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Abstract. Preserving the “mental map” is major goal of interactive
graph drawing algorithms. Several models have been proposed for for-
malizing the notion of mental map. Additional work needs to be done to
formulate and validate “difference” metrics which can be used in practice.
This paper introduces a framework for defining and validating metrics
to measure the difference between two drawings of the same graph.

1 Introduction
Graph drawing algorithms have traditionally been developed using a batch model,
where the graph is redrawn from scratch every time a drawing is desired. These
algorithms, however, are not well suited for interactive applications, where the
user repeatedly makes modifications to the graph and requests a new drawing.
When the graph is redrawn it is important to preserve the look (the user’s “men-
tal map”) of the original drawing as much as possible, so the user does not need
to spend a lot of time relearning the graph.

The problems of incremental graph drawing, where vertices are added one
at a time, and the more general case of interactive graph drawing, where any
combination of vertex/edge deletion and insertion is allowed at each step, have
been starting to receive more attention. See, for example, [2, 3, 4, 6, 9, 14, 16,
17, 18, 19, 22]. However, while the algorithms themselves have been motivated
by the need to preserve the user’s mental map, much of the evaluation of the
algorithms has so far focused on traditional optimization criteria such as the area
and the number of bends and crossings (for example, [2, 9, 18, 19]). Mental map
preservation is often achieved by attempting to minimize the change between
drawings — typically by allowing only very limited modifications (if any) to
the position of vertices and edge bends in the existing drawing — making it
important to be able to measure precisely how much the look of the drawing
changes. Animation can be used to provide a smooth transition between the
drawings and can help compensate for greater changes in the drawing, though it
is still important to limit, if not minimize, the difference between the drawings
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(a) (b) (c)

Fig. 1. The rotation problem. (a) is the user-modified graph (the user’s changes
are shown in gray); (b) and (c) are the unrotated and rotated InteractiveGiotto
outputs, respectively. While (b) and (c) are both clearly drawings of the graph
shown in (a), the resemblance is more readily seen in the properly rotated draw-
ing (c).

because if there is a very large change it can become difficult to generate a clear,
useful animation. It is thus still important to have a measure of how the look of
the drawing changes.

Studying “difference” metrics to measure how much a drawing algorithm
changes the user’s mental map has a number of benefits, including

– providing a basis for studying the behavior of constraint-based interactive
drawing algorithms like InteractiveGiotto [4], where meaningful bounds on
the movement of any given part of the drawing are difficult to obtain,

– providing a technique to compare the results of different interactive drawing
algorithms, and

– providing a goal for the design of new drawing algorithms by identifying
which qualities of the drawing are the most important to preserve.

Finding a good difference metric also has an immediate practical benefit, namely
solving the “rotation problem” of InteractiveGiotto. Giotto [23], the core of Inter-
activeGiotto, does not take into account the coordinates of vertices and bends in
the original drawing when constructing a new drawing — and, as a result, the
output of InteractiveGiotto may be rotated by a multiple of 90 degrees (Figure 1).
The problem can be solved by computing the value of the metric for each of the
possible rotations and choosing the rotation with the smallest value.

Several models have been proposed for formalizing the notion of mental
map [8, 13, 15], though more work needs to be done to formally define po-
tential difference metrics and then experimentally validate (or invalidate) them.
Validation can be via user studies similar to those done in [20, 21] to evaluate
the impact of various graph drawing aesthetics on human understanding.

Motivated by applications to InteractiveGiotto, this paper will focus primarily
on difference metrics for orthogonal drawings, though many of the metrics can be
used without modification for arbitrary drawings. Section 2 describes the metrics
being proposed, Section 3 presents a framework for evaluating the suitability of
the metrics along with a preliminary evaluation, and Section 4 outlines plans for
future work.
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2 Metrics
The difference metrics being proposed fall into five categories: distance, proxim-
ity, orthogonal ordering, shape, and topology. While the distance category could
be considered a subset of proximity, it is kept separate to distinguish between
metrics using the Euclidean distance between points and those using relative or-
derings based on the distances. Proximity, ordering, and topology are suggested
in [8, 13, 15] as qualities which should be preserved; distance, suggested in [13],
and shape reflect intuition about what causes drawings to look different. Within
each category the metrics were chosen to capture intuition about what qualities
of the drawing are important to preserve.

It should be noted that all of the metrics are concerned only with the geo-
metric aspects of the drawing; other features such as node color and line styles
are also very important in preserving the look of the drawing and may be able
to at least partially compensate for geometric changes.

