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Electric vehicles (EVs) are widely regarded as a promising solution to reduce air pollution in cities and key to a low carbonmobility
future.However, their environmental bene	ts depend on the temporal and spatial context of actual usage (journey energy e
ciency)
and the rolling out of EVs is complicated by issues such as limited range. �is paper explores how the energy e
ciency of EVs is
a�ected and shaped by driving behavior, personal driving styles, tra
c conditions, and infrastructure design in the real world.
Tests have been conducted with a Nissan LEAF under a typical driving cycle on the Beijing road network in order to improve
understanding of variations in energy e
ciency among drivers under di�erent urban tra
c conditions. Energy consumption and
operation parameters were recorded in both peak and o�-peak hours for a total of 13 drivers. �e analysis reported in this paper
shows that there are clear patterns in energy consumption along a route that are in part related to di�erences in infrastructure design,
tra
c conditions, and personal driving styles.�e proposedmethod for analyzing time series data about energy consumption along
routes can be used for research with larger eets of EVs in the future.

1. Introduction

Among many innovative technologies to decarbonize urban
transport, electri	cation of the vehicle eet has been viewed
by many as an e�ective way to reduce carbon emissions,
energy consumption, air pollution, and oil dependence [1].
Electric vehicles (EVs) have the bene	ts of zero tailpipe
emissions, low engine noise, and higher propulsion e
ciency,
and many local governments have demonstrated their com-
mitment to electromobility, particularly in populated urban
areas with severe air quality problems [2].

However, the energy consumption and air pollution dur-
ing the generation of the electricity used to power EVs cannot
be neglected. Although the substitution of EVs for internal
combustion engine powered vehicles (ICEVs) can have huge
environmental bene	ts with, for instance, reductions inGHG
emissions of 33% in the USA [3], the e�ects will be (much)
smaller in countries with a higher share of thermal power
stations in electricity generation mix. Huo and colleagues
[4] pointed out that, with China’s current mix, the potential
energy bene	ts are o�set by the high pollution levels of
coal-	red power plants. In regions like Northeastern China

(including Beijing), EVs could induce almost the same GHG
emissions compared to ICEVs for the worst-case calculation.

Yet, the environmental bene	ts of EVs depend not only
on electricity generation or even the production and a�erlife
of vehicles and batteries [5] but also on how EVs are used
in actual driving conditions. �is is an issue that remains
poorly understood; researchers and policymakers have yet to
appreciate fully how di�erences in driving behavior can cause
variations in the energy e
ciency of EVs, in part because of
the low EV penetration in the urban vehicle eet. �e
e�ects of driving behavior can be expected to be particularly
important in geographical contexts where fossil fuels play an
important role in the generation of electricity used to power
EVs.

�ere has been research about reducing EV energy con-
sumption in the usage phase that focuses on the vehicle side
through, for instance, optimization of the powertrain system,
upgrading of motor control strategy, and improvements in
battery power density. Stockar et al. [6] presented a super-
visory energy management strategy based on Pontryagin’s
minimum principle to optimize the energy utilization of
a plug-in hybrid electric vehicle (PHEV) on a simulator.
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Smith and colleagues [7] proposed a study of suitable battery
size by characterizing urban commuters’ pro	les in a town
in Canada. In addition to these approaches which have
attracted considerable attention within the vehicle manufac-
turing industry, driving behavior itself could be a profoundly
inuential factor in reducing energy consumption in EV
usage.

Driving behavior and driving styles, dispositions to drive
in particular ways that have been acquired over time, have
been shown to result in uctuations of vehicle energy e
-
ciency for conventional vehicles, where, for example, aggres-
sive drivers can consume 30% more fuel [8]. Environmental-
friendly driving, or eco-driving, has become a key topic
of interest in the intelligent transport systems community
for conventional vehicles. Eco-driving habits can also be
expected to enable the EV motor to function in the high-
e
ciency region and fully tap the potential of the regenerative
function to extend an EV’s driving range. However, some
research under laboratory conditions has suggested that EV
motor e
ciency is much less sensitive to speed and load
than are internal combustion engines [9]. Together with the
potential of EVs’ regenerative braking function to reclaim
the kinetic energy, the new EV features have raised doubts
as to whether the bene	ts of congestion mitigation and eco-
driving will be as prominent for EVs as for conventional
vehicles.

