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DIFFERENCE METHODS FOR DIFFERENTIAL INCLUSIONS: A SURVEY* 

ASEN DONTCHEVt AND FRANK LEMPIO+ 

Abstract. The main objective of this survey is to study convergence properties of difference methods 

applied to differential inclusions. It presents, in a unified way, a number of results scattered in the literature 

and provides also an introduction to the topic. 

Convergence proofs for the classical Euler method and for a class of multistep methods are outlined. It 

is shown how numerical methods for stiff differential equations can be adapted to differential inclusions with 

additional monotonicity properties. Together with suitable localization procedures, this approach results in 

higher-order methods. 

Convergence properties of difference methods with selection strategies are investigated, especially strate­

gies forcing convergence to solutions with additional smoothness properties. 

The error of the Euler method, represented by the Hausdorff distance between the set of approximate 

solutions and the set of exact solutions is estimated. First- and second-order approximations to the reachable 

sets are presented. 

Key words. differential inclusions, difference methods 

1. Introduction. In this survey we consider the following initial value problem for 

ordinary differential inclusions. 

INITIAL VALUE PROBLEM 1.1. Let I = [t0 , T] be a finite inte1Val, Yo E lRn, and F be 

a map from I x ~n into the set of all subsets of~n. 

Find an absolutely continuous function y( ·) on I such that 

(1) y (to) = Yo and iJ ( t) E F ( t, y ( t)) for almost all t E I, 

where iJ ( ·) is the derivative of y ( · ). 

Just to give some motivation for studying differential inclusions, we briefly mention 

several applications where differential inclusions naturally occur. 

A first motivation originates from differential equations with single-valued, discon­

tinuous right-hand sides 

y(t) = f(t,y(t)). 

To get a sound notion of a solution, following [24], this problem has to be restated in the 

form 

y(t) E n n cl (conv (f(t, {z ERn: liz- y(t)ll < 8} \ N))) 

8>0 ~-t(N)=O 

for almost all t E I, where J-l denotes Lebesgue measure on JRn. Hence we arrive at a 

differential inclusion. Differential inclusions of this type occur in a variety of applica­

tions, e.g., in oscillating systems with combined dry and viscous damping [55], [2], [67], 

[51], especially in vehicle dynamics for the description of locking phases during brake 
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maneuvers (62], in elasto-plasticity (8], [15], variable structure systems [70], and elec­

trical circuits [54], [19]. Moreover, the method of lines for nonlinear evolution equa­

tions with discontinuities, respectively, for evolutionary variational inequalities results 

in whole families of differential equations with discontinuous right-hand sides, cf., e.g., 

[56], [14], [6]. In §§3 and 4 we use Example 3.3, cf. [55], [67], describing forced vibrations 

with viscous and dry damping, as model problem for numerical tests. 

A second motivation is given by differential inclusions of the following type 

iJ(t) E -otp(y(t) ), 

where tp : Rn ----+ R is a convex potential function with subdifferential /J<p. Such inclu­

sions have an important property: their equilibrium solutions minimize <p. Moreover, if 

<p achieves a minimum at all, then for every initial value y0 E Rn, the corresponding solu­

tion y( t) as t ----+ oo converges to a minimizer of tp. Hence, there is an interesting connec­

tion between differential inclusions and subgradient methods for convex optimization 

problems, cf. [3], [4], [52]. 

A third motivation, naturally, is given by optimal control problems. Disregarding for 

the moment any objective function and the special structure of controls, the differential 

inclusions (1) could be obtained from a control system 

y(t) = j(t, y(t), u(t)) 

with feasible controls 

u(t) E U(t, y(t)) 

for almost all t E J, where f is single-valued and U(t, x) c JRm for all t E I and x ERn, 

just by taking 

F(t, x) = {j(t, x, z) : z E U(t, x)}. 

In §5, Example 5.3, we describe a special differential inclusion of this type, which was 

originally used in [34] for the numerical test of several selection strategies. Such are­

duction of an optimal control problem to a differential inclusion is especially appropriate 

when we consider Mayer's problem, which can be regarded as minimizing a given objec­

tive function on the reachable set at timeT of initial value problem (1). Furthermore, 

taking the full structure of control functions and even more general objective functions 

into account, the necessary optimality conditions can be analysed in terms of bound­

ary value problems for differential inclusions, cf. [17] and [18], Chapter 3, where a nice 

example of a nonsmooth problem in resource economics is presented, and (59], [60], 

where simplicial fixed point algorithms for set-valued operators are investigated and 

used for the computation of optimal fishing strategies. Control systems with unknown 

but bounded disturbances can be described by differential inclusions; this observation is 

used in [36] for control synthesis of uncertain systems. 

A number of other motivations and applications of differential inclusions can be 

found in [7] and in the books [4], [16], [18], [26], [27], [53], and their references. 

The main objective of this survey is the study of difference methods for differential 

inclusions, which are motivated by difference methods for differential equations with 

single-valued right-hand sides. 

Let X be the set of solutions to (1). As a rule, the set X consists of more than one 

element, that is we have a bundle of trajectories. Consequently, there are various closely 

connected approaches of approximating solutions y(·) EX. 
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The first approach uses a finite difference scheme together with suitable selection 

procedures resulting in a sequence of grid functions 

( 
N N N) 

"lo '"11 ' · · · '"'N (N EN'), 

say, on a uniform grid 

N N tN T to < t1 < ... < N = 

with stepsize 

T- to N N 
h= =t. -t. 1 N J J -

(j = 1, · · ·, N) , 

where, as usual, N' denotes a subsequence of N converging to infinity. 

Naturally, the question arises whether at least a subsequence of the sequence 

( 'f]N (.)) N EN' 

of, say, piecewise linear continuous interpolants of the grid functions converges to a 

solution y( ·) E X of (1 ). For linear multistep methods this question is investigated in §3, 

following the results of K. Taubert [66], [68]. 
Next, the closely connected question arises of how fast this subsequence converges, 

i.e., which order of convergence could be attained by a special sequence of difference 

approximations. This question is addressed to in §4. Stimulated by a paper of C. M. El­

liott [23] on first-order convergence for a special class of methods A. Kastner-Maresch 

succeeded in adapting convergence proofs for numerical methods for stiff differential 

equations to differential inclusions satisfying a uniform one-sided Lipschitz condition; 

compare [32], [33]. This results in higher-order convergence on suitable subintervals 

of I, together with appropriate localization procedures in higher-order methods. Since 

the one-sided Lipschitz condition implies uniqueness of the solution of (1), only spe­

cial classes of problems can be treated in this way, e.g., differential inclusions with addi­

tional monotonicity properties. At least for differential equations with single-valued dis­

continuous right-hand sides transformation algorithms like those proposed by D. Stew­

art [64], [65] lead to higher-order convergence under special assumptions. 

Moreover, the question is interesting, of whether the limit function y(·) E X has 

additional desirable properties. This question is treated in §5 for general differential 

inclusions, where convergence properties of difference methods with selection strategies 

are investigated forcing convergence to solutions with additional smoothness properties. 

We present algorithms and discuss the convergence of selections with minimal norm, 

minimal variation, and with respect to a given reference trajectory. 

The second approach consists in approximating the whole solution set X of (1). 

