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ABSTRACT

We present a general framework for matching the point-spread function (PSF), photometric

scaling and sky background between two images, a subject which is commonly referred to

as difference image analysis (DIA). We introduce the new concept of a spatially varying

photometric scale factor which will be important for DIA applied to wide-field imaging data

in order to adapt to transparency and airmass variations across the field-of-view. Furthermore,

we demonstrate how to separately control the degree of spatial variation of each kernel basis

function, the photometric scale factor and the differential sky background. We discuss the

common choices for kernel basis functions within our framework, and we introduce the

mixed-resolution delta basis functions to address the problem of the size of the least-squares

problem to be solved when using delta basis functions. We validate and demonstrate our

algorithm on simulated and real data. We also describe a number of useful optimizations that

may be capitalized on during the construction of the least-squares matrix and which have not

been reported previously. We pay special attention to presenting a clear notation for the DIA

equations which are set out in a way that will hopefully encourage developers to tackle the

implementation of DIA software.

Key words: methods: statistical – techniques: image processing – techniques: photometric –

methods: data analysis.

1 IN T RO D U C T I O N

Difference image analysis (DIA) aims to measure changes, from one

image to another, in the objects that make up a scene. In astronomy,

the objects are typically point sources changing in brightness or

moving on the sky. Astronomical images are formed on a discrete

detector array, after the sky scene suffers attenuation, geometrical

distortion and blurring by the atmosphere and optics, superimposed

on a sky background, and corrupted by detector noise. All of these

effects are to different degrees non-uniform across the scene and

variable on a variety of time-scales. Furthermore, pairs of images

⋆ E-mail: dan.bramich@hotmail.co.uk

of the same scene may suffer small misalignments in position or

scale, or gross rotational misalignments.

The changes in object properties that we wish to measure are

thus entangled with changes in the sky-to-detector, or scene-to-

image, transformation. A residual difference image, formed by sim-

ple subtraction of one image from another, is generally dominated

by changes in the transformation. To extract the astronomical in-

formation, we must accurately model the changes in astrometry,

throughput, background, and blurring between the two images. We

may then make corrections to match these effects from one im-

age to another and subtract to form ‘cleaner’ difference images,

or we may model the original images including changes in both

object properties and image transformations. While current DIA

techniques are based on the former approach, we advocate the

latter.

C© 2012 The Authors
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The model adopted to represent changes in the scene-to-image

transformation must include the following differential (or correc-

tive) components:

(i) A coordinate transformation between the coordinate systems

of each image to correct for image misalignments and/or differences

in distortion.

(ii) A photometric scaling that corrects for the changes in the

attenuating effects of the atmosphere (and possibly the telescope

optics) and differences in exposure time.

(iii) A background offset that corrects for changes in the sky

background emission.

(iv) A convolution transformation that corrects for the changes

in the image point-spread function (PSF) as a result of changes

in atmospheric conditions and/or the telescope optics (e.g. focus

changes).

Note that all of these components model differential corrections,

not absolute values (e.g. the convolution transformation models the

change in PSF shape between images, not the PSF itself).

The state of the art in DIA includes the components for photo-

metric scaling, sky background offsets and PSF convolution in the

DIA modelling process. Recent developments (Bramich 2008, from

now on B08) also include fractional pixel translations in the model.

Other image misalignments (rotation, scale, shear and distortion)

are corrected by pre-registering the images before application of

DIA, usually involving image resampling.

The framework for the current approach to DIA was introduced

by Alard & Lupton (1998) (from now on A98) for matching a ref-

erence image to a target image. The convolution kernel (including

the photometric scaling) to be applied to the reference image is

decomposed into a set of basis functions, and the differential back-

ground offset is included as a polynomial of the image coordinates,

which converts the problem of finding the corrective components to

a standard linear least-squares formulation. A follow-up paper by

Alard (2000) (from now on A00) showed how the spatial variation

of the convolution kernel can be modelled by multiplying the ker-

nel basis functions by polynomials of the image coordinates. The

kernel basis functions chosen by A98 and A00 are Gaussians of dif-

ferent widths, modified by polynomials of the kernel coordinates.

The user must specify the number of Gaussian basis functions to

be employed, their associated widths and the degrees of the modi-

fying polynomials. However, the optimal choice of parameters for

generating the kernel basis functions is not obvious, although some

investigation into this matter has been performed (Israel, Hessman

& Schuh 2007).

It is clearly desirable to find a set of kernel basis functions that are

inherently simple, thereby being specified by a minimal parameter

set, and yet that can model the kernel with sufficient flexibility. A

step towards this paradigm was made by B08 with the proposed

representation of the kernel as a discrete pixel array where the

kernel pixel values are solved for directly. This approach limits

the requirements on the user to specifying the kernel size (and

shape), and the kernel model is maximally flexible in modelling the

most complicated convolution kernels (e.g. telescope jumps). B08

show that the new formulation is capable of modelling fractional

pixel translations as part of the convolution kernel, thereby relaxing

the requirement on image registration such that images need only

be aligned to the nearest pixel before application of DIA. Spatial

variation of the kernel is handled by interpolation of kernel and

differential background solutions on a grid.

Soon after B08, Miller, Pennypacker & White (2008) (from now

on M08) specified a set of kernel basis functions built from delta-

functions centred at different kernel coordinates. This choice of

basis functions leads to a solution that happens to be equivalent to

the B08 solution (see Section 3.2), but it is specified such that it fits

into the A98 framework of equations. M08 also included a polyno-

mial spatial variation of the delta-function coefficients to model the

kernel spatial variation. Quinn, Clocchiatti & Hamuy (2010) ‘re-

discovered’ the M08 work, but failed to impose any control on the

photometric scaling while also fixing the value of the central ker-

nel pixel, leading to a sub-optimal kernel model that cannot freely

model fractional pixel translations.

The choice of kernel basis functions in the A98 framework is fully

down to the developer/user. While the delta-function basis (or delta

basis for short) is very compelling, the number of free parameters

grows quickly with the adopted kernel size. Hence it makes sense to

choose some coarser functions in the outer part of the kernel where

there is little variation or signal/amplitude. Albrow et al. (2009)

introduce the idea of binned kernel pixels in the outer part of the

kernel, which greatly reduces the number of kernel parameters, and

Yuan & Akerlof (2008) introduce a bicubic B-splines basis.

One of the assumptions in the A98 DIA framework is that the

photometric scaling between the reference image and the target

image is characterized by a single number, which may be a reason-

able assumption for images covering a small field-of-view (FOV),

where spatial variations in atmospheric transparency and airmass

are generally negligible. However, DIA is now being applied in

projects that generate images covering multiple square degrees each

(e.g. Palomar Transient Factory – Rau et al. 2009; Law et al. 2009,

PanSTARRS – Kaiser et al. 2010), where non-uniform transparency

is common (due to passing clouds) and extinction varies from one

edge of the image to another due to airmass gradients across the

field. Extension of the DIA framework to a spatially varying pho-

tometric scale factor is therefore a necessary generalization in the

application of DIA to these projects.

In Section 2, we take the step of generalizing DIA to be able to

cope with a spatially varying photometric scale factor, while simul-

taneously modelling the spatial variation of the kernel shape and

differential background. In presenting this generalized formulation,

we also take the opportunity to present a clear set of DIA equa-

tions, with user-friendly notation, grouped in a logical way. The

original DIA formulations in the literature (A98; A00) are not so

transparent in this respect, and the M08 formulation where delta

basis functions are introduced omits the consideration of pixel un-

certainties, has difficult notation, and misses a number of important

simplifications with respect to this kernel basis (see Section 3.2).

Discussion of the most popular choices for the kernel basis func-

tions and their implications with regard to the DIA formulation is

made in Section 3, where we also introduce the mixed-resolution

delta basis functions. In Section 4, we validate our algorithm using

simulated data and we demonstrate it using some real data. Section 5

has been written to provide some implementation and optimization

hints for the DIA developer, and the methodology that we propose

will help to make the DIA algorithms more feasible with respect

to the increasing data volume (image sizes and numbers) from the

latest generation of time series imaging projects. Finally, we state

our conclusions in Section 6.

2 T H E G E N E R A L D I F F E R E N C E I M AG E

A NA LY S I S F O R M U L AT I O N A N D S O L U T I O N

In this section, we derive a general theoretical formulation of the dif-

ference image analysis problem from which all previously published

formulations arise as special cases. This generalization allows us to
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exercise control separately over the spatial variation of each kernel

basis function, the photometric scale factor, and the differential sky

background, as we show in Sections 2.1 and 2.3.

