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PREFACE

Topics in difference and differential equations with applications in queueing 
theory typically span five subject areas: (1) probability and statistics, (2) trans-
forms, (3) differential equations, (4) difference equations, and (5) queueing 
theory. These are addressed in at least four separate textbooks and taught in 
four different courses in as many semesters. Due to this arrangement, students 
needing to take these courses have to wait to take some important and fun-
damental required courses until much later than should be necessary. Addi-
tionally, based on our long experience in teaching at the university level, we 
find that perhaps not all topics in one subject are necessary for a degree. 
Hence, perhaps we as faculty and administrators should rethink our traditional 
way of developing and offering courses. This is another reason for the content 
of this book, as of the previous one from the authors, to offer several related 
topics in one textbook. This gives the instructor the freedom to choose topics 
according to his or her desire to emphasize, yet cover enough of a subject for 
students to continue to the next course, if necessary.

The methodological content of this textbook is not exactly novel, as “math-
ematics for engineers” textbooks have reflected this method for long past. 
However, that type of textbook may cover some topics that an engineering 
student may already know. Now with this textbook the subject will be rein-
forced. The need for this practice has generally ignored some striking relations 
that exist between the seemingly separate areas of a subject, for instance, in 
statistical concepts such as the estimation of parameters of distributions used 
in queueing theory that are derived from differential–difference equations. 
These concepts commonly appear in queueing theory, for instance, in measures 
on effectiveness in queuing models.

All engineering and mathematics majors at colleges and universities take 
at least one course in ordinary differential equations, and some go further to 
take courses in partial differential equations. As mentioned earlier, there are 
many books on “mathematics for engineers” on the market, and one that 
contains some applications using Laplace and Fourier transforms. Some also 
have included topics of probability and statistics, as the one by these authors. 
However, there is a lack of applications of probability and statistics that  
use differential equations, although we did it in our book. Hence, we felt that 
there is an urgent need for a textbook that recognizes the corresponding  
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relationships between the various areas and a matching cohesive course. Par-
ticularly, theories of queues and reliability are two of those topics, and this 
book is designed to achieve just that. Its five chapters, while retaining their 
individual integrity, flow from selected topics in probability and statistics to 
differential and difference equations to stochastic processes and queueing 
theory.

Chapter 1 establishes a strong foundation for what follows in Chapter 2 and 
beyond. Classical Fourier and Laplace transforms as well as Z-transforms and 
generating functions are included in Chapter 2. Partial differential equations 
are often used to construct models of the most basic theories underlying 
physics and engineering, such as the system of partial differential equations 
known as Maxwell’s equations, from which one can derive the entire theory 
of electricity and magnetism, including light. In particular, elegant mathemat-
ics can be used to describe the vibrating circular membrane. However, our goal 
here is to develop the most basic ideas from the theory of partial differential 
equations and to apply them to the simplest models arising from physics and 
the queueing models. Detailed topics of ordinary and partial differential and 
difference equations are included in Chapter 3 and Chapter 4 that complete 
the necessary tools for Chapter 5, which discusses stochastic processes and 
queueing models. However, we have also included the power series method 
of solutions of differential equations, which can be applied to, for instance, 
Bessel’s equation.

In our previous book, we required two semesters of calculus and a semester 
of ordinary differential equations for a reader to comprehend the contents of 
the book. In this book, however, knowledge of at least two semesters of cal-
culus that includes some familiarity with terminology such as the gradient, 
divergence, and curl, and the integral theorems that relate them to each other, 
are needed. However, we discuss not only the topics in differential equation, 
but also the difference equations that have vast applications in the theory of 
signal processing, stochastic analysis, and queueing theory.

Few instructors teach the combined subject areas together due to the  
difficulties associated with handling such a rigorous course with such hefty 
materials. Instructors can easily solve this issue by teaching the class as a multi-
instructor course.

