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Review Article

Differences between young adults and elderly in thermal comfort,

productivity, and thermal physiology in response to a moderate

temperature drift and a steady-state condition

Introduction

Both thermal comfort and energy use play an impor-
tant role in the performance of a building. Approxi-
mately one-third of the primary energy used in
developed countries is consumed by heating, ventilat-
ing, and air-conditioning in residential, commercial,
and public buildings (IEA, 2007). Given these energy
requirements, it is relevant to study how energy savings
can be achieved together with acceptable thermal
comfort and performance.
Results from naturally ventilated buildings in

practice revealed that satisfaction with the thermal

environment does not mean that this environment has
to be controlled at a constant indoor air temperature
(de Dear and Brager, 1998 and 2001; Olesen and
Parsons, 2002; Olesen, 2004). Compared to a constant
temperature, allowing the temperature to drift could be
a means to reduce energy use.
In the past, several studies have been conducted to

examine the influence of a temperature drift and a wider
temperature range on thermal comfort and perfor-
mance. These studies show that temperature drifts can
be acceptable in air-conditioned buildings without self-
control. The results of these studies show that slow
temperature ramps up to 0.5 K/h have no effect on the

Abstract Results from naturally ventilated buildings show that allowing the in-
door temperature to drift does not necessarily result in thermal discomfort and
may allow for a reduction in energy use. However, for stationary conditions,
several studies indicate that the thermal neutral temperature and optimum
thermal condition differ between young adults and elderly. There is a lack of
studies that describe the effect of aging on thermal comfort and productivity
during a moderate temperature drift. In this study, the effect of a moderate
temperature drift on physiological responses, thermal comfort, and productivity
of eight young adults (age 22–25 year) and eight older subjects (age 67–73 year)
was investigated. They were exposed to two different conditions: S1-a control
condition; constant temperature of 21.5�C; duration: 8 h; and S2-a transient
condition; temperature range: 17–25�C, duration: 8 h, temperature drift: first
4 h: +2 K/h, last 4 h: –2 K/h. The results indicate that thermal sensation of the
elderly was, in general, 0.5 scale units lower in comparison with their younger
counterparts. Furthermore, the elderly showed more distal vasoconstriction
during both conditions. Nevertheless, TS of the elderly was related to air tem-
perature only, while TS of the younger adults also was related to skin temper-
ature. During the constant temperature session, the elderly preferred a higher
temperature in comparison with the young adults.
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width of the comfort zone as established under steady-
state conditions; the environment is experienced as in
steady-state conditions, i.e. slow temperature ramps
(0.5 K/h) were not significantly noticeable to the occu-
pants (Berglund and Gonzalez, 1978a,b; Griffiths and
McIntyre, 1974; Rohles et al., 1985). Berglund and
Gonzalez also stated that at fast temperature changes
(1.0 and 1.5 K/h), the allowable deviation from the
optimum thermal condition was larger in comparison
with slow temperature changes (0.5 K/h).
Hensen (1990) and Kolarik et al. (2005) concluded

from their reviews that for rates between 0.5 and 1.5
K/h, there is no clear evidence of increased or decreased
comfort zones owing to temperature drifts, except from
experiments with uncommon acceptability assessment
procedures. From these studies, it can be concluded
that the knowledge regarding the effects of temperature
drifts on human thermal comfort is still limited.
In a recent study by Kolarik et al. (2007), different

operative temperature ramps (±0.6, ±1.2, +2.4,
+4.8 K/h; temperature ranges: 22–26.8 and 17.8–
25�C) were investigated to determine the influence of
the slope. They found that a slow temperature drift
(±0.6 K/h) was perceived by the subjects with 3–4 h
delay (depending on clothing level). During the first 3–
4 h of exposure, subjects did not distinguish a slow
temperature increase (+0.6 K/h) from a constant
temperature level (21.4 and 24.4�C). These results are
in agreement with earlier mentioned studies by Bergl-
und and Gonzalez (1978a,b) and Rohles et al. (1985).
The results also indicate that not the temperature

ramp, but the combination of a temperature level
above 24.4�C and the time of exposure affected the
thermal sensation. Furthermore, a linear relation was
found between mean thermal sensation and operative/
air temperature for all the studied ramps.
In the building design phase, it is useful to predict

