
XAPP290 (v2.0) December 3, 2007 www.xilinx.com 1

© 2003–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the
property of their respective owners.

Summary An important feature in the Virtex™ architectures is the ability to reconfigure a portion of the
FPGA while the remainder of the design is still operational. Partial reconfiguration is useful for
applications that require the flexibility to change portions of a design without having to
completely reconfigure the entire device. With this capability, entirely new application areas
become possible:

• In-the-field hardware upgrades and updates to remote sites

• Runtime reconfiguration

Other potential benefits include:

• Reduced device count

• Reduced power consumption

• More efficient use of available board space

This application note describes difference-based partial reconfiguration, which is useful for
making small on-the-fly changes to design parameters such as logic equations, filter
parameters, and I/O standards. This design flow is not recommended for making large changes
in the functionality or structure of a design, for example, changing an entire algorithm. When
there are sizable changes or the routing has to be modified, the recommended flow is to start
from the HDL.

Introduction Partial reconfiguration of Virtex devices can be accomplished through the SelectMAP, JTAG, or
ICAP configuration interfaces. Instead of resetting the device and performing a complete
reconfiguration, new data is loaded to reconfigure a specific area of a device, while the rest of
the device is still in operation.

The difference-based partial reconfiguration design flow described in this application note
allows a designer to make small logic changes using FPGA_Editor and generate a bitstream
that programs only the difference between the two versions of the design. Switching the
configuration of a module from one implementation to another is very quick because the
bitstream differences can be much smaller than the entire device bitstream.

This application note does not discuss the methodology of creating reconfigurable regions to
implement multiple reconfigurable modules.

Application Note: Virtex Architectures

XAPP290 (v2.0) December 3, 2007

Difference-Based Partial Reconfiguration
Author: Emi Eto

R

http://www.xilinx.com

2 www.xilinx.com XAPP290 (v2.0) December 3, 2007

Difference-Based Partial Reconfiguration
R

Difference-
Based Partial
Reconfiguration

The main objective for difference-based partial reconfiguration is allow small design changes.
For example, perhaps LUT programming or an I/O standard needs to be simultaneously
changed and loaded. These changes can be made easily by directly editing the routed NCD file
in the Xilinx FPGA_Editor application. If block RAM contents need to be modified, the
Data2MEM utility be used instead of FPGA_Editor, or these changes can be made in
FPGA_Editor.

After the changes are made, the BitGen program is used to produce a bitstream that only
programs the differences between the original design and the new one. Depending on the
changes, this partial bitstream can be much smaller than the original bitstream. These
bitstreams can be loaded quickly and easily by the software. All that is required is an
understanding of how to make logic changes using the FPGA_Editor application, and the
pertinent options to select in BitGen.

Making Small Design Changes Using FPGA_Editor

While many different types of changes can be made to an FPGA design, this application note
addresses changing I/O standards, block RAM contents, and LUT programming using
FPGA_Editor. Even though it is possible to change routing information, it is not recommended
due to the possibility of internal contention during reconfiguration. If routing changes are
desired, using the flow described in this application note is not recommended.

After the placed and routed NCD file is opened in FPGA_Editor (by specifying it on the
command line or using the File->Open menu selection), it should be immediately saved under
a different name, so that the original design is not lost. In the first example (Figure 1),
File->Save As is selected to change the and_test.ncd design to and_test2.ncd. The
latter file will remain open in FPGA_Editor after the operation is completed.

After the new design is open, the file becomes available for modification by selecting
File->Main Properties and changing the Edit Mode to Read Write.

http://www.xilinx.com

Difference-Based Partial Reconfiguration

XAPP290 (v2.0) December 3, 2007 www.xilinx.com 3

R

Changing LUT Equations

The smallest logical element that can be selected is the slice. First, the block must be viewed.
An individual slice can be found using the Find button on the right hand side of the window, or
the array view can be navigated, and the slice selected by hand. After the slice is selected,
(shown as red in Figure 1,) the Editblock button should be clicked on to open the Block Editor
toolbar.
X-Ref Target - Figure 1

To prevent accidental edits, by default, the internals of a slice cannot be edited. Each time a
block is opened, to make it editable, the Begin Editing button (the second button from the left in
the Block Editor toolbar) must be selected. This changes the window background to black.

