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DIFFEOMORPHISMS SATISFYING

THE SPECIFICATION PROPERTY

KAZUHIRO SAKAI, NAOYA SUMI, AND KENICHIRO YAMAMOTO

(Communicated by Bryna Kra)

Abstract. Let f be a diffeomorphism of a closed C∞ manifold M . In this
paper, we introduce the notion of the C1-stable specification property for a
closed f -invariant set Λ of M , and we prove that f|Λ satisfies a C1-stable speci-
fication property if and only if Λ is a hyperbolic elementary set. As a corollary,
the C1-interior of the set of diffeomorphisms of M satisfying the specification
property is characterized as the set of transitive Anosov diffeomorphisms.

1. Introduction

The notion of the specification property due to Bowen has turned out to be a very
important notion in the study of ergodic theory of dynamical systems on a compact
metric space (see [3] and [5]). It is known that every dynamical system satisfying
the specification property has positive topological entropy and that the set of all
strongly mixing measures of the system is residual in the space of invariant measures
of it. The definition of the specification property is quite complicated and seems
to be very strong, but it is satisfied by many examples. Indeed, every elementary
set of the so-called Bowen’s decomposition of the basic sets of a diffeomorphism
satisfying Axiom A satisfies the property, and dynamical systems satisfying the
property are rather well investigated from the viewpoint of ergodic theory (see [2]).

However, it is not too much to say that the property has not been investigated
from the viewpoint of geometric theory of dynamical systems. In this paper, we
study the specification property from the viewpoint of geometric theory of dynam-
ical systems and characterize diffeomorphisms satisfying the property under the
C1-stable assumption. Here C1-stable means that the specification property under
consideration is preserved by C1-perturbation of the original map.

Let (X, d) be a compact metric space. A homeomorphism f : X → X satisfies
the specification property (abbreviated SP) if for any ε > 0 there is an integer
N = N(ε) > 0 such that for any k ≥ 2, for any k points x1, x2, · · · , xk ∈ X, for any
integers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with ai − bi−1 ≥ N

for 2 ≤ i ≤ k, there exists a point y ∈ X such that

d(f j(y), f j(xi)) ≤ ε for ai ≤ j ≤ bi, 1 ≤ i ≤ k.
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If f satisfies the SP, then f is topologically mixing (see [3, Proposition 21.3]). Here
f is topologically mixing if for any nonempty open sets U , V ⊂ X there is an integer
N > 0 such that for any n ≥ N , U ∩ f−n(V ) �= ∅ (see [3, §6]). It is easy to see that
if f is topologically mixing, then it is transitive, that is, there is a dense orbit.

Let us remark that our definition of the SP is really weaker than the original
specification property introduced in [2] (see also [3, Definition 21.1]). In [5], the
SP is called the weak specification property and group automorphisms of compact
metric spaces possessing the property are intensively studied.

For δ > 0, a sequence of points {xi}i∈Z ⊂ X is called a δ-pseudo-orbit of f if
d(f(xi), xi+1) < δ for all i ∈ Z. We say that f has the shadowing property if for every
ε > 0, there is δ > 0 such that for any δ-pseudo-orbit {xi}i∈Z of f , there is y ∈ X
satisfying d(f i(y), xi) < ε for all i ∈ Z. A homeomorphism f is expansive if there
is a constant c > 0 such that for any x, y ∈ X, d(fn(x), fn(y)) ≤ c (n ∈ Z) implies
x = y. It is proved in [3, Proposition 23.20] that if an expansive homeomorphism f
has the shadowing property and is topologically mixing, then f satisfies the stronger
variant of the specification property. In “our case”, it can be easily seen that if a
homeomorphism g has the shadowing property and is topologically mixing, then g
satisfies the SP by following the proof of [3, Proposition 23.20].

