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In this paper we consider the evolution equation
(DE) (d/dt)u(t) € Au(t), te(0,T)

for an “w-quasi-dissipative” operator A in a Banach space X, from the viewpoint
of difference approximation. We introduce a notion of “DS-limit solution” of
(DE) and discuss the construction of the DS-limit solutions. We also give
a generation theorem of nonlinear semigroups through difference approxima-
tion.

Recently several authors have treated the evolution equation (DE) from the
view-point of difference approximation. The result of Crandall and Liggett
is the first fundamental one in this direction. Kenmochi and Oharu
extended the result in to the case where the difference scheme for (DE)
permits errors. Takahashi [16], formulated a more general approximate
difference scheme and determined the conditions under which the solution of
the difference scheme converges.

In this paper we introduce a notion of w-quasi-dissipative operator as a
generalization of w-dissipative operator. We consider the approximate differ-
ence scheme for the Cauchy problem for (DE) under the same formulation as
in [17]. Our first purpose is to give a convergence theorem for difference
approximation and to improve the result in [17] At the same time, it is
shown that the limit function of solutions of difference approximation is uni-
quely determinded by the initial condition and is independent of the choice of
difference scheme. Hence we shall call the limit function a DS-limit solution
of the Cauchy problem.

Recently Bénilan hag introduced the notion of “integral solution” and
“bonne solution” and investigated properties of bonne solutions. Qur second
purpose is to investigate basic properties of DS-limit solutions and to study
the relationship between those solutions.
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The results mentioned above can be considered from the view point of
the theory of nonlinear semigroups. Our third purpose is to discuss the gen-
eration of a nounlinear semigroup associated with a given operator A.

Our fourth purpose is to give a sufficient condition which assures genera-
tion of nonlinear semigroups through the difference approximation. Many
authors have already treated the generation of semigroups. Our results imply
the results of Crandall and Liggett [7] and Martin [12] Also we give a
simple application of our results to the continuous perturbation of m-dissipative
operators.

This paper consists of five sections. In §1, we introduce basic notions
and give some fundamental facts concerning these notions. In §2, we deal
with the convergence of the difference approximation and introduce the notion
of DS-limit solutions. In §3, some basic properties of DS-limit solutions are
studied. §4 treats the generation of semigroups. In §5, we give a sufficient
condition for the generation of semigroups and its applications.

The author would like to express his hearty thanks to Prof. I. Miyadera
and Mr. T. Takahashi for their advices.

§1. Preliminaries.

In this section, we list some notation and basic notions along with their
fundamental properties.

Let X be a real Banach space with norm |-||. By an operator A4 in X
we mean a multi-valued operator with domain D(A) and range R(A) in X,
where D(A) is the set {x= X; Ax==0} and R(A) =xe%}(A)Ax. We identify the

operator A with its graph, so that we write [x,yle A if y€ Ax. For each
xe D(A), we write
lAxl|=inf {{l¥] ; ¥y = Ax}

and define Ax={y;y< Ax, |y|=lAx[]}. Also we define |Ax|, x€ X, by

| Ax|=inf {sup |4z, ; x, € D(A) and limx,=x} for x<D(4)

n—eo

=0 for xe& D(A)

and set D,(A)={xe X; |Ax|<o}. Clearly, we have D(A)C Dy(A)C D(A).
We see easily that the functional x—|Ax| is lower semi-continuous on X. (See
or [18])

We define the sum A-+B and the scalar multiple @A of operators 4, B in
X as in and use the symbol [ for the identity operator in X.

We denote by <x, f> the natural pairing between x € X and f& X*, where
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X* ig the dual space of X. Let F be the duality map from X into X% i.e.,
Fx)={feX*; Ifi*=x|"=<{, >} for xeX.

We define the functionals {,>, and <,); on XXX, by

(L1 , x0s=sup {<y, f>; feFx)}
and
(1.2) v, xp,=inf {{y, f7; fe F(x)}

for each x,y= X. Clearly (¥, x>, =—{—», x>, =—{y, —x); for x,ye X. 1t has
been shown in [2] that

(1'3) <y; x>s:z-(x, y)'“x“ for xr.yEXr

where
z(x, ¥) :ggf e e+ eyl = xih) =Eliglot"1(\lx+tyll — =l

for x, v X. This shows that the value of {,>, at[x, y]= XXX is not changed
even if x and v are regarded as elements in X**, the bidual space of X.
Therefore we use the same notation [(1.I)} and (1.2), for the corresponding
functionals from X**x X** into R. We see easily that the fnnctional ¢, ), is
upper semi-continuous with respect to the strong topology of XX X. We refer
to [2] and for other properties of the functionals.

Let @ be a real number. An operator A in X is said to be w-dissipaiive

if for any [x,, y;1€ 4 (i=1, 2),

=Y X1 Xap s S0l X, — X%

An operator A in X is said to be strictly w-dissipative if for any [x;, v; 1= A
(1=1,2),
V1= Va X1 X0 S ]| x—x,||7 .

(Strictly) 0-dissipative operator is simply called (strictly) dissipative. Apparently
A is w-dissipative if and only if A—w! is dissipative. We refer to [2] and
for the properties of w-dissipative operators.

Following Takahashi [16], we introduce the following notion,

DEFINITION 1.1. An operator A in X is said to be w-quasi-dissipative if
for any [x;, y;1€A (i=1, 2),

(1.4) V1, X=X s+ Yy, Xg—2x10; = wﬂxx—lelz .

0-quasi-dissipative operator is simply called quasi-dissipative.
Apparently an w-dissipative operator is w-quasi-dissipative; those notions
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are equivalent when the duality map is single-valued but not so in general.
(See Example 1.1 at the end of this section.)

Let SCX and A be an @ (-quasi)-dissipative operator in X. Then we say
that A is maximal w (-quasi)-disstpative on S if any o (-quasi)-dissipative exten-
sion of A coincides with A on S.

If A is a dissipative operator such that R(/—1A)= X for all 4>>0, then we
say that A is m-dissipative. It is well known that if A is a dissipative operator
such that R(I—4,A)=X for some 4,>0, then A is m-dissipative. We refer to
[8] for other properties of m-dissipative operators.