2.1 Defining the target image model

We start as in B08 by considering a pair of registered images sam-

pled on the same pixel grid, one being the reference image with

pixel values Rij, and the other the target image with pixel values Iij,

where i and j are pixel indices referring to the column i and row j of

the image. We denote the spatial coordinate system in these images

by (x, y), and the (x, y) coordinates of the (i, j)th pixel by (xi, yj).

Exact image registration is not strictly necessary, since the best for-

mulations for the kernel model include corrections for translational

(but not rotational or otherwise) image misalignments, which has

the advantage of avoiding problematic image interpolation in many

cases.

As first formulated by A98, we construct the model M(x, y) for

the target image as the reference image convolved with a spatially

varying kernel K(u, v, x, y) (where u and v are kernel coordinates)

plus a spatially varying differential background B(x, y),

M(x, y) = [R ⊗ K](x, y) + B(x, y). (1)

We wish to determine the best-fit convolution kernel and differential

background, and to do this we must first make further assumptions

about their functional form. We note that since the reference image is

part of the target image model, it may be desirable to also determine

the reference image pixel values Rij. However, finding a solution to

this issue is outside the scope of this paper.

A98 made the important step of decomposing the kernel into a

set of basis functions thereby linearizing the expression in equation

(1). Subsequently, A00 generalized the kernel decomposition to

include the spatial variation of the basis function coefficients, which

facilitated the modelling of the spatial variation of the kernel. We

form the same kernel decomposition

K(u, v, x, y) =
Nκ∑

q=1

aq (x, y) κq (u, v), (2)

where κq(u, v) is the qth kernel basis function, aq(x, y) is the qth

spatially variable coefficient, and Nκ is the number of kernel basis

functions.

A polynomial is a sensible choice of model for the spatial vari-

ation of the kernel basis function coefficients since it respects the

linearity of the decomposition in equation (2), and by specifying

the polynomial degree, one may control the amount of spatial vari-

ation that is to be modelled. The polynomial form for aq(x, y) was

adopted by A00 with the same degree for each basis function coef-

ficient. We generalize this further by modelling each coefficient as

a polynomial with individual degree dq, providing a flexibility that

we require later on

aq (x, y) =
dq∑

m=0

dq−m∑

n=0

aqmn η(x)m ξ (y)n, (3)

where the aqmn are polynomial coefficients for the qth kernel ba-

sis function. The coordinates (η(x), ξ (y)) are normalized spatial

coordinates defined by

η(x) = (x − xc)/Nx, (4)

ξ (y) = (y − yc)/Ny, (5)

which follow from the Taylor expansion of the spatial coordinates

(x, y) around the image centre (xc, yc) for an image of size Nx ×
Ny pixels. This coordinate conversion improves the orthogonality

of the spatial polynomial terms,1 and it prevents the significant

polynomial coefficients from becoming progressively smaller for

the higher order polynomial terms.

As in A98, we also adopt a polynomial model of degree dB for

the differential background,

B(x, y) =
dB∑

k=0

dB−k∑

l=0

bkl η(x)k ξ (y)l, (6)

where the bkl are the polynomial coefficients.

We now have a model M(x, y) for the target image that is a

linear combination of functions of x and y. This is easily shown by

substituting equations (2), (3) and (6) into equation (1) and using

the fact that convolution is distributive,

M(x, y) =
Nκ∑

q=1

[R ⊗ κq ](x, y)

dq∑

m=0

dq−m∑

n=0

aqmn η(x)m ξ (y)n

+
dB∑

k=0

dB−k∑

l=0

bkl η(x)k ξ (y)l . (7)

The target image is a discrete image of pixel values Iij and there-

fore we wish to evaluate the model for the target image at the

discrete pixel coordinates (xi, yj). Let us use Mij to represent the

discrete model image M(xi, yj) and (ηi, ξ j) to represent the dis-

crete coordinate array (η(xi), ξ (yj)). Then, using the fact that the

convolution of the reference image Rij with the continuous kernel

basis function κq(u, v) is equivalent to a discrete convolution (see

Appendix A), we have

Mij =
Nκ∑

q=1

[R ⊗ κq ]ij

dq∑

m=0

dq−m∑

n=0

aqmn ηm
i ξn

j +
dB∑

k=0

dB−k∑

l=0

bkl η
k
i ξ l

j (8)

with

[R ⊗ κq ]ij =
∑

rs

R(i+r)(j+s)κqrs, (9)

where r and s are pixel indices corresponding to the column r and

row s of the discrete kernel basis function κqrs defined by

κqrs =
∫ s+ 1

2

s− 1
2

∫ r+ 1
2

r− 1
2

κq (u, v) du dv. (10)

We refer to [R ⊗ κq]ij as a basis image since it is the linear

combination of these basis images modified by spatial polynomials

and combined with the differential background that constitutes the

target image model. A basis image [R ⊗ κq]ij is calculated from

the discrete convolution of the reference image Rij with the corre-

sponding discrete kernel basis function κqrs via equation (9), which

implies that the reference image Rij must extend beyond the pixel

domain of the target image Iij. The discrete kernel basis function

κqrs may be defined directly, or calculated by analytical or numeri-

cal integration of equation (10) given a definition for κq(u, v). Note

1 Although not considered here, further orthogonalization of the spatial

polynomial terms could be achieved by using, for example, Gram-Schmidt

orthogonalization. However, the orthogonalization can only ever be approx-

imate as the dot products that define orthogonality use inverse-variance pixel

weights, and the variances depend on the model being fitted (see Section

2.5).
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that the terms for modelling the differential background in equation

(8) can be thought of as multiplying a basis image that is set to unity

at all pixels.

All that is now required to fully define the model for the target

image is to make a choice of suitable kernel basis functions, from

which the corresponding basis images are derived. This is where

different authors have made different choices (e.g. the Gaussian

basis functions, the delta basis functions, etc.), and we leave the

treatment of these choices to Section 3 where we consider their

implications in more detail.

2.2 The kernel model

Assuming that we have a solution for the polynomial coefficients

aqmn of the kernel basis functions, we would like to know how to

construct the discrete kernel model Krsij at any pixel (i, j) in the

target image. This is achieved by defining

Krsij =
∫ s+ 1

2

s− 1
2

∫ r+ 1
2

r− 1
2

K(u, v, xi, yj ) du dv, (11)

which, on substitution of equations (2), (3) and (10), reduces to

Krsij =
Nκ∑

q=1

κqrs

dq∑

m=0

dq−m∑

n=0

aqmn ηm
i ξn

j . (12)

2.3 Controlling the spatial variation of the photometric

scale factor

The kernel sum Pij =
∑

rsKrsij, which in general is a function of

spatial pixel (i, j), defines the photometric scale factor between the

reference image and the target image,

Pij =
∑

rs

Nκ∑

q=1

κqrs

dq∑

m=0

dq−m∑

n=0

aqmn ηm
i ξn

j . (13)

Our current formulation of the DIA problem in Section 2.1 is

such that Pij will vary across the image as a polynomial of degree

equal to the maximum of the set of degrees dmax = maxq{dq} for

the coefficients of the (sub-)set of kernel basis functions that have a

non-zero sum. This can be seen by swapping the summation order in

equation (13) and combining the kernel basis function coefficients

into a single set of coefficients a ′
mn,

Pij =
dmax∑

m=0

dmax−m∑

n=0

a ′
mn ηm

i ξn
j , (14)

where

a ′
mn =

Nκ∑

q=1

aqmn

∑

rs

κqrs . (15)

This behaviour may be undesirable if we wish to employ a differ-

ent degree of spatial variation in the photometric scale factor to the

degree of spatial variation of the shape of the convolution kernel.

A00 noted that those kernel basis functions with zero sums do not

contribute to the spatial variation of the photometric scale factor,

regardless of the spatial variation of their coefficients, and that one

may always construct a new set of kernel basis functions that are a

linear combination of the original set of basis functions.

We assume that our kernel basis functions have been normalized

to a sum of unity, or have a zero sum, and that our first kernel basis

function κ1rs, without loss of generality, has a sum of unity. We then

form a new set of kernel basis functions as follows:

κ ′
qrs =

⎧
⎨

⎩

κqrs if q = 1 or
∑

rs κqrs = 0,

κqrs − κ1rs if q > 1 and
∑

rs κqrs = 1.
(16)

It follows that all of our new kernel basis functions κ ′
qrs have zero

sums except for the first basis function κ ′
1rs which has a sum of

unity.

Adopting our new set of kernel basis functions and dropping the

prime from our notation, the photometric scale factor Pij reduces

to

Pij =
d1∑

m=0

d1−m∑

n=0

a1mn ηm
i ξn

j , (17)

which is a polynomial in the spatial coordinates (x, y) of degree d1.