2.1 Preliminaries

Terminology Every metric compares two drawings D and D′ of the same
graph G. Each object of the graph G can be associated with two sets of coor-
dinates, one describing the position in D and the other the position in D′. A
matched set of objects is a set of the pairs describing the object’s position in the
two drawings. The matched sets used are sets of points and sets of edges. A point
is any aspect of the graph that has a single coordinate, such as the centers and
corners of vertices. The matched point set Pm is the set of pairs (pi, p

′
i) where pi

is the location of point i in D and p′i is the location of point i in D′. Let d(p, q)
be the (Euclidean) distance between two points p and q. An edge is simply an
edge of a graph; the important features are the coordinates of the endpoints and
bends. The matched edge set Em is the set of matched edges (ei, e

′
i) where ei is

the edge i in D and e′i is the edge i in D′.

Drawing Alignment Most of the metrics compare coordinates between draw-
ings, which means that they are sensitive to the particular values of the coor-
dinates. Figure 2 illustrates this sensitivity — if the difference metric relies on
the distance d(pi, p

′
i) between points, adjusting the scale and translation of one

point set relative to the other makes a large difference.
To eliminate this effect, the drawings are aligned before the metric is com-

puted. This is done by extracting a (matched) set of points from the drawings
and applying a point set matching algorithm to obtain the best fit. In general the
matching algorithm should take into account scaling, translation, and rotation,
though it may be possible to eliminate one or more of the transformations for
certain metrics or if something is known about the relationship between the two
drawings. For example, interactive drawing algorithms often preserve the rota-
tion of the drawing (see [2, 19] for examples), eliminating the need to consider
rotation in the alignment stage. For orthogonal drawings, there are only eight
possible rotations for the second drawing relative to the first — four multiples
of 90 degrees, applied to the original drawing and its reflection about the x axis.
These eight possibilities can be handled by computing the metric separately for
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Fig. 2. Two point sets (black and gray) superimposed. (Corresponding points in
the two sets are connected with dotted lines.) As shown, the Euclidean distance
metric (Section 2.2) would report a distance of 4.25. However, translating the
gray points one unit to the left and then scaling by 1/2 in the x direction allows
the point sets to be matched exactly, for a distance of 0. It should be noted that
exact matches are not possible in general.

each rotation and taking the minimum value instead of incorporating rotation
into the alignment process.

A great deal of work has been done on point set matchings; see [1, 5, 11] for
several methods of obtaining both optimal and approximate matchings. Differ-
ent methods can be applied when the correspondence between points is known
as it is here; see [12] for an algorithm that minimizes the maximum distance
between corresponding points under translation, rotation, and scaling. In the
implementation used in Section 3, the alignment is performed by using gradient
search to minimize the distance squared between points.

Point Set Selection Points can be selected in a number of ways. Two vertex-
centered methods — centers and corners — are used here, to reflect the idea that
vertex positions are a significant visual feature of the drawing [17]. “Centers”
consists of the center points of each vertex; this captures how vertices move.
“Corners” uses the four corners of each vertex, taking into account both vertex
motion (the movement of the center) and changes in the vertex dimension. It
seems important to take into account changes in vertex dimension because a
vertex with a large or distinctive shape can act as a landmark to orient the user
to the drawing; loss of that landmark makes orientation more difficult.

2.2 Distance

The distance metrics reflect the simple observation that drawings that look very
different cannot be aligned very well, and vice versa. In order to make the value
of the distance metrics comparable between pairs of drawings, they are scaled
by the graph’s unit length u. For orthogonal drawings the unit length can be
computed by taking the greatest common divisor of the Manhattan distances
between vertex centers and bend points on edges. Non-orthogonal portions of
the drawing, such modifications of an orthogonal drawing made by the user, can
be ignored during the computation. While the determination of the unit length
will be unreliable if a small portion of the drawing is orthogonal, scaling by
the unit length is not necessary in some applications (e.g., solving the rotation
problem of InteractiveGiotto) and can often be supplied manually if it is required.
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(b) (c)(a)

Fig. 3. Proximity: (b) looks more like (a) than (c) does because the relative
shape of both the inner and outer squares are preserved even though the distance
(using the Euclidean distance metric) between (c) and (a) is smaller. An aligned
version of the vertices of (a), used in the computation of the distance metric, is
shown with dotted lines in (b) and (c).

Hausdorff Distance The Hausdorff distance is a standard metric for deter-
mining the distance between two point sets, and measures the largest distance
between a point in one set and its nearest neighbor in the other.