An w-quasi-dissipative operator A in X can be regarded as an w@-quasi-
dissipative operator in X**. Therefore, we can associate with A an operator

A in X** such that A is an extension of A, D{(A)C D(A) and A is maximal

w-quasi-dissipative on D(A) in X**. We call such A a maximal (**) extension
of A. (See [17])

Let X,CX. A one parameter family {7({);t=0} of operators from X,
into itself is called a semigroup of type w on X, if it has the following pro-
perties:

(i) for x,yeX, and t=0, |TOx—TOy| =e*|x—y|;

(i) TOx=x for x€X, and T(@+s)=TH)T(s) for t,s=0;

(iii) for each x=X,, T(f)x is strongly continuous in {=0,

In the following, we prepare some estimates which will play a central role
in later argument.

LemmMa 1.1. Let A be an operator in X and w a real number. Then the
following three conditions are equivalent:

(i) A is w-quasi-dissipative;
(i) for any [x;, ¥, 1= A (i=1,2) and 2, >0,

(At p—Apo)|x,— x| = A x,—x— py |+ pellx,—x,— 2.0 5
(iiiy for any [x;, y;1€ A (i=1, 2) and 2>0,
C—2o)|x;— 2] Sk, —x,— Ay |+l — 2, — Ay,

Furthermore, in these cases we have
(iv) for any [x,y1€ A, ueD(A) and >0,

(1—=2w)lx—u| < [x—u—2Ay|+ Al Au] .

PROOF. Suppose that A is w-quasi-dissipative. Let [x;, y;1€ A (1=1, 2)
and 4, #>0. By definition, there exist fe F(x;—x,) and g= F(x,~—x,) such that

{3, f>+<3’2, &= wllxl_'xznz .
Therefore, we have
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(2+ﬂ>llx1ﬂxz’izzl<x1—x2y f>+ﬂ<x2_"x1, g>
é 2<-751_7C2'—,{/‘5.y1y f> '+ﬂ<x2_'x1—2y2; g>+2ﬂw”x1_x2“2
g(/2”761“752_#3’1“+/«5Hx2_x1_23’2”+2ﬂwnx1_x2”)ux1—xzn .

Hence we have (ii). Apparently (ii) implies (iii). Suppose that (iii) is satisfied.
Then we have

£ (e —Xoll — |y — e — W1 (1)
+ 7 xg— x| =2y — 2, — 13, ) f ollx — ]l ,

for [x;, v.J€A (i=1,2) and {>0. Letting t—+0, we have

(X Xy, _ylz)_"f(xz"xu —_',\/’2> = wHXl—sz
or
gy X=Xyt Vay X=X = @] X — 2|7

by [1.3). Hence A is w-quasi-dissipative.
Let [x, yv]e A, ueD(A) and 2>0. Then we have immediately by (iii)

L—2w)|x—ul| = |x—u—2y[+llu—x]+Alv|
or
(I—Ao)lx—ul < lx—u—2y|+ A v for ve Au.

Since v is arbitrary in Au, we have (iv). Q. E.D.

The following example is due to Miyadera.

ExaMpPLE 1.1. Let X=R? with the maximum norm. Let x;,=(1,1) and
x,=(0,0). We set D(A)={x, 2}, Ax;,={(a, §); «a<0 or =0} and Ax,=
{{a, B); «=0 or =0}, Then A is quasi-dissipative in X but A is not w-
dissipative in X for any real w. In addition, R(]—4A4) 2D D(A) for any 2>0.
(See also Remark 5.2.)

REMARK 1.1. The inequality (ii) is suggested by Takahashi [16]. Crandall
and Evans [6] also proves the inequality (ii) for the case A is dissipative.
The assertion (iii) = (i) was pointed out by Prof. I. Miyadera.

§2. Convergence of differences approximation.

In this section we treat the convergence of difference approximation of the
Cauchy problem for the evolution equation (DE) and introduce a notion of
DS-limit solution of the Cauchy problem. At the same time, the uniqueness
of DS-limit solutions will be established. We also give some fundamental pro-
perties of DS-limit solutions, which are immediately derived from the conver-
gence theorem.

Let w be a real number and A be an w-quasi-dissipative operator in X.
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Let T>0 be fixed. We consider the following Cauchy problem, formulated for
A on a finite interval [0, T]:

(didtyult) e Au(t), te0,T),
(CP) {

u(0)=x,,

where x,=X is given. We shall denote by (CP; x,) the Cauchy problem (CP)
with the initial condition 2%{0)= x,.
Let u,(?) be a sequence of X-valued simple functions on [0, '] defined by

X7 for t=90,

(2.1 un(t)_—_{
x? for te (2, 7110, T7, i=1,2 -, N,,

and n=1, where {¢7} represents the partition 4,={0=13 <7< -+ <i%,.,<T
<1{%,} of the interval [0, T] satisfying the condition:

(2.2) |4,] = max ({7—t2)—0 as n—oo,

1=isN,

DErFINITION 2.1. Let x,€X. We say that the sequence u,(¢) is a (back-
ward) DS-approximate solution of (CP; x,) if it satisfies

xf"_x"‘l_1 .
_n—'nlﬁ'_a?EAXg, 121;27"'9Nn;n;l
(2_3) t—th
X0 —> X, as n—oo,
and also
Nn
(2.4) snziglﬂe?ll(t?—t?—l) —0 as n-—oo,

We call ¢, as the error bounds of the DS-approximate solution u,(f).

The following is the main result of this paper and will be proved below
in this section.

THEOREM 2.1. Let x,< D(A) and u,(t) be a DS-approximate solution of
(CP; xy) on [0, T]). Then there exists a conlinuous function u(t) on [0, T]
satisfying the following:

(i) u(t):ilrg u,(ty  for te[0,T]
and the convergence is uniform on [0, T];
(ii) wHe D(A)  for t<[0,T] and u(0)=x,;
(ili) Jfor any DS-approximate solution @,(t) of (CP; x,) on [0, T],

u(t) = lijr1 6 for te[0,T].
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REMARK 2.1. Takahashi showed in[16]and the convergence (i) under
an additional condition :

(S) () —uns() < p(1t—s)+6,, for f,s&€[0,T]and n21,

where p(r) is a bounded, nondecreasing function on [0, 7] such that p(r)—0
as r—+0 and 9, is a sequence of nonnegative numbers, converging to 0 as
n—oo, Therefore, our result is an extension of his result, although the con-
dition (S) is necessary for our convergence (i) to hold. See Remark after
Theorem I in [17].

REMARK 2.2. After the preparation of this manuscript, Prof. M. Crandall
informed me that Crandall and Evans [6] proved by an entirely
different method, which is interesting in itself. They treat a more general evolu-
tion equation

(d/dbu(t) = Au(t)+f(1), for t=(0,T),

where fe L0, T; X) is given. Our method is also applicable to this case if
A is w-dissipative.

By virtue of [Theorem 2.1, we define the following.