thermal comfort of the occupants; often, the PMV/
PPD model is used for this. However, Nicol and
Humphreys (2002) showed, based on data of the
ASHRAE RP-884 database (de Dear et al., 1997), that
the PMV model might not be applicable to predict
thermal comfort for conditions that deviate much from
thermal neutral conditions.
Although the PMV model was developed for steady-

state conditions, the study by Kolarik et al. (2007)
indicates that the PMV model might also be applicable
for transient conditions. For all slopes, the relation
between instantaneous mean thermal sensation and
prediction by the PMV model (ISO 7730, 2005) was in
reasonably good agreement (Kolarik et al., 2007),
which was found by Schellen et al. (2008) as well.
The same was found by Knudsen et al. (1989); they

concluded that the PMV model possibly can be used
for temperature ramps up to ±5 K/h.
Seppänen and Fisk (2005) describe a literature review

on the influence of temperature on performance.

Several types of office tasks were analyzed, including
text typing and the duration of telephone calls during
call center work. According to their analyses, no
influence of room temperature was found between 20
and 25�C. Above 25�C, and below 20�C, a decrease of
2%/ºC in performance was observed. These findings
were confirmed in studies by Seppänen and Fisk (2005)
and Tanabe (2006).
On the contrary, Toftum (2005) discovered a signif-

icant negative effect on performance when increasing
the temperature from 20–22 to 22–24�C.
Studies concerning the effects of temperature drifts

on performance and productivity were only found for
studies comprising short cyclical temperature swings
around the preferred ambient temperature. Kolarik
et al. (2005) concluded that small rapid swings (4 K/
8 min) around the preferred temperature resulted in a
decreased performance and work speed. Conversely,
larger and slower swings (4 K/32 min) were related to a
higher work speed in comparison with results achieved
under steady-state conditions. The performance was
equal to the performance achieved under steady-state
conditions.
According to these findings, temperature transients

can have a positive influence on the work speed
(productivity) and perhaps performance, although
thermal discomfort cannot be ruled out.
For both temperature and productivity, no studies

are available to determine the effects of aging on
thermal comfort and productivity during a moderate
temperature drift. In this study, this effect has been
investigated.
The above-mentioned studies reveal a challenge to

explore whether faster (>±0.5 K/h) temperature
drifts, both increasing and decreasing, are acceptable
during a longer period of time in air-conditioned
buildings.
Moreover, there exists a need to study thermal

preferences of elderly and resulting requirements (van
Hoof, 2008; van Hoof and Hensen, 2006).
ASHRAE (2009) states, based on research by among

others Rohles and Johnson (1972), Fanger and Lang-
kilde (1975) and Fanger (1982), that the thermal
conditions preferred by elderly do not differ from
those preferred by younger adults. This does not mean
that the elderly and young adults are equally sensitive
to cold or heat.
On the contrary, several studies indicate that the

thermal neutral temperature and optimum thermal
condition of elderly differ from the thermal neutral
temperature and optimum condition of young adults,
mainly because of an average lower activity level
(which implies a lower metabolic heat production).
Therefore, elderly might require a higher ambient
temperature to achieve thermal comfort in comparison
with younger adults at equal clothing levels (Cena
et al., 1986; Collins et al., 1981; DeGroot and Kenny,

Schellen et al.

274



2007; Hardy and Dubois, 1940; Hashiguchi et al.,
2004; Havenith, 2001; van Hoof and Hensen, 2006;
Natsume et al., 1992).
As, in the next 20 years, in the western world, the

number of people aged 60 or older will increase from
15.4% in 1996 to 25.3% in 2030 (Howden-Chapman
et al., 1999), it is relevant to study possible differences
in thermal comfort, physiological responses, and per-
formance between young and elderly people experienc-
ing a moderate temperature drift.
Following the above, the objective of this work was

to study differences in thermal comfort, physiological
responses, and productivity between young and elderly
people under a moderate temperature drift.