LetM be a closed C∞ manifold, and let Diff(M) be the space of diffeomorphisms
of M endowed with the C1-topology. Denote by d the distance on M induced from
a Riemannian metric ‖ · ‖ on the tangent bundle TM .

Hereafter let f ∈ Diff(M), and let P (f) be the set of periodic points of f .
Denote by Of (p) the periodic f -orbit of p ∈ P (f). If p ∈ P (f) is a hyperbolic
saddle with period π(p) > 0, then there are the local stable manifold W s

ε (p) and
the local unstable manifold Wu

ε (p) of p for some ε = ε(p) > 0. It is easy to see
that if d(fn(x), fn(p)) ≤ ε for any n ≥ 0, then x ∈ W s

ε (p) (a similar property also
holds for Wu

ε (p) with respect to f−1). The stable manifold W s(p) and the unstable
manifold Wu(p) of p are defined as usual. The dimension of the stable manifold
W s(p) is sometimes called the index of p, and we denote it by index(p).

Let Λ ⊂ M be a closed f -invariant set, and denote by f|Λ the restriction of f to
the set Λ. Let U ⊂ M be a compact neighborhood of Λ, and put

Λf (U) =
⋂

n∈Z

fn(U).

A set Λ is locally maximal in U if there is a compact neighborhood U of Λ such
that Λ = Λf (U). We say that f|Λf (U) satisfies the C1-stable specification property

(abbreviated C1-SSP) if there are a compact neighborhood U of Λ and a C1-
neighborhood U(f) of f such that Λ is locally maximal in U and for any g ∈ U(f),
g|Λg(U) satisfies the SP. Here

Λg(U) =
⋂

n∈Z

gn(U)

is called the continuation of Λf (U) = Λ. In the case Λ = M , we just say that f
satisfies the C1-SSP.

A set Λ is a basic set (resp. elementary set) if Λ is locally maximal and f|Λ is
transitive (resp. topologically mixing). It is easy to see that if Λ is a hyperbolic
basic set, then the periodic points are dense therein. Of course, every elementary
set is a basic set.

In this paper, the following results are obtained.
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Theorem 1.1. Let Λ be a closed f -invariant set. Then f|Λf (U) satisfies the C
1-SSP

if and only if Λ is a hyperbolic elementary set.

Since M is connected, every transitive Anosov diffeomorphisms of M is topolog-
ically mixing. Thus we have the following corollary.

Corollary 1.2. The set of diffeomorphisms of M satisfying the C1-SSP is charac-
terized as the set of transitive Anosov diffeomorphisms.

Recently, it was announced in [9] that every Anosov diffeomorphism of M is
transitive. Thus we may remove the transitivity condition from the above result.

In [8] the first author characterized the C1-interior of the set of diffeomorphisms
possessing the shadowing property as the set of diffeomorphisms satisfying both
Axiom A and the strong transversality condition. Hence, if the SP is stronger
than the shadowing property, then the above corollary is a direct consequence
of the result. However, this assertion is not true. Indeed, we can construct an
automorphism σ of the n-dimensional torus T

n which satisfies the SP but is not
hyperbolic (see [5, Theorem (i) and (ii)]). It is well-known that an automorphism
on T

n has the shadowing property if and only if it is hyperbolic. Thus, σ does not
have the shadowing property.

Let Λ be as before. A set Λf (U) is robustly transitive if Λ is locally maximal in
U and there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), g|Λg(U)

is transitive (see [1]). Recall that every dynamical system satisfying the SP is
transitive. Let us remark at this point that there are no sinks and sources for every
transitive system.

We will use the following result due to Mañé [6] in the proof of Theorem 1.1.

Theorem 1.3. Let Λf (U) be robustly transitive. Then the following conditions are
equivalent:

(1) there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), any
periodic point of Λg(U) is hyperbolic and has the same index;

(2) there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), Λg(U) is
hyperbolic.