The (undirected) Hausdorff distance for a matched point set Pm is

hausdorff(Pm) =
1
u

max{max
i

min
j

d(pi, p
′
j), max

i
min

j
d(p′i, pj)}

Euclidean Distance Euclidean distance, introduced in [13], is a simple metric
measuring the average distance moved by each point from the first drawing to
the second; it is motivated by the notion that if points move a long way from
their locations in the first drawing, the second drawing will look very different.

dist(D, D′) =
1

u |Pm|
∑

(pi,p′
i
)∈Pm

d(pi, p
′
i)

2.3 Proximity

The proximity metrics reflect the idea that points near each other in the first
drawing should remain near each other in the second drawing. This is stronger
than the distance metrics because it captures the idea that if a subgraph moves
relative to another (but there are no changes within either subgraph), the dis-
tance should be less than if each point in one of the subgraphs moves in a different
direction (Figure 3).

Three different metrics are used to try to capture this idea: nearest neighbor
within (nn-within), nearest neighbor between (nn-between), and ε-clustering.

Nearest Neighbor Within Nearest neighbor within is based on the reasoning
is that if pj is the closest point to pi in D, then p′j should be closest point to p′i
in D′. Considering only distances within a single drawing means that nn-within
is alignment-independent and thus not subject alignment errors, but means that
it is not suitable for solving the rotation problem of InteractiveGiotto.
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This metric has two versions, weighted and unweighted. In the weighted ver-
sion the number of points closer to p′i than p′j is considered, whereas in the
unweighted version it only matters if p′j is or is not the closest point. The rea-
soning behind the weighted version is that if there are more points between p′i
and p′j , the visual linkage between p′i and p′j has been disrupted to a greater
degree and the drawing looks more different.

In both cases the distance is scaled by the number of points being considered
and W , the maximum weight contributed by a single point.

nnw(D, D′) =
1

W |Pm|
∑

(pi,p′
i
)∈Pm

closer(p′i, p
′
j)

where pj is the closest point to pi in D and

closer(p′i, p
′
j) =

∣∣{k | d(p′i, p
′
k) < d(p′i, p

′
j)}

∣∣ , W = |Pm| − 2 (weighted)

closer(p′i, p
′
j) =

{
0 if d(p′i, p

′
j) ≤ d(p′i, p

′
k), k 6= i

1 otherwise
, W = 1 (unweighted)

Nearest Neighbor Between Nearest neighbor between is similar to nn-within
but instead measures whether or not p′ is the closest of the points in D′ to p
when the two drawings are aligned. The idea that a point should remain nearer
to its original position than any other is also the force behind layout adjustment
algorithms based on the Voronoi diagram [13].

nnb(D, D′) =
1

W |Pm|
∑

(pi,p′
i
)∈Pm

closer(pi, p
′
i)

where
closer(pi, p

′
i) =

∣∣{j | d(pi, p
′
j) < d(pi, p

′
i)}

∣∣ , W = |Pm| − 1 (weighted)

closer(pi, p
′
i) =

{
0 if d(pi, p

′
i) ≤ d(pi, p

′
j)

1 otherwise
, W = 1 (unweighted)

Unlike nn-within, nn-between is not alignment- and rotation-independent
and thus is suitable for solving the rotation problem.
ε-Clustering An ε-cluster for a point p is the set of points q such that d(p, q) ≤ ε,
where a reasonable value to use for ε is (see [8])

ε = max
p

min
q 6=p

d(p, q)

The ε-cluster metric measures how the ε-cluster for pi compares to that for p′i.
Let C be the graph where the vertex set is the set of points and (i, j) ∈ EC

if d(pi, pj) ≤ εD or d(p′i, p
′
j) ≤ εD′ . Let ECD be the set of edges for which the

first condition holds and ECD′ be the set of edges for which the second condition
holds. The distance is thus

cluster(D, D′) = 1 −
∣∣ECD ∩ ECD′

∣∣
|EC |
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(a) (b) (c)

Fig. 4. Orthogonal ordering: Even though the angle the vertex moves relative to
the center of the large vertex is the same from (a) to (b) and from (a) to (c), the
perceptual difference between (a) and (c) is much greater. The original location
of the vertex is shown with a dotted box in (b) and (c) for comparison purposes.