Consequently, there is a gap in the literature regarding
the impact of driving behaviors on EVs’ energy consumption
in the real-world operation phase. �ere have been some
modeling and simulation of EVs with speci	c driving cycles
such as ECE-15, FUDS, NYCC, and Japanese 10–15 mode
cycle [10], but no study has so far examined if a single
standardized driving cycle can capture the dynamics encoun-
tered in real-world urban driving conditions as well as the
heterogeneity among drivers. Driving behaviors emerge out
of the interplay of contextual conditions and person-speci	c
driving styles, and both those behaviors and the interplay
from which they emerge tend to uctuate in the real world
instead of staying the same. �erefore, we developed an
observational experiment of driving behavior with EVs to
study the variation in EV energy e
ciency among di�erent
drivers in the Beijing context, which is one of the major
emerging markets for EV adoption in China. �e aim of our
EV energy e
ciency test is not only to study the impacts of
drivers’ behavior on energy consumption but also to explore
the interplay of EVdriving styles with road infrastructure and
tra
c conditions. To this end, a range of analysis methods are
deployed to data at the levels of the whole trip and moments
within each trip. �ese include a speci	c type of feature
extraction method called Singular Spectrum Analysis (SSA)
and clustering analysis using the Dynamic Time Warping
(DTW) distance in order to maintain the sequential infor-
mation in the energy consumption data during the analysis
of driver heterogeneity along the test route.

�e remainder of the paper is organized as follows. A�er
a review of relevant literature on EV energy consumption,
Section 3 introduces the experiment and the methodological
approach for analysis.�is is followed by analysis of results in
Section 4 and 	nally conclusions in Section 5.

2. Literature Review

Research has sought to better understand and estimate the
energy consumption of electric vehicles from di�erent per-
spectives. One strand of research analyzes energy consump-
tion through 	eld tests on dedicated tracks. Cenex (the UK’s
center of excellence for low carbon and fuel cell technologies)
has a test track composed of di�erent parts to simulate four
driving cycles, including a high-speed circuit, city course, hill
route, and a handling route with a total length of 11.8 km
[11]. Bingham et al. [12] conducted a 	eld test on the Cenex
test site to study energy consumption using a Smart Electric
Drive EV.�e 	eld test excluded car-following behaviors and
dynamic tra
c conditions which are typical of urban driving.
�e authors pointed out that reducing the spread of vehicle
acceleration has the potential to reduce energy consumption
by 30%. However, microscale driving parameters were not
thoroughly analyzed, and the analysis results were considered
preliminary.

Another study on the same Cenex test site suggested that
opportunities for regenerative energy capture were the largest
on the high-speed circuit [13]. �e results also showed that
energy e
ciency di�ered signi	cantly among drivers. �e
high-speed circuit requires drivers to drive at full throttle but
also o�ers many opportunities for deceleration, leading to
remarkable changes in energy e
ciency.�e track test results
also suggested a strong and positive relationship between
regeneration ratio and journey energy e
ciency (de	ned
as the estimated vehicle range for each percentage of state
of charge [SOC]) for both the high-speed and city circuits,
with the latter simulating European cities with a speed limit
of 48 km/h and numerous mandatory stops. However, real-
world data collected in the UK as part of the Smart Move
trial contradicted the track test results by showing a negative
relationship. �is discrepancy has triggered our interest in
studying the impacts of driving behavior on EV energy
consumption in real-world conditions.

Other than 	eld tests, simulation is a feasible method in
resource-constrained conditions for analysis. Zhang and Yao
[14] proposed a driving strategy for when EVs approach a sig-
nalized intersection and estimated the energy consumption
under di�erent control strategies based on a VT-Micromodel
for conventional vehicles. However, their model failed to
capture the complexity of the regenerative function and the
maneuver scheme also supposed a free driving behavior
without interactions with other drivers.�e result showed an
8% saving of energy compared to the baseline scenario.

Meanwhile, some authors have proposed a platform or
model for EV energy consumption at a regional scale. Lee
and Wu [15] developed an approach to estimate the driving
range more accurately by the evaluation of both battery
degradation and driving behavior. Four groups of driving
behaviors, characterized by a vector of speed slots and relative
percentage of energy consumption, were clustered accord-
ing to an unsupervised machine-learning approach (grow-
ing hierarchical self-organizing maps). Unfortunately, this
research neglected the importance of energy regeneration in
driving behavior. Li et al. [16] identi	ed six factors a�ecting
the energy consumption and constructed a binary model to
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Figure 1: A hierarchical map of inuencing factors for EV energy consumption (factors considered in the empirical study printed in italic).

carry out an empirical experiment in Sydney, by focusing
on topography, infrastructure, tra
c, and climate. However,
the validated binary model was not readily transferable to
areas other than Sydney, due to its context-speci	city and
oversimpli	cation compared to a microscopic model with
more parameters [14].