DEFINITION 2.2. Let u(¥) be a continuous function on [0, 7] and x,€ D(A).
We say that u(t) is a (backward) DS-limit solution of (CP; x,) on [0, T] if
there exists a (backward) DS-approximate solution u,({) of (CP; x,) on [0, T]
such that u,(f) converges to u(#), uniformly on [0, T .

The proof of Theorem 2.1 is based on the following lemma. We set w,—
max (w, 0) in this section.

LEMMA 2.1. Let u,(t) and @,(1) be two DS-approximate solutions of the
Cauchy problem (CP) on [0, T]). Then we have

(2.5) I x7 =27 = exp Qao(t7+E7)) - [llxs —ull +]55—ul
| Ay |17 | A [P At e80T,

for ueD(A), 0<i<N, and 0<j< N, with |d,|w, |dnlw,<1/2. Here the
notations with the symbol “~” correspond to the solution @,(1).

We prove by the method of Crandall and Liggett modified
by Rasmussen [15] (See also Yosida [21].)

We start with

LEMMA 2.2. Let 2 and p be positive numbers such that Aw,, pw,<1. Then
we have the following:

(2.6) A(1— pao)+ pu(1—Awo) = A+ p—Apw,
2.7 (A (AL — prwe)*+ p(1—Aw)?) = (A+ pt— Apa,)® .
ProoF. The inequality is evident. To prove [2.7), we note that
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At+p—2Apw, >0, and 1=21—Aw,, 1—pw,>0. Therefore we have
{A(1— po)*+ p(1—1w0)*} /(A1 p— A po,)
= {A(L— pwo)+ p(t—Awy) }/ (A4 p— Apw,)
=1—Apw,/(A+p—Apw,) .
Since Ap@,/(A+p—Apw,) = Apw,/(A+ ), we have
{A(l—= pwo)*+ p(1— Rwe)*} /(A p— 2p o)

= 1—2pw,/(A+ 1) = A+ p—Apw) /A+ 1) .
Hence we have (2.7). Q.E.D.
Proor OF LEMMA 2.1. For simplicity, we omit the indices n and m, so

that we write x;=x}, £;=%£7, N=N,, N:Nm, etc. Also we set h;=1t;—1;;
and ﬁj:fj—fj_l for 1<i<N and 157 N. Furthermore, we define 4;,; and
Ti,5 DY
i 7 ~
Gy, — ||xr‘53jH and Ti,j:kl;[l(l—ﬂ)ohk)'kl;ll (1—wohy)
A~ 0 0 A

for 0<i< N and 0=<j<N, where kl__{ (1—wyh;)==1 and kl:II (1—woh;) =1.

Let ue D(A) and assume |4|w,, |d|w,<1/2. We then show that

(2.8) T1,504,5 < | xo—ull -+ Zo—ul 4 {(t;— )2+ | A t4-| | £,} 72 [ Au)
1: .f ~
+ 3 leplihet X l€ellhe,
k=1 E=1
for 0<i<N and 0<j<A. Apparently implies [(2.5), since we have

1 i .
Zlleslhe=e, X lélhi=¢
k=1 k=1

and
7i,j =exp (zwo(ti—l_fj))

for 0<:< N and Ogjgﬂf. Here we have used the following inequality :
(2.9) (1—t)*<exp(2t) for t<[0,1/2].

We prove by induction on (i, /). We first show a;, satisfies for
0<i<N. In fact, by and (iv) of Lemma 1.I, we have

(I—weh)llx—ull = (1—wh )| x,—ull
S = u—(xp—xpo—hper) |+l Aull

S M- s—ull - hallerll Rl Aull
or
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[xp—ull = (I—wohp) ([ xp-s—ull 4+ Ryllep Rl Aull)
for 1=k2=<N. Therefore, we have inductively

Il = T (1= wuh) ™ (to—ul+lAul+ 35 el 2s)

and hence we have

Qi S lx—ul+ Ju—sal
= 11 (=00 (=l +lx—ul+ i Aull+ 3 lealie)

for 0<i<N. Hence a,, satisfies if 0=<{<N. Similarly, we see that a,,
satisfies if 07N,

Now let ¢ and j be integers such that 1<i<N and 1575 N and assume
that a;_,,; and a;,;-, satisfy [2.8) We then show that a,; satisfies [2.8) In
fact, by and (i) of Lemma 1.1, we have

(hithy—oohih)a,; < (Rt h—whh)a;,
< A= 2 (i Ty — hie) | R 22— (&= 3o — 8 )|
< hgtsos it iy, e+ 18D hift;
Hence by the hypothesis of induction, we have
(hythy—wohih )y 5055
S A= 0oh)Fim1,i8i-1, Rl — @R )T jo18a 51
il 181Dk
(2.10) < (A (L= @oh )+ hi(1— woh )|l 21| -+ | £ =)
F LA (L~ wh Mty —F )+ | Aty | 41,37
Fhi (=@ h Mt —F5- )+ | A -+ | A1 8,13 7]+ 1| Al

LA A=k )CE leall bt 2 1210

A i i—1 A
+hi(1=0h ) 2 leellhat 2 1akhn)

7 e+ 18, 0R:A,]

We denote by I, the g-th term (¢=1, 2, 3) of the right side of the inequality
Then by in we have

(2.11) L < (hythy—ahih ) xo—ul +1£,—ul) .

On I, using Cauchy-Schwarz’s inequality, we have
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L= {h (01— wohy)* - hi(l—woh )32 A Aty — 1,2 | A b+ | | E))
+h((t—E o )P | At | 41 2,2 )Y (| Aull
< (1= 0oh ) +h(1—woh YR+ he 2
A=) - 1 A1t | 1232 || Aull,
where we used the following fact:
A(tis— 22 1 At | 81 ) Rt —Eo )P | A+ 1 A1 E, )
= h((ti— 1,2 —2h(ti—E )+ hi 4| Aty | 4)E))
Fh((t— 1P 2kt — )+ | At h 2 A1)
< (hoth)((—E P+ 1 A 4| 18 ;
note that 4, <|4| and ki, <|4|. Therefore, by in we have
(2.12) L< (bt h— ok h D{(t—2) - | AN 1+ | 14,172 | Aul]

To estimate I, we note that 7, ; < {(1—wmyh;), (1—-w0ﬁj). Then we have

(213) L= (R—wgh) +h1-wh ) Z lelhat 2 1804

< (hethy— 0o A )X Neallhat 3 1l
where we used again.
Combining (2.10)-(2.13), we see that a;; satisfies [2.8) Hence we have
completed the induction and holds. Q.E.D.
REMARK 2.3. Let A be an w-dissipative operator in X such that R(I—14)
D D(A) for 0<4<4,. Then the estimate (2.5) gives

I(I—2A) ™ —(I—pA)"x|
< exp 2oy (ma+np){(mA—nw)*+ma-+np*} - | Ax|

for x= D(A) and 4, p>0 such that Aw,, pw,=<1/2. This estimate is similar to
but different from that of Crandall and Liggett [7]. Also, the inequality
(or itself is sharper than that of Rasmussen [15].