Hence, by transforming the kernel basis functions as outlined

above, one may specify a polynomial degree d1 of spatial variation

for the photometric scale factor, associated only with the coefficient

of the first kernel basis function, and which we redefine as the degree

dP. Collectively, the spatial variation of the kernel basis functions

describes the kernel shape variations, and therefore the polynomial

degree of spatial variation for the kernel shape is set by the value

of maxq{dq}, which is always greater than or equal to dP. This

is an important point to understand since if one wants to model

the situation where the kernel shape is expected to spatially vary

with a smaller degree than the photometric scale factor, then one

should still fit a model with minq{dq} = dP. For example, to model

the situation where the kernel shape is spatially invariant between

two images but the spatial transparency pattern varies linearly (e.g.

because of changes in airmass gradient), then one must adopt a

linear spatial variation for all of the kernel basis functions. This

enables the spatial variations of the zero-sum kernel basis functions

to offset the spatial variations in kernel shape induced by the spatial

variations of the unit-sum kernel basis function.

To summarize, we have shown how to decouple the spatial varia-

tion of the photometric scale factor from the kernel shape variations

(with the aforementioned caveat), which leads to three natural types

of spatial variation in the DIA formulation; namely, photometric

scale factor variations, differential background variations, and ker-

nel shape variations, characterized by the degrees dP, dB and dS =
maxq{dq} ≥ dP, respectively.

2.4 Fitting the target image model

In order to fit the model in equation (8) to the target image, we

construct the chi-squared,

χ2 =
∑

ij

(
Iij − Mij

σij

)2

, (18)

where the σ ij represent the target image pixel uncertainties. Mini-

mizing the chi-squared in equation (18) falls into the class of general

linear least-squares problems, since the model in equation (8) is lin-

ear with respect to the unknown coefficients aqmn and bkl to be

determined. This class of problems has a standard solution proce-

dure by construction of the normal equations. We refer the reader

to the treatment of this subject in ‘numerical recipes’ (Press et al.

2007) for more details.

The normal equations are most compactly represented by the

matrix equation,

Hα = β, (19)
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where the square matrix H is the least-squares matrix, the vector α

is the vector of model parameters, and β is another vector.

For each kernel basis function, there are Nq = (dq + 1)(dq + 2)/2

polynomial coefficients aqmn, and for the differential background,

there are NB = (dB + 1)(dB + 2)/2 polynomial coefficients bkl,

leading to a total of Npar = (
∑

q Nq) + NB parameters to be de-

termined. Hence the least-squares matrix H is of size Npar by Npar

elements, and the vectors α and β are of length Npar elements. If

we take z as a generalized index for all of the free parameters, then

we are simply assigning a one-to-one correspondence f : z ↔(q, m,

n, k, l) that specifies which coefficient, aqmn or bkl, corresponds to

the current element αz of the vector of parameters α. This mapping

may order the parameters in an arbitrary way, but the ordering is

only important for the efficient computation of H and β if one does

not pre-calculate all of the necessary polynomial and basis images

(see Sections 5.1 and 5.2).

Following from the definition of the model for the target image

in equation (8), the elements of the least-squares matrix H (i.e.

the coefficients in the normal equations) and vector β may now be

written out explicitly in terms of the basis images

Hzz ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
ij ηm+m ′

i ξn+n ′
j [R ⊗ κq ]ij [R ⊗ κq ′ ]ij / σ 2

ij

for αz ≡ aqmn and αz ′ ≡ aq ′m ′n ′ ,

∑
ij ηm+k ′

i ξn+l ′
j [R ⊗ κq ]ij / σ 2

ij

for αz ≡ aqmn and αz ′ ≡ bk ′l ′ ,

∑
ij ηk+m ′

i ξ l+n ′
j [R ⊗ κq ′ ]ij / σ 2

ij

for αz ≡ bkl and αz ′ ≡ aq ′m ′n ′ ,

∑
ij ηk+k ′

i ξ l+l ′
j / σ 2

ij

for αz ≡ bkl and αz ′ ≡ bk ′l ′ .

(20)

βz =

⎧
⎨

⎩

∑
ij ηm

i ξn
j Iij [R ⊗ κq ]ij / σ 2

ij for αz ≡ aqmn,
∑

ij ηk
i ξ l

j Iij / σ 2
ij for αz ≡ bkl,

(21)

Cholesky factorization of the symmetric and positive-definite

matrix H, followed by forward and back substitution is the most

efficient and numerically stable method (Golub & Van Loan 1996)

for obtaining the solution α = α̂ to the normal equations. Explicit

calculation of the matrix inverse H−1 is only strictly necessary if

one requires the covariance matrix cov (α̂z, α̂z ′ ) =
{

H−1
}

zz ′ . We

note that the calculation of the uncertainties in the elements of α̂ is

one such case since the uncertainty σ z in each α̂z is given by

σz =
√{

H−1
}

zz
. (22)

2.5 The noise model and iteration

The calculation of the least-squares matrix H and vector β requires

the adoption of a suitable noise model for the target image pixel

uncertainties σ ij. B08 specify one such model as

σ 2
ij =

σ 2
0

F 2
ij

+
Mij

GFij

, (23)

where σ 0 is the CCD readout noise (ADU), G is the CCD gain

(e−/ADU), and Fij is the master flat-field image. This model assumes

that both the master flat-field image Fij and the reference image Rij

are noiseless, which is a reasonable assumption for such typically

high signal-to-noise (S/N) images.

Most importantly, we note that in this noise model, the uncer-

tainties σ ij depend on the target image model Mij and consequently,

fitting Mij as described in Section 2.4 becomes an iterative process.2

In the first iteration, it is appropriate to approximate Mij by using Iij,

which enables the calculation of the initial kernel and differential

background solution. In subsequent iterations, the current image

model defined by equation (8) should be used to set the σ ij as per

equation (23). In Appendix B, we use an example to demonstrate

the bias that can be introduced into the model parameters if the

iterative fitting procedure is not performed (see also Section 4.1).

It is also desirable to employ a k-sigma-clip algorithm in order to

prevent outlier target image pixel values from influencing the solu-

tion, including those from variable objects and cosmic ray events.

This may easily be achieved by calculating the normalized resid-

uals ǫij = (Iij − Mij)/σ ij and ignoring any pixels with |ǫij| ≥ k in

subsequent iterations. The reliability of the k-sigma-clip algorithm

depends heavily on the accuracy of the adopted noise model, and

since the initial σ ij values are calculated using an approximation

to Mij, we recommend that the sigma-clipping commences at the

second iteration.

Our final note in this section is that the noise model in equation

(23) could be improved, specifically by considering the noise in-

troduced by the reference image, which is non-negligible when the

S/N of the reference image is similar to that of the target image.

A00 and B08 have previously considered such a noise model. Here,

we explicit a useful noise model for a target image and a combined

reference image that have been registered to the nearest pixel (i.e.

avoiding image resampling):

σ 2
ij =

σ 2
0

F 2
tar,ij

+
Mij

G Ftar,ij

+
∑

rs

K2
rsij σ 2

ref,(i+r)(j+s) (24)

with

σ 2
ref,ij =

1

N2
im

∑

k

[
σ 2

0

F 2
ref,kij

+
R ′

kij

G Fref,kij

]
, (25)

where the R ′
kij represent the Nim images that have been combined

to create the reference image, and Ftar, ij and Fref, kij are the master

flat-field images corresponding to the target image and constituent

images of the reference image, respectively.

2.6 The input data

Ideally, every pixel in the target image should be used in the cal-

culation of H and β, and therefore contribute to the kernel and

differential background solution. However, due to the nature of the

convolution process, the target image model is undefined in a border

of width equal to half the kernel width around the image edges if the

reference image is the same size as the target image, and therefore

these target image pixels cannot be used in the calculation of H and

β. Also, ‘bad’ pixels (e.g. bad columns/rows, hot pixels, saturated

pixels, cosmic ray events, etc.) should be excluded from the calcula-

tions, which means that any target image pixel (i, j) to be included in

the calculation of H and β should be ‘good’ in the target image, and

that all reference image pixels to be used for calculating the target

image model at (i, j) should be ‘good’ in the reference image. This

2 Strictly speaking, the fact that the uncertainties σ ij depend on the target

image model Mij also implies that minimizing χ2 is no longer equivalent to

maximizing the likelihood. The maximum likelihood estimator is obtained

instead by minimizing χ2 +
∑

ij ln(σ 2
ij ), which renders the fitting of the

target image model as a nonlinear problem.
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implies that a bad pixel in the reference image can discount a set of

pixels equal to the kernel area in the target image, and therefore, as

suggested in B08, bad pixels in the reference image should be kept

to a minimum, and kernels with excessively large footprints should

be avoided when there are bad pixels in the reference image (e.g.

see Section 2.3 of Bramich et al. 2011).