Notably, although largely neglected in behavior-oriented
EV energy research, there has been a separate strand of stud-
ies focused on energy consumption in the vehicle heating,
ventilation, and air-conditioning systems (HVAC) of EVs.
To assess the geographical and environmental inuence on
energy consumption as well as the e�ect of preconditioning,
Kambly and Bradley [17] put transient environmental param-
eters from the database into a thermal comfort model. �e
results showed that, due to di�erent HVAC usage require-
ments, EV range varied widely across the geography as well
as the time of day in the USA.

In sum, en-route EV energy consumption is a process
a�ected by di�erent factors on multiple levels (Figure 1).
Previous research has seldom addressed the e�ects of meso-
and microlevel factors on energy consumption in the real
world. Understanding the e�ects of those factors is critical to
better design of EV driving performance experiments in the
future and can also feed into the development of speci	c eco-
driving guidelines for EV users. �is paper concentrates on
three micro- and one mesolevel factor (i.e., driving behavior,
driving style, tra
c conditions, and infrastructure design)
and how they a�ect energy consumption in EVs.

3. Experimental Design and Methodology

In this part, we 	rst describe the design of the experiment
in which energy consumption and other data were collected;
then the methods used to analyze energy consumption are
introduced.

3.1. Experimental Design

3.1.1. Test Equipment. A battery electric vehicle Nissan LEAF
2011 model was used as the test vehicle. An On-Board
Diagnostics (OBD) device data logger was connected to the
vehicle Electronic Control Unit (ECU) along the actual

driving tests, and the data were later uploaded to a com-
puter for analysis. �e OBD provided second-by-second
information including vehicle speed, motor torque, motor
speed, battery pack current, and voltage. Derivative values
such as instant acceleration and energy consumption could
be calculated accordingly. A portable GPS was also used
during the test to capture the location for each second, and
ambient temperature data were recorded using an electric
thermometer.

3.1.2. Route. In order to be representative of average daily
driving behavior, the selected test route started from the
residential area of Haidian District (near the 5th ring road)
and ended in Sanlitun CBD (between the 2nd and 3rd ring
road) in Chaoyang District. All the drivers were instructed to
drive on the same route at the same time of day. �is route
to some degree simulates a typical daily commuting routine
as employment is spatially concentrated in the inner area of
Beijing.�e test route containsmultiple road types, including
an arterial road, a bypass, an expressway, and a highway inside
the 5th ring of Beijing. Figure 2 details the di�erent road types
and a map of the test route.

3.1.3. Test Time. Since morning peak hour is commonly
de	ned as 7:00–9:00 a.m. in Beijing (e.g., [18]), the 8:30
a.m.–10:30 a.m. timeslot on weekdays covers both peak and
o�-peak hours and ensured that multiple tra
c conditions
were encountered during the test. �e test roundtrip consists
of a more congested departure trip (average around 50min,
starting at 8.30 a.m. for all drivers) and a smoother return trip
(average around 30min, starting a�er 9:45 a.m.). Statistics
[19] showed a relatively stable daily pattern of tra
c on
the Beijing network on normal weekdays, indicating tra
c
conditions were similar (although not identical) for the
di�erent drivers. All the trials were carried out within two
months fromOctober 2015 anddays of extremeweather (rain,
wind) and special events were excluded.

3.1.4. Drivers. As pointed out in a survey carried out by
Xing and colleagues [20], 63.4% of EV drivers in Beijing in
2015 were male and 36.6% were female. 79% of the drivers
fell into the age group of 20–39, and the majority of the



4 Journal of Advanced Transportation

Start End

1.2 3.8 4.5 6.2 1.5

Arterial road

Expressway Highway Expressway

Bypass

(km)

(a)

Departure trip

Return trip

(b)
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Figure 3: Drivers’ background information.