To view the LUT equations, the Show/Hide Attributes button must be clicked on. It is the F=
toolbar button. This opens a panel at the bottom of the window with the slice name, and the two
equations. The valid operators are:

* -> Logical AND

+ -> Logical OR

@ -> Logical XOR

~ -> Unary NOT

Figure 1: Viewing a Block
x290_12_042402

http://www.xilinx.com

4 www.xilinx.com XAPP290 (v2.0) December 3, 2007

Difference-Based Partial Reconfiguration
R

Figure 2 shows changing the Geqn from A3*A2 to A3*~A2.
X-Ref Target - Figure 2

Valid equations values are A1, A2, A3, and A4, representing the four address line inputs to the
LUT. Parentheses can also be used to group equation sections, e.g., (A4 * A1) @ ~A3. Any
other names or operators will produce an error (for example):

ERROR:FPGAEDITOR:24 - "(A3*~A2 + mynet) is not a valid value for the Geqn attribute.

After the attributes are changed, the Saves Changes and Closes Window button should be
selected to close the Block Editor.

Figure 2: Changing LUT Equations
x290_13_042402

http://www.xilinx.com

Difference-Based Partial Reconfiguration

XAPP290 (v2.0) December 3, 2007 www.xilinx.com 5

R

Changing Block RAM Contents

The Block Editor for block RAMs (Figure 3) is similar to the slice Block Editor. While in the Block
Editor mode, the Show/Hide Attributes button should be selected to display the contents of the
RAM. The format of the data is the same as an INIT constraint in a UCF file. See the Libraries
Guide for details on the INIT constraint. Once the changes have been made, the Saves
Changes and Closes Window button should be selected to close the window and return to the
Array view.
X-Ref Target - Figure 3

Figure 3: Changing Block RAM Contents
x290_14_042402

http://www.xilinx.com

6 www.xilinx.com XAPP290 (v2.0) December 3, 2007

Difference-Based Partial Reconfiguration
R

Changing I/O Standards

To change the I/O standards, enter the Block Editor the same way as a slice or block RAM. The
I/O standards are in a box in the upper-right corner of the window (Figure 4). To change the
I/O standard, select the checkbox next to the desired I/O standard. There are also Drive
Strength and Slew Rate checkboxes. Only select these when applicable. See the Libraries
Guide and the specific FPGA data sheet for details on which I/O standards have selectable
slew rate and drive strength.

I/O standards must match the VREF voltages (or the absence of a VREF voltage) with the other
I/Os in the bank or the changed I/Os will not function properly. For example, it is not possible to
change an LVTTL I/O in the middle of a bank of LVTTL I/Os to the GTL standard; GTL requires
VREF voltages, while LVTTL does not.
X-Ref Target - Figure 4

Other Changeable Elements

A number of muxs and changeable properties in slices, IOBs, and block RAMs are eligible for
a difference-based partial reconfiguration flow. Some changeable properties are: muxs that
invert polarity, flip-flop initialization and reset values, pull-ups or pull-downs on external pins, or
block RAM write modes. All of these properties can be modified in the actual slice, IOB, or block
RAM as appropriate. Changing any property or value that would impact routing is not
recommended due to the risk of internal contention.