PROOF OF THEOREM 2.1. Let u,(f) be a DS-approximate solution of (CP; x,)

with x,€D(A). Let {u,} CD(A) be a sequence such that u,—x, as p— oo,
Then by Lemma 2.7, we have

(2.14) [x7—x7] < exp (2wo(t7+170) LIt —up |+l x5 —u,l
+ {(t?‘_t}u)z_*_ I An l t?"l" I Aml t}n}l/Z. I]lAuplll+en+5mj



650 Y. KOBAYASHI

for 0<1<N,, 0<j<N,, p=1 and 5, m=1 such that w,|d,]|, o,|4,|<1/2.
Letting n, m—oco with 3, 17—t in [2.14), we have
lim sup [|x7—xT7lI <2 exp (dowh)llxe—u,l for p=1.

n M
17,17

-t

Since u,—x, as p—oo, we see that there exists
u(ty=1im x? as 1¥—t, n—oo,

=lim u,(?)

n—oo

for t=[0, T]. Apparently shows that the convergence is uniform for
t=[0, T]. Furthermore, letting t?—t, t7—s, n, m—oo in [(2.14), we have

(2.15) l(t)—u()! < exp (2wy(t+5))- 2l xo—u, {4 [t—s| - [l Au,ll)

for ¢,s=[0,T] and p=1. This shows that u(¢) is continuous on [0, T]. Thus,
the assertion (i) has been proved.

The property (ii) is evident. For the proof of (iii), let #,(f) be a DS-
approximate solution of (CP; £,) with £, D(A4). Then the assertion (i) implies
that there exists

ﬁ(f):,l,jn}eﬁm(t) for t<{0,7T].

Then by in Lemma 2.1, we have
() —a(O)]l = exp (dwot) - ([l x0—pll+ | £o— 2, 1)
for t<[0,T] and p=1. Letting p— o0, we have
(2.16) lu(—a®)| < exp (dwot)- [x0—4 [l for t<[0,T].

In particular, when £,=x,, we have (iii). Q.E.D.

REMARK 2.4. Let u(?) be a DS-limit solution of (CP; x,) on [0, T] and let
A be a maximal (**) extension of A. Then the argument in the proof of
shows that the inequality remains true even if A is replaced
by A. Therefore, similarly to [2.15), we have

lu(@)—u(s)] = exp Cwo(t+5))- (2l xg— I+ [t—s] - [ Au,l)

for ¢, s€[0, T'], where {u,} C D(A) is a sequence such that u,—x, as p—co,
Suppose that x,&D.(A). Then we can take {u,} so that [u,]|<|Ax,|+1/p.
Letting p—co, we have

(2.17) () —u(s)ll = exp (2wy(i+s)- [t—s| - | Ax,|

for f, s€[0, T]. That is, u(?) is Lipschitz continuous on [0, T ] if x,€ D( A).
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In the remainder of this section, we give some fundamental properties of
DS-limit solutions,

PROPOSITION 2.1. The DS-limit solution is uniquely determined by the
initial condition.

PrROOF. It is a direct consequence of (iii) of [Theorem 2.1 Q.E.D.

PROPOSITION 2.2. Let u(t) be a DS-limit solution of (CP)on [0,T7]. Let
T,=(0,T). Then we have

(i) the function v(t)=u(t) defined on [0,T,] is a DS-limit solution of
(CP; u(0)) on [0, To];

(ii) the function v(t)=u(t-+T,) defined on [0, T—T,] is a DS-limit solution
of (CP; w(Ty)) on [0, T—T,].

Proor. Let u,(t) be a DS-approximate solution of (CP; w(0)) on [0, T].
Then apparently, v,(f)=u,(f) defined on [0, 7,] is a DS-approximate solution
of (CP; u(0)) on [0, Ty]. Since u,(f) converges to u(f) as n—oo, (i) is evident.
Furthermore, v,(t)=u,(+7T,) defined on [0, T—T,] is a DS-approximate solu-
tion of (CP:w(T,) on [0, T—T,], since v,(t)=u,(T,) converges to u(T,) as
n—oco, Hence (ii) is also evident. Q.E.D.

PROPOSITION 2.3. Let u'™(t) be a sequence of DS-limit solutions of (CP; x;)
on [0, T]. Suppose that {x;} CD(A) converges to x,. Then there exists a DS-
limit solution u(t) of (CP; x,) on [0, T] such that u®(t) converges to u(t), uni-
formly on [0, T] as [—co.

Proor. By [2.16), we have

DO —u™ (D] < exp (dwet) | x,— X0 |

for t€[0, T] and [, m=1. Therefore u’(t) converges to a continuous function
u(t) on [0, T] as [—> oo, uniformly for t=[0, T]. Let u(¢) be a DS-approximate
solution of (CP; x;) and let & be the error bound of u®(t). For each [, u()
converges to u(f) as n—co, uniformly on [0, 7] and ¢?—0 as n—oo, Hence
there exists a subsequence {n(l)} of {n} such that u{},(#) converges to u(f) as
[— oo and u{,(t) is a DS-approximate solution. Therefore u(f) becomes a DS-
limit solution of (CP; x,). Q.E.D.

€ 3. Abstract Cauchy problems.

In this section, we investigate some basic properties of DS-limit solutions
of the Cauchy problem for (DE).

Let w be a real number and let A be an w-quasi-dissipative operator in X.
Let T >0 be fixed.

Following Brezis and Pazy [5], we define the strong solution.

DErFINITION 3.1. Let x,€X. An X-valued function u(¢) on [0, T] is said
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to bhe a strong solution of (CP; x,) on [0, T] if it satisfies
@ w0 =x;
(ii) u(t) is Lipschitz continuous on [0, T];
(iii) u(f) is differentiable for a.a. =0, T) and

(d/dtyu(t) € Au(t), for a.a. t€(0,T).

The following theorem is essentially due to Kenmochi and Oharu and
we omit the proof.

THeorReM 3.1. A strong solution of (CP) on [0, T] is a DS-limit solution
of (CP) on [0, T1.