Methods

Design

The experiments were carried out in a climate room
(4.5 · 3.7 · 2.3 m3, L · W · H) at the laboratory of
the unit Building Physics and Systems at Eindhoven
University of Technology (Figures 1 and 2), where air
temperature and relative humidity could be controlled
accurately. The climate room is situated in a laboratory
with a controlled constant indoor climate. The room
consists of well-insulated walls with a low thermal
mass; therefore, the wall temperatures of the room
followed the air temperature near instantly. The air,
conditioned by an air-handling unit (Fischback Luf-
tungs- und Klimatechnik GmbH, type VNM), was
supplied through a high inductive outlet vent. To
further increase the mixing of the air, a ceiling fan was
installed, resulting in a mean air velocity near the

subject of 0.19 ± 0.03 m/s. The temperature of the
supplied air was controlled through a PID controller
(Temperature controller, West type 1600). The relative
humidity (RH) was controlled at a fixed level of nearly
40% (43.2 ± 2.3%).
Sixteen subjects (eight young adults, age 22–25, and

eight older adults, age 67–73) were recruited to
participate in the experiment. All subjects were men,
healthy, normotensive, and not taking any medications
that might alter the cardiovascular or thermoregula-
tory responses to the temperature changes; subject
characteristics per group are listed in Table 1.
Body fat percentage was determined by means of

skinfold thickness, according the Siri equation (Durnin
and Rahaman, 1967). Skin folds were measured at four
sites: subscapular, suprailiacal, and at the triceps and
biceps (Lohman et al., 1988).
The subjects visited the climate room on two

occasions (S1 and S2) that differed in indoor climate
conditions. The order of the conditions was alternated
(e.g. subject 1 started with S1 and ended with S2,
subject 2 started with S2 and ended with S1, subject
three started with S1, etc.).

S1: A steady temperature (21.5�C). Session S1 (dura-
tion 8 h) was the control situation; with the results of
this session, possible time effects have been assessed.
The temperature was fixed at 21.5�C (21.5 ± 0.12�C),
which corresponds to a neutral thermal sensation
(PMV�0).

S2: A transient condition. During session S2, a moder-
ate temperature ramp (duration: 8 h; temperature
range: 17–25�C; temperature drift: first 4 h: +2 K/h,
last 4 h: )2 K/h) was imposed. Through this course,
both the effects of an increasing and decreasing ramp
could be evaluated.
Most of the experiments conducted in the past

focused on the effects of temperatures warmer than
neutral. In this study, temperatures colder than neutral
will be studied as well. The minimum temperature of
17�C was set to avoid shivering, and therefore, it is
assumed that the condition will not be unacceptable
cold (Parsons, 2003). The maximum temperature of
25�C fits within the comfort zone (PMV < 0.5)
according to ASHRAE (2004) and ISO 7730 (2005).
The imposed drift of 2 K/h is within the comfort limit
(ISO 7730, 2005).

Fig. 1 Schematic representation of climate room

Table 1 Subject characteristics per age group

Age (year) Height* (m) Weight* (kg) Body fat%* (%)

Young adults 22–25 1.83 € 0.11 82.7 € 8.6 14.5 € 3.3

Older adults 67–73 1.76 € 0.06 77.8 € 7.2 18.7 € 5.3

*Mean € SD.Fig. 2 Impression of test subjects in climate room
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Furthermore, this drift represents a building warm-
ing up during the beginning of the day and cooling
down during the second part of the day when the
heating is turned off. It was assumed that cooling down
the temperature in the second part of the day could
perhaps positively influence the productivity owing to
�freshness of mind�.
The applied temperature course is represented in

Figure 3. Mean deviation from the desired temperature
course was 0.08 ± 0.49�C.
Prior to the measurements, the subjects performed a

light exercise until skin vasodilatation occurred to
ensure all subjects entered the climate room in an equal
thermal state. Vasodilatation was assessed by the skin
temperature difference between forearm and top of the
forefinger (House and Tipton, 2002; Sessler, 2003).
After entering the climate room, the experiment started
with an acclimatization period (30 min). During this
period, the skin temperature sensors were attached, and
their characteristics (height, weight, and fat percentage)
were determined. Furthermore, they received an
instruction regarding the use of the questionnaires.
During the experiments, the subjects wore standardized
clothing, consisting of a cardigan, jogging pants, thin
T-shirt, underpants, and socks and shoes. The clo-
values were determined according to ISO 9920 (1995)
and the database of McCullough et al. (1989, 1994).
The total heat resistance of the clothing ensemble,
including desk chair, was approximately 1.0 clo.
The subjects continuously performed office tasks;

their metabolic rate was estimated to be approximately
1.2 met (ISO 7730, 2005).
The volunteers were given detailed information

regarding the purpose and the methods used in the
study, before written consent was obtained.