EV drivers were well educated (with 68% of them gaining a
bachelor degree or beyond, compared to 35.7% for all Beijing
residents). To make the test result more representative of
current EV drivers, we recruited trial participants with
similar background characteristics as the survey had revealed
using a snowball sampling method. A total of 13 drivers were
selected and took part in the experiment. �e majority of
subjects in the experiment are well-educated young male
adults who have driven an EV before (Figure 3).

3.1.5. Test Conditions. Although battery capacity might fade
and increase impedance during cycling [21], we tried to limit
the inuence of battery performance bymaintaining the same
SOC at 80% at the beginning of each departure trip. Before
the formal trial started, drivers were allowed extra time to get
familiar with the test EV, and preconditioningwas carried out
until a preset level (80%) of SOC was reached. To ensure
consistency, we used no additional “comfortable loads” (i.e.,
power consumption and user convenience features such as



Journal of Advanced Transportation 5

air-conditioning and heating or radio) during the formal tri-
als. It is noteworthy that, in contrast to the ideal conditions in
a simulation platformor chassis test, the operation conditions
could not be maintained at the same level in our research.
We recognize the elements of uncertainty in our tests but
believe they are inevitable when the aim is to obtain real-
world, transient, and dynamic data for analysis.

3.2. Methodology. Traditional statistical tools, such as Mann–
Whitney test and correlation analysis, can be used to analyze
the characteristics of the whole trip for each driver but are
less appropriate to examine the variation and autocorrelation
in energy consumption along the route. �e best way to
identify patterns in energy consumption along the route
for each individual in a manner that maintains the com-
pleteness of the dataset is to use feature extraction methods
as applied in pattern recognition [22]. Feature extraction
seeks to obtain the most important information from the
original data and projects that information into a lower
dimensionality space. Common feature extraction methods
include Fourier Transform, Walsh-Hadamard Transform,
and Wavelet Transform [22]. In our case, a meaningful
decomposition of an observed time series into signal and
noise components can provide a better understanding of the
dynamics in energy consumption, especially in its relation to
road environment and tra
c conditions.

3.2.1. Time Series Analysis Approach. A relatively new meth-
od known as Singular Spectrum Analysis (SSA) is a pow-
erful technique based on the decomposition of time series
[23] and embedding theorem [24] and can be applied to
any 	eldwith an interest in time series data, including hydrol-
ogy, geophysics [25], climatology, economics, biology, and
physics.�e central idea of SSA is to decompose the sequence
into a group of independent components, including trend,
oscillating components (e.g., periodic e�ects), and uninfor-
mative noise. SSA is appropriate for this study because it
makes no prior assumptions about whether the data is
normally distributed or stationary [26] and the energy
consumption sequence data in our study is quite dynamic
with extensive autocorrelation and noise. Moreover, unlike
Wavelet Transform, SSA does not require the selection of an
appropriate basis wavelet based on the nature of the original
data.

Detailed descriptions of the SSA algorithm are available
elsewhere [26–28] but the basic methodological process that
is used for extraction of the signals [29] can be summarized
as follows.

For a standardized time series �� with index � varying
from � to � and a window length (or maximum lag) �, a
Toeplitz lagged correlation matrix is formed by

�� =
1
� − �

�−�
∑
�=1
����+� 0 ≤ � ≤ � − 1. (1)

�e eigenvalues, 
�, and eigenvectors, ��� , of the Toeplitz

matrix are calculated and sorted in descending order of 
�,

where indices j and k vary from 1 to L. �e �th principal
component is

�� =
�
∑
�=1
��+���� 0 ≤ � ≤ � − �. (2)

Each component of the original time series identi	ed by SSA
can be reconstructed, with the �th reconstructed component
(RC) series given by

��� =
1
�
�
∑
�=1
��−��
�
� � ≤ � ≤ � − � + 1. (3)


� represents the fraction of the total variance of the original
sequential data that the �th RC accounts for and RCs can be
ordered by decreasing importance accordingly. Most of the
variance is contained in the 	rst few RCs and most or all of
the remaining RCs contain noise.

3.2.2. Clustering Method. Given the high dimensionality of
the spatial sequence data, it is highly bene	cial to extract
and visualize the structure of similarity and di�erences
between the drivers. Clustering is a powerful tool to reveal
and visualize the structure of data. �e choice of methods
for measuring similarities/dissimilarities has a signi	cant
impact on the clustering results. According to Izakian et
al. [30], Dynamic Time Warping (DTW) distance is an
appropriate indicator for use in shape-based clustering. �e
DTW function calculates an optimal match between two
time series by stretching or compressing some segments of
the series. Hence, this technique is suitable for measuring
energy consumption patterns’ similarity with respect to their
shapes.