We should note that throughout the book, we use boldface letters, Greek 
or Roman (lowercase or capital) for vectors and matrices. We shall write P(n) 
or Pn to mean P as a function of a discrete parameter n. Thus, we want to make 
sure that students are well familiar with functions of discrete variables as well 
as continuous ones. For instance, a vibrating string can be regarded as a con-
tinuous object, yet if we look at a fine enough scale, the string is made up of 
molecules, suggesting a discrete model with a large number of variables. There 
are many cases in which a discrete model may actually provide a better 
description of the phenomenon under study than a continuous one.

We also want to make sure that students realize that solution of some 
problems requires the ability to carry out lengthy calculations with confidence. 
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Of course, all of these skills are necessary for a thorough understanding of the 
mathematical terminology that is an essential foundation for the sciences and 
engineering. We further note that subjects discussed in each chapter could be 
studied in isolation; however, their cohesiveness comes from a thorough 
understanding of applications, as discussed in this book.

We hope this book will be an interesting and useful one to both students 
and faculty in science, technology, engineering, and mathematics.

Aliakbar Montazer Haghighi

Dimitar P. Mishev

Houston, Texas
April 2013
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CHAPTER ONE

Probability and Statistics

The organization of this book is such that by the time reader gets to the last 
chapter, all necessary terminology and methods of solutions of standard math-
ematical background has been covered. Thus, we start the book with the basics 
of probability and statistics, although we could have placed the chapter in a 
later location. This is because some chapters are independent of the others.

In this chapter, the basics of probability and some important properties of 
the theory of probability, such as discrete and continuous random variables 
and distributions, as well as conditional probability, are covered.

After the presentation of the basics of probability, we will discuss statistics. 
Note that there is still a dispute as to whether statistics is a subject on its own 
or a branch of mathematics. Regardless, statistics deals with gathering, analyz-
ing, and interpreting data. Statistics is an important concept that no science 
can do without. Statistics is divided in two parts: descriptive statistics and infer-
ential statistics. Descriptive statistics includes some important basic terms that 
are widely used in our day-to-day lives. The latter is based on probability 
theory. To discuss this part of the statistics, we include point estimation, interval 
estimation, and hypothesis testing.

We will discuss one more topic related to both probability and statistics, 
which is extremely necessary for business and industry, namely reliability of a 
system. This concept is also needed in applications such as queueing networks, 
which will be discussed in the last chapter.

In this chapter, we cover as much probability and statistics as we will need 
in this book, except some parts that are added for the sake of completeness 
of the subject.

1.1. BASIC DEFINITIONS AND CONCEPTS OF PROBABILITY

Nowadays, it has been established in the scientific world that since quantities 
needed are not quite often predictable in advance, randomness should be 

Difference and Differential Equations with Applications in Queueing Theory, First Edition. 
Aliakbar Montazer Haghighi and Dimitar P. Mishev.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



2  Probability and StatiSticS

accounted for in any realistic world phenomenon, and that is why we will 
consider random experiments in this book.

Determining probability, or chance, is to quantify the variability in the 
outcome or outcomes of a random experiment whose exact outcome or out-
comes cannot be predicted by certainty. Satellite communication systems, such 
as radar, are built of electronic components such as transistors, integrated 
circuits, and diodes. However, as any engineer would testify, the components 
installed usually never function as the designer has anticipated. Thus, not only 
is the probability of failure to be considered, but the reliability of the system 
is also quite important, since the failure of the system may have not only eco-
nomic losses but other damages as well. With probability theory, one may 
answer the question, “How reliable is the system?”

Definition 1.1.1. Basics

(a) Any result of performing an experiment is called an outcome of that 
experiment. A set of outcomes is called an event.

(b) If occurrences of outcomes are not certain or completely predictable, 
the experiment is called a chance or random experiment.

(c) In a random experiment, sets of outcomes that cannot be broken down 
into smaller sets are called elementary (or simple or fundamental) 
events.

(d) An elementary event is, usually, just a singleton (a set with a single 
element, such as {e}). Hence, a combination of elementary events is just 
an event.

(e) When any element (or outcome) of an event happens, we say that the 
event occurred.

(f) The union (set of all elements, with no repetition) of all events for a 
random experiment (or the set of all possible outcomes) is called the 
sample space.

(g) In “set” terminology, an event is a subset of the sample space. Two 
events A1 and A2 are called mutually exclusive if their intersection is 
the empty set, that is, they are disjoint subsets of the sample space.