The areas of the target image which contain only sky background

and no astronomical objects will only contribute information on the

differential sky background coefficients in the target image model.

Hence, one may limit the set of target image pixels to be used in

the calculation of H and β to a set of image sub-regions encom-

passing the higher S/N objects in the target image, which speeds

the computations (fewer pixel values to be included in the required

summations) while sacrificing some information. We note that con-

trary to the statements of some authors (e.g. M08), these sub-regions

need not be centred on isolated stars. In fact, sub-regions of crowded

high S/N objects (PSF-like or not) are precisely the image regions

that contain the most information on the convolution kernel and

differential background, because each pixel contains PSF and back-

ground information at a high S/N ratio.

2.7 Difference images

We briefly mention that the definition of a difference image Dij is

Dij = Iij − Mij . (26)

This image of residuals consists of noise (mainly Poisson noise

from photon counting) and any differential flux from objects that

have varied in brightness and/or position compared to the epoch

of the reference image, since constant sources are fully subtracted

during the DIA process. However, if an inappropriate kernel and/or

differential background model is chosen, then unwanted system-

atic errors will leave signatures in the difference image as large-

amplitude high-spatial-frequency residuals at the positions of the

brighter objects (for inappropriate kernel models), and as lower

amplitude low-spatial-frequency deviations in the difference image

background from zero (for inappropriate differential background

models). We note that if a reliable noise model exists, then the

normalized difference image ǫij, defined by

ǫij =
Iij − Mij

σij

, (27)

acts as a useful guide to the level of flux variation in any one pixel,

since the pixel values in this image are in units of sigma deviations.

The purpose of producing a difference image is to enable accu-

rate differential photometry to be performed in the absence of PSF

crowding for all objects of interest (constant and variable). The ob-

ject positions are presumed known from analysis of the reference

image or from fitting of the differential flux on the difference image.

3 C O M M O N BA S I S F U N C T I O N C H O I C E S

In this section, we elucidate the common choices for the kernel basis

functions. We stress that since the choice of basis functions is fully

independent of the DIA framework presented in the previous sec-

tion, the generation of a set of basis functions may be implemented

as code that is completely separate from the DIA code.

3.1 The Gaussian basis functions

A98 introduced the Gaussian basis functions as a set of two-

dimensional radially symmetric Gaussian functions of different

widths, each one modified by a polynomial of the kernel coor-

dinates of a certain degree. The justifications for this choice are that

an instrumental PSF is approximated by a Gaussian to first order,

the convolution of a Gaussian by a Gaussian is also a Gaussian,

and that a Gaussian decays rapidly beyond a given distance. The

user is required to specify the number of Gaussian functions Ngau,

and then for each Gaussian function (indexed by λ), the user must

specify the width σ gau,λ and the degree of the modifying polynomial

Dgau,λ. It follows that the definition of the qth kernel basis function

corresponding to the λth Gaussian with a modifying polynomial

term of degree dgau,u and degree dgau,v in the u and v coordinates,

respectively, is given by

κq (u, v) = u dgau,u v dgau,v e
−(u2+v2)/2σ 2

gau,λ , (28)

where 0 ≤ dgau,u + dgau,v ≤ Dgau,λ. The number of kernel basis

functions Nκ in this prescription is given by

Nκ =
Ngau∑

λ=1

(Dgau,λ + 1)(Dgau,λ + 2)

2
. (29)

The Gaussian basis functions need to be numerically integrated

via equation (10) to form the corresponding discrete kernel basis

functions, and then subsequently they should be transformed as

detailed in Section 2.3 to allow control over the spatial variation

of the photometric scale factor. Finally, we note that the adoption

of a set of Gaussian kernel basis functions does not provide any

simplification in the calculation of the basis images [R ⊗ κq]ij via

equation (9).

Typical specifications for the Gaussian basis functions in the

literature usually include three Gaussian functions, and the ISIS2.23

software developed by A98 and A00 adopts Gaussian widths of 0.7,

2.0, and 4.0 pix with modifying polynomials of degrees 6, 4, and

3, respectively, by default, resulting in 53 Gaussian basis functions.

Israel et al. (2007) investigated how the optimal choice of Gaussian

basis functions depends on the properties of the images for which

DIA is to be performed (e.g. seeing, S/N, etc.), and although they

manage to give some general recommendations, there seems to

be no unique answer. It has also been noted by Yuan & Akerlof

(2008) that the radial symmetry of the Gaussian functions may

not be appropriate for elliptical PSFs, although it would be trivial

to expand the Gaussian basis function definition in equation (28)

to include elliptical two-dimensional Gaussians with an arbitrary

centre and axis orientation.

3.2 The delta basis functions

Let us introduce the definition of the Kronecker delta-function δij:

δij =

⎧
⎨

⎩

1 if i = j,

0 if i 	= j .
(30)

Let us also assume that there exists a one-to-one correspondence

g : q ↔ (μ, ν) which associates the qth kernel basis function with

the discrete kernel pixel coordinates (μ, ν) such that, without loss

3 http://www2.iap.fr/users/alard/package.html
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of generality, q = 1 ⇔ (μ, ν) = (0, 0). Then we may directly define

the qth discrete kernel basis function κqrs by

κqrs =

⎧
⎨

⎩

δr0 δs0 for q = 1,

δrμ δsν − δr0 δs0 for q > 1,
(31)

where we have already included the transformation as detailed in

Section 2.3 to allow control over the spatial variation of the photo-

metric scale factor. It is clear that when q = 1, κ1rs obtains the value

of 1 at (r, s) = (0, 0) and 0 elsewhere, and that when q > 1, κqrs

obtains the value of 1 at (r, s) = (μ, ν), −1 at (r, s) = (0, 0), and

0 elsewhere. Thus κ1rs adds flux to the PSF core, and the other κqrs

subtract flux from the core and add it back at displaced locations.

We refer to this set of kernel basis functions as the delta basis

functions. The set of delta basis functions may be chosen to cover

any discrete kernel domain (e.g. circular – B08, square – M08,

etc.) by defining the number of kernel basis functions Nκ and the

mapping g appropriately.

The basis images corresponding to the delta basis functions have

a conveniently simple form that may be derived by substituting

equation (31) into equation (9) and including a product of delta

functions to combine the two cases into one expression:

[R ⊗ κq ]ij = R(i+μ)(j+ν) + (δμ0 δν0 − 1) Rij . (32)

Hence, the first basis image is the reference image itself, and the

remaining basis images are each formed by shifting the reference

image by the appropriate integer-pixel shift, and then subtracting the

non-shifted reference image. This has important speed and memory

implications when implementing the calculation of the least-squares

matrix and vector (see Section 5).

B08 introduced the idea of solving directly for the kernel pixel

values Krs of a spatially invariant kernel. We note that if we take

κqrs = δrμ δsν for all q as an alternative definition for the discrete

kernel basis functions in equation (31), then the corresponding basis

images are given by [R ⊗ κq]ij = R(i+μ)(j+ν). This definition ignores

any control that we may wish to exercise over the photometric scale

factor, but this is not an issue when considering a spatially invariant

kernel (as in B08). Substitution of this new result for the basis

images into equations (20) and (21), and assuming that the kernel

and differential background are spatially invariant, leads directly to

the least-squares matrix and vector derived by B08 from their direct

solution approach. Hence, adoption of the delta basis functions in the

A98 DIA framework is equivalent to solving directly for the kernel

pixel values. A similar line of argument extends this conclusion to

spatially variable kernels.

The delta basis functions require minimal information from the

user about the kernel shape and size for their specification. However,

the dependence of the optimal kernel shape and size on the reference

and target image properties has not yet been investigated, although

it is clear that the greater the difference in PSF width between the

images, the larger the size of the convolution kernel that is required

to match the PSFs.

3.3 The mixed-resolution delta basis functions

The number of delta basis functions, and hence the number of

coefficients aqmn, grows as the number of kernel pixels, which in

turn grows as the square of the kernel radius. Since the least-squares

matrix is a square matrix of size Npar by Npar elements, the number

of elements to be calculated in the least-squares matrix grows as the

kernel radius to the fourth power. Hence, the time taken to calculate

the solution for the coefficients aqmn and bkl increases considerably

when solving for larger kernels.