An agglomerative clustering method (Ward’s Method) is
used with DTW as the distance function. Ward’s Method
has been chosen because of its suitability for small datasets
concerning robustness and e
ciency compared to the k-
means algorithm [31]. �e general procedure of Ward’s
Method starts with each candidate as a separate cluster and
then merges two clusters to produce the smallest increase
in the sum of squares. �e merging process goes on until it
reaches k clusters [32]. While the k-means algorithm gives
no guidance about what k should be, Ward’s Method gives
indications through the increases inmerging cost at each step;
a rule of thumb is to keep reducing k until the cost jumps and
then use the k right before the jump. In our study, the DTW
calculation and agglomerative clustering process are carried
out a�er the standardization of each sequence into z-scores
in MATLAB.

4. Results and Discussion

�is section summarizes the results from our experiments
and starts with statistical analysis of various characteristics at
the level of the whole trip (temporal domain analysis). It then
turns attention to variations in energy consumption between
moments along the trial route (spatial domain analysis).
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Figure 4: Energy consumption and time cost for all drivers.

4.1. Temporal Domain Analysis. Figure 4 demonstrates some
initial results on travel time and energy consumption for
each subject.�e drivers’ energy consumption varied slightly
more during peak hour than at o�-peak time.�e maximum
di�erence among all drivers (the worst-performing versus
the best-performing driver) is 32.4% during peak hour and
30.0% at o�-peak time. On average, the energy consumption
during congested tra
c conditions is 15.6% higher than
during smooth conditions (2609.7Wh and 2257.7Wh, resp.),
which is statistically signi	cant at the 95% con	dence level
(Mann–Whitney � = 14, � = 0.0001). �e coe
cient of
variation (de	ned as the ratio of the standard deviation to
the mean) for energy consumption decreases from 2.3% in
congested conditions to 1.9% in smooth conditions, while that
of time decreases from 6.0% to 3.3%. �us, during congested
conditions, drivers display slightly larger variation in both
energy consumption and time cost.

Real road tra
c conditions a�ected vehicles during the
driving process, which included repeated episodes of start,
acceleration, deceleration, and stop operations. �e trip was
divided into four types of driving status: acceleration, deceler-
ation, constant speed, and idling. �e idling mode is de	ned
as the condition in which the battery power is turned on
to supply themotor although the actual vehicle speed is 0; the
acceleration mode is de	ned by the acceleration speed  >
0.2m/s2 in the constant driving process; deceleration mode

happens when acceleration goes below  < −0.2m/s2 in
the constant driving process; and the constant speed mode

is de	ned as instantaneous acceleration || < 0.2m/s2, while
speed is above 0. Episodes (series of continuous moments) of
each status have been aggregated across individual trips. �e
distribution of these four types of driving status as the per-
centage of total number of episodes is shown for each driver
in Figure 5. �e di�erence of idling share between the two
tra
c conditions is pronounced (3.8% for the departure trip
in congested conditions versus 1.8% for the return trip in
smooth conditions).

�e average total number of episodes of acceleration,
deceleration, constant speed, and idling were 214, 206, 309,
and 30 for the departure trip (peak hour) and 145, 140, 218,
and 9 for the return trip (o�-peak). As shown in the
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Figure 5: Driving status distribution for all drivers.

Table 1:Mann–Whitney test for episode frequency by driving status
according to tra
c condition (congested versus smooth).

Congested Smooth
� value
(2-tailed)

Number of idling episodes 30 9 0.000

Number of constant speed
episodes

309 218 0.001

Number of deceleration
episodes

206 140 0.000

Number of acceleration
episodes

214 145 0.001

Mann–Whitney test in Table 1, there are statistically signif-
icant (5% level) di�erences in all the four statuses, which
indicates a much more continuous driving behavior with
smoother tra
c.

Although the lateral comparison does not indicate a
strong positive relation between acceleration share and
energy consumption, the longitudinal comparison for indi-
vidual drivers does give some hints. �e driver (S5) with the
largest change in energy consumption between the smooth
(o�-peak) trip and the peak congested (peak hour) trip
(decrease by 18.4%) showed a decrease in total deceler-
ation and acceleration shares with 2.0 percentage points.
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Table 2: Pearson’s correlation coe
cients for various trip attributes, by road tra
c conditions.