Figure 4: Changing I/O Standards
x290_15_042402

http://www.xilinx.com

Difference-Based Partial Reconfiguration

XAPP290 (v2.0) December 3, 2007 www.xilinx.com 7

R

Creating Difference-Based Partial Reconfiguration Bitstreams

The -g ActiveReconfig:Yes switch is required for active partial reconfiguration, meaning
that the device remains in full operation while the new partial bitstream is being downloaded. If
ActiveReconfig:Yes is not specified (or -g ActiveReconfig:No is specified), then the
partial bitstream contains the Shutdown and AGHIGH commands used to deassert DONE.
Additionally, the -g Persist:Yes switch is required when utilizing partial reconfiguration
through the SelectMAP mode. This switch allows the SelectMAP pins to persist after the device
is configured, which allows the SelectMAP interface to be used for partial reconfiguration. The
-g Persist:Yes setting is also required for the initial bitstream. The -g security:none
setting must also be set for the initial bitstream.

A partial reconfiguration bitstream can be created with any other BitGen option, including the
-b option (create .rbt file) or any -g options specifying configuration options except for
encryption. A device that has been configured with an encrypted bitstream cannot be partially
reconfigured. Similarly, a device cannot be partially reconfigured with an encrypted bitstream.

A difference-based partial reconfiguration bitstream can be created with the BitGen utility using
the -r switch. This switch produces a bitstream that contains only the differences between the
input .ncd file and the original bit file.

Examples

Generic Example:

bitgen -g ActiveReconfig:Yes -g Persist:yes -r <original.bit> <new.ncd>
<new.bit>

Test Example:

bitgen -g ActiveReconfig:Yes -g Persist:Yes -r and_test.bit and_test2.ncd
and_test2_partial.bit

Create a Partial Bitstream to Restore the Original Design:

bitgen -g ActiveReconfig:Yes -g Persist:yes -r and_test2.bit and_test.ncd
and_test_partial.bit

These files produce a configuration file (and_test2_partial.bit) that only configures the
frames that are different between and_test and and_test2. When downloading this file, the
and_test configuration file MUST already be programmed into the device. It is advisable to run
DRC to be alerted of any violations. No additional steps are necessary to run DRC. BitGen
automatically performs the Design Rule Checker unless the -d option has been toggled.

http://www.xilinx.com

8 www.xilinx.com XAPP290 (v2.0) December 3, 2007

Difference-Based Partial Reconfiguration
R

Using
Bitstreams and
Programming
the FPGA

Partial reconfiguration supports either the parallel slave SelectMAP, JTAG, or ICAP
programming options. The following FPGA configuration documents are useful when
programming with these options:

Virtex-E FPGAs

DS022-2:Virtex-E 1.8V FPGA Detailed Functional Description (Configuration Section)

Virtex-II Platform FPGAs

UG002: Virtex-II Platform FPGA User Guide (Chapter 4: Configuration)

Virtex-II Pro FPGAs

UG012: Virtex-II Pro and Virtex-II Pro X FPGA User Guide

Virtex-4 FPGAs

ug071: Virtex-4 FPGA Configuration Guide

Virtex-5 Platform FPGAs

ug191: Virtex-5 FPGA Configuration User Guide

The Xilinx configuration application, iMPACT, can be used in conjunction with any Xilinx
download cable to interface to target device(s) for configuration testing. Alternatively, designers
can create board-level functions to control device configuration at a system level.

Because the device cannot distinguish partial bitstreams from full bitstreams, designers must
be careful to correctly sequence the application of these partial bitstreams to the target devices.
The iMPACT software can identify a partial bitstream but cannot determine if it is being applied
in the correct sequence order. When downloading a device using a partial bitstream, iMPACT
software displays a message indicating that a partial bitstream is being used and that care
should be taken to ensure correct sequencing:

1. Load the full bitstream

2. Load the partial bitstream to change the design.

3. If desired, load a subsequent partial bitstream to restore the original design.

Where there are two partial bitstreams, the proper sequence is:

1. Load the full bitstream.

2. Load the a partial bitstream to change the design.

3. Load the full bitstream.

4. Load the other partial bitstream to change the design.

When targeting a partial bitstream to a Xilinx configuration PROM using the iMPACT PROM file
formatting capabilities, no special options are needed. The formatting of the PROM data is
identical regardless of the bitstream contents. End users should be aware that when targeting
Xilinx configuration PROMs, these devices do not allow selective loading of configuration data
contents. Instead, all data is transmitted to the attached FPGAs. End users looking for a
solution to provide bitstream selectability should consider either the SelectMAP or JTAG port
through a processor or an ICAP-based solution.

