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Abstract

The Computational Anatomy project has largely been a study of large deformations within a

Riemannian framework as an efficient point of view for generating metrics between anatomical

configurations. This approach turns D’Arcy Thompson’s comparative morphology of human

biological shape and form into a metrizable space. Since the metric is constructed based on the

geodesic length of the flows of diffeomorphisms connecting the forms, we call it

diffeomorphometry. Just as importantly, since the flows describe algebraic group action on

anatomical submanifolds and associated functional measurements, they become the basis for

positioning information, which we term geodesic positioning. As well the geodesic connections

provide Riemannian coordinates for locating forms in the anatomical orbit, which we call geodesic

coordinates. These three components taken together — the metric, geodesic positioning of

information, and geodesic coordinates — we term the geodesic positioning system. We illustrate

via several examples in human and biological coordinate systems and machine learning of the

statistical representation of shape and form.

The low-dimensional matrix Lie groups form the core dogma for the now classic study of

the kinematics of rigid bodies in the field of rigid body mechanics. Their infinite

dimensional analogue, the diffeomorphism group, containing one-to-one smooth

transformations1–6, plays the central role in studying deformable structures in the field of

Computational Anatomy (CA)7–15. Central to CA is the comparison of shape and form,

morphology, as pioneered by D’Arcy Thompson16. We are focusing on shapes formed by

the submanifolds of the human body in R3. Comparison of their coordinates are described

via flows of diffeomorphisms connecting them. Thompson’s morphological space is made

into a metrizable space via a metric induced by the geodesic lengths of the flows. This
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reduction of the space of human shape and form to a metric space via diffeomorphic

connection we call diffeomorphometry.

We formulate the diffeomorphic correspondence as positioning via the design of optimal

control strategies flowing information from one anatomical coordinate system onto another.

The flows of the coordinates t ↦ φt act to transfer the image information, with the controls

the vector fields t ↦ vt acting as the push. They are related via the dynamics of the system φ̇

= v ∘ φ. To define the geodesic shortest path flows a least-action principle is introduced

based on a Lagrangian on the generalized coordinates of this system. This links us to

classical formulations from physics. The Lagrangian has the property that the metric

between any two forms is unchanged by coordinate transformation identically applied to

both. Importantly, this property termed right-invariance of the metric, implies that a linear

functional of the vector field encoding the geodesic connection between forms satisfies a

conservation law.

This linear functional we term the Eulerian momentum. Importantly, conservation implies

that the metric comparison of diffeomorphometry is encoded via one of the forms and the

Eulerian momentum specifying the geodesic connection of it to the second form. Our

parametric reduction to coordinates of the shape or anatomical phenotype is the parametric

representation of these linear momenta.

The flows of diffeomorphisms both encode shape as well as transfer the physiological

information stored in the imagery. This approach models the observable space of imagery

and forms as an orbit under the diffeomorphism group action. We call this orbit the

morphological space of forms. It is an example of a Grenander deformable template17,

reducing the study of the image or form to the study of the templates and the transformations

that are applied. The transfer of information as group action implies the metric property

between coordinate systems is inherited by the elements in the orbit itself. This is vital for

the quantitative representation of function across multiscale models which link cells and

organ systems that characterize variation in health and disease in Computational Medicine18.

This diffeomorphic action is a positioning system providing our space of forms with

coordinates, termed Riemannian exponential or geodesic coordinates. To make an analogy

in these infinite dimensional coordinatized spaces with coordinates on Earth, choosing a

template in CA is equivalent to selecting an origin on the globe, say the North pole.

Geodesics stemming from the template are analogous to longitude lines, or great circles

stemming from the pole, and CA coordinates select both the geodesic and how far to go

along it, similar to providing longitude and latitude in spherical coordinate systems.

Noteably, the diffeomorphic actions are rich enough that the morphological space is

homogeneous, so that any form can generate the full orbit and can be the center of a chart

creating a local coordinate system with geodesic coordinates. The collection of geodesic

maps covers the morphological space and defines the geodesic atlas. Geodesic positioning

provides a systematic way to choose the chart which flattens to first order the metric,

providing exact distances to the origin radially.
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Because the image information indexed to submanifolds M ⊂ R3 are so essential for

understanding medicine at the human organ system level of subcortical and surface

coordinates in brain and heart, our optimal control strategies are reformulated via

Hamiltonian reduction of the Lagrangian on R3 to the local coordinates M ⊂ R3 of

physiological significance within the body.