Let us explain the result more precisely. Denote by Λi(f) the closure of the set of
hyperbolic periodic points of f with index i. Actually, it is proved in [6, Theorem B]
that if there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), any periodic
points of g are hyperbolic and Λi(f) ∩ Λj(f) = ∅ for 0 ≤ i �= j ≤ dimM , then f
satisfies both Axiom A and the no-cycle condition. Since the proof is developed

in a neighborhood of
⋃dimM

i=0 Λi(f), we can see that the result also holds for our
semi-local dynamical system f|Λf (U). Thus assertion (1) implies assertion (2) since

g|Λg(U) is transitive for all g C1-nearby f .
Observe that the proof of the ‘if’ part of Theorem 1.1 readily follows from the lo-

cal stability of a hyperbolic set (see [7, Theorem 7.4]). Thus, to prove Theorem 1.1,
it is enough to show the following proposition by Theorem 1.3.

Proposition 1.4. If f|Λf (U) satisfies the C1-SSP, then there is a C1-neighborhood
U(f) of f such that for any g ∈ U(f), any periodic point of Λg(U) is hyperbolic and
has the same index.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



318 KAZUHIRO SAKAI, NAOYA SUMI, AND KENICHIRO YAMAMOTO

2. Proof of Proposition 1.4

To prove the proposition, we prepare some lemmas that we need. In this section,
let f ∈ Diff(M) and Λ be a closed f -invariant set.

Lemma 2.1. Let p, q ∈ Λ∩P (f) be hyperbolic saddles. If f|Λ satisfies the SP, then
W s(Of (p)) ∩Wu(Of (q)) �= ∅.

Proof. Let p, q ∈ Λ ∩ P (f) be hyperbolic saddles, and let ε(p) and ε(q) > 0 be as
before with respect to p and q. Fix ε = min{ε(p), ε(q)}, and let N = N(ε) > 0 be
the number of the SP of f|Λ. For any n ≥ N we set x1 = f−n(p), x2 = f−N−n(q),
and put a1 = 0, b1 = n, a2 = N + n and b2 = N + 2n. Clearly, a2 − b1 = N . Since
f|Λ satisfies the SP, for any n ≥ N there is zn ∈ Λ such that

(i) d(f j(zn), f
j(f−n(p))) ≤ ε for 0 ≤ j ≤ n,

(ii) d(f j(zn), f
j(f−N−n(q))) ≤ ε for N + n ≤ j ≤ N + 2n.

Item (i) implies that

d(f−i(fn(zn)), f
−i(p)) ≤ ε for 0 ≤ i ≤ n,

and (ii) implies that

d(f i(fN (fn(zn))), f
i(q)) ≤ ε for 0 ≤ i ≤ n.

Put wn = fn(zn) and let w = limn→∞ wn by taking a subsequence if necessary.
Then, since d(f−i(wn), f

−i(p)) ≤ ε ≤ ε(p) and d(f i(fN (wn)), f
i(q)) ≤ ε ≤ ε(q) for

0 ≤ i ≤ n, we have that w ∈ Wu
ε(p)(p) ⊂ Wu(p) and fN (w) ∈ W s

ε(q)(q); that is,

w ∈ W s(f−N (q)). Hence w ∈ Wu(p)∩W s(f−N (q)) ⊂ Wu(Of (p))∩W s(Of (q)). �
If p ∈ P (f) is hyperbolic, then for any g ∈ Diff(M) C1-nearby f , there exists a

unique hyperbolic periodic point pg ∈ P (g) nearby p such that π(pg) = π(p) and
index(pg) = index(p). Such a pg is called the continuation of p.

A diffeomorphism f is said to be Kupka-Smale if the periodic points of f are
hyperbolic, and if p, q ∈ P (f), then W s(p) is transversal to Wu(q). It is well-known
that the set of Kupka-Smale diffeomorphisms is C1-residual in Diff(M) (see [7]).