(h) Let A1, A2, . . . , An be mutually exclusive events such that A1 ∪ A2 ∪ 
. . . ∪ An = Ω. The set of {A1, A2, . . . , An} is then called a partition of 
the sample space Ω.

(i) For an experiment, a collection or a set of all individuals, objects, or 
measurements of interest is called a (statistical) population.

For instance, to determine the average grade of the differential 
equation course for all mathematics major students in four-year col-
leges and universities in Texas, the totality of students majoring math-
ematics in the colleges and universities in the Texas constitutes the 
population for the study.
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Usually, studying the population may not be practically or economi-
cally feasible because it may be quite time consuming, too costly, and/
or impossible to identify all members of it. In such cases, sampling is 
being used.

(j) A portion, subset, or a part of the population of interest (finite or 
infinite number of them) is called a sample.

Of course, the sample must be representative of the entire popula-
tion in order to make any prediction about the population.

(k) An element of the sample is called a sample point. By quantification 
of the sample we mean changing the sample points to numbers.

(l) The range is the difference between the smallest and the largest sample 
points.

(m) A sample selected such that each element or unit in the population 
has the same chance to be selected is called a random sample.

(n) The probability of an event A, denoted by P(A), is a number between 
0 and 1 (inclusive) describing likelihood of the event A to occur.

(o) An event with probability 1 is called an almost sure event. An event 
with probability 0 is called a null or an impossible event.

(p) For a sample space with n (finite) elements, if all elements or outcomes 
have the same chance to occur, then we assign probability 1/n to each 
member. In this case, the sample space is called equiprobable.

For instance, to choose a digit at random from 1 to 5, we mean  
that every digit of {1, 2, 3, 4, 5} has the same chance to be picked,  
that is, all elementary events in {1}, {2}, {3}, {4}, and {5} are equi-
probable. In that case, we may associate probability 1/5 to each digit 
singleton.

(q) If a random experiment is repeated, then the chance of occurrence of 
an outcome, intuitively, will be approximated by the ratio of occur-
rences of the outcome to the total number of repetitions of the experi-
ment. This ratio is called the relative frequency.

Axioms of Probabilities of Events
We now state properties of probability of an event A through axioms of prob-
ability. The Russian mathematician Kolmogorov originated these axioms in 
early part of the twentieth century. By an axiom, it is meant a statement that 
cannot be proved or disproved. Although all probabilists accept the three 
axioms of probability, there are axioms in mathematics that are still contro-
versial, such as the axiom of choice, and not accepted by some prominent 
mathematicians.

Let Ω be the sample space, B the set function containing all possible events 
drawn from Ω, and P denote the probability of an event. The triplet Ω, ,B P( ) 
is then called the probability space. Later, after we define a random variable, 
we will discuss this space more rigorously.
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Axioms of Probability

Axiom A1. 0 ≤ P(A) ≤ 1 for each event A in B.
Axiom A2. P(Ω) = 1.
Axiom A3. If A1 and A2 are mutually exclusive events in B, then:

 P A A P A P A1 2 1 2U( ) = ( ) + ( ),  

where mutually exclusive events are events that have no sample point in 
common, and the symbol ∪ means the union of two sets, that is, the set of all 
elements in both set without repetition.

Note that the axioms stated earlier are for events. Later, we will define 
another set of axioms of probability involving random variables.

If the occurrence of an event has influence on the occurrence of other 
events under consideration, then the probabilities of those events change.

Definition 1.1.2
Suppose Ω, ,B P( ) is a probability space and B is an event (i.e., B ∈B) with 
positive probability, P(B) > 0. The conditional probability of A given B, denoted 
by P(A|B), defined on B , is then given by:

 P A B
P AB
P B

A P B( ) = ( )
( )

( ) >, , .for any event in and forB 0  (1.1.1)

If P(B) = 0, then P(A|B) is not defined. Under the condition given, we will 
have a new triple, that is, a new probability space Ω, ,B P A B( )( ). This space 
is called the conditional probability space induced on Ω, ,B P( ), given B.