Measurements

During the experiments, both physical and physiolog-
ical measurements were carried out continuously. The
measurements of the environmental parameters, air
temperature (NTC Thermistor, type SC95), relative
humidity (RH) (Humidity Sensors, Honeywell HIH-

4000 series), air velocity (hot sphere anemometer,
Dantec), mean radiant temperate (black bulb 0.15 m),
carbon dioxide (Carbon Dioxide Transmitter, Vaisala
0–2000 ppm), and illuminance (Lux meter, Hager
model E2) were taken according to ISO 7726 (1998).
Air temperature, RH, and air velocity were measured
on a comfort stand at 0.1, 0.6, 1.1 and 1.7 m height.
The skin temperatures were measured according to

ISO 9886 (2004) by wireless iButtons (Thermochron
iButton� DS1291H, Dallas Maxim) at 17 locations
(van Marken Lichtenbelt et al., 2006).
Mean skin temperature was calculated on the basis

of the 14-point weighing as proposed by ISO 9886
(2004).
The distal skin temperature was calculated as aver-

age of the finger tip, instep, hand, and forehead skin
temperature. To avoid a disproportional distribution,
finger tip and hand temperatures were averaged. The
proximal skin temperature was calculated as an aver-
age of the scapula, paravertebral, upper chest, and
abdomen skin temperature. To obtain more insight
into the extent of vasomotion (vasoconstriction and
vasodilatation), three measurement sites were added:
top of the middle right toe, left forearm, and top of left
forefinger.
The core temperature was measured rectally at

10–15 cm deep in the young subjects (thermistor-probe,
NTC Thermistor type SC95). In the elderly, the core
temperature was determined by measuring the intesti-
nal temperature through an ingestible telemetry pill
(CorTemp�, Ingestible Core Body Temperature Sen-
sor, HT150002, HQ Inc., Palmetto, FL, USA), which
was ingested 30 min before entering the climate room.

Questionnaires

Two times per hour, the test subjects filled in a
questionnaire that included a continuous 7-point
thermal sensation interval scale (ISO 7730, 2005),
scales to assess the acceptability of the thermal
environment, and visual analog scales (VAS) to assess
adverse perceptions and the perceived indoor environ-
ment (Kildesø et al., 1999). A questionnaire to assess
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Fig. 3 Designed temperature course condition S2

Schellen et al.

276



self-estimated performance and a questionnaire to
assess perceived stress were included as well. To assess
the performance, a �Remote Performance Measure-
ment� (RPM) method was used (Toftum et al., 2005).
Within this method, the performance was estimated by
two simulated office tasks: text typing and addition.
Both questionnaires and office tasks were presented

in Dutch to the subjects through an Internet browser.
The differences in physiological responses, subjective

responses, and performance were studied using
ANOVA and a linear mixed effects model (LME)
treating subject as a random factor; the experimental
conditions were analyzed separately in the ANOVA
model. To assess explaining variables for the thermal
sensation and thermal comfort of the subject, stepwise
linear regression was used. Significant effects are
reported for P < 0.05. Two statistical software pack-
ages were used to analyze the data; for the LME
analyses, the free-available R 2.9.2 (R Foundation for
Statistical Computing, Vienna, Austria) software pack-
age was used; for all other analyses, the commercially
available software package SPSS 16.0 (SPSS Inc.,
Chicago, USA) was used.

Results

Physiological measurements

Mean, distal, and proximal skin temperatures and core
temperature of young (Y) and elderly (E) subjects for
both sessions (S1 and S2) are given in Figure 4.