Lemma 2.2. Let f|Λf (U) satisfy the C1-SSP, and let U(f) be as in the property.
Then for any hyperbolic saddles p, q ∈ Λg(U) ∩ P (g) (g ∈ U(f)), index(p) =
index(q).

Proof. Let f|Λf (U) satisfy the C1-SSP, and let U(f) be as in the property. Fix
any g ∈ U(f), and let p, q ∈ Λg(U) ∩ P (g) be hyperbolic saddles. Then there
is a C1-neighborhood V(g) ⊂ U(f) of g such that for any ϕ ∈ V(g), there are
the continuations pϕ and qϕ (of p and q) in Λϕ(U), respectively (recall that since
Λf (U) = Λ ⊂ intU , we may assume that Λg(U) ⊂ intU for any g ∈ U(f) reducing
U(f) if necessary).

The proof is by contradiction. Suppose that index(p) < index(q), and thus
dimW s(p, g) + dimWu(q, g) < dimM (the other case is similar). Here W s(p, g)
and Wu(q, g) are the stable and the unstable manifolds of p and q with respect to
g. Take a Kupka-Smale diffeomorphism ϕ ∈ V(g). Then

W s(pϕ, ϕ) ∩Wu(qϕ, ϕ) = ∅
since dimW s(p, g) = dimW s(pϕ, ϕ) and dimWu(q, g) = dimWu(qϕ, ϕ). On the
other hand, since ϕ ∈ U(f), ϕ|Λϕ(U) satisfies the SP so thatW s(pϕ, ϕ)∩Wu(qϕ, ϕ) �=
∅ by Lemma 2.1. This is a contradiction. �
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The existence of the nonhyperbolic periodic point of f easily gives two hyperbolic
periodic points with different indices for some g C1-neaby f (see Lemma 2.4 below).
To show this fact we use the next lemma several times.

Lemma 2.3. Let f ∈ Diff(M) and let U(f) be given. Then there is δ > 0 such that
for a finite set {x1, x2, · · · , xN}, a neighborhood U of {x1, x2, · · · , xN} and linear
maps Li : Txi

M → Tf(xi)M satisfying ‖Li − Dxi
f‖ ≤ δ for all 1 ≤ i ≤ N , there

are ε0 > 0 and g ∈ U(f) such that

(a) g(x) = f(x) if x ∈ M \ U , and
(b) g(x) = expf(xi) ◦Li ◦ exp−1

xi
(x) if x ∈ Bε0(xi) for all 1 ≤ i ≤ N .

Observe that assertion (b) implies that g(x) = f(x) if x ∈ {x1, x2, · · · , xN} and
that Dxi

g = Li for all 1 ≤ i ≤ N . The proof is essentially contained in the proof
of [4, Lemma 1.1].

Lemma 2.4. Let Λ be locally maximal in U , and let U(f) be given. If p ∈ Λg(U)∩
P (g) (g ∈ U(f)) is not hyperbolic, then there is ϕ ∈ U(f) possessing hyperbolic
periodic points q1 and q2 in Λϕ(U) with different indices.

Proof. Let Λ be locally maximal in U , and let U(f) be given. Suppose that p ∈
Λg(U) ∩ P (g) (g ∈ U(f)) is not hyperbolic. Fix V(g) ⊂ U(f); then we show that
there is ϕ ∈ V(g) possessing a ϕk-invariant C1-curve in U (for some k > 0) whose
endpoints are both hyperbolic with different indices.

At first, by Lemma 2.3, with a small modification of the map g with respect to the
C1-topology, we may assume that Dpg

π(p) has only one eigenvalue λ with modulus

equal to 1 (and hence other eigenvalues of Dpg
π(p) are with modulus less than 1

or greater than 1). Denote by Es
p the eigenspace corresponding to the eigenvalues

with modulus less than 1, by Ec
p the eigenspace corresponding to λ, and by Eu

p the
eigenspace corresponding to the eigenvalues with modulus greater than 1. Thus,
TpM = Es

p ⊕ Ec
p ⊕ Eu

p .
We divide the proof into two cases: dimEc

p = 1, that is, the eigenvalue λ is real;
or dimEc

p = 2, that is, the eigenvalue λ is complex.