Definition 1.1.3
For any two events A and B with conditional probability P(B | A) or P(A | B), 
we have the multiplicative law, which states:

 P AB P B A P A P A B P B( ) = ( ) ( ) = ( ) ( ).  (1.1.2)

We leave it as an exercise to show that for n events A1, A2, . . . , An, we have:

 P A A A P A P A A P A A A P A A A An n n1 2 1 2 1 3 1 2 1 2 1K L K( ) = ( ) × ( ) × ( ) × × ( )− .  
(1.1.3)

Definition 1.1.4
We say that events A and B are independent if and only if:

 P AB P A P B( ) = ( ) ( ).  (1.1.4)
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It will be left as an exercise to show that if events A and B are independent 
and P(B) > 0, then:

 P A B P A( ) = ( ).  (1.1.5)

It can be shown that if P(B) > 0 and (1.1.5) is true, then A and B are indepen-
dent. For proof, see Haghighi et al. (2011a, p. 139).

The concept of independence can be extended to a finite number of events.

Definition 1.1.5
Events A1, A2, . . . , An are independent if and only if the probability of the 
intersection of any subset of them is equal to the product of corresponding 
probabilities, that is, for every subset {i1, . . . , ik} of {1, . . . , n} we have:

 P A A A P A P A P Ai i i i i in k1 2 1 2K L( ){ } = ( ) × ( ) × × ( ).  (1.1.6)

As one of the very important applications of conditional probability, we  
state the following theorem, whose proof may be found in Haghighi et al. 
(2011a):

Theorem 1.1.1. The Law of Total Probability
Let A1, A2, . . . , An be a partition of the sample space Ω. For any given event 
B, we then have:

 P B P A P B Ai i

i

n

( ) = ( ) ( )
=
∑

1

.  (1.1.7)

Theorem 1.1.1 leads us to another important application of conditional prob-
ability. Proof of this theorem may also found in Haghighi et al. (2011a).

Theorem 1.1.2. Bayes’ Formula
Let A1, A2, . . . , An be a partition of the sample space Ω. If an event B occurs, 
the probability of any event Aj given an event B is:

 P A B
P A P B A

P A P B A
j nj

j j

i i
i

n( ) = ( ) ( )
( ) ( )

=

=∑ 1

1 2, , , , .K  (1.1.8)

Example 1.1.1
Suppose in a factory three machines A, B, and C produce the same type of 
products. The percent shares of these machines are 20, 50, and 30, respectively. 
It is observed that machines A, B, and C produce 1%, 4%, and 2% defective 
items, respectively. For the purpose of quality control, a produced item is 
chosen at random from the total items produced in a day. Two questions to 
answer:
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1. What is the probability of the item being defective?
2. Given that the item chosen was defective, what is the probability that it 

was produced by machine B?

Answers
To answer the first question, we denote the event of defectiveness of the item 
chosen by D. By the law of total probability, we will then have:

 

P D P P D P P D B P P D C( ) = ( ) ( ) + ( ) ( ) + ( ) ( )
= × + × +

A A B C

0 20 0 01 0 50 0 04 0 3. . . . . 00 0 20

0 002 0 020 0 006 0 028

×
= + + =

.

. . . . .
 

Hence, the probability of the produced item chosen at random being defective 
is 2.8%.

To answer the second question, let the conditional probability in question 
be denoted by P(B | D). By Bayes’ formula and answer to the first question, 
we then have:

 P D
P P D

P D
B

B B( ) = ( ) ( )
( )

=
×

=
0 50 0 04

0 028
0 714

. .
.

. .  

Thus, the probability that the defective item chosen be produced by machine 
C is 71.4%.

Example 1.1.2
Suppose there are three urns that contain black and white balls as follows:

 

Urn

Urn

Urn and

1 2

2 2

1 1 1

:

:

: .

blacks

whites

black white






 (1.1.9)

A ball is drawn randomly and it is “white.” Discuss possible probabilities.