By [Proposition 2. and [Theorem 3.1, we have the following.

PROPOSITION 3.1. There exists at most one strong solution of the Cauchy
problem (CP; x,) with x,X.

REMARK 3.1. We can prove Proposition 3.1 directly, using the
given later. See [Proposition 2.2 in [16], where the case w =0 is treated.

As Bénilan [2], we define the following.

DEFINITION 3.2. Let x,X. An X-valued continuous function #(f) on [0, T']
is said to be an integral solution of type @ of (CP; x,) on [0, T] if it satisfies
the followings:

i) w0)=x,;
(ii) for every s, t=[0, T] such that st and [x, y]€ 4,

3.1 e lu(t)—x|*—e **u(s) —x]*

t
éZJ e *7 (Y, u(r)—x)dr .

Then we have

THEOREM 3.2. Let x,&D(A). A DS-limit solution of (CP; x,) is the unique
integral solution of (CP; x,).

We first prove the following proposition, which gives a characterization
of the integral solutions of type w.

PROPOSITION 3.2. Let u(t) be a continuous function on [0, T] with u(0)=
x.€X. Then u(l) 1s an integral solution of type @ of (CP; xy) if and only if
it satisfies

32 () =1~ Ju(s)—x1* = 20 [ u(e)—x]ds

+2}l:<y, u(r)—x}sdr ’

for s, t<=[0, T] such that s<t and [x, y] e A.
PrOOF. We may assume w+#0. Let[x, y]e A be fixed. Suppose that u(t)
is an integral solution of type w of (CP; x,). We first assume @>0. Then by
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3.1), we have

(3.3) o= u(t)— )= u(s)— xS 2f DL, () —xy de
for s<i{. Integrating with respect to s from s to f, we have
[ e e=odgu(ty— x|~ fu(o) x| *do

= 2f t‘f te"”‘"”"”(y, u(t)— x>y dodr

=2f ["ec0doy, u(e)—x>udz

for s<{. Hence we have

2) (e @) u()—x = [ (o)~ ] *do

<2 (20) (- )y, u(x)—xy.de
or
2f ey, ule)— ) de

(3.0 <20 Ju(e)—x1*do+2f (3, u(e)—x>dz

+(e7 2P — D[ u(t)—=x||*

for s<t. Combining with [3.3), we have [3.2). Next, we assume o <0.
Then by we have

(3.5) () —x||*—e**“~ || u(s)—x]|?
<20 ¢y, u(r)—x)de
for s<t. Integrating with respect to ¢ from s to f, we have
t i
[ @) —xlPdo — [ eo-odaju(s)—x|?
<2 ([ "eweo¢y, w(r)—xy,dedo
sv 8
zzrjcez‘”("””da(y, u(t)—x>.dz
for s=t{. Hence, in the same way as above, we have
t
36) 2[ ey, u(@)—).dr
i t
<20| Ju(oe)—x|*do+2{ <3, u()—x).dz

A=) lu(s) —x|f?
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for s<t. Combining this with [3.5), we have [3.2).
Conversely, suppose that u(¢) satisfies for s=t. Then we have
3.7 et ut)—x|*—e | u(s)—x||*
t t
< 200 [ Ju(z)—xl*de+ 20|y, u(e)—x),de
or

(38) (d/an (e | lu(z)—x|dz ) — e fu(s)—]?
t
<207 [ (y, u(e)—x)de
for s<t. Integrating with respect to ¢ from s to f, we have
t t
(3.9) et Jlu(z)—x|*de— j e 7 dglu(s)—x°

< ZJT:Q‘Z“’”@, u(t)—xydrdo

=2f ° f :e'z“’"da@, w(z)— x5 dr

for s<t. Combining with [3.7), we have [3.1). Q.E.D.

PROOF OF THEOREM 3.2. We follow the argument of Bénilan [2] (See
also Kenmochi and Oharu [9] and Takahashi [17]) Let u(#) be a DS-limit
solution of (CP; x,) on [0,7T7]. Let u,(t) be a DS-approximate solution of
(CP; x,) on [0,T], defined by [21)] We set Ay=1t5—1t%.; for k=1,2, -+, N,.
We first show that u(?) is an integral solution of type @ of (CP;x,). Let
[x, vJeA. Since A is w-quasi-dissipative, we have by [2.3),

)Xk —xf-)—el, xk—x0,+y, x—xD i S o xf—x|°
for k=1,2, .-, N,. Noting that
) =1, 2=, Z @) xi—x = Ixia—x ),
we have
bk —x* =l —x® S 2h5 (@l xf—x "+, 2F—x), 4 legl - [ x5 —x])

for k=1, 2, ---, N,. Adding these inequalities for k=j+1, j+2, -, 1, (i>]),
we have
x7—xl®—{x% —x|?

§22+ M@l xn—x]|2<y, x3—xde el |xi—x])

for 0=<j<i<N,. Letting {}—1, t7—s and n—co, we have



Difference approximation of Cauchy problems for quasi-dissipative operators 655

()=l = u(s)—x1° < 2f (@lu(e) =23, u(e)—x,)de

for s, t€[0, T] such that s=<¢ Hence, by [Proposition 3.2, #(#) is an integral
solution of type @ of (CP; x,).

Let v(f) be an integral solution of type w of (CP). Let a, 8<[0, T] such
that a<B. Then by and [3.2), we have

o(B)—xk|*—llv(a) —x%°

8 8
= 2a)fa lv(o)—x% Ilzda+2ja<(h2)“1(x2—xi‘-l)—aﬁ, v(e)—x5>sdo

for k=1, 2, -+, N,. Noting that
() (g —x3-), v(e)—xEys = (2hE) 7 (lv(e) — 23 P—v(e) —x%1%) ,

we have

R v(B)—xEI*—llv(a) —xE %)

< 200 o) —x3%do-+ [ (o)~ x2l*— ()~ x21do

B
2ttt "lo(o)—aqldo
for k=1, 2, .-+, N,. Adding these inequalities for k=j3+1, j+2, ---, 1, (1>7), we
have

> h(lo(8)— i) — [v(e)—x11%)

k=J+1
¢ 8
<20 3 W Jv(e)—rildo
k=j-+1 o«

+ [ Uoto)—xy 1= o) —x119do+2 5 Iestiaf "loto)~xzldo

k=j+1

for 0= j<i<N,. Letting {?—1, t7—s and n—oo, we have
t
(3.10) | (B u@ = l[o(0)—u(z)|)dr

<20 : f ﬁ 10(0)—u(e)*dodz

+{ U@ —u I~ o) —u@) o
for s, t=[0, T such that s<t. Hence, by the following Lemma 3.1, we have
(311) e fulty—u(t)] < e us)—v()]

for s,t<=[0,T] such that s=f In particular, we see that u(f) is the unique
integral solution of type w of (CP; x,) on [0, T1. Q.E.D.
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LEMMA 3.1. Let u(t) and v(t) be X-valued continuous functions on [0, T]
satisfying the inequality (3.10) for every s, ¢, « and B<[0,T] such that s=t
and a < pB. Then they satisfy the inequality (3.11) for every s, t &[0, T'] such
that s<t.

is essentially due to Bénilan [2] For the proof, see the proof
of Theorem 4.4 in [9] We have immediately

COROLLARY 3.1. Let u(t) and 6(t) be two DS-limit solutions of (CP) on
[0, T]. Then we have

(3.12) e lu(®)—aD)| = e lu(s)—als)|

for s, te[0, T] such that s<4{.