2.4 Orthogonal Ordering

The orthogonal ordering metric reflects the desire to preserve the relative order-
ing of every pair of points — if p is northeast of q in D, p′ should remain to
the northeast of q′ in D′ [8, 15]. The simplest measurement of difference in the
orthogonal ordering is to take the angle between the vectors q−p and q′−p′ (un-
weighted orthogonal ordering). This has the desirable feature that if q is far from
p, q′ − q must be larger to result in the same angular move, which reflects the
intuition that the relative position of points near each other is more important
that the relative position of points that are far apart.

However, simply using the angular change fails to take into account situations
such as that shown in Figure 4. This problem can be addressed by introducing
a weight that depends on the particular angles involved in the move in addition
to size of the move (weighted orthogonal ordering).

order(D, D′) =
1

W |Pm|
∑
i,j

min(order(θij , θ
′
ij), order(θ′ij , θij))

where θij is the angle from the positive x axis to the vector pj − pi, θ′ij is the
angle from the positive x axis to the vector p′j − p′i, and

order(θij , θ
′
ij) =

∫ θ′
ij

θij

weight(θ) dθ,

W = min
{∫ π

0

weight(θ) dθ,

∫ 2π

π

weight(θ) dθ

}
The weight functions are

weight(θ) =

{ π
2 −(θ mod π

2 )
π
4

if (θ mod π
2 ) > π

4
θ mod π

2
π
4

if (θ mod π
2 ) ≤ π

4

(weighted)

weight(θ) = 1 (unweighted)

The λ-matrix model for measuring the difference of two point sets, introduced
in [13], is based on the concept of order type of a point set [10]. This model tries
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(b)(a)

Fig. 5. Shape: (a) and (b) look different even though the graphs are the same
and the vertices have the same coordinates.

to capture the notion of the relative position of vertices in a straight-line drawing
and is thus related to the orthogonal ordering metric.

2.5 Shape

The shape metric is motivated by the reasoning that edge routing may have an
effect on the overall look of the graph (Figure 5). The shape of an edge is the
sequence of directions (north, south, east, and west) traveled when traversing
the edge; writing the shape as a string of N, S, E, and W characters yields the
shape string of the edge. For non-orthogonal edges the direction is taken to be
the most prominent direction; for example, if the edge goes from (1,1) to (4,2)
the most prominent direction is east. For each edge the minimum number of
edits to transform the shape string in one drawing to the string in the other is
computed, where an edit consists of inserting, deleting, or replacing a character
in the shape string. The metric is the average number of edits per edge.

shape(D, D′) =
1

|Em|
∑

(ei,e′
i
)∈Em

edits(ei, e
′
i)

Shape is scale- and translation-independent.

2.6 Topology

The topology metric reflects the idea that preserving the order of edges around
a vertex is important in preserving the mental map [8, 15] — comparing the
drawing produced by Giotto in Figures 6 and 7 to the user’s input illustrates
this. However, since most interactive orthogonal drawing algorithms (see, for
example, [4, 2, 9, 18, 19]) always preserve topology, it is not useful as a means
of comparing these algorithms. It is also alignment-independent and so can not
be used to solve the rotation problem of InteractiveGiotto. As a result, it is not
discussed in any more detail here.
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3 Analyzing the Metrics

Once defined, the suitability of the metrics must be evaluated. A good metric
for measuring the difference between drawings should satisfy the following three
requirements:

– it should qualitatively reflect the visual difference between two drawings, i.e.
the value increases as the drawings diverge;

– it should quantitatively reflect the visual difference so that the magnitude of
the difference in the metric is proportional to the perceived difference; and

– in the rotation problem of InteractiveGiotto, the metric should have the small-
est value for the correct rotation, though this requirement can be relaxed
when the difference between drawings is high since in that case there is no
clear “correct” rotation.

The third point is the easiest to satisfy — in fact, most of the metrics defined
in the previous section can be used to solve the rotation problem — but is still
important worth considering since the problem was one of the factors that first
inspired this work.