METHODS

The morphological space: transformation of forms via diffeomorphisms

CA examines the interplay between imaged anatomical structures indexed with coordinates,

hereafter called a form lying in some set  called the morphological space, and acted upon

by some group of transformations, φ ∈ G. Our algebraic model of the interaction between

the pair (φ, m) is that the form m ∈  is carried by the coordinate system represented by φ

∈ G, and denoted algebraically as group action

(1)

The forms studied in CA are submanifolds (points, curves, surfaces, subvolumes) in the

human body, and dense scalar and tensor imagery. The transformations are diffeomorphisms

φ ∈ G a group of one-to-one, smooth, coordinate change of the background space R3, with

law of composition φ ∘ φ′(·) = (φ(φ′(·))), inverse φ−1. In functional anatomy19,

diffeomorphisms represent the structural phenotypes, with imagery functional phenotypes.

This separation is not always distinct.

The diffeomorphic transformations are generated as flows. If vt is a time-dependent vector

field on R3, the differential equation flow ẏ = vt(y) is given with its inverse, for t ∈ [0, 1], by

(2)

where  denotes the 3 × 3 Jacobian matrix of f:R3 → R3, and both equations are

solved with initial condition , where id(x) = x is the identity mapping. Here φ ̇∈

R3 is the Lagrangian velocity indexed to the initial body configuration, with vt ∈ R3 the

Eulerian vector field indexed to the flow φt as a function of time t. The flow of (2) generates

a well defined time-dependent path of C1 diffeomorphisms t → φt with inverse (the

transport equation) for suitable control of the spatial derivatives of vt (see below).

Our two kinds of forms are manifolds and imagery, carried by the coordinate

transformations of (1). For collections of submanifolds (landmarks, curves, or surfaces) a

form M is a subset, usually the geometrical support of a submanifold. Often the manifold of

points are parameterized via vertex representations as surfaces in brain and cardiac

studies20–23, implying q(U) = M for some mapping q:U → R3, where U is taken to be a

subset of Euclidean space, although U can be discrete sets or submanifolds. For MRI the
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forms are images I:R3 → Rm, dense scalar or vector functions, action as right inverse. This

gives our two actions:

(3a)

(3b)

There can be many actions as shown in the extended methods for vector imagery and tensor

imagery as 3 × 3 non-negative symmetric matrices, as well as frames or orthonormal bases.

Defining in this way specifies the transformation is group action, φ, φ′ ∈ G, (φ ∘ φ′) · m = φ ·

(φ′ · m) ∈ .

Diffeomorphometry via geodesic connection

For turning the “ology” of D’Arcy Thompson’s morphology into the “ometry” of

diffeomorphometry we construct a metric  on the morphological space  of forms,

induced by the metric between diffeomorphic changes in coordinates. For this, let φ:[0,1] →

G be a differentiable path connecting coordinate systems φ0 = g, φ1 = h ∈ G. The metric

between coordinate transformations is defined as the length of the geodesic connection

given by the integrated tangent norm along the flow, which induces the metric between

forms m,n ∈  defined via the exemplar or template m0:

(4a)

(4b)

The norm-square for the tangent is taken as , where ||·||V is the

norm for the Hilbert space of vector fields V. To ensure flows satisfying Equation (2) have

well defined inverse (requiring Jacobian) and Equation (4) has well defined length for every

pair of diffeomorphisms, we constrain the vector fields to be in the Hilbert space ν ∈ V

modeled as continuously embedded in continuous, differentiable in space, vector fields with

supremum norm so that Eulerian velocities v ∈ V are spatially C1.

Statement 1—Define the group G as3,4

with orbit of forms  = {m:m = φ · m0, φ ∈ G}.

• Then  is homogeneous under action G, so that for all m, m′ ∈ , there exists φ ∈

G, such that m′ = φ · m.
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• With  in Equation (4), the metric is right-invariant, for

all ψ ∈ G,

(5)

The group action property implies getting from one form to another is possible, extending to

morphological spaces the property familiar from the kinematics of rigid bodies in Euclidean

space, called homogeneity of the action; see Fig. 1.