REMARK 3.2. Let u(¥) be a DS-limit solution of (CP) on [0, 7] and let A
be a maximal (**) extension of A. Then the proof of [Theorem 3.2 shows that
u(?) satisfies the inequalities and for [x, y]Je A and s, t[0, T] such
that s=1.

REMARK 3.3. The proof of [Theorem 3.2 shows also that DS-limit solutions
are “bonne solutions” in the sense of Bénilan [2]

Let u(t) be a X-valued strongly continuous function on [0, 3. Then we
define

Dru(t)= () conv"E A u(t+- ) —u(®) ; 0<h<e},
for te[0, T), where the symbol conv®*™*" denotes the closed convex hull in
the weak™* topology of X** It is clear that if lirf{l”iﬁf A Y u(t+h)—u(d|| < +oo,
then D*u(?) = 0.

The following is proved in [16] for the case w=0. Thus we omit the
proof. (See Proposition 2.5 in [16].)

PrOPOSITION 3.3. Let A be a maximal (**) extension of A, Let u(t) be
an X-valued continuous function on [0, T] satisfying the inequalities (3.1) or
(3.2) for every [x,y]le A and s,t<[0,T] such that s<t. Suppose that u(t)e
D(A) for t=[0,T]. Let t,=[0,T). Then the following properties are equi-
valent:

(i) ult)eD(A);

(ii) lim sup R ulty+h)—u(t)l < o0

Gii) Drult,) + 0.

In these cases, we have also gi;?oh"1||u(to+h)—u(tﬂ)|l:Hidu(to)lll and D*u(t)C
Aulty).

On the Lipschitz continuity of DS-limit solutions, we have the following.

THEOREM 3.3. Let A be a maximal (**) extension of A. Let u(t) be a DS-
Limit solution of (CP; x,) on [0, T] with x,e D(A). Then u(t) is Lipschitz con-
tinuous on [0, T] if and only if x,€ Dy(A). In this case we have also u(t) <
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D(A) for te[0, T), w(T)EDo(A) and
(313) e+ B —u(Dl = | Axy| e e

for t,t+hes[0, T] with h=0.

ProoOF. By Remark 3.2 and [Proposition 3.3, if u(¢) is Lipschitz continuous,
then u(t)e D(A) for t[0,T) and hence u(0})==x,< D,(A). Furthermore, we
have by
(3.14) e~ lu(t+h)—u(®)| = fu(h)—u0)|

for h=0 and {=[0, 7] such that t+A<[0, T]. Hence we have by [Proposition 3.3,

el AuDl = |l Axll  for t<[0,T).

Hence u(T) = D, (. A).
Conversely, suppose that x, < D, (A). Then there exists a sequence [x,, ¥,]

€ A such that x,—x, as n—oo with |y, £|Ax,|+(1/n). Therefore we have
by Remark 3.2,

& () =y = [0 =, [P < 2 ey, U=k

2
< 2| Azl +1/m)f e |u(z)—xllde
for te[0,T]. Letting n—co, we have

t
e () x| < | Ao | e u(e)—xillde

for t=[0, T]. Therefore, by a standard argument {see Lemma A.5 in Brezis
[47]), we have

¢
e u(t)—x| < Ax| | eodz for te[0,T1.

Combining this inequality with ((3.14), we have [3.13). Hence wu(f) is Lipschitz
continuous on [0, T1. (See also Remark 2.4.) Q.E.D.

§4. Nonlinear semigroups.

In this section we review the results obtained so far from the view point
of the theory of nonlinear semigroups.

Let A be an w-quasi-dissipative operator in X. We denote by (CP). the
Cauchy problem formulated for A on [0, c0). We say that an X-valued con-
tinuous function on [0, o) is a (backward) DS-limit solution of (CP). if u(?)
restricted on any finite interval [0, T ] is a DS-limit solution of (CP) on [0, T .

DErFINITION 4.1. Let A be an w-quasi-dissipative operator in X. Then we
say that A has property (9) if for any x=D(A) there exists a DS-limit solu-
tion of (CP). with the initial value x.
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THEOREM 4.1. Let A be an w-quasi-dissipative operator in X. Let D be a
subset of D(A) such that D=D(A). If for each x€D and T >0, there exists a
DS-approximate solution of (CP; x) on [0, T], then A has property (D).

PEOOF. Let x& D(A) and T>0. Let {x;}CD be a sequence such that
x;—x as l—oo, By assumption and [Theorem 2.1, there exists a DS-limit solu-
tion u®(t) of (CP; x;,) on [0, T] for each {. Hence by [Proposition 2.3, there
exists a DS-limit solution of (CP; x) on [0, T].

Let xeD(A) and T,, be a sequence of positive numbers such that T’ | oo
as m—co, Then for each m, there exists a DS-limit solution u™(f) of (CFP; x)
on [0, 7T,]. Then we have by [Proposition 2.I] and 2.2,

u™(H) =u""{) for te[0,T,]and m<n.
Therefore we define a continuous function u(t) on [0, o0) by

w(t) =u"™(t) for t=[0,7T,] and m=1,2, --.

By Proposition 2.2, «(f) is a DS-limit solution of (CP). with the initial value x.
Q.E.D.

THEOREM 4.2. Let A be an w-quasi-dissipative operator in X, having pro-
perty (D). Then there exists a unique semigroup {T(1);t=0} of iype w on
D(A) such that for each x<= D(A), u()=T(Ox is the unique DS-limit solution
of (CP). with the initial value x,

PrOOF. For each xeD({A), let u(t, x) be a DS-limit solution of (CP).. with
the initial value x. Then, by [Proposition 2.1, we can define a family of operators,
T() for i>0, from D(A) into itself by setting T(Hx=u(t, x) for x= D(A4) and
t>0. Then we have by [Corollary 3.1,

ITHx—-TWHy| < e |x—y||  for x ye D(A) and t>0.