Discussion
The sample space Ω is the set of all pairs (·,·), where the first dot represents 
the urn number (1, 2, or 3) and the second represents the color (black or 
white). Let U1, U2 and U3 denote events that drawing was chosen from, respec-
tively. Assuming that urns are identical and balls have equal chances to be 
chosen, we will then have:

 P U P U P U1 2 3
1
3

( ) = ( ) = ( ) = .  (1.1.10)

Also, U1 = (1,·), U2 = (2,·), U3 = (3,·).
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Let W denote the event that a white ball was drawn, that is, W = {(·, w)}. From 
(1.1.9), we have the following conditional probabilities:

 P W U P W U P U1 2 30 1
1
2

( ) = ( ) = ( ) =, , .  (1.1.11)

From Bayes’ rule, (1.1.9), (1.1.10), and (1.1.11), we have:

P U W
P W U P U

P W U P U P W U P U P W U P U
1

1 1

1 1 2 2 3 3

( ) = ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( )

,  (1.1.12)

 = 0.  (1.1.13)

Note that denominator of (1.1.12) is:

 0 1
1
3

1
2

1
3

1
3

1
6

1
2

+ ( )



 + 









 = + = .  (1.1.14)

Using (1.1.14), we have:

P U W
P W U P U

P W U P U P W U P U P W U P U
2

2 2

1 1 2 2 3 3

1
1

( ) = ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( )

=
( )

33
1
2

2
3







= .

 (1.1.15)

Again, using (1.1.14), we have:

P U W
P W U P U

P W U P U P W U P U P W U P U
3

3 3

1 1 2 2 3 3

1
2

( ) = ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( )

=













=

1
3

1
2

1
3

.

 (1.1.16)

Now, observing from (1.1.13), (1.1.15), and (1.1.16), there is a better chance that 
the ball was drawn from the second urn. Hence, if we assume that the ball was 
drawn from the second urn, there is one white ball that remains in it. That is, we 
will have the three urns with 0, 1, and 1 white ball, respectively, in urns 1, 2, and 3.

1.2. DISCRETE RANDOM VARIABLES AND PROBABILITY 
DISTRIBUTION FUNCTIONS

As we have seen so far, elements of a sample space are not necessarily numbers. 
However, for convenience, we would rather have them so. This is done through 
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what is called a random variable. In other words, a random variable quantifies 
the sample space. That is, a random variable assigns numerical (or set) labels 
to the sample points. Formally, we define a random variable as follows:

Definition 1.2.1
A random variable is a function (or a mapping) on the sample space.

We note that a random variable is really neither a variable (as known inde-
pendent variable) nor random, but as mentioned, it is just a function. Also note 
that sometimes the range of a random variable may not be numbers. This is 
simply because we defined a random variable as a mapping. Thus, it maps ele-
ments of a set into some elements of another set. Elements of either set do 
not have to necessarily be numbers.

There are two main types of random variables, namely, discrete and continu-
ous. We will discuss each in detail.

Definition 1.2.2
A discrete random variable is a function, say X, from a countable sample space, 
Ω (that could very well be a numerical set), into the set of real numbers.

Example 1.2.1
Suppose we are to select two digits from 1 to 6 such that the sum of the two 
numbers selected equals 7. Assume that repetition is not allowed. The sample 
space under consideration will then be S = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), 
(6, 1)}, which is discrete. This set can also be described as S = {(i, j): i + j = 7, i, 
j = 1, 2, . . . , 6}.

Now, the random variable X can be defined by X((i, j)) = k, k = 1, 2, . . . , 6. 
That is, the range of X is the set {1, 2, 3, 4, 5, 6} such that, for instance, 
X((1, 6)) = 1, X((2, 5)) = 2, X((3, 4)) = 3, X((4, 3)) = 4, X((5, 2)) = 5, and 
X((6, 1)) = 6. In other words, the discrete random variable X has quantified 
the set of ordered pairs S to a set of positive integers from 1 to 6.