The metric being right-invariant implies that (i) the metric on the orbit of forms satisfies the

triangle inequality in spite of there being many diffeomorphisms which are indistinguishable

seen through their action24, and (ii) computation of geodesics reduces to shooting from the

identity.

It also gives us a consistency property when manipulating the forms. We would prefer our

metric to have the property that it obtains consistent measurements across different scales,

parameterizations, or extent of inclusion of subparts. For this we define the notion of the

extension of one form from another. We say  is an extension of  if there exists an onto

mapping π:  → M that is consistent with the group action: π(φ · m′) = φ · π(m′), φ ∈ G.

The right invariance of the metric is necessary and sufficient for metric consistency to hold.

Statement 2

• The metric  on forms m,n ∈  shoots from identity, satisfying triangle

inequality24:

(6a)

• The metric  on forms is consistent, for any extension π(φ · m′) = φ · π(m′), then

(6b)

Importantly this provides a straightforward mechanism for a purely geometric comparison or

shape registration of manifolds, independent of parametrization by implicit or explicit

optimization over all possible reparametrizations, finding the most favorable one for the

distance25.

Geodesic coordinates and positioning

We compute geodesics as variational minimizers along the integrated Lagrangian or kinetic

energy ; computation of geodesics corresponds to a least-action principle:
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(7)

For computing geodesics we use a matrix differential operator L (powers of the Laplacian)

to rewrite the norm in V giving  and inner-product for v,w ∈ V, taken

componentwise . We call µ = Lv the Eulerian

momentum; sometimes it is a measure.

The Euler equation dictates the temporal evolution of the momentum of the geodesics. The

right-invariant metric implies conservation of Eulerian momentum so that the geodesics are

encoded by their initial condition, the basis for shooting. In Eulerian coordinates, in passing

from t ↦ t + ε, the particles are at different positions, so for conservation the function being

acted upon must be transformed by the adjoint .

Statement 3—The geodesics minimizing the action of (7) with  have Euler

momentum satisfying force evolution and conservation on smooth functions w ∈ V:

(8a)

(8b)

Moreover, geodesics have constant speed ||v0||V and Lagrangian  (proven

in10).

The operations consisting in finding an optimizing geodesic in Equations (7) and solving (8)

with initial condition Lv0 are inverse. Under suitable conditions, solutions of the latter are

minimizers of the former and conversely. This “inverse” relationship is referred to as the

Riemannian exponential and logarithm, with the logarithm only well defined when there are

unique solutions to the geodesic equation.

Statement 4—We term geodesic positioning as the Riemannian exponential at the identity

Expid(·):V → G given by the geodesic satisfying Equation (8) with initial condition vt=0 =

v0; geodesic coordinates are the Riemannian logarithm at the identity Logid(·) G → V

(assuming uniqueness) given by vt=0 of the field satisfying geodesic connection:

(9)

Extending to the entire group gives
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(10)

When the logarithm exists we have Expid(Logid(g)) = g, but the converse equation

Logid(Expid(v0)) = v0 may fail to be true, although it holds if v0 is “small enough”.

As depicted in Fig. 1, the top panel shows diffeomorphic actions which are rich enough that

any form can generate the full orbit (homogeneity of the space). The bottom panel shows

each form can act as the center of a chart creating a local coordinate system with geodesic

coordinates. In this infinite dimensional setting, any one could be selected, analogous to

selection of the North pole in finite dimensional spherical representations. The collection of

geodesic maps covers the morphological space and defines the geodesic atlas. The metric

flattens to the tangent providing exact distances to the origin radially of the great circles

stemming from the template given by (m,n) = ||v0||V. The fact that our forms are defined

by group actions implies this is true for all of the actions defined, including imagery and

manifolds.

Computation of Geodesic Positioning System (GPS) via optimal control and Hamiltonian

reduction

We solve for geodesic position and coordinates for Log and Exp as an inexact matching of

coordinate systems using classical methods in optimal control. In CA, vector fields are used

as control that push the forms (submanifolds or images) within the anatomical

morphological space. We take as the dynamical system the flow of coordinates t ↦ qt ≐ φt ·

q0 ∈ Q modelled as embedded in some linear state space Q ⊃ M, and the control the vector

field t ↦ vt ∈ V related to the state via the infinitesimal action of the flow q̇t = vt · qt,qt=0 =

q0. The optimal control takes the running cost the kinetic energy , with an

assumed target or endpoint condition E.