Initially on device power-up, a full bitstream must be loaded into the device prior to any partial
bitstreams. Only after that time can a partial bitstream be loaded to reconfigure a partially
reconfigurable module. The states of the flip-flops are preserved during the reconfiguration
process. Fixed portions of the design that are not being reconfigured remain fully operational
during the reconfiguration process. New partial bitstreams can be subsequently loaded to
change functionality.

http://www.xilinx.com
http://direct.xilinx.com/bvdocs/userguides/ug071.pdf
http://direct.xilinx.com/bvdocs/userguides/ug191.pdf
http://direct.xilinx.com/bvdocs/publications/ds022-2.pdf
http://direct.xilinx.com/bvdocs/userguides/ug012.pdf
http://direct.xilinx.com/bvdocs/userguides/ug002.pdf

Conclusion

XAPP290 (v2.0) December 3, 2007 www.xilinx.com 9

R

Bitstream Length and Reprogramming Speed

The bitstream length and reprogramming time of a particular partial bitstream are directly
proportional.

Conclusion This application note is useful when trying to partially reconfigure Xilinx FPGAs with small
changes to logic or I/O standards.

Appendix A Saving Block RAM Contents with SaveData

In a normal reconfiguration process, block RAM contents are overwritten by the bitstream. This
behavior is the default for partial reconfiguration, but can be changed through the use of the
SaveData feature. SaveData mode prevents block RAM data from being overwritten during
device reconfiguration.

Use the following procedure to create a SaveData bitstream:

1. Open the design in FPGA_Editor and use the List window to sort the components by type
(see Figure 5).

X-Ref Target - Figure 5

Figure 5: List Window

x290_16_091903

http://www.xilinx.com

10 www.xilinx.com XAPP290 (v2.0) December 3, 2007

Difference-Based Partial Reconfiguration
R

2. Select and double-click on a RAMB to open it in the block viewer (see Figure 6).

Note: Turn off “Routes” to make it easier to view the block RAMs.
X-Ref Target - Figure 6

Figure 6: Selected Block

x290_19_091903

http://www.xilinx.com

Revision History

XAPP290 (v2.0) December 3, 2007 www.xilinx.com 11

R

3. Click on the “Begin Editing” Button (see Figure 7).

4. Set the SaveData bit to “yes” (see Figure 7).

5. Click on the “Saves Changes and Closes Window” Button (see Figure 7).
X-Ref Target - Figure 7

6. Exit FPGA_Editor.

Revision
History

The following table shows the revision history for this document.

Figure 7: Edit Screen

x290_20_091903

Date Version Revision

05/17/02 1.0 Initial Xilinx release.

11/25/03 1.1 Updated constraints for ISE 6.1i. Renamed Small-bit Manipulation to
Difference-Based. Added “Appendix A” (SaveData). Restructured
Bitstream Generation and Usage sections.

09/09/04 1.2 Corrected errors in Steps 5 and 6 of the “Checklist for Initial Budgeting
(Floorplanned and Other .ucf Constraints)” in “Appendix C”.

12/03/07 2.0 Obsoleted and removed module-based partial reconfiguration.

http://www.xilinx.com

	Difference-Based Partial Reconfiguration
	Summary
	Introduction
	Difference- Based Partial Reconfiguration
	Making Small Design Changes Using FPGA_Editor
	Changing LUT Equations
	Changing Block RAM Contents
	Changing I/O Standards
	Other Changeable Elements

	Creating Difference-Based Partial Reconfiguration Bitstreams
	Examples

	Using Bitstreams and Programming the FPGA
	Bitstream Length and Reprogramming Speed

	Conclusion
	Appendix A
	Saving Block RAM Contents with SaveData

	Revision History