It exploits the fact that a difference scheme virtually describes a difference inclusion for 

each stepsize h if no special selection procedure is used. As a r;esult, for each h we obtain 

a set Xh of, say, piecewise linear continuous functions, approximating X. Apparently, 

as a definition of convergence of the method we can use an appropriate concept for 

convergence of sets Xh to X ash -t 0. The error can be measured by a suitably defined 

distance between the sets Xh and X. 
As an introductory example, in §2 we consider the classical Euler method. Following 

the first approach we prove directly that ifF is compact convex valued upper semicon­

tinuous and with linear growth, then 

(2) limsupXh C X in C(It, 
h--+0 
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where lim sup is in the usual (Kuratowski) sense, i.e., 

limsupXh = {! E C(It: liminfdist(f,Xh) = o}' 
h~o h~o 

and C(I)n is endowed with the supremum norm. 

If, moreover, F is continuous and integrably Lipschitz in x on bounded sets, then a 

partial result in the spirit of the second approach can be proved: every solution "'N ( ·) E 

Xh of the difference inclusion with sufficiently small stepsize contains in its €-neighbour­

hood in C ( J) n a solution y( ·) E X of the differential inclusion (1 ). 

We consider again Euler method in §6 and show that if F is Lipschitz in both t and 

x, then we have 

where haus( ·, ·) denotes Hausdorff distance. 

The set of solutions X may be approximated not only as a set of functions. Some­

times it may be important to describe the values of all solutions at certain points. Thus 

we arrive at the problem of approximating the reachable sets. 

Lett be a point in I. The "reachable set at the timet" of (1) is defined as 

R(t) = {x ERn: x = y(t) for some y(·) EX}. 

That is, R(t) is the set of all points x that are ends oftrajectories of (1) on [to, t]. Section 

7 shows that a sequence of sets can be determined from the Euler scheme, which is 

Hausdorff convergent to R(t) ash---+ 0, uniformly in t E J. This follows from an older 

result due to A. I. Panasyuk and V. I. Panasyuk [50], concerning the so-called funnel 

equation. Error estimates obtained by M.S. Nikol'skiy [46]-[48] are discussed as well. 

Section 8 presents some recent results due to V. M. Veliov, who found second-order 

approximations related to Runge-Kutta schemes, for both the trajectory bundle and the 

reachable sets. 

All computer tests were made on the VAX cluster of the Computer Center of the 

University of Bayreuth, consisting of a DEC VAX 8600 and 6310. In this survey the 

numerical results are visualized by computer plots. For a more detailed presentation of 

these results compare [34] and [32]. 

2. Euler method. By far the simplest difference method for solving Initial Value 

Problem 1.1 is the classical Euler method which we present in the following as an intro­

ductory example. 

EULER METHOD 2.1. For N EN' C N choose a grid 

to < fi < · · · < t N = T 

with stepsize 

T -to 
h = N = t1 - t1_1 (j = 1, · · ·, N) . 

Let 'flo = y0, and for j = 0, · · ·, N -1 compute "li+l from 

(3) 
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Where necessary, we use the exponent N to emphasize the dependence on N. Only 

to avoid technical difficulties, we work with an equidistant grid. 

As a solution of the difference inclusion (3) for a given stepsize h, it is convenient to 

consider any continuous and piecewise linear function 

such that 

N 1 
1] (t) = 'f}j + h (t- tj )('fJj+l - 'f}j) J.- 0 · · · N -1) 

- ' ' ' 

where ('fJo, · · ·, 'fJN) is any grid function satisfying (3). Let Xh be the set of all solutions 

of (3) for given h. 

The following theorem is present explicitely or implicitely in many works, in various 

forms, see, e.g., J.-P. Aubin and A. Cellina [4, Lemma 1, p. 99], F. H. Clarke [18, Thm. 

3.1.7, p. 118], or A. F. Filippov (26, Thm.1, p. 77]. Its proof uses the idea of the classical 

Peano theorem to prove existence of solutions to differential equations. 

THEOREM 2.2. Suppose that the set-valued map F satisfies the conditions: 

(i) F is nonempty compact and convex valued upper semicontinuous in I x Rn. 
(ii) There exist constants k and a, such that 

llz11 < kllxll +a 

whenever z E F(t, x), x E lRn, t E I. 

Then every sequence (17N(·))NEN' with 'fJN(·) E Xhfor N E N' has a subsequence 

which converges as N--+ oo, uniformly in I, to some solution of the problem (1). In other 

words, (2) is fulfilled. 

Proof. By (ii) we have 

(4) II77J+Iil < (1 + kh) II77J II + ha. 

This implies 

j 

1117J+III < (1 + kh)i+liiYoll + L(l + kh)iah (j = 0, 1, · · · ,N -1). 
i=O 

Hence 

(5) lim sup sup ll'fJN (t) II < oo. 
N-.oo tEl 

By definition, the derivative i]N exists a. e. in I, and, moreover, 

for tj < t < tJ+l· 
Conditions (ii) and (5) imply that 

(6) lim sup esssup lliJN (t)ll < oo. 
N-+oo tEl 
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By Arzela's theorem, TJN ( ·) has a subsequence uniformly convergent to some function 

y(·), moreover, 

r,N (·)--+ z(·) weakly in L 00 (I)"" 

for some further subsequence. It is easy to observe that for all t E I 

y(t) =Yo+ lt z(s)ds, 
to 

i.e., y(-) is absolutely continuous and y(t) = z(t) for almost every t E I. 
Fix t > 0. From (6) 

sup max II11N(t)- TJN(ti)ll ~ 0 ash~ 0, 
O:$iSN -1 tiStSti+1 

then by (i) there exists N 1 such that for N > N 1 

(7) i]N (t) E F(t, 1JN (t)) + tB for a.e. t E I, 

where B is the unit ball. Pick some q E R"" and let ~be a measurable subset of I. Then 

from (7) 

where* denotes transposition and supp is the support function. By (i) the map t 1---4 

supp(q, F(t, ryN (t))) is upper semi-continuous, and from (ii) and (5) it is bounded above 

by a constant, independent of N. Then, for N--+ oo for the corresponding subsequence, 

the dominated convergence theorem yields 

i q*y(r) dr < i [supp(q, F(r, y(r))) + tllqll] dr. 

Since ~ and t are arbitrary and F is convex valued, this means that y( ·) is a solution 

of (1). D 

Under some more conditions we are able to prove that every solution ryN ( ·) of the 

discretized inclusion (3) with sufficiently small stepsize contains in its €-neighbourhood in 

C(I)n a solution of (1). For that purpose we need the following basic result ofthe theory 

of differential inclusions, often referred to as Gronwall-Filippov-Wai:ewski theorem; see 

A. F. Filippov [25] or J.-P. Aubin and A. Cellina [4, Thm. 2.4.1, p. 120], for a more general 

formulation. 

THEOREM 2.3 (Gronwall-Filippov-Wai:ewski). Let y : I --+ JRn be an absolutely 

continuous function with f) ( t0 ) = y0, f3 be a positive constant, and 

Q = {(t, x) E I X Rn : llx- y(t)ll < /3}. 

Let F: Q:::} Rn be nonempty closed valued and continuous and satisfy 

haus(F(t,x),F(t,z)) < k(t)llx- zll 

for all (t, x) and (t, z)from Q with k(·) E L1(J). 