Control Problem 1

(11a)

(11b)

The control indexed to initial v0 is shooting and has been examined in various

forms4,10,25–32. Various endpoint conditions have been examined, including for dense image

and tensor matching , for point matching with correspondence

, as well as other for point-sets, curves and surfaces without

correspondence.
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Forms in the orbit being positioned can be of reduced dimension to the diffeomorphisms in

the group. Manifolds represented by multiple organs or fiducial points are singular in the

background space indexing the vector fields. The GPS computation exploits this by

switching to a Hamiltonian formalism in which the momentum is reparameterized in terms

of a co-state variable p indexed to the lower complexity state space of the forms. Introduce a

Lagrange multiplier pt dual to the state space for constraining q̇t = vt · qt added to the

negative Lagrangian, giving control-dependent Hamiltonian

(12)

The Pontryagin Maximum principle yields the optimized geodesic control v̂, and the

Hamiltonian H(q, p) = maxvHv(q, p) with dynamics

(13)

Our shooting problem for qt = φt · q0, q̇t = vt · qt has been reduced to the geodesic control v ̂

with momentum Lv ̂ satisfying Euler Equation (8) with Hamiltonian constant equalling the

Lagrangian:

The reduced control problem becomes as follows.

Control Problem 2—Hamiltonian Reduction

(14)

For manifolds M = q(U), q : U → R3, qt = φt ∘ q0, the infinitesimal action is v · q ≐ v ∘ q with

Lagrange multiplier co-state constraint

(15)

Maximizing Hv(p,q) of (12) in v with K = L−1 gives Dirac geodesic momentum and

optimizing vector field satisfying Equation (8):

(16)

The manifold dynamical system becomes
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(17a)

(17b)

where we use (·)* to denote matrix transpose.

For dense imagery, ,q0 = I, the infinitesimal action is v · q = −〈∇q, v〉 with

Lagrange multiplier co-state constraint

(18)

Maximizing Hv(p, q) of (12) in v gives geodesic momentum and vector field satisfying

Equation (8):

(19)

The dense image dynamical system becomes

(20a)

(20b)

The Extended Methods does the case of atlases as collection of multiple manifolds.

Adjoint method of solution

For solving control problem 2 we use gradient based adjoint methods27,33–35 transporting

the endpoint condition backwards, reoptimizing with respect to p0 with Hamiltonian

dynamics F(q, p).

The adjoint method arises by introducing the functional determining our gradient method

(21)

where λt is the Lagrange multipler with
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The gradient variation under a perturbation (q, p) → (q, p) + δ(q, p) gives equations for λ:

(22a)

(22b)

(22c)

where dH is the differential with respect to (q, p).

See the Extended Methods gradient algorithm Equations (32) for solving the maximizer

conditions.

RESULTS

Geodesic positioning in high field MRI

Figure 2 illustrates geodesic positioning for segmentation via deformable templates36,37.

The top row shows a high field 11.7T MRI reconstructed hippocampus38 from a normal

control which has been partitioned into four substructures, with dense subvolumes and

bounding surfaces: M0 equal to CA1 (blue), CA2 (green), CA3/Dentate gyrus (red), and

subiculum (cyan). Taking this as the template M0 is used to parcellate or segment the target

in the lower panel by positioning it onto the target coordinates φ · M0 = Expid(v ̂0) · M0 with

v̂0 = Logid (φ). The target has been selected manifesting temporal lobe atrophy. The left part

of the bottom panel shows the cross sections of the mapped template in the MRI. The right

of the bottom panel shows the mapped template with two of the substructures CA1 and

CA3/Dentate shown in the atrophied coordinates of the target. These two substructures

illustrate the greatest atrophy, with CA3/Dentate gyrus showing the greatest amount of

atrophy as much as 25 percent in target coordinates as measured by the determinant of the

Jacobian. The geodesic positioning encoded by φ = Expid(v̂0) was determined by associating

landmarks to each of the M0, M1 structures and solving the optimal Control Prob. 3 via

landmark matching10.