Example 1.2.2
Toss a fair coin three times. Denoting heads by H and tails by T, the sample 
space will then contain eight triplets as Ω = {HHH, HHT, HTH, HTT, THH, 
THT, TTH, TTT}. Each tossing will result in either heads or tails. Thus, we 
might define the random variable X to take values 1 and 0 for heads and tails, 
respectively, at the jth tossing. In other words,

 X
j

j
j = 




1

0

, ,

, .

if th outcome is heads

if th outcome is tails
 

Hence, P{Xj = 0} = 1/2 and P{Xj = 1} = 1/2. Now from the sample space we see 
that the probability of the element HTH is:

 P X X X1 2 31 0 1
1
8

= = ={ } =, , .  (1.2.1)
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In contrast, product of individual probabilities is:

 P X P X P X1 2 31 0 1
1
2

1
2

1
2

1
8

={ } × ={ } × ={ } = × × = .  (1.2.2)

From (1.2.1) and (1.2.2), we see that X1, X2, and X3 are mutually independent.
Now suppose we define X and Y as the total number of heads and tails, 

respectively, after the third toss. The probability, then, of three heads and three 
tails is obviously zero, since these two events cannot occur at the same time, 
that is, P{X = 3, Y = 3} = 0. However, from the sample space probabilities of 
individual events are P{X = 3} = 1/8 and P{Y = 3} = 1/8. Thus, the product is:

 P X P Y={ } × ={ } = × = ≠3 3
1
8

1
8

1
64

0.  

Hence, X and Y, in this case, are not independent.
One of the useful concepts using random variable is the indicator function 

(or indicator random variable that we will define in the next section.

Definition 1.2.3
Let A be an event from the sample space Ω. The random variable IA(ω) for 
ω ∈ A defined as:

 I
A

A
A c

ω
ω
ω

( ) =
∈
∈





1

0

, ,

, ,

if

if
 (1.2.3)

is called the indicator function (or indicator random variable).
Note that for every ω ∈ Ω, IΩ(ω) = 1 and Iϕ(ω) = 0.
We leave it as an exercise for the reader to show the following properties 

of random variables:

(a) if X and Y are two discrete random variables, then X ± Y and XY are 
also random variables, and

(b) if {Y = 0} is empty, X/Y is also a random variable.

The way probabilities of a random variable are distributed across the possible 
values of that random variable is generally referred to as the probability dis-
tribution of that random variable. The following is the formal definition.

Definition 1.2.4
Let X be a discrete random variable defined on a sample space Ω and x is a 
typical element of the range of X. Let px denote the probability that the 
random variable X takes the value x, that is,

 p P X x p P X xx x= =[ ]( ) = =( )or ,  (1.2.4)
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where pX is called the probability mass function (pmf) of X and also referred 
to as the (discrete) probability density function (pdf) of X.

Note that ∑ =x xp 1, where x varies over all possible values for X.

Example 1.2.3
Suppose a machine is in either “good working condition” or “not good working 
condition.” Let us denote “good working condition” by 1 and “ not good 
working condition” by 0. The sample space of states of this machine will then 
be Ω = {0, 1}. Using a random variable X, we define P([X = 1]) as the probabil-
ity that the machine is in “good working condition” and P([X = 0]) as the 
probability that the machine is not in “good working condition.” Now if 
P([X = 0]) = 4/5 and P([X = 0]) = 1/5, then we have a distribution for X.

Definition 1.2.5
Suppose X is a discrete random variable, and x is a real number from the 
interval (−∞, x]. Let us define FX(x) as:

 F x P X x pX n

n

x

( ) = ≤[ ]( ) =
=−∞
∑ ,  (1.2.5)

where pn is defined as P([X = n]) or P(X = n). FX(x) is then called the cumula-
tive distribution function (cdf) for X.

Note that from the set of axioms of probability mentioned earlier, for all x, 
we have:

 p px x

x

≥ =∑0 1, .and  (1.2.6)

We now discuss selected important discrete probability distribution functions. 
Before that, we note that a random experiment is sometimes called a trial.

Definition 1.2.6
A Bernoulli trial is a trial with exactly two possible outcomes. The two possible 
outcomes of a Bernoulli trial are often referred to as success and failure 
denoted by s and f, respectively. If a Bernoulli trial is repeated independently 
n times with the same probabilities of success and failure on each trial, then 
the process is called Bernoulli trials.

Notes:

(1) From Definition 1.2.6, if the probability of s is p, 0 ≤ p ≤ 1, then, by the 
second axiom of probability, the probability of f will be q = 1 − p.