Congested
Energy

consumption
Travel
time

Acc
share

Dec
share

Const
share

Idling
share

Energy
regeneration

Average
Acc

Average
Dec

Ambient
temperature

Energy
consumption

1.00

Travel time 0.32 1.00

Acc share 0.70∗∗ 0.39 1.00

Dec share 0.04 −0.43 0.13 1.00

Const share −0.54 −0.35 −0.81∗∗ −0.54 1.00

Idling share 0.29 0.82∗∗ −0.40 −0.14 −0.59∗ 1.00

Energy
regeneration

0.56 0.02 0.72∗∗ 0.61∗ −0.82∗∗ 0.20 1.00

Average Acc 0.75∗ 0.21 0.82∗∗ 0.43 −0.87∗∗ 0.42 0.89∗∗ 1.00

Average Dec 0.55 −0.01 0.64∗ 0.51 −0.74∗∗ 0.24 0.84∗∗ 0.78∗∗ 1.00

Ambient
temperature

0.40 0.10 0.32 −0.05 −0.15 −0.00 0.35 0.43 −0.01 −0.18

Smooth
Energy

consumption
Travel
time

Acc
share

Dec
share

Const
share

Idling
share

Energy
regeneration

Average
Acc

Average
Dec

Ambient
temperature

Energy
consumption

1.00

Travel time 0.26 1.00

Acc share 0.36 0.46 1.00

Dec share 0.21 −0.12 −0.23 1.00

Const share −0.43 −0.35 −0.48 −0.67∗ 1.00

Idling share −0.17 0.36 −0.49 0.03 −0.01 1.00

Energy
regeneration

0.59∗ 0.33 0.59∗ 0.45 −0.77∗∗ −0.33 1.00

Average Acc 0.49 0.35 0.63∗ 0.38 −0.75∗∗ −0.33 0.93∗∗ 1.00

Average Dec 0.18 0.16 0.19 0.65∗ −0.73∗∗ 0.01 0.75∗∗ 0.69∗∗ 1.00

Ambient
temperature

0.40 0.44 0.52 −0.14 −0.20 0.32 0.57∗ 0.38 0.27 1.00

∗∗
Correlation is signi	cant at the 0.01 level (2-tailed); ∗Correlation is signi	cant at the 0.05 level (2-tailed).

In contrast, the driver with the smallest change in energy
consumption (S10, decrease by 3.3%) displayed an increase
of the summed deceleration and acceleration shares with 3.0
percentage points in the smooth trip.

Correlation analysis has been conducted to obtain a better
understanding of the relationships between energy consump-
tion and other trip attributes and among the latter (Table 2).
�e coe
cients show a weak linear relationship (� = 0.32 for
peak hour tra
c and � = 0.26 for o�-peak, where neither is
signi	cant at the 5% level) between energy consumption and
travel time, which reinforces the earlier conclusion that no
simple relation can be identi	ed between trip time and trip
energy consumption for a speci	c route in real-world urban
driving conditions. In congested conditions, the constant
share has a stronger negative correlation with energy con-
sumption (� = −0.54) than during smooth conditions (� =
−0.43), yet neither correlation is signi	cant at the 5% level. In
peak hour tra
c, a higher acceleration share tended to come
with higher energy consumption than at o�-peak time (� =
0.70 against � = 0.36). Average acceleration is also less
strongly correlated with average deceleration when tra
c is

less congested (which is quite intuitive, since the driver will
have more control and freedom when tra
c is reduced and
smooth). Ambient temperature was not signi	cantly corre-
lated with other factors except for a positive correlation (� =
0.57) with energy regeneration in smooth tra
c. Since the
variation of ambient temperature across all the 13 trials was
within 8∘C, we will disregard the impacts of temperature in
the remainder of this study.

�e energy regeneration ratio is positively correlated with
acceleration and deceleration share (� = 0.72 and � = 0.61,
both signi	cant at the 5% level), but higher energy recovery
does not guarantee less energy consumption, given that more
energy regeneration caused by decelerationwill require accel-
eration to adapt to tra
c ow speed. To better illustrate this
pattern, the journey energy e
ciency (de	ned as in [13] with
the unit of km/SOC) and the regeneration ratio (regenerative
energy/consumed energy) have been plotted in Figure 6. As
the 	gure shows, journey energy e
ciency is more strongly
correlatedwith the regeneration ratio during congested tra
c
than in smooth conditions. Both the regeneration ratio and
the journey energy e
ciency tended to be higher for o�-peak
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trips. �e following “spatial domain analysis” part will try
to explain the underlying fact for the “energy regeneration
conundrum” from a geographical point of view.