To prove the semigroup property of {T();t=0}, let x=D(A) and ¢, s=0.
Then by [Proposition 2.2, the function u(f)=T(+s)x=u(t+s, x) is a DS-limit
solution of (CP). with the initial value u(0)=u(s, x). Therefore, by Proposition]
2.1, we have u(t)=u(t, u(s, x))=T()T(s)x. Hence T({+s)=T()T(s). Q.E.D.

By we have immediately the following.

PROPOSITION 4.1. Let A be an w-quasi-dissipative operator in X, having
property (D) and let A be a maximal (**) extension of A. Then, for the semi-
group {T(%); t >0} obtained in Theorem 4.2, we have the following:

(i) Put

D={xeD(A); T()x is Lipschitz continuous

on any bounded interval of [0, c0)}.
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Then D= D(A)=D (A and hence, each T(t) maps D(A) into itself.

(i) If D*T(t)x+ 0 for x = D(A) and t,=0, then T(t,)x = D(A) and D*T(t)x
C AT)x.

§5. Existence of DS-approximate solutions.

In this section, we give a sufficient condition for an w-quasi-dissipative
operator to have property (D).

Let A be an w-quasi-dissipative cperator in X, where @ is a real number.
We consider the following condition on A:

(R) lim inf 5d(R(I—64), x)=0  for any x=D(A),

where d(C, x)=1inf {||x—¥];: y=C} for x= X and CCX.

Then we have

THEOREM b.1. Let A be an w-quasi-dissipative operator in X, satisfying
condition (R,). Then A has property (D).

Hence A satisfying condition (R,) generates a semigroup of type @ on D(A),
in the sense of

REMARK 5.1. Yorke announces in that he has obtained a similar result.

For the proof of [Theorem 5.1, we start with

LEMMA 5.1, Let A be an w-quasi-dissipative operator in X, satisfying
condition (R,). Let xo,&D(A) and ¢>0. Then there exist a sequence [ x;, Vi E A,
k=1,2, - and a sequence {t,}5=; of positive numbers such that they salisfy the
following:

(i) 0=t <t,< -+ <t <~ and ty— o0 as k—oo;

Gi) t—tyi=e for k=1,2, - ;

(i) |xe—=Xpmy— et )Vl = (G—tii)e for k=1, 2, -,

ProoF. We set wy,=max (w,0). We may assume & to be so small that
2w,6 < 1. Then for each x&D(A), we define 6(x) as the supremum of § with
the following properties:

G¢.1) 0<o<e;

and

(5.2) there exists [x; ¥;]1= A such that
25— x—0y;| < de .

Then by condition (R,), d(x) is positive for any x=D(A4). Therefore we can
choose inductively [x,, ¥,]J€ A and h,>0 for k=1, 2, ---, so that they satisfy the
following :

(5.3) (1/2)0(xp-)shy=e  for k=12 --;
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(5.4) [xp—Xp1—he el Sehy for k=1,2, -,

k
We define t,= > h, for 2=1,2, ... In order to complete thelproof, we want
d=1

to show that f,—oco as k—co. For this purpose, we establish the following
estimate :

55) ;2 T (L—wphy)™ TT (1—wohy,)™
p=k+1 Pkl

: {(ti—'tj)lnAxk[”_{"s(ti"_tk)"}'e(tj_tk)}

for every 1=7=% =1, where we set a; ;= |x;—x;l.
To prove the estimate [5.5), let #=1 be fixed and define

7

rog= T (—wehy)- T (l—aweh,) for izj=k.
4 p=k+1

=k+1

Also we recall the proof of Lemma 2.]. We have by (iv) of and
(5.4),

(I—weh) | xi—xsl < lxs—xp— Ry ll+RlLAZ

Sxsor—xel et Rl Azl
or

Ay = (I—wohy) (a0t hie+ Rl Axyl)
for i= k. Therefore, inductively, we have
Ti,a00,0 = (it Axgll+e(t;—2,)

for 1=z k. Hence a;, satisfies for i1=%k. Furthermore, a;,; apparently
satisfies [5.5) if i=.

Now let us assume that ¢,.,; and a;,;., satisfy with 1>j>%k. Then
by (ii) of and (5.4), we have

(hithj—wohih)a,,; < hjllxy—x;—hy sl +hallx;—x—h; 54,
< Moy, iy o 26hh;
Hence we have by the assumptions,
(5.6) (hi+h;—@ohih)ys, 50,
S[hl—woh)(ti-1—t )+ hi(l—amoh;)(t—1;- )] | Azl
+Lh (A —woh;)(e(tioy—1e)+e(t;— 1)
+h;(1—woh)(e(t—t)+e(t; — 1))+ 2ey. 1k, ]

We denote by I, (¢=1, 2) the g-th term of the right side of the inequality
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[56). Then we have

(5.7 L=T(h;A—=woh)+hi{l—ooh D)t — 1)+ hih o hi— R ) ]l Ax i
=[(hs+hy—woh;h )t — 1)+ hih oo hi—h)—hih ot —1)1- Azl
= (hithy—wohih )t —1) -l Axill

where we used the fact that t;—t;=h,—h;+(t,_,—t,.) = h,—h;. Since 7,;=<
(1—w0hi)’ (1_0)0hj)7 we have

I, = hy(1—woh)(e(ti- — ) te(t;— 1)
+h(1—woh)(e{ti—t)+e(t; 1 —1,)
+hihy(e(l—wohy) +e(l—wyh ;)

= (hj(1=ooh)+-hi(l—woh ) (e(ti— 1) +e(t;—1,)) .
Therefore, we have by in
(5.8) L= (hithy—ayhh)(e(ti—t)+e(t;— 1)

Combining (5.6)-(5.8), we see that a,,; satisfies (5.5). Hence by induction, ¢;,;
satisfies for all i=j=*F.
For showing f;—oc as i— oo, we suppose that {;—s5,< 40 as t—oo. Then

we have by [5.5),

lim sup [lx;—x; [ = 2 exp (4wo(so—1,)) - e(so—14)

€,j—ro0
for k=1, where we used the inequality [2.9). Since {,—s, as i—¢o, we see
that {x;};2,C D(A) is a Cauchy sequence in X. Hence there exists u,< D(A)

such that x;—u, as t—co, Then by condition (R,), there exist a positive
number 6 and [u; v5]€ A such that d<e¢ and

(5.9) lees—uo—0vsl < de/2.