For all three different skin temperatures, the differ-
ence between young and elderly was significant
(P < 0.01). The majority of the local skin tempera-
tures (forehead, neck, scapula, upper chest, upper arm,
hand, abdomen, paravertebral, shin, calf, and instep)
of the elderly were significantly lower than the skin
temperature of the young adults. The temperature
of the fingertip showed the largest difference,
29.1 ± 1.90�C [S1] and 27.5 ± 2.76�C [S2] for the
young adults vs. 24.8 ± 2.73�C [S1] and
24.9 ± 2.12�C [S2] for the elderly. However, three
measurement locations showed a deviation. At the
underarm, the difference was not significant; at the
front and back of the upper leg (anterior and posterior
thigh), the skin temperature of the elderly was for both
sessions significantly (P < 0.001) higher than of the
young adults, although this difference was compara-
tively small (<0.8�C).
The mean core temperatures of the elderly

(36.6 ± 0.27�C [S1] and 36.5 ± 0.33�C [S2]) were
significantly lower compared to their younger counter-
parts: (37.0 ± 0.08�C [S1] and 36.9 ± 0.09�C [S2]).
Possibly, this difference is caused by the difference in
measuring technique for Tcore between the groups.
The difference (gradient) between fingertip and

forearm temperature is given in Figure 5. Positive
values indicate vasoconstriction (forearm temperature
is higher than finger tip temperature), while negative
values indicate vasodilatation. The fingertip–underarm
gradient of the young adults is smaller during both
sessions in comparison with the elderly, which is caused
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by the differences in vasoconstriction between the
young adults and the elderly. Furthermore, the results
of the young adults show a slightly negative difference
(vasodilatation) as result of the high temperatures
during session 2, in contrast to the elderly who
maintained finger skin vasoconstriction.
The drop in distal skin temperatures during approx-

imately the first 100 min of both conditions (S1 and S2)
is most probably caused because the subjects started the
experiment in vasodilatation state (DT(forearm–fingertip)

� 0), which was maintained during the acclimatization
period owing to the slightly elevated activity level. After
the start of the experiment (t = 0), the subjects were
completely sedentary, which resulted in a slight
decrease in core temperature (Figure 4d) caused by a
lowered internal heat production (metabolism). To
maintain core temperature constant, vasoconstriction
was activated, indicated by the increase in forearm–
fingertip gradient (Figure 5) and drop in distal temper-
atures (Figure 4b).

Subjective responses

The results of the questionnaires have been analyzed
separately for both experimental conditions (S1 and
S2) and for both parts of the condition (1: first 4 h, 2:
last 4 h) to be able to distinguish between a constant
temperature and a temperature drift and to analyze
time effects.
Thermal sensation (TS) of the young adults was

significantly (ANOVA, P < 0.001) affected by the two
different conditions (Figure 6a). In the design of the
experiment, the temperature of session S1 was deter-
mined to be equal to a neutral thermal sensation
according the PMV model (ISO 7730, 2005). Averaged
TS for the young subjects was )0.18 ± 0.56 during

session S1 and )0.52 ± 0.76 during session S2. TS of
the elderly was )0.67 ± 0.66 and )0.63 ± 0.93,
respectively.
TS during session S2 is not influenced by time.

Differences (insignificant, P > 0.05) between first and
last part of session S2 are represented in Figure 6b.
In Table 2, the results of stepwise multiple regression

analysis are represented for thermal sensation as
independent variable for the young adults and the
elderly, respectively, only significant variables are
listed. The following variables were taken into account
as possible predictive variables: mean air temperature,
mean, proximal, and distal skin temperature, mean air
velocity, fingertip–underarm gradient, core tempera-
ture, and the change in mean skin temperature.
In Table 3, the significant (P < 0.05) explaining

variables per part (I and II) of the measurement session
according to stepwise linear regression analyses are
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Fig. 6 (a) Mean thermal sensation (TS) ± SD per measurement
session ()3: Cold, )2: Cool, )1: Slightly Cool, 0: Neutral, 1:
Slightly Warm, 2: Warm, 3 Hot) (b) Mean thermal sensation;
Part 1: first 4 h of session 2; Part 2: last 4 h of session 2

Table 2 Results from stepwise multiple regression model with (a) Ta, Tcore and Tskin as

predictive variables for young subjects (b) Ta, Tcore and DT(forearm–fingertip) as predictive

variables for elderly subjects and thermal sensation as the dependent variable

Independent variables Slope Significance (P) R
2
adj

(a)