Assume, moreover, that 

dist(y(t), F(t, y(t))) < p(t) for almost all t E I, 
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for some p( ·) E L1 (I) such that 

Wl = 1.: exp [J.' k(r)dr] p(s)ds < (3 (t E I). 

Then there exists a solution y ( ·) to the initial value problem ( 1) such that 

lly(t)- y(t)ll < e(t) 

for all t E I. 
THEOREM 2.4. Suppose that the conditions of Theorem 2.2 hold and, moreover, that 

F is continuous on I x lRn and Lipschitz in x on bounded sets in IRn with integrable in I 
Lipschitz constant. Then for every ~ > 0 there exists N 1 such that for every N > N 1 and for 
every solution 1JN ( ·) of the discrete inclusion (3) there exists a solution y( ·) of the problem 
( 1) such that 

mruc II11N (t) - y(t) II < t. 
tEl 

Proof. Let € > 0. As in the proof of Theorem 2.2 we show that the set Xh of the 

discrete trajectories is bounded in C(J)n and, moreover, that there exists N 1 such that 

for all N > Nb for al117N ( ·) E Xh and for all t with tJ < t < tJ+b j = 0, 1, · · · , N - 1. 

Hence for all N > N1 every solution 1JN (-) E Xh will satisfy (7). Applying Gronwall­

Filippov-Wazewski theorem we obtain that there exists a solution y( ·) of (1) in the €-tube 

around 1JN (·). 0 

In §6, slightly strengthening the assumptions, we obtain an () (h) estimate for the 

Hausdorff distance between the sets Xh and the set of solutions X of (1). 

3. Convergent multistep methods. Beginning in 1973 K. Taubert investigated con­

vergence properties of multistep methods for differential equations with discontinuous 

right-hand sides, later on he carried over his results to initial value problems for dif­

ferential inclusions; compare [66], [68]. These methods are typically of the following 

form, where we deliberately suppress possible generalizations to multistage multistep 

methods. 

LINEAR MULTISTEP METHOD 3.1. Let 

with ar # 0, laol + lbol > 0, 

h= _T_t_o 
N 

Let there be given starting values 

1]j E }Rn 

and corresponding starting selections 

(i = 0, .. ·, r) 

(N EN' c N). 

(j = 0, .. ·, r- 1) 

(j = 0, · · ·, r- 1), 
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computed, e.g., by a linear f-step method with f < r or by a 1-step method~ 
For j = r, · · · , N compute T/j from 

These methods are implicit in case br =f. 0. Generally, the solution of the inclusion 

is not unique. Then it would be selected randomly or by a suitable optimization crite­

rion. It can be obtained for example as the result of running appropriate phases of a 

constrained optimization algorithm, see, e.g., [61 ]. Typically, convergence results of the 

following form can be proven. 

CONVERGENCE THEOREM 3.2. Let the following assumptions be satisfied: 
(i) F is nonempty closed and convex valued. 
(ii) F is bounded and upper semicontinuous in I x lRn. 

(iii) The strong root condition is satisfied, i.e., all zeros>.. of the polynomial 

have absolute value I >..I < 1 except the simple zero >.. = 1. 

(iv) The method is consistent, i.e., 

r r r 

L,:ai=O, L,:iai=Lbi . 
i=O i=O i=O 

(v) The coefficients bi are nonnegative ( i = 0, · · · , r ). 
(vi) The starting values satisfy 

(j = 0, .. ·, r- 2) 

for all N EN' with a constant M, which is independent of the stepsize h = (T- t 0 )jN. 
(vii) The approximations of the initial value y0 satisfy lim N _. oo TJC' = y0 . 

NEN' 

Then the sequence 

of piecewise linear continuous interpolants of the grid functions 

( N N N) TJo , T/1 , · · · , TIN 

contains a subsequence which converges uniformly to a solution of the initial value problem 
(1). 

Assumptions (i) and (ii) are Peano-type conditions, therefore no better convergence 

properties could be expected. Assumption (iii) is equivalent to inverse stability of the 

difference method with respect to the Spijker norm, compare [63, p. 81 and pp. 203-210]. 

This implies, that the family ('TIN ( ·)) N EN' is uniformly Lipschitz continuous, which is the 

basis of the convergence proof. 
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Condition (v) is needed for certain operations in the calculus of sets. It restricts the 

class of feasible methods decisively. The proof could be extended to discrete Sobolev 

spaces; compare the papers [45], [44]. 

For the special selection of coefficients 

r=1: ao=-1, 

a1 = 1, 

we get again the Euler method. 

bo = 1, 

bt = 0, 

The following selections of coefficients were tested in [31]: 

r = 2: ao = 0, bo = 0.5, 

a 1 = -1, bl = 0.5, 

a2 = 1, b2 = 0, 

respectively, 

r = 3: ao = -0.81, b 725 
0 = 1200' 

a1 = -0.99, b 488 
1 = 1200' 

a2 = 0.8, b 3119 
2 = 1200' 

a3 = 1, b3 = 0, 

respectively, 

r = 4: ao = 0, b0 = 0.1, 

at= 0, bt = 0.4, 

a2 = 0, b2 = 0.1, 

a3 = -1, b3 = 0.4, 

a4 = 1, b4 = 0. 

All these methods are consistent and strongly stable. The 3-step method would be con­

sistent of order 3 for single-valued, sufficiently smooth right-hand sides, nevertheless it 

behaves badly for differential inclusions due to "almost instability." The program code 

together with some extensions to multistage multistep methods is contained in [1]. We 

conclude this section with the following simple differential equation with discontinuous 

right-hand side describing forced vibrations with viscous and Coulomb damping, cf. [55], 

[67]. 
Example 3.3. Find a function z( ·) on I = [0, T] with absolutely continuous derivative 

such that 

(8) z(t) + z(t) + 0.2z(t) + 4sgn(z(t)) = 2cos7rt 

for almost all t E I and 

z(O) = 3, z(O) = 4. 
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Naturally, this initial value problem for a second-order ordinary differential equa­

tion has to be reformulated as the following initial value problem for a first-order differ­

ential inclusion. 

Find an absolutely continuous function y( ·) : I ---+ JR2 such that 

YI ( t) Y2 ( t) ' 

iJ2(t) E -y1(t)- 0.2y2(t)- 4Sgn(y2(t)) + 2cos7rt 

for almost all t E I= [0, T] and 

YI(O) = 3, Y2(0) = 4, 

where the Sgn-function 

-1 (x2 < 0), 

[-1, 1] (x2 = 0), 

1 (x2 > 0), 

is the set-valued analogue of the usual sign function used in (8) in order to guarantee the 

existence of a generalized solution in the sense of Filippov. This generalized solution 

could be approximated with one of the above methods. The Euler method with fine 

stepsize gives some insight into the structure of the solution; compare the plots of the 

solution z(·) and its derivative i(·) in Fig. 1 and the phase portrait shown in Fig. 2. 

~----------------, 

It) 

~~----~----~----~--~ o.o 2.0 4.0 s.o 8.0 

FIG. 1. Solution z( ·) and its derivative i( · ). 

Subintervals, where the solution is in fact a generalized one, are most interesting. 

The plot in Fig. 3 of the approximation of the derivative i( ·) by Euler method with step­

size h = 0.005 shows the typical oscillations to be expected on these nonclassical inter­

vals. 

The computer tests show that it is not worthwhile to look for highly consistent stan­

dard methods; compare the approximation of z ( ·) in Fig. 4 by the classical Runge-Kutta 

method with the same stepsize h = 0.005. 