Since 4; (and hence 0(x;)) converges to 0 as i—oo, there is an ¢, such that
0(x;) < d for all i=1,. Then by definition of d(x;), we have

!luab‘xi—av(j“ > 55 fOI' igio .
Letting -0, we have

lusg—u—dvsl = ed,

which is contrary to [5.9) Hence #;—co asg i—oco, Q.E.D.

PrROOF OF THEOREM 5.1. Let ¥, D(A) and T>0. Let &,!0 as n—co.
Then by Lemma 5.0, there exist [x%, y:]e A and >0 for k=12, .-, N,
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such that
i) 0=tg<itp< e <t <T=ZH%, n21;
(i) max (F{—1tf) e, n21;
n

18
(111} Hx?—xtn—l—<t?_tln—l>y¥” ésn(tf_t?—l)y i= 1’ 2’ Tty Nny nz=l ’
where xf=x,. We define u,(?) by
X for =0,
un(t):
JC? for t< (tzﬂ—h t?)f\(o; T]r 1317 2: T “'\‘Yn .
Then u,(f) is a DS-approximate solution of (CP; x,} on [0, T]. Hence, by
Theorem 4.1, A has property (D). Q.E.D.
REMARK 5.2. Let A be an w-quasi-dissipative operator satisfying the fol-
lowing condition (see Crandall and Liggett [7]):

(R,) R(I—2A)D D(A) for 0<AS 4.

Then apparently A satisfies condition (R,).

ReEMARK 5.3. Let A be an w-quasi-dissipative operator. Suppose that D(A)
is closed and A is continuous on D{A4). Then condition (R,) is equivalent to
the following condition :

(9] liminf 67 'd(D(A), x+8Ax)=0 for any xe D(A).

§—+0

See Martin [12], where A is assumed to be strictly w-dissipative. See also
Takahashi [17]

REMARK 5.4. The following example due to Martin shows that con-
dition (R;) does not imply condition (R,) in general. Let X=R® with the
Euclidean norm. Let D(A)={(x, »); x®*+3y*=1} and let A(x,y)=(y, —x) for
each (x, y)= D(A). Then A is continuous and dissipative and satisfies condi-
tion (R,) or (C). But R(I—AA) does not intersect D(A) for any 41>0.

As an application of [Theorem 5.1, we give the following.

THEOREM 5.2. Let A be dissipative operator in X. Then the following (i)
and (ii) are equivalent:

(1) A is closed and A—z satisfies condition (R,) for any z€X;

(1) A is m-disstpative.

ProOF. Apparently (ii) implies (i). Suppose that A satisfies (1). We first
show that A is maximal dissipative on D(A). For this purpose, let x< D(A)
and z= X satisfy that A\J[x, z] is dissipative in X. Then by the assumption,
there exist [x,, Y1 A and d, | 0 such that lim 6;||x,—x—3d,(y,—2)|=0. Since

n—00

A\J[x, z] is disgsipative, we have
5121Hyn—'z “2 g 5722“3}11.—2”2‘1'251;(3,71—2, x_xn>s

é li5n(yn'2)—(xn—x)l]2
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or
19—zl 8, | xa—2—08,(¥n—2)}.
Therefore y,—2z as n—oco and hence x,—x as n—oo. Since A is closed, we
have [x, 2] A. Hence A is maximal dissipative on D(A).
Let z=X and B=A—I+z Then B satisfies condition (R,). In fact, let
x€D(B)=D(A). Then by the assumption, there exist [x,, ¥,]€A and 9, ]0
such that }LI-IE Il xy—x—0,(¥,—x+2)|=0. Take h,=0d,/(1—3d,) for sufficiently

large n. Then we have
hglnxn_x_hn(yn'—xn—l—zﬂl:h;lH(1+hn)(xn—x)_hn(yn—x+z)u
:5;I||xn—x_5n(yn_x+z)” .

Therefore we see that B satisfies condition (K,). Hence, by [Theorem 5.1],
B generates a semigroup {7(¢);t=0} on D(A) such that |T®Ox—T(y| <
e t|x—y] for x, yeD(A) and

(5.10) 1Tt x—ull*— | x—u]l®

< —2}5nT(m—u112df+2j:<u—u+z, T(E)x—1ddr

for xeD(A), t>0 and [u, v]= A, since B is (—1)-dissipative. Since each T({)!is
a strict contraction on D(A), there is a unique x,€D(A) such that T()x,= x,.
Since TG)x, =TT x,=T()T(s)x, for any s>0, we see that x,=x, for all
t>0. That is, there exists a unique x,& D(A) such that T($)x,=x, for all ¢>0.
Let x=x, in [5.10]. Then we have

0 g —l[xo—uﬂ“’Jr(v—u—i—z, xo"'“)s
Sv—xyz, Xo—Up,

for any [u, v]Je A. Since A is maximal dissipative on D(4), we have x,& D(A)

and x,—z= Ax,. Thatis ze R(I—A). Since z= X is arbitrary, we have R(/—A)

=X. Q.E.D.
THEOREM 3.3. Let A be an m-dissipative opevator in X. Let B be a con-

tinuous operator in X such that D(A)CD(B) and A+ B is dissipative. Then
A-+B is m-dissipative.
Proor. We define the operator J; on D(A) for >0 by setting

Jax={I—8A)(x+d6Bx) for x=D(A).
Then we see that Jsx—x as d—+0 for each x< D(A). In fact, we have

Il fox—xl = [(I—0A) (x+6Bx)—(I—dA) " x|+ |(I—6A) "x—x]
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<0|Bx|+j(J—8A4)x—x| for x<D(A).

Let xe D(A) and x;=J;x. Then by definition of J;x, there exists y;€ Ax;
such that x;—0dy;=x+38Bx. For such [x; ¥s], we have

lim 67| x5—x—08(y5+Bxs)| = lim | Bx;— Bx[ =0,
§—+0 o—+0

since B is continuous on D(A). Therefore, A+ B satisfies condition (R,).
Similarly we see that A+ B-z satisfies condition (R,) for any z= X. Further-
more, A+B is apparently closed in X. Hence, by we see that
A+B is m-dissipative. Q.E.D.

REMARK 5.5. When B is a continuous dissipative operator defined on X,
B is strictly dissipative and hence A+B is dissipative. Therefore, [Theoreml
3.3 is an extension of the results of Barbu and Webb [19].

REMARK 5.6. Recently a similar result has been obtained by Pierre [14]
by a quite different method.
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