To address this performance issue, Albrow et al. (2009) intro-

duced the idea of ‘binned’ kernel pixels in the outer part of the

kernel on the assumption that the kernel shows slower variations of

smaller amplitude beyond a certain radius. Specifically, they intro-

duced 3 × 3 binned kernel pixels beyond a kernel radius of 7 pix to

replace the single kernel pixels, which greatly reduces the number

of parameters to be solved for while maintaining a sufficiently large

kernel. For example, for a circular kernel of radius 13 pix, which

fits in a square array of 27 by 27 pixels, there are 577 single kernel

pixels. Adopting the 3 × 3 binned kernel pixels beyond a radius of 7

pix results in 233 parameters, of which 177 are single kernel pixels

and 56 are 3 × 3 binned kernel pixels. The number of elements to

be calculated in the least-squares matrix is consequently reduced to

∼16 per cent without compromising the extent of the kernel model.

Fig. 1 shows the distribution of single (red) and 3 × 3 binned (green)

kernel pixels for this example.

We generalize the idea of a binned kernel pixel to that of an

extended delta basis function defined by

κqrs =

⎧
⎨

⎩

(1/Npix,q ) + (δμ0 δν0 − 1) δr0 δs0 for (r, s) ∈ Sq ,

(δμ0 δν0 − 1) δr0 δs0 for (r, s) /∈ Sq ,
(33)

where Sq is the set of kernel pixels spanned by the extended delta

basis function (of any shape and spatial distribution), and Npix, q is

the number of elements in Sq. Note that we have assumed that the

one-to-one correspondence g : q ↔ (μ, ν) is defined with q = 1

⇔ (μ, ν) = (0, 0). Again, we have forced the sum of the extended

delta basis function to be unity if it is the first kernel basis function

(q = 1), and to be zero if it is not (q > 1), in order to be able to

exercise control over the spatial variation of the photometric scale

factor.

The basis image corresponding to the extended delta basis func-

tion defined in equation (33) is easily derived by substitution into

Figure 1. The distribution of single (red) and 3 × 3 binned (green) kernel

pixels for a circular kernel of radius 13 pix that uses 3 × 3 binned kernel

pixels beyond a radius of 7 pix.
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equation (9):

[R ⊗ κq ]ij =
1

Npix,q

⎡

⎣
∑

(r,s)∈Sq

R(i+r)(j+s)

⎤

⎦ + (δμ0 δν0 − 1) Rij . (34)

Therefore, this basis image is formed by averaging Npix, q versions of

the reference image with each one shifted by the appropriate integer-

pixel shift, and then subtracting the non-shifted reference image

(except if this is the first basis image). Again, this has important

speed and memory implications when implementing the calculation

of the least-squares matrix and vector (see Section 5). We note that

the basis images corresponding to the 3 × 3 binned kernel pixels

from Albrow et al. (2009) are formed from integer-pixel shifted

versions of a box-car smoothed reference image.

We refer to a set of basis functions as mixed-resolution if they

include any combination of delta basis functions and extended delta

basis functions, and we emphasize that extended delta basis func-

tions need not be square and they may be of any shape (e.g. circles,

rectangles, rings, arcs, etc.). We also note that the delta basis func-

tion is a special case of the extended delta basis function, and that

overlapping extended delta basis functions are acceptable in a set

of kernel basis functions as long as none of the extended delta basis

functions may be constructed as a linear combination of any of the

other kernel basis functions. If this condition is not met, then the

solution for the coefficients in the target image model is degener-

ate. Finally, we mention that mixed-resolution delta basis functions

have the potential to be used in kernels with an adaptive resolution,

which is a subject that has not yet been investigated in terms of its

application to DIA.

4 VA L I DAT I N G A N D D E M O N S T R AT I N G

T H E A L G O R I T H M

So far we have only examined the theory of our general DIA formu-

lation. We now proceed to validate the algorithm using simulated

images. We also demonstrate the ability of the algorithm to correct

for a spatially varying differential transparency across the image

area using real data.

4.1 Simulated image data

Our first task is to check that the algorithm can recover the exact

model coefficients used to generate a set of simulated image data

without any artificial noise added to the pixel values. By doing this

we are validating our DIA formulation by confirming that there are

no degeneracies in the target image model that we did not foresee.

We generate a reference image of size 1000 × 1000 pix with a

constant sky level of 1000 ADU and with 5000 stars. The stars are

generated using a Gaussian PSF with a full width at half-maximum

(FWHM) of 4 pix, pixel coordinates drawn from a uniform distri-

bution over the detector area, and log-fluxes drawn from a uniform

distribution between 2 and 5 (i.e. stars have fluxes between 102 and

105 ADU). The image parameters that we have chosen are actually

not important, and the tests in the absence of artificial noise give

the same results so long as there are at least a few stars spread out

over the image.

We then generate a set of target images from the reference image

using equation (8) for various sets of kernel basis functions (Gaus-

sian, delta and mixed-resolution) and values for the corresponding

coefficients, and for all combinations of dP, dB, and dS (defined in

Section 2.3) taken from the set {0, 1, 2, 3}. We find that when we

fit each target image with the model used to generate it, we can

recover the exact input values (to within numerical precision) of

the coefficients aqmn and bkl in equation (8) for all cases. Hence

we confirm that our algorithm works and that there are no hidden

degeneracies.

Next we generate a set of target images from the reference image

by convolving the reference image with a spatially varying kernel

of polynomial degree d ′
S with the kernel normalized to a unit sum at

each pixel. Then we multiply the convolved reference image with a

polynomial surface of degree d ′
P representing the photometric scale

factor and we add a polynomial surface of degree d ′
B representing the

differential background. We have done this for all combinations of

d ′
P, d ′

B, and d ′
S taken from the set {0, 1, 2}. In this set-up, the degree

of spatial variation of the kernel shape is actually d ′
P + d ′

S since

the polynomial surface for the photometric scale factor multiplies

the kernel pixel values which also spatially vary as a polynomial.

Therefore, the appropriate (linear) target image model has dP = d ′
P,

dB = d ′
B and dS = d ′

P + d ′
S, and when we adopt such a model we

find that we can recover the exact values for the model coefficients

(again to within numerical precision). If we naively set dP = d ′
P,

dB = d ′
B, and dS = d ′

S for our target image model, then the algorithm

does not manage to perfectly fit the target image, leaving significant

residuals.

Now we consider how the algorithm performs for simulated im-

ages with added artificial noise. We adopt the same reference image

as before and we use delta basis functions with d1 = dP = 1 and

dq = dS = 2 for all q > 1. We define the kernel model to be a

square array of 7 × 7 pixels. The target image model coefficients

are arbitrarily chosen and specifically we set a1mn = {1.1, 0.3, 0.1}
for (m, n) = {(0, 0), (1, 0), (0, 1)}. Also, we define dB = 0 and set

b00 = 100. We then use all of these definitions in equation (8) to

generate a noiseless target image Sij.

From the noiseless target image Sij, we generate 103 noisy ver-

sions. Each noisy target image Iij is formed by generating a 1000 ×
1000 pixel image �ij of values drawn from a normal distribution

with zero mean and unit σ , and then computing

Iij = Sij + �ij

√
σ 2

0 + Sij , (35)

where the coefficient of �ij is derived from equation (23) for G = 1

e−/ADU and Fij = 1. We adopt a reasonable value for the readout

noise of σ 0 = 5 ADU. For each noisy target image, we fit the

same model used to generate the noiseless target image, employing

the iterative scheme described in Section 2.5 (but without sigma

clipping).

In the plots along the diagonal of Fig. 2, we show the distributions

of the coefficients a1mn for (m, n) = {(0, 0), (1, 0), (0, 1)} and b00

as derived from the fits to the 103 noisy target images. The red and

black histograms represent the coefficient distributions after the

first and third iterations, respectively, and the reason for iterating

the solution is clear; namely, approximating Mij with Iij in the noise

model in equation (23) in the first iteration introduces a significant

bias into the fitted coefficients (in this example b00 is underestimated

by ∼1 ADU or ∼1 per cent; see also Appendix B). We also report

in the plots the measured mean and standard deviation of each

coefficient distribution after the third iteration. The measured means

of the coefficient distributions are an excellent match to the input

coefficient values (no differences to at least five significant figures),

and the measured standard deviations are an excellent match to the

formal uncertainties in the coefficients reported by the algorithm

(calculated via equation (22) and displayed as ‘sigma’). For the

coefficient distributions after the third iteration, we fit a Gaussian

with mean and sigma equal to the corresponding input coefficient
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Figure 2. Plots along the diagonal: Histograms of the coefficients a1mn for (m, n) = {(0, 0), (1, 0), (0, 1)} and b00 as derived from the fits to the 103 noisy

target images. The red and black histograms represent the coefficient distributions after the first and third iterations, respectively. The blue curves are fitted

Gaussian distributions centred on the input coefficient values and with widths equal to the formal uncertainties in the coefficients. Off-diagonal plots: Scatter

plots for all of the coefficient pairs that can be formed from a100, a110, a101 and b00 using the results of the fits to the 103 noisy target images. The red and

black points represent the fitted coefficients after the first and third iterations, respectively. The blue curves are formal 1σ -error ellipses.

value and the formal uncertainty in the coefficient, respectively, and

we plot the Gaussian fits as the blue curves. One can see that the

coefficient distributions follow the Gaussian distributions very well.