This additional effort pays only on subintervals where the right-hand side is single­

valued and smooth. 
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2.3 2.8 3.3 3.8 

FIG. 2. Phase porlrait of z( · ). 
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., 
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00 2.25 2.50 2.75 

4.3 

FIG. 3. Approximation of i:(·) by Euler method with h = 0.005. 

2.00 2.25 2.50 2.75 

FIG. 4. Approximation of z(·) by Runge-Kutta method with h = 0.005. 
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4. One-sided Lipschitz condition and monotonicity. We could get the impression 

that it may be hard to prove order of convergence results for general differential inclu­

sions, if they really hold at all. Hence, we have to restrict our analysis to differential 

inclusions with special right-hand sides. In [41], [42] order of convergence results were 

proved for differential equations with discontinuous right-hand side, but there it is only 

allowed that the exact solution crosses directly the discontinuity manifolds; compare in 

this connection the recent work of R. Model [ 43]. D. Stewart has defended his Ph.D. the­

sis on the same problem class in 1990; compare [64]. His main objective is a skilful, but 

complex transformation of discontinuous right-hand sides into smooth ones on suitably 

selected submanifolds. This transformation will really pay if the auxiliary complemen­

tarity problems occuring in this connection can be analysed easily and if the resulting 

transformed classical differential equations are not stiff. In the following we analyse 

the class of right-hand sides which satisfy a uniform one-sided Lipschitz condition. On 

the one hand, this class is more general, since set-valued right-hand sides are admitted. 

On the other hand, it is more special, since the one-sided Lipschitz condition implies 

uniqueness of the solution of problem ( 1 ). Stimulated by a paper of C. M. Elliott [23] on 

first -order convergence for a special class of methods, A. Kastner-Maresch succeeded to 

adapt convergence proofs for numerical methods for stiff differential equations to this 

type of differential inclusions; compare [32] and [33]. In principle, in the following we 

could investigate the class of general linear methods; compare [13]. But for simplicity of 

presentation we restrict ourselves to the class of implicit s-stage Runge-Kutta methods. 

IMPLICIT s-STAGE RUNGE-KUTTA METHOD 4.1. Let there be given the scheme of 
coefficients 

b1 b8 

with nonnegative bi (i = 1, · · · ,s), a stepsize h = (T- t 0 )/N with N E N', and an 
approximation TJo of the initial value y0• 

For j = 0, · · · , N -1 solve the implicit system of inclusions 

8 

r;p. T}j + h 2:: ap.v cjv , 
v=l 

(jv E F (tj + Cvh, fjv) 

and compute the next approximation 

8 

(J-l, v = 1' ... ' s) 

TJj+l = 7}j + h L bv (jv· 
v=l 

Without further assumptions, we cannot expect reasonable convergence properties 

even for single-valued right-hand sides. Moreover, according to the well-known proceed­

ing for stiff differential equations, we need a one-sided Lipschitz condition for set-valued 

maps. Therefore, we restrict ourselves to the following class of maps. 

DEFINITION 4.2. Let !Rn be equipped with the scalar product (·I·) and the corre­

sponding induced norm II ·II· A set-valued mapping 

F : J X Rn ==:} Rn 
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satisfies a one-sided Lipschitz condition with (one-sided) Lipschitz constant Lp if 

{(I- (21xi- x2) < LF!Ixi- x2!1
2 

holds for all XI, x2 E JRn and all (I E F(t, xi), (2 E F(t, x2) uniformly for all t E I. 

An important subclass of all right-hand sides satisfying a one-sided Lipschitz condi­

tion consists of set-valued mappings F : I x JR.n => Rn possessing a decomposition 

(9) F(t, x) = f(t, x)- (3(x) 

with a single-valued function f : I x Rn -+ Rn with (one-sided) Lipschitz constant L 1 
and a monotone set-valued mapping (3 : Rn =;.. JR.n. For example, the subdifferential 81.p 
of a convex functional <p : JR.n -+ 1R. defines a monotone mapping on JR.n. In [23] special 

right-hand sides of the type (9) were treated by a special class of methods. In fact, not 

this decomposition, but the validity of a one-sided Lipschitz condition is the basis for 

convergence and order of convergence proofs following proof structures for stiff differ­

ential equations, compare the books [20], [13] and the journal articles [12], [29], [28], [9], 
[10], especially the survey of K. Burrage [11 ]. For consistency proofs only smoothness 

properties of the solution of the differential inclusion are needed, not smoothness prop­

erties of the right-hand side as in the classical approach. For proofs of stability properties 

like C-stability, BS-stability, BSI-stability the fact is exploited that the above one-sided 

Lipschitz condition holds uniformly with respect to the selections. 

A typical convergence result due to A. Kastner-Maresch [32] reads as the following. 

THEOREM 4.3. Let the following assumptions be satisfied: 
(i) Let F be upper semicontinuous on I x JR.n and satisfy a one-sided Lipschitz condition. 
(ii) The (necessarily unique) solution of initial value problem (1) is piecewise (J.t + 1)-

times continuously differentiable with J.l > 1. 

(iii) The simplifying conditions B(J..t), i.e., 

and C(J.L), i.e., 

(k = 1, ... 'J..t), 

(k- 1 • • • II.' i = 1 • • • s) 
- ' ',..,, ' ' ' 

hold. 
(iv) The method is BS-stable and C-stable. 
( v) The initial approximations TJf/ of Yo satisfy 

!ITJ~- Yo !I = O(h). 

Then the order of convergence is equal to one. 
Crucial for the proof is the fact that the first derivative of the exact solution has 

only finitely many jump discontinuities because each of these discontinuities contributes 

a term of order one to the global discretization error. Hence, on intervals where the 

solution is smooth, we get higher-order convergence if the initial error is of higher-order 

as well. 

COROLLARY 4.4. Let in Theorem 4.3 the exact solution be (J..t + 1 )-times continuously 
differentiable on the whole interval I, and the initial approximations satisfy 

11"1~- Yo !I= 0 (h~-'). 
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Then the order of convergence is equal to J.L 

This corollary serves as a basis for more or less sophisticated algorithms with built­

in localization procedures for detecting possible discontinuities of the derivative of the 

exact solution. In practice, we have to localize numerically manifolds where the right­

hand side is discontinuous. In principle, localization procedures in [41], [42], or [64] 

could be used, but they must be adapted to the above situation. 

Especially, the implicit midpoint rule was tested numerically, which could be written 

as the following Runge-Kutta method 

1 
fj 'r}j + h 2(j, 

(; E F(t;+~h,tj), 
'llj+l 'r}j + h (j' 

with Butcher-array 

or in more condensed form, 

'U+t E 1); + hF (t; + ~ h, ~ (1/; + 1/;+tl) . 
For this method the simplifying conditions B(l), B(2), and C(l) (see Theorem 4.3) hold. 

Hence the order of this method is equal to one if the solution is piecewise 2-times con­

tinuously differentiable; compare [23]. The order 2 can be proved on subintervals where 

the solution is 3-times continuously differentiable and the initial error is of order 2; here 

we have to exploit results in [35]. Together with a suitable localization procedure, we get 

the order 2 on the whole interval. 

Applying, e.g., the implicit midpoint rule with stepsize h = 0.005 and localization 

procedure to Example 3.3 yields the result plotted in Fig. 5. 