Geodesic positioning of brain DTI tracts

Shown in Fig. 3 is geodesic positioning used by many groups in Computational Anatomy

registering information in diffusion tensor MRI (DT-MRI). Top row of Fig. 3 shows

submanifold curves generated via FACT tract tracing39 from twenty brains following rigid

alignment to MNI space. The commissural fiber connecting the postcentral gyri (CC-PoCG,

Fig. 3 left column) and the left cortical-spinal tract (CST-Left, Fig. 3 right column) are

shown for demonstration. Following40, the MRI coordinates were repositioned aligning the
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brains to a common template coordinate system  solving control problem 1 based

on the fractional anisotropy and B0 contrasts in the DWI imagery using Multi-channel

LDDMM41. The bottom row shows the fiber tracts regenerated after aligning the brains to

the common template coordinate system.

Exponential geodesic coordinates in brain and machine learning

Figure 4 depicts the use of geodesic coordinates to visualize populations of structures around

the templates. Shown is the geodesic positioning of the single hippocampus subcortical

structure from a population in the BIOCARD study. For the graph the population was

mapped solving control problem 2 to a common template form using template estimation as

in35,42. For each structure Mi the diffeomorphism was calculated , solving

Control Prob. 2 for surface matching 27, from which exponential coordinates were

calculated Logid(φ(i)) = v(i). Figure 4 shows the two-dimensional PCA representation of the

exponential vector field coordinates of the mapped structures. Shown at the center is the

template.

Figure 5 is an illustration of using these exponential coordinates for machine learning of

temporal lobe structures, amygdala-entorhinal cortex-hippocampus in the BIOCARD study.

Shown in the Figure are results of machine learning using linear discriminant analysis

(LDA) on the exponential coordinates, with 50% of the data witheld for training. The

population was mapped solving control problem 2 to a common template as above and for

each structure Mi the diffeomorphism was calculated, from which exponential coordinates

were calculated. A finite dimensional basis was generated from the coordinates for each

mapping {v(i)}, expanding in a PCA basis based on the empirical covariance. Up to 50

anatomies are shown placed in the first two LDA coordinates for each group showing red for

normal, green for clinical Alzheimer’s disease, and blue for those diagnosed subsequent to

their last scan and termed pre-clinical. Three of the 50 examples from each group are plotted

showing the surface temporal lobe structures.

Geodesic coordinates for heart shape

The geodesic exponential coordinates are the basis for many machine learning and statistical

methods for discrimination and indexing of shapes. Figure 6 shows results in hearts. The top

shows a reconstruction of a high resolution computed tomography left ventricular template

(1 mm isotropic) generated from a population of 25 subjects. Shown in color is the 17 AHA

partition43 with each segment represented by one color and using the ontology definitions44.

The population of 25 heart geometries were positioned solving control problem 2 using LD-

DMM45 for the dense imagery. Figure 6 depicts the use of Riemannian coordinates for

statistical encoding of the shape phenotype. For this the population was mapped solving

control problem 1 generating coordinates v ̂(i) = Logid(φ(i)) defined by template to target

maps  representing the shape phenotype positioned relative the template heart

coordinate system. Shown depicted via the black area is the indicated region that was

statistically significant between the two different populations of ischemic versus non-

ischemic cardiomyopathy at end-systole46. The region is AHA segment 13 (anterior apical)

where the majority of ischemic patients had their infarction. Bottom panel illustrates the
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spatial distribution of average determinant of Jacobian for the ischemic (left) and non-

ischemic (right) populations within AHA segment 13. Ischemic patients have smaller

Jacobian determinant indicating wall thinning due to scar formation.

DISCUSSION

The fact that the right-invariant diffeomorphometry metric is consistent provides a

straightforward mechanism for a purely geometric comparison of manifolds, independent of

the parametrization. This can be contrasted with other methods in CA that equip shapes with

a predefined parametrization such as Euclidean or spherical coordinates47–49. In the

extended methods we illustrate via various reparameterization examples.

It is informative to compare control problem 2 for dense matching of I to J to LDDMM50

using Equation (19) relating Lv ̂ = −p∇q with the state q = I ∘ φ−1. Dense image matching

minimizes endpoint

(23)

with ||·||2 the squared-error norm over the image. In this case the Hamiltonian provides

geodesic coordinates giving the reduction from Lv̂0 : R3→ R3 to p0: R3 → R, reducing the

dimension of φ,φ̇ = v ∘ φ which are 3-vectors to the reduced dimension co-state scalar field.