In the off-diagonal plots of Fig. 2, we show scatter plots for all

of the coefficient pairs that can be formed from a100, a110, a101 and

b00 using the results of the fits to the 103 noisy target images. The

red and black points represent the fitted coefficients after the first

and third iterations, respectively. In each plot we also display the

formal 1σ -error ellipses (blue curves) as provided by the covari-

ance matrix of the fit (see Section 2.4). It is encouraging to see that

there are virtually no correlations between the target image model

coefficients a100, a110 and a101 associated with the spatial variation

of the photometric scale factor, or between the differential back-

ground coefficient b00 and a110 or a101. Also, as expected, there is

a strong anti-correlation between the zeroth-order coefficients for

the photometric scale factor and the differential background, a100

and b00.

The anti-correlation between a100 and b00 is a well-known feature

of DIA that occurs when the reference image includes a non-zero

background level. The kernel basis functions with non-zero sums
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in the target image model (equation 8) serve to blur and scale

the reference image, including the background level, and hence

the model terms for the differential background must compensate

for this effect in the opposite sense. The consequence is that if the

photometric scale is overestimated, then the differential background

will be underestimated to compensate, and vice versa. To minimize

the amplitude of this anti-correlation, we recommend subtracting

the sky background from the reference image before applying DIA

(as suggested by B08 in their Section 2.2), a procedure which could

also include the subtraction of the spatially varying components of

the background (i.e. to flatten the background).

The results of our investigations in this Section lead us to conclude

that our DIA algorithm is working exactly as expected for simulated

images with added artificial noise.

4.2 Real image data

We demonstrate our DIA algorithm using a pair of calibrated images

from a commercial telescope (Celestron 8-inch Schmidt-Cassegrain

f = 2032 mm) and CCD camera (Kodak KAF-1603ME) with a pixel

scale of ∼1.8 arcsec/pix, a FOV of 0.26 × 0.26 degrees, and no

filter. We designate one of the images as the reference image and

the other as the target image. Since both images are undersampled,

it is necessary to pre-blur them before applying DIA. We blur the

reference and target images with Gaussian convolution kernels of

FWHMs 3.5 and 4.0 pix, respectively.

The target image was chosen specifically because it was taken

through light clouds. We cropped the images appropriately in order

to register them to the nearest pixel. We display the reference and

target images in the top two panels of Fig. 3 with the same linear

scale and dynamic range of 700 ADU. The black regions are masked

pixels that cover saturated stars. To the right of each image, we

show three magnified image stamps corresponding to the red boxes

marked in each image. These image stamps contain some of the

brightest stars in the images which are most suitable for inspecting

the quality of the difference images in the following tests.

We proceed to fit the target image using the reference image and

a set of delta basis functions representing a square kernel array of

size 9 × 9 pixels. After some experimentation with different values

for dP, dB and dS, we find that the differential background is only

satisfactorily modelled for dB ≥ 3. The resulting difference images

for each combination of dP and dS taken from the set {0, 1} and with

dB = 3 are displayed in the middle four panels of Fig. 3, all with

the same linear scale. The complicated residuals in the differential

sky background are apparent in all cases.

For (dP, dB, dS) = (0, 3, 0), the dominant residuals at the star

positions show an under-subtraction of the star fluxes towards the

top-right of the difference image, and an over-subtraction of the

star fluxes towards the bottom-left, which is clearly due to the

presence of spatial transparency variations that are not modelled

by the spatially invariant photometric scale factor. This is also the

case for (dP, dB, dS) = (0, 3, 1), but since the kernel model is

allowed to vary in shape across the image area, the zero-sum delta

basis functions try to mitigate the spatial transparency variations by

moving flux from the reference image background to the star PSF

for those stars whose fluxes are under-subtracted, and by moving

flux from the star PSF to the reference image background for those

stars whose fluxes are over-subtracted, resulting in smaller residuals

at the star positions but with the residuals spread out over a larger

area. This is most visible in the image stamps on the right which

still show under- and over-subtraction of the star fluxes, but spread

out over more pixels. Setting (dP, dB, dS) = (1, 3, 0) successfully

removes the under- and over-subtraction of the star fluxes from the

difference images, but instead leaves positive-negative residuals at

each star position whose orientation is a function of position, which

is a consequence of not modelling spatial variations in the kernel

shape.

Adopting (dP, dB, dS) = (1, 3, 1) produces difference images

where only the brightest stars can be seen to be mildly under- or

over-subtracted, which is a much better result than what current

DIA algorithms are capable of producing (i.e. the (dP, dB, dS) =
(0, 3, 1) case). It is quite possible that further improvements in the

difference image residuals may be obtained by adopting even higher

polynomial degrees for dP, dB and dS, but a full optimization of the

production of the difference image in our example is outside of the

scope of this paper.

In the bottom two panels of Fig. 3, we reproduce the fitted pho-

tometric scale factor and differential background as a function of

position over the image area which show that the atmospheric trans-

parency diminishes and the sky background brightens for the parts

of the target image that are more affected by clouds. This result

is to be expected since clouds attenuate the incoming light from

outside the Earth’s atmosphere, but they also increase the local sky

brightness by scattering ambient light (e.g. light pollution, moon

light, etc.) back to the ground.

However, to be absolutely sure that this observed anti-correlation

is not an artefact of our modelling procedure, we performed the

following test. We cut out ten well-distributed image stamps around

bright stars from the reference image, and we also cut out the cor-

responding stamps from the target image. For each pair of image

stamps, we proceeded to fit the target image stamp using the refer-

ence image stamp and the same kernel configuration that we used

to model the full target image, and we adopted a spatially invari-

ant kernel and differential background (i.e. (dP, dB, dS) = (0, 0,

0)). We compared the photometric scale factor and the differential

background derived from each fit, which represent robust local esti-

mates of these quantities, to the predicted values of these quantities

at the stamp coordinates from our model for the full target image,

and we found a very good agreement (to within ∼2–4 per cent).

This confirms that the results from our new DIA algorithm are fully

consistent with the results that can be obtained using current DIA

algorithms.

This real data example has served as a proof-of-concept where we

have demonstrated that we can use our DIA algorithm to success-

fully model a spatially varying photometric scale factor. We have

also shown how the results of solving for a spatially invariant kernel

and differential background for small image sub-regions (stamps)

in different parts of the image can be used to perform consistency

checks on the solution for the target image model from our DIA

algorithm.

5 IM P L E M E N TAT I O N H I N T S

A N D O P T I M I Z AT I O N T R I C K S

Producing difference images is a very computationally intensive

task, especially when modelling a spatially varying kernel as we

have described in Section 2. However, many applications of DIA

require quick (within seconds or minutes) processing of the target

images (e.g. robotic searches for anomalies in microlensing events

towards the Galactic bulge – RoboNet-II – Tsapras et al. 2009,

supernovae searches – Palomar Transient Factory – Gal-Yam et al.

2011, etc.). Hence the optimization of the calculations required to

produce the difference images is an important aspect of DIA. In the

following subsections, we describe some useful optmization tricks
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DIA: a spatially varying photometric scale 2285

Figure 3. Top: A pair of calibrated images where the target image (right) was taken through light clouds. Middle: Difference images for various target

image models. The red boxes are displayed as magnified image stamps to the right of each difference image. Note that in the bottom-left hand corner of the

upper image stamp, the positive-negative residuals are caused by a moving object. Bottom: The spatial dependence of the fitted photometric scale factor and

differential background for the target image model with (dP, dB, dS) = (1, 3, 1). See text for more details.
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that may be used to obtain some substantial improvements in speed,

and that have the potential to rival brute force DIA implementations

on graphical processing units (GPUs; Fluke et al. 2011).

5.1 Memory considerations

First we consider what information needs to be stored in computer

memory to enable the efficient calculation of the least-squares ma-

trix H and vector β, and the target image model Mij. We limit

ourselves to considering arrays that are of the size of the target

image, since the other information that needs to be stored in com-

puter memory (e.g. the discrete kernel basis functions κqrs) takes up

negligible space in comparison.