Naturally, the numerical effort is somewhat higher than for classical Runge-Kutta 

method with the same stepsize. But the results are much better; compare Fig. 4. Even 

with stepsize h = 0.001, the classical Runge-Kutta method would yield worse results 

than implicit midpoint rule with stepsize h = 0.005; compare Fig. 6. 

In fact, for such a fine stepsize h = 0.001 the classical Runge-Kutta method needs 

more CPU-time and function evaluations than the implicit midpoint rule for h = 0.005, 

i.e., the higher-order of convergence of the implicit method at last beats the explicit 

method. 

5. Selection strategies. Contrary to the differential inclusions treated in §4, gen­

eral differential inclusions normally have a whole bundle of solutions. Hopefully, the 

qualitative properties of the approximated solution could be improved by more elab­

orate selection strategies, as compared with the random selection of Linear Multistep 

Method 3.1. 

ALGORITHM 5.1 (selection with minimal norm). Choose a fixed element z E lRn and 

minimize for j = r, · · · , N 
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FIG. 5. Approximation of i( ·)by implicit midpoint rnle with h = 0.005. 
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FIG. 6. Approximation of i( ·) by Runge-Kutta method with h = 0.001. 

For z = O!Rn, in each step we get the selection with minimal norm. In any case, 

the explicit difference method (br = 0) for the differential inclusion can be regarded as 

linear multistep method for the differential equation 

y(t) = f (t, y(t)) 

with 

f(t,x) = prF(t,x)(z) 
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where pr F( t,x) ( z) is the projection of z onto F( t, x). Hence, the properties off ( t, x) de­

termine the properties of the algorithm. The calculation of starting values 'f}o, · · ·, 'T/r-1 

and starting selections ( 0 , · · · , (r-1 has to be adjusted accordingly. Convergence is proved 

by Convergence Theorem 3.2. Using arguments in [25] we get the following. 

THEOREM 5.2. In addition to the assumptions in Convergence Theorem 3.2, let F be 
Hausdorff continuous on I x lRn and br = 0. Then the sequence 

of piecewise linear continuous interpolants of the grid functions corresponding to minimal 
norm selections contains a subsequence which converges uniformly to a continuously differ­
entiable solution of the differential inclusion. 

The following test problem from [34] is treated numerically as an example for the 

various selection strategies of this section. 

Example 5.3. Find an absolutely continuous function y : I --+ JR2 such that 

-y2(t) + O.lyl(t)(9- Y1(t)2
- Y2(t) 2

) + [-1, 1), 

YI(t) + 0.1y2(t)(9- YI(t)2
- Y2(t?) + [-1, 1] 

for almost all t E I = [0, T] and 

YI(0)=5, Y2(0) = 0. 

To avoid all technical difficulties with the calculation of starting values, we apply 

Euler method. Note that no order of convergence result is available; therefore, the use of 

real multistep methods is justified anyway only on subintervals where the right-hand side 

degenerates to a single-valued function which is sufficiently smooth. The approximate 

solution for the selection with minimal norm is plotted in Fig. 7 with stepsize h = 0.005. 

The phase portrait is given in Fig. 8; the chosen selections are plotted in Fig. 9. 

0 0 
IIi ... 

It) 0 
t-i <4 

0 0 
0 d 

I('J 0 
t-i N 
I I 

0 0 
IIi ... 
I I o.o 3.0 6.0 9.0 12.0 0.0 3.0 6.0 9.0 12.0 

FIG. 7. Approximate solution TJN (·)for selection with minimal norm. 

In the following selection strategy we choose selections which have minimal varia­

tion in a certain sense, cf. the proof of Theorem 2 on page 115 in [4]. 

ALGORITHM 5.4 (selection with minimal variation). For j = r, · · ·, N minimize 

IJvj-1 - vi II, 
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FIG. 8. Phase portrait of TJN (·)for selection with minimal norm. 
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FIG. 9. Selection ( N (·)for selection with minimal norm. 

subject to 

r 

Vj E L bi F (tj-r+i, 'f/j-r+i) · 

i=O 

I 
I 

J 
I 

I 

' ' I 

9.0 12.0 

If, in addition to the assumptions in the Convergence Theorem 3.2, the set-valued 

mapping F is Lipschitz continuous in I x JRn; then a similar argument as in the proof of 

Theorem 3.2 applies to the selections Vj, and we get for explicit methods (br = 0). 

THEOREM 5.5. In addition to the assumptions in Convergence Theorem 3.2, let F be 

Lipschitz continuous on I x JRn, br = 0, and the starting selections satisfy 

llvf-n - vJ' II < h M (j = 0, · .. , r - 2) 

for all N EN'. 
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Then the sequence 

of piecewise linear continuous interpolants of the grid functions and selections contains a 
subsequence which converges uniformly to a pair (y, v ), where y is a solution of the differ­
ential inclusion with Lipschitz continuous derivative v. 

The approximate solution of Example 5.3 for the selection with minimal variation, 

computed by Euler method with stepsize h = 0.005, is plotted in Fig. 10, the phase 

portrait given in Fig. 11, the according selections with minimal variation in Fig. 12. 
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FIG. 10. Approximate solution rJN (·)for selection with minimal variation. 
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FIG. 11. Phase porta it of rJN ( ·) for selection with minimal variation. 

12.0 

We get a further selection strategy by comparing the approximations at each grid 

point with a reference trajectory. 

ALGORITHM 5.6 (selection with respect to reference trajectory). Choose a Lipschitz 
continuous reference trajectory 
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FIG. 12. Selection vN (·)for selection with minimal variation. 

For j = r, · · · , N, minimize 

subject to 

l r r 

h 2..:.:: ai T/j-r+i = 2..:.:: bi (j-r+i , 

i=O i=O 

(j-r+i E F (tj-r+i' 'f/j-r+i) (i=O,···,r). 

9.0 12.0 

For this selection strategy with reference trajectory y(t) _ OR2, the Euler method 

with stepsize h = 0.005 gives the approximate solution of Example 5.3 plotted in Fig. 13, 
with phase portrait in Fig. 14. 
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Flo. 13. Approximate solution TIN (·)for selection with respect to reference trajectory. 

Most interesting is the comparison of the chosen selections; compare Fig. 15 with 

the results of the other selection strategies. 

Contrary to the selections with minimal norm, cf. Fig. 9, and the selections with 

minimal variation, cf. Fig. 12, the selections with respect to reference trajectory now 
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FIG. 15. Selection ( N (·)for selection with respect to reference trajectory. 

indicate jump discontinuities of the derivatives of the solution, related to the bang-bang 
principle in optimal control. Accordingly, no smoothness properties can be expected 

for the approximated solution, but an error estimate for this selection strategy will be 

obtained in the next section. 

At any rate, it would be worthwile to extend the above qualitative results byes­

timations of the order of convergence, eventually by exploiting concepts of numerical 

methods for optimal control problems with nonstandard objective functions. 

6. Error estimates. We are interested in estimating the distance between the sets 

of solutions of Initial Value Problem 1.1 and of the discrete inclusions (3), respectively, 

in a reasonable sense, by the stepsize h. 
The first result in this direction probably is due to B. N. Pshenichny [53], who proved 

the following. 