To calculate p0, we use conservation to transport the endpoint condition on p1 back to the

origin giving p0. The endpoint for p1 maximizes control problem 2:

(24)

For E(q1) smooth, then Lv has vector density (Lvt |w) = ∫R3 〈 mt (x), w(x)〉dx with

conservation Equation (8b) obtaining the initial density,

(25)

Using q0 = q1 ∘ φ1, ∇q0 = (dφ1)* ∇q1 and Equations (19) and (24), gives maximizer

conditions of LDDMM50:

(26)

The geodesic trajectory in the group is characterized by the initial Eulerian momentum from

Equation (19) given by Lv ̂0 = −p0∇q0, q0 = ∇I fixed for the template, with p0: R3→ R the

reduced co-state,

(27)

Miller et al. Page 12

Technology (Singap World Sci). Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



For pointset correspondence matching {xi} to {yi}, then U = {xi} and state qi = φ(xi) with

smooth endpoint and vector endpoint condition

(28)

Then Equation (16) for Eulerian momentum is singular,

(29)

The conservation Equation (8b) for pointsets gives p0i = (dq1i)* p1i, implying the reduction

EXTENDED METHODS

Group actions

Here are several other group actions. For images represented by vector fields, I : R3 → R3,

then

where (dφ−1)* holds for (dφ*)−1.

When I = (I1, I2, I3) is a vector field of frames, specifically a positively oriented

orthonormal basis of R3 denoting the tangent to some curves, and the two other normal

vectors forming the Frenet frame, then

where we have denoted vector cross product as Ii × Ij. The interpretation is that I1 deforms

as a fiber (a tangent to some curve), I3 deforms like a normal to the plane generated by I1, I2

and the deformation of I2 is uniquely constrained by the fact that the basis is positive and

orthonormal.

For tensor images 3 × 3 non-negative symmetric matrices, Alexander and Gee51 used

rotation of the eigenfunctions via the previous action on frames with eigenvalues

unchanged; a second action becomes
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Consistency of metric

To understand geometric comparison of manifolds, independent of the parametrization

examine q′ : U′ → R3 ∈  as a parametrized surface with π(q) ∈  the restriction of q to a

finite set U ⊂ U′ of fiducial points. The statement 2 asserts that the construction that projects

 onto  via the right-hand side of (6) is equivalent to applying the construction in

statement 2 directly on . Another important consequence is that changing the

parametrization from U → R3 to Ũ → R3 when U and Ũ are diffeomorphic does not affect

the metric.

This is again a purely geometric comparison of manifolds, independent of the

parametrization. Take  to be the set of mappings q : U → R3 such that q(U) is a

submanifold of R3 (i.e., the set of embeddings) and  the set of submanifolds of R3. Define

π(q) = q(U) which associates to each mapping q the subset of R3 that it parametrizes. Then,

φ ∘ π(q) = φ ∘ q(U) = π (φ ∘ U) and statement 2 implies a distance between submanifolds is

obtained

Atlases of multiple submanifolds

This generalizes for atlases collections of manifolds q = (q1, …, qn), qi : Ui → R3, with

infinitesimal action v · q ≐ (v ∘ q1,…,v ∘ qn). Define p = (p1,…,pn) yielding

, optimal control

(30)

The dynamics and Hamiltonian becomes

(31a)

(31b)

Adjoint gradient algorithm

The adjoint algorithm arises by implementing the gradient perturbation (q, p) → (q, p) + δ(q,

p) of Equations (21) and (22) to satisfy the fixed point optimizer.
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Algorithm 1—Generic Adjoint Initialize p0.

i. Given p0 solve (q̇, ṗ)* = F(q, p), giving p1, q1.

ii.

Given q1, solve boundary terms .

iii. Backsolve adjoint equation for λ of (22a):

(32a)

iv.
Compute gradient term (22b) with q0 fixed and , giving

update

(32b)

with ε = step − size and set  and go to (i).
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Figure 1.

Top panel shows the orbit of forms M, and acting group G. Bottom panel shows radial

representation of geodesic flattening of forms. Tangent space norm and geodesic distance

agree for radial great circles emanating from the template m0 with distance (m0,n) = ||

v0||V.
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Figure 2.