(2) By its definition, in a Bernoulli trial, the sample space for each trial has 
two sample points.
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Definition 1.2.7
Now, let X be a random variable taking values 1 and 0, corresponding to 
success and failure, respectively, of the possible outcome of a Bernoulli trial, 
with p (p > 0) as the probability of success and q as probability of failure. We 
will then have:

 P X k p q kk k=( ) = =−1 0 1, , .  (1.2.7)

Formula (1.2.7) is the probability distribution function (pmf) of the Bernoulli 
random variable X.

Note that (1.2.7) is because first of all, pkq1−k > 0, and second, 
∑ = + ==

−
k

k kp q p q0
1 1 1 .

Example 1.2.4
Suppose we test 6 different objects for strength, in which the probability of 
breakdown is 0.2. What is the probability that the third object test be successful 
is, that is, does not breakdown?

Answer
In this case, we have a sequence of six Bernoulli trials. Let us assume 1 for a 
success and 0 for a failure. We would then have a 6-tuple (001000) to symbolize 
our objective. Hence, the probability would be (0.2)(0.2)(0.8)(0.2)(0.2)
(0.2) = 0.000256.

Now suppose we repeat a Bernoulli trial independently finitely many times. 
We would then be interested in the probability of given number of times that 
one of the two possible outcomes occurs regardless of the order of their occur-
rences. Therefore, we will have the following definition:

Definition 1.2.8
Suppose Xn is the random variable representing the number of successes in n 
independent Bernoulli trials. Denote the pmf of Xn by Bk = b(k; n, p). Bk = b(k; 
n, p) is called the binomial distribution function with parameters n and p of 
the random variable X, where the parameters n, p and the number k refer to 
the number of independent trials, probability of success in each trial, and the 
number of successes in n trials, respectively. In this case, X is called the bino-
mial random variable. The notation X ∼ b(k; n, p) is used to indicate that X is 
a binomial random variable with parameters n and p.

We leave it as an exercise to prove that:

 Bk = 





=−n

k
p q k nk n k, , , , , ,0 1 2 K  (1.2.8)

where q = 1 − p.
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Example 1.2.5
Suppose two identical machines run together, each to choose a digit from 1 to 
9 randomly five times. We want to know what the probability that a sum of 6 
or 9 appears k times (k = 0, 1, 2, 3, 4, 5) is.

Answer
To answer the question, note that we have five independent trials. The sample 
space in this case for one trial has 81 sample points and can be written in a 
matrix form as follows:

 

1 1 1 2 1 8 1 9

2 1 2 2 2 8 2 9

8 1 8 2

, , , ,

, , , ,

, ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

L
L

M O O M M
O 88 8 8 9

9 1 9 2 9 8 9 9

, ,

, , , ,

.

( ) ( )
( ) ( ) ( ) ( )





















L

 

There are 13 sample points, where the sum of the components is 6 or 9.  
They are:

1 5 2 4 3 3 4 2 5 1 1 8 2 7 3 6 4 5 5 4, , , , , , , , , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( ), , , , , , .6 3 7 2 8 1

Hence, the probability of getting a sum as 6 or 9 on one selection of both 
machines together (i.e., probability of a success) is p = 13/81. Now let X be the 
random variable representing the total times a sum as 6 or 9 is obtained in 5 
trials. Thus, from (1.2.8), we have:

 P X k
k

k
k k

=[ ]( ) = 















 =

−5 13
81

68
81

0 1 2 3 4 5
5

, , , , , , .  

For instance, the probability that the sum as 6 or 9 does not appear at all will 
be (68/81)5 = 0.42, that is, there is a (100 − 42) = 58% chance that we do get 
at least a sum as 6 or 9 during the five trials.