THEOREM 6.1 ([53]). Let F : Rn ~ IRn be a compact convex valued mapping andy 

be a solution of 
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y(t) E F(y(t)) for a.e. t E I, y(to) =YO· 

Suppose that there exists£ > 0 such that F is Lipschitz in the set {x E lRn : llx- y(t)ll < 
E for some t E I}. Then there exist c and N 1 such that for all N > N1 there exists a solution 

'fJN ( ·) of the discretized inclusion 

(10) Tli+1 E 'r/j + hF(Tij), j = 0, 1, · · ·, N -1, TJo =Yo 

such that 

In the proof, B. N. Pshenichny used the following construction of the discrete tra­

jectory TJN (·): Let TJf: = y0 and define TJJ'+1 as the projection of y (ti+d on the set 

rJf + hF ( 1Jf). Then from (10), from the inclusion 

and from the choice of TJf-t-1 , using the Lipschitz continuity ofF, we obtain for some a1 

and a2 that 

for j = 0, 1, · · ·, N -1. This implies the desired estimate. 

The construction of B. N. Pshenichny is extended in [22] in the following way: Let 

f) : I ---+ Rn be a Lipschitz function. We obtain TJN ( ·) by the following procedure: 

(11) TJf/ =Yo, TJf-n is the projection of y(ti+l) 

on the set TJ;' + hF(tj, TJJ'), j = 0, 1, · · ·, N -1. 

Combining the result of B. N. Pshenichny with Gronwall-Filippov-Wazewski theorem, 

we obtain that 

(12) m.ax IITJ.f -fj(tj)ll <c(llii(to)-Yoii+1T dist(y(t),F(t,fj(t))) dt+h) 
05.J5.N to 

for some c independent of h. 

This estimate was obtained in [22] by a direct proof. More precisely, the following 

theorem is proved. 

THEOREM 6.2 ([22]). Suppose that the map F : I x Rn ===? Rn satisfies the following 

conditions. 

F is nonempty compact and convex valued; there exist k and a such that II f II < k llx II+ a 

whenever f E F(t, x), t E I, x E Rn; F is Lipschitz in x on bounded sets unifonnly in 

t; F is of bounded variation in t unifonnly in x on bounded sets, i.e., for any bounded set 
U C Jltn 
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Then there exists a constant c such that if "'N ( ·) is obtained by (11 ), then for all N (12) is 
fulfilled. 

In particular, if y is a solution of Initial Value Problem 1.1 then "'N ( ·) provides a 

first-order approximation to fi. The procedure (11) can be regarded as a "reference 

trajectory" strategy which can be used for numerical calculations; compare the plots in 

Fig. 13, 14, and 15. Some additional numerical examples are contained in [22]. 

Let "'N ( ·) be a piecewise linear function that solves (3). IfF is Lipschitz in both x 

and t then 

i]N (t) E F(t, "'N (t)) + hkB for a.e. t E (to, T] 

for some k and for all N EN'. Then one can apply Gronwall-Filippov-Wazewski theo­

rem, obtaining that there exists a solution fiN of Initial Value Problem 1.1 such that 

(13) 

In fact, to obtain (13) it is sufficient to assume the conditions of Theorem 6.2. Namely, 

we have 

THEOREM 6.3 ([22]). On the conditions of Theorem 6.2 

haus(X, Xh) = O(h) in C(I)n. 

In [22] an averaged modulus of smoothness for set-valued maps is introduced and 

its properties are investigated. This helps to weaken the requirements for the map F . 

Sometimes it may be convenient to use an approximation of the set-valued map F 

in (10), e.g., by polygons. Let "'N (·)satisfy 

J·-o 1 ... N-1 
- '' ' ' "'o = Yo, 

where 

haus (Pj, F(ryj)) = O(h), j = 0, 1, · · ·, N- 1. 

Then on the assumptions of Theorem 6.2, using the same argument as above, we obtain 

first-order convergence of this approximation. 

In (34], Theorem 6.2 is extended for the Algorithm 5.6 (selection with respect to 

reference trajectory), using Linear Multistep Method 3.1. 

THEOREM 6.4. Assume that in addition to the assumptions in Convergence Theorem 
3.2, br = 0, and the following conditions hold: 

(i) F is Lipschitz in x E JRn uniformly in t E I and of bounded variation in t E I 
uniformly in x on bounded sets. 

(ii) the coefficients ai are nonnegative except the single coefficient a0; or alternatively, 
exactly two of the coefficients ai ( i = 0, 1, · · · , r) are nonzero. 

(iii) The approximations of the initial value y0 satisfy 

ll"'<f - Yoll = O(h). 

Then there exists a constant c such that for all sufficiently small h, if "'N ( ·) is obtained by 
Algorithm 5.6, then (12) holds. 
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7. Convergence of reachable sets. Analogous to the reachable set of the differential 

inclusion (1), we can introduce a reachable set of its discrete approximation. Consider 

the Euler scheme (3) and let i be a fixed number from the set {0, 1, · · ·, N}. Then the 

reachable set, associated with (3) at the time ti, will be 

THEOREM 7.1. Let F be a compact convex and nonempty valued map that is continu­
ous in both t and x in I x Rn and let the reachable set R(t) of Initial Value Problem 1.1 be 
contained in a bounded set K in Rn for all t E I. Let F be Lipschitz in a neighbourhood of 
K with respect to x unifonnly in t E I. Then 

as N---+ oo. 

max haus (Rf, R(ti)) ~ 0 
OSiSN 

The proof of this theorem can be easily obtained from [50], for a more recent pre­

sentation see [49]. First we need some notation. 

DEFINITION 7.2 ([50]). The closed valued and continuous map R : I ===> Rn with 

R(to) = y0 is an R-solution of Initial Value Problem 1.1 if and only if 

(14) ~ haus (R(t +h), U (x + hF(t, x))) ~ 0 
xER(t) 

ash ---+ 0 uniformly in t E /. 

THEOREM 7.3 ([50]). On the conditions of Theorem 7.1 there exists a unique R-solution 
of Initial Value Problem 1.1 whose value at any t E I is the reachable set R( t) of Initial Value 
Problem 1.1. 

The relation (14) is known as funnel equation. The integral funnel (solution cone) 
of Initial Value Problem 1.1 is the union of the graphs of all solutions of Initial Value 

Problem 1.1. The reachable set R(t) is the value at t of the map, the graph of which is 

the integral funnel. 

In [69] extensions of Theorem 7.3 for inclusions with right-hand side satisfying Cara­

theodory conditions are obtained. A funnel equation to a linear differential inclusion 

with phase constraints is found in [38]. 
Let us prove Theorem 7.1. From (14) we have 

(15) haus ( R{", R( t1)) :::; hrp( h) 

and 

(16) haus (R(t2), U (x + hF(t1,x))) < hcp(h), 
xER(tt) 

where cp(h) ---+ 0 ash---+ 0 uniformly in t E /.If k is the Lipschitz constant ofF, it is easy 

to see from (15) that 

(17) haus ( U (x + hF(t1, x)), U (x + hF(t1, x))) < (1 + kh)hcp(h). 

xERf" xER(ti) 
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Combining (16) and (17) we have 

haus (Rf, R(t2)) < (1 + kh)h<p(h) + h<p(h). 

Proceeding in the same manner by induction we get 

i 

haus (Rf, R(ti)) < L(l + kh)i-Jlh<p(h) 
Jl=l 

< <p(h)(T- to)ek(T-to) 

fori = 1, · · ·, N, which completes the proof of Theorem 7.1. 