For efficiency, we need to pre-calculate and store in computer

memory those images that will be used more than once in the

calculation of the difference image. In the general case, these images

are the target image Iij, the reference image Rij, the inverse-variance

image 1/σ 2
ij , the Nκ basis images [R ⊗ κq]ij, and the Npoly polynomial

images of the spatial coordinates ηm
i ξn

j for m + n ≥ 1. If dmax is

the maximum degree of the polynomial spatial variation of the

kernel basis function coefficients and the differential background,

then the maximum degree of the polynomial images of the spatial

coordinates in the least-squares matrix H is 2dmax (see equation 20),

which implies that

Npoly = [(2dmax + 1)(2dmax + 2)/2] − 1 = dmax(2dmax + 3). (36)

For the Gaussian basis functions, with the typical choice of 53

such functions (see Section 3.1), it is perfectly feasible to store

all of the corresponding basis images in computer memory (e.g.

53 floating point 2000 × 2000 pixel images take up ∼831 Mb of

memory using IDL). Furthermore, the spatial variation of the kernel

basis function coefficients is not usually modelled with a higher

degree polynomial than a cubic polynomial, and a cubic polynomial

variation requires Npoly = 27. Again, it is possible to store all of the

required 1 + 1 + 1 + 53 + 27 = 83 images in computer memory

(e.g. 83 floating point 2000 × 2000 pixel images take up ∼1280

Mb of memory using IDL).

For the delta basis functions, a typical circular kernel of radius

10 pix generates 349 basis images, which is a more problematic

number of images to store in the computer memory (especially for

a 32-bit machine). However, the basis images for the delta basis

functions may be generated without performing a computationally

costly convolution by simply subtracting the reference image from a

shifted version of itself (see equation 32). Hence, if one is prepared

to recalculate each basis image as needed, and assuming that up to

27 polynomial images are required, then only 1 + 1 + 1 + 1 +
27 = 31 images need to be stored in computer memory. Similarly,

using the same approach for mixed-resolution delta basis functions

with Nres resolutions only requires the storage of Nres versions of

the reference image, each one produced by convolving the original

reference image with a box-car of the shape of the relevant extended

delta basis function.

5.2 Calculating the least-squares matrix

By far, most of the arithmetic operations required to fit the target

image model and produce a difference image are performed in the

construction of the least-squares matrix H and vector β. In fact, as-

suming that the inverse-variance, basis, and polynomial images are

pre-calculated, and that D is the polynomial degree of spatial vari-

ation of each kernel basis function and the differential background,

then there are Npar = (Nκ + 1)(D + 1)(D + 2)/2 coefficients to

be determined, and brute force computation of H requires the cal-

culation of N2
par entries, where the vast majority of these entries

require 3Npix multiplications and Npix − 1 additions (note that Npix

is the number of target image pixels that are being modelled). Fur-

thermore, β requires the computation of another Npar entries, where

again the vast majority of these entries require 3Npix multiplications

and Npix − 1 additions. Hence, the number of arithmetic operations

Nop for the brute force computation of H and β, normalized by Npix,

is given by

Nop ≈ 4Npar(Npar + 1). (37)

We have already mentioned in Section 2.6 that limiting the target

image pixels to be used in calculating H and β to a set of suitable

image sub-regions minimizes the number of required arithmetic

operations for minimal loss of precision on the coefficients in the

target image model. This clearly follows from the discussion in the

previous paragraph.

We have also noted in Section 2.4 that H is symmetric. This

means that in reality only Npar(Npar + 1)/2 entries in H need to be

calculated, and that the number of arithmetic operations reduces to

Nop ≈ 2Npar(Npar + 3). (38)

Now we consider the order in which we may efficiently calculate

the entries of H and β, and since H has the much larger number

of entries, our choice is driven by the structure of H. Note that

in the following, we treat the differential background as having a

corresponding basis image set to unity at all pixels (see Section 2.1).

Inspection of equation (20) for H reveals that one has the choice of

either:

(i) For each of the (Npoly + 1) polynomial images, cycle through

the (Nκ + 1)2 pairs of basis images to calculate the corresponding

(Nκ + 1)2 and Nκ + 1 entries in H and β, respectively.

(ii) For each of the (Nκ + 1)2 pairs of basis images, cycle through

the (Npoly + 1) polynomial images to calculate the corresponding

[(D + 1)(D + 2)/2]2 and (D + 1)(D + 2)/2 entries in H and β,

respectively.

We note that to calculate each entry in H, a pair of basis images needs

to be multiplied together before performing the required summation,

whereas the polynomial images are already pre-calculated from the

coordinate images in computer memory, and therefore option (ii)

is the most efficient because it minimizes the number of image

multiplications that are required. Furthermore, in the case of the

delta basis functions, the basis images are calculated as needed, and

therefore option (ii) also minimizes the number of times that each

basis image must be calculated.

Having justified the choice of option (ii) for the order in which

we should calculate the entries of H and β, we adopt a corre-

sponding parameter ordering in the parameter vector α that leads

to the structure for H that we illustrate in Fig. 4 for Nκ = 15

(artificially small for clarity) and D = 2. The matrix H is made

up of (Nκ + 1)2 square sub-matrices (top panel of Fig. 4), where

each sub-matrix corresponds to the product of a single basis image

pair [R ⊗ κq ]ij [R ⊗ κq ′ ]ij . Furthermore, each square sub-matrix

has [(D + 1)(D + 2)/2]2 entries, where each entry corresponds to

a different polynomial image. However, within a single sub-matrix,

there are only Npoly + 1 = (D + 1)(2D + 1) independent entries

(equation 36; bottom panel of Fig. 4). In our specific example for

D = 2, there are 15 independent entries out of 36 entries in each

sub-matrix (i.e. less than half of the entries need to be calculated).

The discovery of this property of H is exceptionally important

because it greatly decreases the number of required calculations.
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Figure 4. Top: The full least-squares matrix H divided up into (Nκ +
1)2 square sub-matrices, where each sub-matrix has [(D + 1)(D + 2)/2]2

entries. For this example we have adopted an artificially small value of

Nκ = 15 for clarity, and D = 2. Bottom: A magnified view of a single square

sub-matrix. Each sub-matrix in H has the same structure. Entries in the

sub-matrix that employ the same polynomial image in their calculation have

the same background colour (except for the single entries corresponding to

the polynomial images 1, η4
i , and ξ4

j ). The polynomial term marked in each

sub-matrix entry indicates the degree in the spatial coordinates (x, y) of the

polynomial image corresponding to that entry.

Neither M08 nor Quinn et al. (2010) mention this optimization, and

A00 claim that the full modelling of the spatial variation of the kernel

‘quickly becomes intractable’, and that ‘order 3 requires roughly

100 times more calculations than a constant kernel solution’. We

find that capitalizing on the pattern in the sub-matrices of H for a

spatial variation of the kernel of degree 3, one would only require

Npoly + 1 = 28 times more calculations than for a constant kernel

solution, which is a very significant improvement in the potential

performance of the algorithm.

We are now in a position to develop an optimized algorithm for

computing H and β. We propose the following procedure:

(i) For each row of square sub-matrices in H, carry out steps

(ii)–(vii), and then finish.

(ii) Calculate [R ⊗ κq ]ij / σ 2
ij and Iij [R ⊗ κq ]ij / σ 2

ij for the cur-

rent row, which requires 2Npix multiplications.

(iii) For each sub-matrix in the current row that lies on the di-

agonal or in the upper half of H, carry out steps (iv)–(v), and then

move on to step (vi).

(iv) Calculate [R ⊗ κq ]ij [R ⊗ κq ′ ]ij / σ 2
ij for the current sub-

matrix, which requires Npix multiplications.

(v) For each pre-calculated polynomial image, calculate the

expression
∑

ij ηm+m ′
i ξn+n ′

j [R ⊗ κq ]ij [R ⊗ κq ′ ]ij / σ 2
ij , which re-

quires Npix multiplications (except for m + m ′ + n + n ′ = 0) and

Npix − 1 additions, and fill out the relevant entries of the current

sub-matrix.

(vi) Fill out the entries of the sub-matrices in the current row that

lie in the lower half of H by using the fact that H is symmetric,

which takes a negligible number of operations.

(vii) For each relevant pre-calculated polynomial image, calcu-

late the expression
∑

ij ηm
i ξn

j Iij [R ⊗ κq ]ij / σ 2
ij , which requires

Npix multiplications (except for m + n = 0) and Npix − 1 additions,

and fill out the corresponding entries in β.

We now attempt to estimate the number of arithmetic operations

that are required to calculate H and β using our optimized algorithm.

