomorphism g : X - X transforming the
set {z € X : llz]| £ 1} onto {z € X : w(z) £ 1}. The existence of such a
diffeomorphism is ensured by the following lernma, which is a restatement
of Lemma 2 in [7]; see also [2]. So define ¢ = g™ o hog. It is clear that
¢ is a CP diffeomorphism from X onto X \ {0} such that ¢ is the identity
outside the unit ball of X.

LEMMA'ZL Let X be a Banach space, and let Uy, Uy be C? smooth closed
convez bodies containing no ray emanating from the origin, and such that
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the origin is an interior point of both Uy and Us. Then there exists o CF
diffeomorphism g : X — X such that g(0) = 0, g(U1) = Us, and g(0U1) =
AUy, where BU; stands for the boundary of U;. Moreover, g(z) = A(z)w,
where A+ X = [0,00), and hence g takes each of the rays emanating from
the origin onlo itself,

In the case when X is a reflexive infinite-dimensional Banach space the
problem was solved quite a long time ago. We can recall the results of T.
Dobrowolski [5] to state the following

PrROPOSITION 5, Let (X, ||+]]) be a reflexive infinite-dimensional Banach
space with a C smooth norm | - ||. Then there evists a CP diffeomorphism
¢ between X and X \ {0} such that p(z) = & whenever |z|| = 1.

Proof. Since X is reflexive, X can be linearly injected into some cp(T")
and, according to Proposition 5.1 of [5], X admits & C°° non-complete norm
w (which may be assumed to satisly w(z) < [lz]). Then, using Proposi-
tion 3.1 of [5], we get a C*° diffeomorphism h : X — X\ {0} such that
h(z) = z if w(z) > 1. An application of Lemma 4 ag at the end of the proof
of Proposition 3 gives us the desired diffeomorphism ¢.

‘Combining Propositions 3 and 5 we get the following

TuporREM 6. Let (X, |- ) be an infinite-dimensional Banach space with
a C? smooth norm || - ||. Then there exists o CP diffeomorphism ¢ between
X and X\ {0} such that ¢(z) = @ whenever [|lz|| = 1.

In fact, this result can be viewed as a corollary to the following more
general result. Recall that a (not necessarily equivalent) norm g in a Banach
space (X, || ||) is said to be C? smooth if it is so with respect to |- ll, which
in principle does not imply the differentiability of ¢ with respect to itself.

TuroREM 7, Let (X, |||} be an infinite-dimensional Banach space having
a (not necessarily complete) CF gmooth norm o. Then there exists o CP
diffeornorphism ¢ between X and X \ {0} such that p(z) = o whenever
o(e) > 1. If in addition the estension of ¢ to the completion of the normed
space (X, p) is CF differentioble (with respect to itself), then there exists o
bijection @ between X and X \ {0} which is a C7 diffeomorphism in each of
the norms || - || and o and such that ¢(z) = @ whenever o(e) 2 1.

Proof If p is complete then it is an equivalent C? smooth norm on
X, and we can deduce that X and X \ {0} are C? diffeomorphic from
Propositions 3 and 5. If, on the contrary, ¢ is not complete, we can use
Proposition 3.1 of [5] to conclude that X and X \ {0} are O7 diffeomorphic.

Let us complete the proof of Theorem 1. We will do nothing but adapt the
ideas of Bessaga [1] to the more general setting of a differentiable CT norm
||| (p € NU {oo}) whose sphere might contain segments and consequently
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the usual stereographic projection might not be well defined for the whole
sphere.

Let us choose apoint zg € Sx and see first that Sx \{zo} is diffeomorphic
to any hyperplane H in X. Put z* = d|| - |[(z0), Z = ker™, and consider
the decomposition X = [zg] ®Z = Rx Z, Take a ¢ convex body U on the
plane B2 such that the set {(t,8) : >+ s> =1, ¢ 2 0}U{(-1,5) : |s] < 1/2}
is contained in 8U, the boundary of U. Consider the Minkowski functional of
U, qu(t,s) =inf{)\ > 0: (3,8) € AU}, which is C°® smooth away from (0, 0).
Define Q(¢t,2) = qu(t,|2|)) for every (f,2) € R x Z. It is quite clear that
Q is a CP function away from the ray {M\zg: A > 0} (and @ i8 C* smooth
on X \ {0}). Now consider the convex body V = {(t,z)}) € X : Q(t,2) < 1}
and its boundary V. The proof of Lemma 4 (see [2] or [7]) shows that the
sets OV \ {zo} and Sx \ {zo} are CP diffeomorphic (whereas dV and Sy
are (! diffeomorphic). Note that for every z € Z the ray joining z to =z,
intersects the set V at a unique point. This means that the sterecgraphic
projection 7 : 8V \ {zp} — Z_1 (where Z_y = {x € X : 2*(z) = —1} is the
tangent hyperplane to 8V at —xp), defined by means of the rays emanating
from g, is a well defined one-to-one mapping from 8V \ {zp} onto Z_;, and
it is easy to check that = is a C? diffeomorphism between 9V \ {zg} and
Z_y. Since any two closed hyperplanes in X are isomorphic this proves that
OV \ {zo} is CP diffeomorphic to each hyperplane H in X, and hence so is
Sx \ {zo}-