Showing mapping in high field 11.7T hippocampus depicting the partition into CA1 (blue),

CA2 (green), CA3/Dentate (red) and Subiculum (cyan) of target structures exhibiting

temporal lobe atrophy. Top shows four structures in section from the template corresponding

to an age controlled normal showing reconstructions of CA1, CA2, CA3/ Dentate,

subiculum. Bottom shows template mapped to the target an individual suffering from

temporal lobe atrophy; right structures are CA1, CA3/Dentate colored with Jacobian

determinant. Data collected is three-dimensional diffusion tensor imaging and was

performed using a horizontal-bore 11.7 T NMR scanner (Bruker Biospin, Billerica, MA).

DTI data were acquired with a 3D diffusion-weighted EPI sequence (TE = 27 ms, TR = 500

ms). The imaging field-of-view was 42 mm × 45 mm × 64 mm. Two b0 images and 30

diffusion directions were acquired within a scan time of 13.5 hours for DTI mapping.
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Figure 3.

Geodesic positioning of the DT-MRI and alignment of fiber tracts. Three-dimensional

diffusion tensor imaging of 20 subjects were performed on a 1.5T Siemens MR unit using

single-shot echo-planar imaging sequences with sensitivity encoding (SENSE EPI) with

parallel imaging factor of 2.0 (imaging matrix: 96 × 96, field-of-view: 240 mm × 240 mm,

and slice thickness 2.5 mm). B0 images and DWIs of 30 diffusion directions were acquired

and co-registered to remove eddy current and motion. The scanning time was 4 min per

dataset. Tensor calculation was performed, followed by rigid alignment of all subjects. Fiber

reconstructions were performed in each subject’s space using FACT tract tracing

algorithm 39. CC-PoCG fiber: the starting and ending points of tract tracing were selected as

the post-central gyri (PoCG) of the two hemispheres, and the fiber path was constraint to

penetrate the corpus callosum (CC). CST_left fiber: the starting and ending points were the

cerebral peduncle (CP) and the pre-central gyrus (PrCG); the fiber path was constrained by

the posterior limb of internal capsule (PLIC) and the superior corona radiata (SCR). Top row

shows the tracts in native brain (4 subjects were shown for demonstration); bottom row

shows tracts after geodesic positioning via LDDMM solution of control problem 1.
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Figure 4.

Panel shows structures indexed by two highest variance dimensions from PCA on

Riemannian exponential coordinates representing hippocampus structures from the

BIOCARD study. Each structure is placed on the 2D plane with the template (red) at (0,0) in

the center, left/right corresponding to the first dimension, and up/down corresponding to the

second.

Miller et al. Page 21

Technology (Singap World Sci). Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 5.

Panel shows results of machine learning (LDA) on the geodesic coordinates for sets of

temporal lobe structures, amygdala-entorhinal cortex-hippocampus, with 50% witheld for

training. Up to 50 points are placed for each group, with three examples from each group

shown as surfaces. Red: normal elderly subjects, green: subjects diagnosed with Alzheimer’s

disease at time of their last scan, blue: subjects diagnosed subsequent to their last scan and

termed pre-clinical.
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Figure 6.

Top section: A high resolution computed tomography left ventricular template (1 mm

isotropic) constructed from 25 subjects in AHA segmentation represented by one color per

segment; black area within AHA anterior apical segment 13, showing statistical significance

between two different populations of cardiac disease, ischemic (n = 13, 10 men, mean age

56) and non-ischemic cardiomyopathy (n = 12, 8 men, mean age 52) at end-systole. Each

subject was studied either in a 32 (n = 8) or 64-detector (n = 17) multi-detector computed

tomography scanner (Aquilion 32(64), Toshiba Medical Systems Corporation, Otawara,

Japan). Plane resolution varied from 0.36 × 0.36 mm to 0.45 × 0.45 mm, thickness = 0.5

mm. Bottom section shows average Jacobian for ischemic (left) and non-ischemic (right)

groups within segment 13 highlighting that on average non-ischemic group had significantly

larger tissue (myocardial) volume relative to ischemic group at end-systole. This indicates

smaller wall thickening during maximum contraction at the location of infarction in

ischemic population46.
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