Air temperature (Ta) 0.215 0.000* 0.34

Core temperature (Tcore) 0.646 0.000*

Mean skin temperature (Tsk) 0.177 0.005*

(b)

Air temperature (Ta) 0.221 0.000* 0.40

Vasomotion (DT(forearm–fingertip) )0.087 0.000*

Core temperature (Tcore) )0.299 0.018*

*Significant (P < 0.05).
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listed. No possible effects of time on TS could be
observed.
Linear regression analyses of TS as dependent

variable and Ta as independent variable show the
difference in TS between the young and older adults.
Generally, TS of the older adults is approximately 0.5
lower than TS of the younger adults (Figure 7).
However, only for session S1, the differences are
significant (LMM, P < 0.05). Comparing the subjec-
tive votes for TS and predicted votes according the
PMV model, a similar trend can be detected; the
general trend is in good agreement with the subjective
votes. For the elderly, however, measured TS is 0.5
lower in comparison with PMV.
The difference between young and elderly in thermal

comfort (TC) is significant (LME, P < 0.001); Fig-
ure 8. The elderly felt less comfortable during both
sessions than the young adults, which is in agreement
with TS. Because no significant differences can be
detected between the parts of the session (Figure 8b),
time effects are excluded for TC as well.
With respect to the preferred temperature, a signif-

icant difference (LME, P < 0.01) was found for S1

(constant temperature); the elderly preferred a warmer
temperature, while the young adults requested no
change in temperature. For both young and elderly
subjects, mainly skin temperature (mean skin temper-
ature, distal and proximal skin temperature, extent of
vasomotion) had a significant (P < 0.05) effect on TC.
In Figure 9a,b, the results are represented for one

typical young and one typical older adult, respectively,
of both experimental sessions (S1, left and S2, right).
For both subjects, mean and proximal skin tempera-
tures are clear indicators for thermal sensation (TS).
During S1, the older adult is more sensitive for distal
skin temperature, which is reflected in TS. Further-
more, lower distal skin temperatures (i.e. vasoconstric-
tion) are reflected in the comfort votes of both subjects,
resulting in less comfortable votes. The sudden increase
in mean and distal skin temperatures of the older adult
during S2 at t � 200 cannot be explained.
To determine the effects of aging on performance,

the data of simulated office tasks were normalized; the

Table 3 Explaining variables for thermal sensation as independent variable

Session 1 Session 2

Part I Part II Part I Part II

Young adults Core temperature (Tcr); Distal

skin temperature (Tsk;dist); Proximal skin

temperature (Tsk;prox); Extent of

vasomotion (DTforearm–fingertip)

– Air temperature (Ta); Core temperature (Tcr);

Distal skin temperature (Tsk;dist)

Air temperature (Ta);

Mean skin temperature (Tsk)

Older adults Proximal skin temperature (Tsk;prox) Mean skin temperature (Tsk);

Extent of vasomotion

(DTforearm–fingertip);

Core temperature (Tcore)

Air temperature (Ta);

Extent of vasomotion (DTforearm–fingertip);

Air temperature (Ta)

18 20 22 24
−3

−2

−1

0

1

2

3

Ta [°C]

T
S

 [
−

]

r 2 = 0.83 Young

r 2 = 0.63 Elderly

Session 1 −Y
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Fit −Y

Session 1 −E

Session 2 −E

Fit −E

Fig. 7 Linear regression analyses with TS as dependent variable
and Ta as independent variable, for both sessions

(a)

(b)

Fig. 8 (a) Averaged thermal comfort votes ± SD per mea-
surement session (b) Averaged thermal comfort votes; Part 1:
first 4 h of session 2; Part 2: last 4 h of session 2
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maximum score of each subject was equal to 100%,
and all other scores of the subject were related to this
score. After normalizing the data, the results of the
simulated office tasks indicate a significant (LMM,
P < 0.05) effect of aging on the number of completed
additions (Figure 10, left) and the number of correct
additions (Figure 10, right). In general, the percentage
of completed additions was approximately 15–20%
higher for the young adults in comparison with the
elderly; the percentage of correct additions was
approximately 5% higher for the young subjects.
Within the groups, no significant differences of the
temperature changes were observed. In addition, no
significant differences were found between the parts of

the measurement session; time effects or the type of
slope (increasing or decreasing) did not had a signif-
icant influence (Figure 11).