Thus, to complete the proof of Theorem 1 it only remains to show that
Sx \ {z¢} and Sy are C? diffeomorphic, which we can do by choosing a
suitable atlas for Sx and using Theorem 6. Recall that z* = d|l - ||(zo)
and Z = kerz*. Define Dy = {z € Sx : a*(z) > —1/2} and Dy = {z €
Sx @ z*(x) < 1/2}, and let 7y : Dy — Z be the stereographic projection
defined by means of the rays coming from —zy, and 7y : Dy — Z the stere-
ographic projection defined by means of the rays emanating from zp. Note
that, although the sphere Sy might contain segments, these gtercographic
projections are well defined because they have been restricted to D) and
Dy, sets which cannot contain a segment passing through —zp and gy re-
spectively. Let Gy = {# € Dy : a*(2) > 1/2} and consider m (¢h) € Z.
Since n1(G) is an open set in Z containing 0, there exists & > 0 such
that {z € Z: ||z| < e} € m(G1). Now, from Theorem 6 we get a diffeo-
morphism ¢ : Z — Z \ {0} such that ¢(2) = 2 whenever ||z| > 1. Let
h(z) = e(e™2z) for each 2 € Z. It is clear that h is a 7 diffeomorphism
between Z and Z\ {0} such that h(z) == z whenever ||z 2 . Finally, define
9:Sx — Sx \ {zo} by

if z € Da,
ifx e Dy,

olz) = {vrfl(h(m(m)))

icm
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It is easy to check that g is a (7 diffeomorphism from Sy onto Sx \ {z,].
This concludes the proof of Theorem 1.

FINAL REMARKS. 1. It is worth noting that Theorem 6 above enlarges the
clags of spaces for which some results of B. M. Garay [8, 9] concerning the
exigtence of solutions to ordinary differential equations and cross-sections of
golution funnels in infinite-dimensional Banach spaces are valid.

2. Let (X,] ]|} be an infinite-dimensional Banach space having a (not
necegsarily complete) Fréchet differentiable norm ¢. It is natural to consider
the unit sphere §, == {z ¢ X : p() = 1} and ask whether 3, is diffeomorphic
to each closed hyperplane E in X, One can show that this is the case, using
Theorems 6 or 7 ay in the proof of Theorem 1.

3. Let X be the reflexive Banach space constructed by W. T. Gowers and
B. Maurey in [12] which is not isomorphic and therefore is not diffeomor-
phic to its closed hyperplanes. Being reflexive, X has an equivalent Fréchet
differentiable norm || || (see, e.g., [15] or [4]). By Theorem 1, the unit sphere
Sx is diffeomorphic to a hyperplane of X and hence Sy is not diffeomerphic
to the whole of X,

4. The following problem concerning negligibility of points in infinite-
dimensional Banach spaces remains unsolved; let X be an infinite-dimension-
al Banach space having a C? smooth bump function. Is there a CF diffeo-
morphism ¢ between X and X \ {0} such that (z) = & whenever ||z| > 17
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Abstract. On o complex separable (necessarily infinite-dimensional) Hilbert space H
any three subspaces K, I and M satisfying KNM = (0), KvVL = H and L C M giverige to
what has been called by Halmos [4, 5] a pentagon subspace lattice P = {(0), K, L, M, H}.
Then n = dimM © L is called the gap-dimension of P. Examples are given to show
that, if n < oo, the order-interval (L, M]pasagp = {N € LatAlgP : LE N C M} in
Lat Alg P can be either (i) a nest with n -+ L elements, or (i) an. atomic Boolean algebra
with n atoms, or (iil) the set of all subspacey of H between L and M. For n > 1, since
Lat AlgP = P U [L, M]pas alg», all such examples of pentagouns are non-reflexive, the
examples in case (i) extremely so.

1. Introduction. On a complex separable Hilbert space H any three
(closed) subspaces K, L and M satisfying K N M = (0), KV L = H and
L ¢ M give rise to what has been called by Halmos [4, 5] a pentagon
subspace lattice P = {(0), K, L, M, H}. Here inclusion is the partial order
and a labelled Hasse diagram of 7 is given in Figure 1.

Vi
M
K
L
V)
Fig. 1
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