Consider now the Initial Value Problem 1.1 with F independent of t. Then Euler 

approximation to the attainable set can be rewritten as 

R'( (I+ hF)yo, 

Rf U (x + hF(x)) =(I+ hF)2 y0 , 

xERf 

Rf (I+ hF)iYo, 

where the power of (I+ hF) is that of composition of set-valued maps. Then RIJ will 

converge to R(T) if and only if 

( 
T- to )N 

R(T) = J~ I+ N F Yo· 

More precisely, the following result is obtained in [74]. 

THEOREM 7.4 ([74]). Let G c Rn be open and F : Rn =::::? Rn be a map with 

nonempty compact values on G locally Lipschitz on G. Fix y0 E G. Let 

T =sup {r: cl ( U R(t)) is compact}. 
to9:::;T 

(i) For t0 < T < T 

( 
T- to )N 

li:~~ I+ N F Yo c cl (R(T)). 

(ii) If, in addition, F is assumed to have convex values, then for all T > 0, 

R(T) C ~~~ (J + T; to F) N Yo· 

On the assumptions of Theorem 6.2 we obtain that the Euler scheme provides an 

O(h) estimate for the reachable set and the integral funnel. We note that the one-sided 

estimate (13) was observed (on slightly different conditions) independently in [22] and 

by M. S. Nikol'skiy [ 47] whose primary purpose was to estimate the Euler approximation 

to the reachable set. However, to obtain an approximation of a solution of Initial Value 
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Problem 1.1 by a solution of (3), he uses a procedure different from the projection strat­

egy, giving an estimate of order CJ( v'ii) only. The paper [46] contains a similar result for 

a control system. In [ 48] the following modification of Euler scheme is proposed: 

E~ {yo}, U = a1B, 

Eft_1 = U (x + hr(x)coF(x) + ah2 B), i=Ol···N-l 
' ' ' ' 

xEEfnU 

where the right-hand side F, independent of t, satisfies a growth condition and is lo­

cally Lipschitz and the function r and the constants a, a 1 are chosen in such a way that 

cl(R(T)) c E}$ n U. Then from (13) an estimate of order O(h) follows for the distance 

between E}J n U and R(T). For an extension, see (57]. 

8. Higher-order approximations to reachable sets. Generally speaking, a differen­

tial inclusion may have many "bad" solutions, e.g., nonsmooth and fast changing ones, 

to which it is unlikely to obtain higher-order approximations. Nevertheless, V. M. Veliov 

recently proposed in a series of papers [71 ]-[73] certain second-order approximations 

resulting from Runge-Kutta schemes, both for the trajectory bundle and the reachable 

sets. 

To be specific, consider the simplest linear differential inclusion 

(18) y(t) E Ay(t) + U for a.e. t E I, y(to) = Yo, 

where A is a nxn-matrix, U is a compact and convex set in ntn. An absolutely continuous 

function y is a solution of (18) if and only if there exists an integrable n-vector function 

u with u(t) E U for almost every t E I such that 

(19) y(t) = Ay(t) + u(t) for a.e. t E I. 

It is clear that by applying a higher-order scheme to the equation (19), we could hardly 

expect higher-order accuracy since the function u may be discontinuous. However, a 

higher-order approximation 1JN toy may exist, being a solution of a discrete time in­

clusion resulting from the scheme, that corresponds possibly to another selection of the 

right-hand side of (18). 

Let Nand k be integers, h = (T- t0 )/N, A~ be nxn-matrices and UJv be sets in 

JR.n. By a discrete approximation (of higher-order) to (18), we mean the following: 

(20) 'f/~1 E A~11f + UJv, i = 0, 1, .. ·, N -1, 11~ =Yo· 

Suppose that A~, Ut satisfy for N EN', 

(21) exp(Ah) 

(22) fo' cxp(As)Uds UfV + 0 (h•+I) . 

(i) Let 1JN = ( 11~, · · · , 11~) be a solution of (20). Then, from (21) and (22), 

l
ti+l 

rJft-1 E A~r,[" + ut c eA(ti+l-tdrJf + ti eA(tH1-s)Uds + 0 (hk+l) 

fori= 0, 1, · · ·, N -1. Hence there exists a measurable function uf' with uf' (t) E U for 

almost every t E I, such that if yfl solves 

yf" (t) Ayfl (t) + uf (t) for a.e. t E [ti , ti+l], 

yf (ti) = ryf, 
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then 

y[" (ti+t) = 'TJ~l + 0 (hk+l) . 

Let uN be defined on I as uN (t) = uf (t) fort E [ti, ti+1), i = 0, 1, .. ·, N -1. If yN is a 

solution of 

AyN (t) + uN (t) for a.e. t E I 

Yo, 

then it is easy to see that 

(23) 

(ii) Now let y be a solution of (18). Then 

1
ti+l 

y(ti+t) E eAhy(ti) + t, eA(t-;+ 1 -s)Uds 

c Aty(ti) + ut + O(hk+t ). 

Let ry{j = y0 • We determine ryf'!t. 1 on the basis of ryf as projection of y(ti+1 ) on the set 

Atryf + U~. Then from 

it follows that 

which yields 

(24) 

Thus, under the conditions (21) and (22), the Hausdorff distance between the sets of 

solutions of (18) and (20), in the sense of (23) and (24), is of order O(hk). 
The condition (21) will hold if we take 

It turns out that the condition (22) is much more restrictive. It obviously holds for k = 1 

(Euler scheme); moreover, we have always 

provided that 

(25) 
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This means that (24) is satisfied, i.e., every solution of (18) can be approximated of 

order O(hk) by a solution of (20). The converse case needs, however, more conditions. 

It follows from [73] that for k = 2 (25) implies (22) on the condition that U is a 

strongly convex set, i.e., there exists a constant J.1, > 0 such that u1 , u 2 E U implies 

The proof of this is based on the observation that for strongly convex U the extremal 

(boundary) controls are equi-Lipschitz. This means that if U is strongly convex, then the 

scheme 

gives O(h2
) approximation to the set of trajectories, and hence to the reachable set as 

well. 

In [73] V. M. Veliov considers the following more general problem: 

(27) y(t) E F(t, y(t)) for a.e. t E I, y(to) E Ro 

approximated by 

(28) 77~ 1 E 77{" + 0.5h { z + F (ti+l, 17{" + hz) : z E F(ti, 17{")}, 1]~ E Ro 

fori= 0, 1, · · ·, N -1. This approximation is a generalization (but not the only possible 

one) of Euler scheme; it corresponds to the classical Euler-Cauchy method. 