Based on a sequence of independent Bernoulli trials, we now define two 
other important discrete random variables. Consider a sequence of indepen-
dent Bernoulli trials with probability of success in each trial as p, 0 ≤ p ≤ 1. 
Suppose we are interested in the total number of trials required to have the 
rth success, r being a fixed positive integer. The answer is in the following 
definition:

Definition 1.2.9
Let X be a random variable with pmf as:

 f k r p
r k

k
p q kr k; , , , , .( ) =

+ −





=
1

0 1 K  (1.2.9)
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Formula (1.2.9) is then called a negative binomial (or Pascal) probability dis-
tribution function (or binomial waiting time). In particular, if r = 1 in (1.2.9), 
then we will have:

 f k p P x k pq kk; , , , , , .1 1 0 1( ) = = +( ) = = K  (1.2.10)

The pmf given by (1.2.10) is called a geometric probability distribution 
function.

Example 1.2.6
As an example, suppose a satellite company finds that 40% of call for services 
received need advanced technology service. Suppose also that on a particular 
crazy day, all tickets written are put in a pool and requests are drawn randomly 
for service. Finally, suppose that on that particular day there are four advance 
service personnel available. We want to find the probability that the fourth 
request for advanced technology service is found on the sixth ticket drawn 
from the pool.

Answer
In this problem, we have independent trials with p = 0.4 as probability of 
success, that is, in need of advanced technology service, on any trial. Let X rep-
resent the number of the tickets on which the fourth request in question is 
found. Thus,

 P X =( ) = 





( ) ( ) =4
6

4
0 4 0 6 0 092164 2. . . .  

Example 1.2.7
We now want to derive (1.2.9) differently. Suppose treatment of a cancer 
patient may result in “response” or “no response.” Let the probability of a 
response be p and for a no response be 1 − p. Hence, the simple space in this 
case has two outcomes, simply, “response” and “no response.” We now repeat-
edly treat other patients with the same medicine and observe the reactions. 
Suppose we are looking for the probability of the number of trials required 
to have exactly k “responses.”

Answer
Denoting the sample space by S, S = {response, no response}. Let us define the 
random variable X on S to denote the number of trials needed to have exactly 
k responses. Let A be the event, in S, of observing k − 1 responses in the first 
x − 1 treatments. Let B be the event of observing a response at the xth treat-
ment. Let also C be the event of treating x patients to obtain exactly k 
responses. Hence, C = A ∩ B. The probability of C is:

 P C P A B P A P B A( ) = ( ) = ( )⋅ ( )I .  
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In contrast, P(B | A) = p and:

 P A
x

k
p pk x k( ) =

−
−







−( )− −1

1
11 .  

Moreover, P(X = x) = P(C). Hence:

 P X x
x

k
p p x k kk x k=( ) =

−
−







−( ) = +−1

1
1 1, , , .K  (1.2.11)

We leave it as an exercise to show that (1.2.11) is equivalent to (1.2.9).

Definition 1.2.10
Let n represent a sample (sampling without replacement) from a finite popula-
tion of size N that consists of two types of items n1 of “defective,” say, and n2 
of “nondefective,” say, n1 + n2 = n. Suppose we are interested in the probability 
of selecting x “defective” items from the sample. n1 must be at least as large 
as x. Hence, x must be less than or equal to the smallest of n and n1. Thus,

 p P X x

n

x

N n

n x
N

n

x n nx ≡ =( ) =







×
−
−













=

1 1

0 1 2, , , , , min ,K 11( ),  (1.2.12)

defines the general form of hypergeometric pmf of the random variable X.

Notes:

i. If sampling would have been with replacement, distribution would have 
been binomial.

ii. px is the probability of waiting time for the occurrence of exactly x 
“defective” outcomes. We could think of this scenario as an urn contain-
ing N white and green balls. From the urn, we select a random sample (a 
sample selected such that each element has the same chance to be 
selected) of size n, one ball at a time without replacement. The sample 
consists of n1 white and n2 green balls, n1 + n2 = n. What is the probability 
of having x white balls drawn in a row? This model is called an urn model.

iii. If we let xi equal to 1 if a defective item is selected and 0 if a nondefec-
tive item is selected, and let x be the total number of defectives selected, 
then x xi

n
i= ∑ =1 . Now, if we consider selection of a defective item as a 

success, for instance, then we could also interoperate (1.2.12) as:

 
p

x n x
x = ( ) × −(number of ways for successes number of ways for failures))

total number of ways to select
.
 

(1.2.13)