Evaluating the qualitative and quantitative behavior of potential metrics
requires ranking pairs of drawings based on the visual difference between the
existing drawing and the new drawing in each pair. InteractiveGiotto provides
a convenient way of obtaining an ordered set of drawings because it allows the
constraints preserving the layout to be relaxed. By default InteractiveGiotto pre-
serves edge crossings, the direction (left or right) and number of bends on an
edge, and the angles between consecutive edges leaving a vertex. Recent modi-
fications allow the user to turn off the last two constraints on an edge-by-edge
or vertex-by-vertex basis. This means that it is possible to produce a series of
drawings which are progressively farther from the original by iteratively relaxing
more of the constraints. A smooth way of relaxing the constraints is to use a
breadth-first ordering, expanding outward from the user’s modifications — in
the first step all of the constraints are applied, in the second step the bend and
angle constraints are relaxed for all of the modified objects, in the third step
the angle constraints are relaxed for all vertices adjacent to edges whose bends
constraints have been relaxed, in the fourth step the bend constraints are relaxed
for all edges adjacent to vertices whose angle constraints have been relaxed, and
so on, alternating between angle and bend constraints until all of the constraints
have been relaxed. This relaxation method is based on the idea that the user
is most willing to allow restructuring of the graph near where her changes were
made, so progressively expanding the sphere of influence of the changes results
in a series of drawings in which the mental map is increasingly disrupted.

Figures 6 and 7 show two such relaxation sequences; the base graphs and
user modifications are those used in the first two steps of Figure 2 in [4]. Giotto’s
redraw-from-scratch drawing of the graph is also included for comparison. Fig-
ures 8 and 9 show the results of the difference metrics for each sequence of
drawings.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Relaxations for stage 1. (a) shows the user’s modifications, (b)–(e) show
the output from InteractiveGiotto for successive relaxations, and (f) is the output
from Giotto. Rounded vertices and bends without markers indicate vertices and
bends for which the constraints have been relaxed.

Some preliminary work has been done on evaluating the proposed metrics
based on their qualitative behavior. Six sets of graphs consisting of a base graph
modified by several successive sets of modifications were generated from two
applications where interactive graph drawing algorithms are useful — mapping
how a user might explore topics when querying a search engine and mapping
the exploration of a web site by a user or web crawler. Two other sets were
generated from two of the same sets by breaking the modifications generated by
each of the user’s steps into single changes which were applied individually. A
total of 62 graphs were generated in this way; for each a series of drawings was
produced using InteractiveGiotto with progressively relaxed constraints. Giotto
was also run on each graph.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 7. Relaxations for stage 2. (a) shows the starting graph, (b) shows the user’s
modifications (two vertices and their adjacent edges deleted), (c)–(j) show the
output from InteractiveGiotto for successive relaxations, and (k) is the output
from Giotto. Rounded vertices and bends without markers indicate vertices and
bends for which the constraints have been relaxed.

The initial analysis shows that when the user’s modifications are small (af-
fecting only a single vertex or edge) most of the metrics are well-behaved —
that is, they increase in value as the constraints are relaxed, with the highest
value being for the Giotto drawing. When the size of the changes is increased,
shape, Euclidean distance, and to some degree clustering tend to remain the
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Drawings (b)–(f) are shown from front to back.
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(b) Values of metrics for each drawing in stage 2.

Fig. 8. Striped bars indicate entries for which the metric reported the wrong
rotation; white outlines indicate that multiple rotations had the same small-
est value for the metric. The label for each metric is of the form <metric
name>/<weighted>/-/<alignment>/<points>, where <weighted> is t or f in-
dicating if the weighted version of the metric was used (if applicable), and
<alignment> and <points> are strings indicating the choice of points used for
alignment and points, respectively. c– indicates using vertex centers, -c- indi-
cates vertex corners, and the last position (t or f) indicates whether the edges
and vertices modified by the user were considered.
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Fig. 9. Hausdorff and Euclidean distance metrics for stages 1 and 2, respectively.

most well-behaved. Further study is needed to determine why these effects are
being observed and if they are indeed typical of the metrics.

4 Future Work
As mentioned, the natural next step is to perform more extensive experimen-
tation using the relaxation sequences produced by InteractiveGiotto from both
real-world and randomly generated “typical” graphs. The randomly generated
graphs can be created using a method similar to that used in [7] to produce
realistic graphs for the experimental analysis of several orthogonal drawing al-
gorithms.

The sequences produced by InteractiveGiotto allow a qualitative assessment
of the metrics — it is easy to see visually that the difference between the base
drawing and the relaxed drawing increases as the constraints are relaxed — but
do not allow for a very good quantitative assessment because there is only a
relative ordering of the drawings within a sequence and there is no ordering of
drawings from different sequences relative to each other. User studies can be used
to identify the importance of factors such as distance between points, proximity,
orthogonal ordering, and shape in the user’s mental map and assign difference
values to each drawing, which can then be compared to the values of the metrics.

Once suitable metrics have been identified and validated through user stud-
ies, they can be used to compare the behavior of interactive graph drawing algo-
rithms as well as potentially providing inspiration for new drawing algorithms.
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