The map F is defined on the compact and convex set~ x S c JRn+l and satisfies 

the following conditions: 

(a) F is compact valued and there exists J.1, > 0 such that F(t, x) is strongly convex 

foreveryt E ~andx E S. Thesupportfunctionr(l,t,x) = supp(l,F(t,x))isdifferen­

tiable with respect to t and x, 8-r I ax is Lipschitz in the set ( l' t, X) E .c X ~ X s' 8-r I at 
is Lipschitz in (l, t) E .C x ~uniformly in x E S, where .C = {l E Rn : 0.5 < IIlii < 2}; 

the set R0 is compact, I c int(~), and all trajectories of (27) stay in int(S). 
(b) The function y( t, x, l) defined as 

(29) l*y(t, x, l) = supp(l, F(t, x)) 

is Lipschitz in t E ~ uniformly in ( l, x) E £ x S. 
THEOREM 8.1 ([73]). On the condition (a) there exist constants c and N 1 such that if 

N > N1 then 
(i) For every solution y of (27) there is a discrete solution 1JN = ( 1J/i, · · ·, 17~) of (28) 

such that 

(30) 

(ii) For every solution 1JN of (28) there exists a solution y of (27) such that (30) holds. 
If in addition (b) is satisfied, then h 312 in ( 30) can be replaced by h 2• 

In [73] it is also shown that if the map F is 

F(t,x) = f(t,x) + g(t,x)U 
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then the conditions (a) and (b) will be fulfilled if U is strongly convex, f and g are suffi­

ciently smooth and g( t, x) is invertible for each t E ~, x E S. In this case the discrete 

inclusion (28) can be equivalently written as 

ryf'!t- 1 Eryf +0.5h{t.p(ti,TJf,u)+<p(ti+t,TJf +h<p(ti,TJf,u)) :uE U}, 

where <p(t,x,u) = f(t,x) + g(t,x)u. For fixed u E U this is exactly the second-order 

Euler-Cauchy scheme for right-hand side <p(t, x, u). Another second-order approxima­

tion for the trajectory bundle without strong convexity of the right-hand side is obtained 

in [72] for the inclusion 

r 

y(t) E f(t,y(t)) + l::Yi(t,y(t))[O, 1], y(to) E Ro. 
i=I 

It turns out that for linear control systems it is possible to obtain second-order ap­

proximations to the reachable set having, in the same time, only first-order convergence 

of the solutions, in general. Consider the differential inclusion 

(31) y(t) E A(t)y(t) + B(t)U for a.e. t E I, y(to) E Xo, 

where A(t) and B(t) are nxn and nxr matrices, U c lRr, on the following assumption: 

(c) A and B are differentiable and their derivatives are Lipschitz continuous, and 

X 0 and U are convex and compact. 

Let R(T) be the reachable set of (31) at the timeT. Introducing an uniform grid in 

I, for each N we define the set X% recurrently by the equation 

(32) i = 0 1 · · · N-1 
' ' ' ' 

xr: = Xo, 

where 

A[" I+ 0.5h(A(ti) + A(tH1 )) + 0.5h2 A(tH 1)
2

, 

Bf 0.5h(B(ti) + B(ti+t)) + 0.5h2 A(ti+t)B(ti+t) · 

Observe that if B = I and A, B are constant, from (32) we obtain the scheme (26). 

THEOREM 8.2 ([71 ]). Under the condition (c) there exists a constant c such that for 

every N EN', 

hans (X%, R(T)) < ch2
. 

In contrast to the strongly convex case (Theorem 8.1), the proof uses essentially an 

effect of nonaccumulation of e"ors at each step. Namely, the error at each step may be 

tJ(h2
) while the global error is tJ(h2

) as well. Furthermore, it is shown by an example 

in [72] that approximation order for the solution set may be only O(h). 
The paper [71] contains also a negative result showing that approximations better 

than of ser.:ond-order cannot be obtained by means of a scheme of the type (32). More 

precisely, consider the inclusion (31) with constant A and B, n = 2, r = 1, X 0 a single­

ton, and U a nondegenerate segment. Let X% be obtained by the following recurrent 

formula 

q 

xi~l = P(h;A,B)xr + LQj(h;A,B)U, 
j=l 
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where q is a fixed integer, P and Q are arbitrary matrices, h = (T- t 0 )jN. 
THEOREM 8.3 ([71 ]). For any controllable pair (A, B) (i.e., rank[B, ABJ = 2), there 

is a constant c > 0 such that 

haus (X%, R(T)) > ch2 

for all N E N'. 

The proof uses the observation that R(T) is strongly convex and X~ is a convex 

polygon. On the other hand, a strongly convex set cannot be approximated by a polygon 

with order higher than 2. 

Concerning numerical approximations to reachable sets, various approaches can be 

found in the literature. A common idea in this field is to use sets of simple structure as 

polyhedrons [27], [30], or ellipsoids [16], [37]. A different approach, based on a time­

scale decomposition of the reachable set, is presented in [21 ]. 

9. Concluding remarks. In this survey we concentrated on difference methods for 

initial value problems, especially on error estimates and order of convergence results. 

Concluding, we want to summarize typical difficulties, influencing the numerical perfor­

mance of these algorithms decisively, and some directions of future research. 

In connection with implicit methods for problems satisfying a one-sided Lipschitz 

condition, originally formulated for classical stiff differential equations, efficient local­

ization procedures have to be developed for detecting possible discontinuities of deriva­

tives of the solution. Moreover, implicit discrete inclusions have to be solved at any grid 

point. Therefore, to reduce the complexity of these inclusions, it would be very desir­

able to find diagonally implicit general linear methods with the necessary consistency 

and stability properties. For differential equations with discontinuous right-hand sides, 

D. Stewart's transformation method [64], [65] would avoid at least the solution of im­

plicit inclusions as long as the resulting transformed differential equations are not stiff. 

Without piecewise transformation to smooth right-hand sides, higher-order convergence 

of explicit difference methods for discontinuous ordinary differential equations cannot 

be expected. At most first-order convergence for special problem classes and special 

explicit methods can be proved [ 40]. 

Concerning selection strategies for general differential inclusions, naturally the re­

lation to numerical methods for optimal control problems should be investigated fur­

ther. Especially, for nonstandard selection strategies and corresponding nonstandard 

objective functions, it seems to be hard to prove order of convergence results. Imposing 

additional state constraints immediately leads to the question of viability of solutions; 

compare in this connection, e.g., [58]. 

Approximating the whole solution set of a general differential inclusion by the whole 

solution set of a difference inclusion until now led only to order of convergence results 

for special explicit methods. These results should be incorporated into the framework 

of general discretization theories. This would require at least a calculus of higher-order 

local approximations of set-valued mappings, an actual and interesting field of research. 

Naturally, this will result in efficient numerical algorithms only if the set of all solutions of 

the difference inclusions can be approximated of any prescribed order by simpler sets, 

e.g., by ellipsoids or simplicial complexes. This is an actual field of research as well, 

stimulated by the results of A. B. Kurzhansky and his group for special control systems. 

Numerical methods for boundary value problems for differential inclusions are much 

less developed than desirable. Naturally, good methods for initial value problems make 

it worthwhile to attack boundary value problems by shooting methods. The additional 

difficulty with differential inclusions is that the finite-dimensional systems of equations to 
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be solved have very poor qualitative properties, especially for differential inclusions re­

sulting from differential equations with discontinuous right-hand sides. Hence, efficient 

algorithms are needed for the solution of nonsmooth systems of equations. There are 

some other approaches to the direct solution of boundary value problems for differential 

inclusions, e.g., by simplicial fixed point algorithms, cf. [59], [60], or by difference meth­

ods, cf. [44]. But until now only convergence results, no order of convergence results 

are available. 

Above all, more computer tests are necessary to get more insight into the algorithms 

and into the underlying problems. We are convinced that additional numerical experi­

ments together with a sound mathematical analysis of the results will give the right in­

spiration for new algorithms and new ideas. 
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