(a) (b)

Fig. 9 (a) Individual time plots typical young subject of mean distal and proximal skin temperatures, core temperature, thermal
sensation vote and comfort vote for S1 (left) and S2 (right) (b) Individual time plots typical older subject of mean distal and proximal
skin temperatures, core temperature, thermal sensation vote and comfort vote for S1 (left) and S2 (right)

Fig. 10 (left) Average normalized completed additions ± SD
per measurement session (right) Average normalized correct
additions ± SD per measurement session

(a)

(b)

Fig. 11 (a) Average normalized completed additions ± SD;
Part 1: first 4 h of session 2; Part 2: last 4 h of session 2 (b)
Average normalized correct additions ± SD; Part 1: first 4 h of
session 2; Part 2: last 4 h of session 2
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Discussion

Based on the experimental results for the control
situation, it was possible to distinguish between effects
of a constant room temperature and transient condi-
tions. The temperature drifts were significantly notice-
able for the young subjects (significant differences
between session 1 and 2; Figure 6a and 8a). Based on
results of the questionnaire, the studied moderate
temperature drifts did not result in unacceptable
thermal conditions. Furthermore, the results of the
individual parts (I and II) show that thermal sensation
(TS) and thermal comfort (TC) were not affected by
time.
No significant differences in thermal sensation and

thermal comfort were observed between the increasing
(part I) and decreasing ramp (part II) for both the
elderly and younger adults; subjects perceived both
ramps equally.
During the stable temperature condition S1, thermal

sensation was for both the elderly and young adults
related to skin temperature. However, during the
moderate temperature drift (S2), TS of the elderly
was mainly related to air temperature, while TS of the
younger adults was related to skin and air temperature.
Thermal comfort was for both conditions (S1 and S2)
related to skin temperature.
Fiala (1998) derived a relation between thermal

sensation, mean skin temperature, core temperature,
and the change in mean skin temperature. In this study,
for the elderly subjects, a significant relation was found
between air temperature, the extent of vasomotion, and
core temperature. For the young adults, a significant
relation was found between air temperature, core
temperature, and mean skin temperature. The exper-
iments which Fiala used to derive the relation between
physiological parameters and thermal sensation were
conducted with young subjects (college-age students).
Therefore, the results can be compared only with
results of the young adults in this study. In this study,
no influence of the rate of change in mean skin
temperature on thermal sensation of the young adults
was observed. Fiala originally included this term to
account for rapid (e.g. stepwise) changes in ambient
temperature. However, in this study, the temperature
changes can be considered as relative slow changes in
ambient temperature, which did not caused an imme-
diate change in skin temperature.
Predictions of the thermal sensation obtained with

the PMV model showed good agreement with the
measurement results for the young adults. For the
elderly, conversely, a difference of 0.5 scale units was
found between predicted and measured TS. The trends,
however, were in good agreement.
The results of the simulated office tasks revealed that

aging had a significant negative effect on performance;
the average normalized performance was 5–20% lower

for the elderly in comparison with the young adults.
Office work normally covers a wide range of different
tasks involving a complex set of component skills.
Typical tasks include text typing and different types of
arithmetical calculations. If these tasks are affected by
changes in the indoor environment, it is reasonable to
assume that office work in general will be affected
similarly.
Importantly, the temperature changes did not affect

the productivity, which is in line with results from
Seppänen and Fisk (2005) and Tanabe (2006).
The results of the subjective responses, obtained from

the experiments carried out within this study, support
that the optimumconditions for elderly differ from those
of their younger counterparts, which is contrary to
ASHRAE (2009). However, more recent studies by,
among others, Collins et al. (1981), Hashiguchi et al.
(2004), and DeGroot and Kenny (2007) also revealed
that the optimum conditions for elderly do differ from
the optimum conditions of young adults. Elderly are
more vulnerable, compared to young adults, in condi-
tions that differ from neutral, because the efficiency of
their cold- and warm-defense mechanisms is declined,
and the ability to detect, and therefore respond to,
temperature changes is reduced. Furthermore, Poehl-
man et al. (1994) revealed that their metabolic rate is
lower compared to the metabolic rate of younger people
owing to a decrease inmuscle mass that reduces both the
basal and resting metabolic rate.
The thermal sensation of the elderly was in general