Observe that step (ii) is repeated Nκ + 1 times, steps (iv) and (v) are

each repeated (Nκ + 1)(Nκ + 2)/2 times of which step (v) requires

∼(2Npix)Npoly + Npix arithmetic operations, and step (vii) is repeated

Nκ + 1 times and requires ∼(2Npix)[(D + 1)(D + 2)/2] − Npix

arithmetic operations. Using Npoly = D (2D + 3), then we derive

the number of arithmetic operations in our optimized algorithm,

normalized by Npix, to be

Nop ≈ (Nκ + 1)
[
Nκ (D + 1)(2D + 1) + 5D2 + 9D + 5

]
. (39)

In Fig. 5, for D = 0, 1, 2 and 3, we plot in black the ratio of the

expression in equation (39) to the expression in equation (37) as a

function of the kernel radius (pix) for a set of delta basis functions

representing a circular kernel. We see that for typical kernel radii of

∼8–12 pix, we expect that our optimized algorithm will reach an

efficiency in the number of arithmetic operations of ∼0.251, 0.167,

0.104 and 0.070 compared to the brute force computation for D =
0, 1, 2 and 3, respectively. Also, in Fig. 5, for D = 0, 1, 2 and 3,

we plot in red the ratio of the expression in equation (39) to the

expression in equation (38) as a function of the kernel radius (pix)

for the same set of delta basis functions. We further conclude that

our optimized algorithm will reach an efficiency in the number of

arithmetic operations of ∼0.501, 0.334, 0.209 and 0.140 compared

to the brute force computation that capitalizes on the symmetry in

H for D = 0, 1, 2 and 3, respectively.
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Figure 5. Plot of the ratio of the number of arithmetic operations required

to calculate H and β for our optimized algorithm compared to the same

quantity for the brute force computation (black), and for the brute force

computation that capitalizes on the symmetry in H (red), when we adopt a

set of delta basis functions representing a circular kernel. These ratios are

plotted as a function of the kernel radius (pix) and for D = 0, 1, 2, and 3.

6 C O N C L U S I O N S

The general framework presented in this paper treats the problem

of matching the PSF, photometric scaling, and sky background

between two images, where each of these components varies as a

polynomial of the spatial coordinates. Where this paper improves

over previous works on DIA are as follows:

(i) We demonstrate how to model a spatially varying photometric

scale factor within our framework, which is a new concept that will

be important for DIA applied to wide-field imaging data that may

suffer transparency and airmass variations across the field-of-view.

(ii) We show how to decouple the spatial variation of each kernel

basis function, the photometric scale factor, and the differential

background from each other, which allows more control over the

level of spatial variation of each component in the target image

model.

(iii) In Section 2 we develop what we hope is a clear notation

and logical order for the DIA equations and methodology aimed at

aiding others in creating DIA software implementations.

(iv) We prove the equivalence of adopting delta basis functions

for the kernel model and solving directly for the kernel pixel values

(B08).

(v) We introduce the mixed-resolution delta basis functions with

the aim of reducing the size of the least-squares problem to be solved

when using delta basis functions, and we elucidate their properties

and implications for DIA.

(vi) We present some important optimizations in the calculation

of the least-squares matrix which lead to a reduction in the number

of arithmetic operations that need to be performed for typical kernel

radii of ∼8–12 pix to ∼16.7 per cent, ∼10.4 per cent, and ∼7.0 per

cent compared to the brute force computation for linear, quadratic,

and cubic spatial variations, respectively, of the target image model.
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APPENDI X A

Here we show that the convolution of the reference image Rij with

a continuous kernel basis function κq(u, v) may be calculated as a

discrete convolution.

First, consider the definition of continuous convolution applied

to the convolution of the reference image

[R ⊗ κq ](x, y)=
∫ ∞

−∞

∫ ∞

−∞
R(x + u, y + v) κq (u, v) du dv, (A1)

where R(x, y) is a continuous representation of the reference image.

Over the area of one pixel with coordinates (xi, yj), the value of

the reference image is a constant, i.e. R(x, y) = Rij for xi − 1/2 ≤
x < xi + 1/2 and yj − 1/2 ≤ y < yj + 1/2, and therefore

[R ⊗ κq ](xi, yj ) =
∑

rs

R(i+r)(j+s)

∫ s+ 1
2

s− 1
2

∫ r+ 1
2

r− 1
2

κq (u, v) du dv,

(A2)

where r and s are integer indices varying over the domain where the

kernel basis function achieves non-zero values.

Adopting the notation [R ⊗ κq]ij for the image [R ⊗ κq](xi, yj),

then we may write

[R ⊗ κq ]ij =
∑

rs

R(i+r)(j+s) κqrs, (A3)

κqrs =
∫ s+ 1

2

s− 1
2

∫ r+ 1
2

r− 1
2

κq (u, v) du dv, (A4)

where r and s now represent the pixel indices corresponding to the

column r and row s of the discrete kernel basis function κqrs.

Hence, the image [R ⊗ κq](x, y) = [R ⊗ κq]ij, which we refer

to as a basis image, may be calculated via the discrete convolution

defined in equation (A3).

APPENDI X B

We wish to briefly investigate the consequences of approximating

Mij with Iij in the noise model in equation (23) as opposed to iterating
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the solution and using the current image model from equation (8) to

update the noise model at each iteration. For this purpose we use the

software developed in B08 for the case of a kernel and differential

background that are both spatially invariant.

We create a 205 × 205 pixel noiseless reference image Rij by

setting a constant sky level of 1000 ADU and adding in 100 objects,

each of flux 105 ADU and with a two-dimensional Gaussian pro-

file of FWHM 4 pix, at random spatial coordinates drawn from a

uniform distribution across the image area. We also create a 201 ×
201 pixel noiseless target image Sij by convolving the Rij with a

discrete 5 × 5 pixel kernel calculated via numerical integration

of equation (10) for a two-dimensional Gaussian of FWHM 2 pix

centred at the kernel centre and normalized to a sum of unity.

We then perform the following experiment, adopting reasonable

values for the readout noise and gain of σ 0 = 5 ADU and G = 1

e−/ADU, respectively:

(i) We generate a 201 × 201 pixel image �ij of values drawn from

a normal distribution with zero mean and unit σ , and we construct

a noisy target image Iij via

Iij = Sij + �ij

√
σ 2

0 + Sij , (B1)

where the coefficient of �ij is derived from equation (23) for G =
1 e−/ADU and Fij = 1.

(ii) We solve for a kernel and differential background that are

both spatially invariant to match the reference image Rij to the target

image Iij. For the kernel model, we adopt 25 delta basis functions

covering a 5 × 5 pixel array to match the actual domain of the

discrete pixel kernel used to generate Sij from Rij. For the target

image noise model σ ij we use equation (23) with Mij approximated

by Iij.

(iii) We record the photometric scale factor P 1 and differential

background B1 of the solution obtained in step (ii).

(iv) We iterate the solution for the spatially invariant kernel and

differential background three times (sufficient for convergence),

each time using the current image model Mij calculated via equation

(8) to set the target image noise model σ ij via equation (23).

(v) Again we record the photometric scale factor P 2 and differen-

tial background B2 of the solution obtained during the final iteration

in step (iv).

We repeat the above experiment 105 times and calculate the mean

and standard deviation of each of the quantities P 1, B1, P 2, and B2.

We find that 〈P 1〉 − 1 = 5.38 × 10−6 ± 1.68 × 10−6 and 〈B1〉 =
−1.0085 ± 0.0020 ADU, where the uncertainty in the mean is es-

timated from the standard deviation divided by
√

105. The correct

solution in our experiment should have a photometric scale factor

of unity and a differential background of zero. Clearly, solving the

DIA problem using the data to estimate the uncertainties on the

pixel values in the target image introduces a bias of ∼1 ADU in the

differential background (and a very slight bias in the photometric

scale factor). Hence one cannot assume that the background in the

difference images produced using this method is zero, and aperture

photometry on such difference images should include the compu-

tation and subtraction of a local background, and PSF photometry

should include the local background as a parameter in the fit. The

bias in the differential background solution, which corresponds to

an underestimated sky background in the target image model, is

easily explained by the fact that the background pixels in the target

image that randomly have smaller values than the true sky back-

ground are given more weight (or smaller uncertainties) in the fit

than those background pixels that randomly have larger values than

the true sky background.

For the case where we iteratively solve the DIA problem using

the current image model to determine the uncertainties on the target

image pixel values at each iteration, we find that 〈P 2〉 − 1 = 1.98 ×
10−6 ± 1.68 × 10−6 and 〈B2〉 = −0.0031 ± 0.0020 ADU. There-

fore, at the precision of our experiment (which is well beyond the

photometric precision typically obtained for real data), we conclude

that there is no bias in the derived photometric scale factor or dif-

ferential background for this method, which validates the iterative

method presented in Section 2.5.

Finally, we mention that even though we only report one partic-

ular experiment in this Appendix, we actually performed a range of

experiments on artificial noisy target images generated with differ-

ent set-ups (e.g. different convolution kernels) and we found similar

results in all cases.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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