Case 1. dimEc
p = 1; that is, the eigenvalue λ is real with modulus equal to 1.

In this case, we suppose further that λ = 1 for simplicity (the other case is
similar). Then, by Lemma 2.3, there are ε0 > 0 and ϕ ∈ V(g) such that ϕπ(p)(p) =
gπ(p)(p) = p and

ϕ(x) = expgi+1(p) ◦Dgi(p)g ◦ exp−1
gi(p)(x)

if x ∈ Bε0(g
i(p)) for 0 ≤ i ≤ π(p)− 2, and

ϕ(x) = expp ◦Dgπ(p)−1(p)g ◦ exp−1
gπ(p)−1(p)

(x)

if x ∈ Bε0(g
π(p)−1(p)). Since the eigenvalue λ of Dpg

π(p)
|Ec

p
is 1, there is a small arc

Ip ⊂ Bε0(p)∩expp Ec
p(ε0) with its center at p such that ϕπ(p)(Ip) = Ip. Here Ec

p(ε0)
is the ε0-ball in Ec

p with its center at the origin Op.
We may suppose that Ip ⊂ Λϕ(U), reducing both U(f) and ε0 if necessary

(observe that Λ is locally maximal). Denote by q1 and q2 the two endpoints of Ip.
Observe that

Dqiϕ
π(p)
|Ec

p
= Dpg

π(p)
|Ec

p
= 1
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for i = 1, 2. Hence, by Lemma 2.3, with a C1-modification of the map ϕ at the
endpoints, we may have that both the points are hyperbolic with different indices;
that is, index(q1) �= index(q2) with respect to ϕ.

Case 2. dimEc
p = 2, and the corresponding eigenvalues λ are complex conjugate

with modulus equal to 1.

In the proof of the second case, to avoid notational complexity, we consider only
the case g(p) = p. As in the first case, by Lemma 2.3, there are ε0 > 0 and ϕ ∈ V(g)
such that ϕ(p) = g(p) = p and

ϕ(x) = expg(p) ◦Dpg ◦ exp−1
p (x)

if x ∈ Bε0(p). With a small modification of the mapDpg, we may suppose that there
is l > 0 (the minimum number) such that Dpg

l(v) = v for any v ∈ exp−1
p (Ec

p(ε0))
by Lemma 2.3.

Take v0 ∈ exp−1
p (Ec

p(ε0)) such that ‖v0‖ = ε0/4, and set

Jp = expp({t · v0 : 1 ≤ t ≤ 1 + ε0/4}).

Then Jp ⊂ Λϕ(U) is an arc such that

· ϕi(Jp) ∩ ϕj(Jp) = ∅ if 0 ≤ i �= j ≤ l − 1,
· ϕl(Jp) = Jp and ϕl

|Jp
is the identity map.

As in the first case, with a C1-modification of the map at the endpoints q1 and q2
of Jp, we have that both points are hyperbolic with different indices. �

2.1. End of the proof of Proposition 1.4. Let f|Λf (U) satisfy the C1-SSP, and
let U(f) be as in the property. To get the conclusion, it is enough to show that
every p ∈ Λg(U) ∩ P (g) (g ∈ U(f)) is hyperbolic by Lemma 2.2. By contradiction,
suppose that p ∈ Λg(U) ∩ P (g) (g ∈ U(f)) is not hyperbolic. Then by Lemma 2.4,
there is ϕ ∈ U(f) possessing hyperbolic periodic points q1 and q2 in Λϕ(U) with
different indices; that is, index(q1) �= index(q2). This is a contradiction again by
Lemma 2.2 since f|Λf (U) satisfies the C1-SSP.
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