0.5 scale units lower than TS of the young adults. The
same trend was found for the thermal comfort votes;
the elderly felt less comfortable than the young adults.
During session S1 with the stable temperature condi-
tion (21.5�C), the elderly preferred a higher tempera-
ture, while the young adults requested no change in
temperature. The difference in thermal sensation may
be explained by a decreased thermoregulatory response
(especially the vasoconstrictor response), indicated by
the extent of vasomotion measured by the differences
in skin temperatures between the young adults and the
elderly (Anderson et al., 1996; DeGroot and Kenny,
2007; van Someren, 2007). During the experiments, the
elderly were continuously more vasoconstricted (i.e.
the skin temperature of the fingertip was mostly lower
than the skin temperature of the underarm) in com-
parison with the young adults.
In this study, no significant correlation was found

between the extent of vasomotion or fingertip tem-
perature and thermal sensation parameters, although
a relation in literature was found between these
parameters (Wang et al., 2007). Wang et al. (2007)
found that finger temperature (30�C) and finger–
forearm gradient (0�C) are significant thresholds for
overall thermal sensation. The experiments in this
study were conducted under cooler environmental
conditions in comparison with the majority of the
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experiments in the study by Wang et al. (2007)
(Tneutral in this study was 21.5�C vs. 25.8–27.1�C in
Wang et al.). Because the hands were not covered
during both studies, this resulted in significant lower
fingertip temperatures in this study. Based on the
results obtained in this study, one could conclude that
both fingertip temperature and fingertip–forearm
gradient are not applicable as thermal sensation
predictors under conditions where the body is nearly
continuously in vasoconstriction mode (fingertip-fore-
arm gradient >0�C). In conditions where the tem-
perature range is larger, it probably can be used as
predictor for thermal sensation.
In this study, a significant correlation with the

extent of vasomotion was found only for thermal
comfort.
It should be mentioned that for the elderly subjects,

healthy retired persons were selected who were nor-
motensive and not taking any medications that might
alter the cardiovascular or thermoregulatory responses
to the temperature changes. The question is whether
these healthy elderly subjects are representative for the
elderly population because most elderly use medica-
tion. For instance, in The Netherlands, in 2008, nearly
73% of the men in the age of 65 years and older were
normotensive and taking medication that might alter
the cardiovascular or thermoregulatory responses
[CBS, 2009; Website of Statistics Netherlands:
www.cbs.nl]. It is possible that the differences in
thermal physiology and thermal comfort, between the
majority of the elderly population and the young
adults, are larger than we report in this study.

Conclusions

In this study, the differences between young adults and
elderly in thermal comfort, productivity, and thermal
physiology in response to a moderate temperature drift
have been investigated. From the presented results, the
following conclusions can be drawn:

Thermal sensation of the elderly is in general
0.5 scale units (on a 7-point thermal sensation scale)
lower than thermal sensation of younger adults.
During a constant temperature level and equal

clothing level, elderly prefer a higher ambient temper-
ature in comparison with their younger counterparts,
which is in line with previous studies.
In this study, the PMV model was capable to predict

thermal sensation (TS) of young adults in response to a
moderate temperature drift, which is in line with results
obtained by previous studies. For elderly, the model is
capable to predict the trends in thermal sensation.
However, the thermal sensation vote is overestimated
with 0.5 scale units; and therefore, for example, the
predicted TS corresponds to a sensation equal to
neutral, while they will actually feel slightly cool.
Although the subjects were feeling less comfortable

during the temperature drift in comparison with a
constant temperature level, the conditions did not lead
to unacceptable situations, i.e. the studied conditions
were not unacceptable uncomfortable. Furthermore,
productivity was not negatively influenced by the
temperature changes. Therefore, a temperature drift
up to ±2 K/h in the range of 17–25�C is assessed as
applicable and will not lead to unacceptable condi-
tions.
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