4.2. Spatial DomainAnalysis. High-resolution spatial data on
energy consumption has rarely been studied directly before
due to the limited availability of the data in the case of conven-
tional vehicles. However, the highly electri	ed system in EVs
makes it possible to record instant energy consumption based
on battery pack current and voltage. �is data can be used to
examine how driving behaviors and styles, tra
c conditions,
and infrastructure conditions such as road curvature, tra
c
signals, and exits a�ect energy consumption along the trial
route.

As a 	rst step of analysis, we have plotted the geographical
distribution of averaged speed and energy consumption (and
the respective standard deviations) along the route for the 13
drivers in Figure 7.�e temporal sequential energy consump-
tion and speed data were converted into spatial sequential
data through the integration ofOn-BoardDiagnostics (OBD)
and GPS data for the congested trip towards CBD and the
smooth return trip separately. �e speed pro	le is steadier
under smooth than congested tra
c conditions. Due to the
functioning of the regenerative brake, energy consumption
uctuated more strongly than did speed.

As described in Section 3.2, the Singular Spectrum Anal-
ysis (SSA) method is applied to the spatial sequence analysis.
A spatial resolution of 0.1 kmwas chosen for aggregation a�er
weighing data compression against data integrity. Sensitivity
analysis of di�erent aggregation lengths on SSA results has

also been conducted (in response to the Modi	able Areal
Unit Problem (e.g., [33]) according to which measuring
phenomena at di�erent spatial scales can result in radically
di�erent conclusions), showing that 0.1 km resolution yielded
a good result.

An appropriate window length L needs to be chosen for
the SSA. L should be large enough to capture su
ciently
the dynamics of the time series but not greater than N/2
[34]. Further, if any periodic component is known to be
present, then L should be proportional to that period. In
practice, a length approximately 1/5 of the sequence is
su
cient to capture all the dynamics of the series. To the best
of the authors’ knowledge, there have been no previous
studies using datasets that are very similar to ours.�erefore,
based on our understanding of the designated route which
comprises several signals, entrance, and exits (a distance of
less than 1 km in the arterial road) and changes in road
curvature, a window length of 30 (namely, 3 km because our
resolution is 0.1 km) was chosen in our case.

Let us use as an example to illustrate the SSA process with
the departure trip data of driver S10. We have used MATLAB
to perform the SSA. Choosing � = 30 and performing
SVD of the correlation matrix ��, we obtain 30 eigenvectors,
ordered by their contribution (share) in the decomposition
(see Figure 8).

�e drop in values around component 8 could be inter-
preted as the start of the noise oor. Together the 	rst eight
components account for 83.3% of the variation in the original
sequence. �e respective reconstructed components for the
	rst eight components are shown in Figure 9.

RC 1 represents the slowly varying trend component
which excludes oscillations. Based on the closeness of cor-
responding eigenvalues and the similarity in frequency, RC
2, RC 3, RC 4, and RC 5 are paired as the harmonic compo-
nents which show the pattern of periodic oscillation in the
original series. �e harmonic component could probably be
interpreted as the periodic impact of interferences, including
recurrent congestion points. �e rest of the eigenvectors are
categorized as noise. Figure 10 shows the extracted compo-
nents of the three categories.

�is SSA process was performed twice for each driver and
for all 13 drivers separately to extract the trend component
which we de	ne as the main feature of interest for each
driver. �e harmonic component is correlated with the trend
component to a certain degree, yet of a much more versatile
nature. In the present study, we focus only on the trend
component which accounts for over 60% of the variation in
the original sequential data.

A�er extracting the trend components of energy con-
sumption for each individual, the DTW calculation and
agglomerative clustering process are carried out with the
standardized values (z-scores) of each sequence inMATLAB.
�e dendrograms for the clustering results for both congested
and smooth tra
c conditions are plotted in Figure 11. �e
rescaled merging cost on the horizontal axis shows greater
heterogeneity in energy consumption along the route among
drivers during smooth (o�-peak) tra
c than during con-
gested peak hour conditions. For the congested condition,
merging driver S4 with other groups involved a high cost and
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Figure 7: Speed and energy distribution along the route.
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other groups were more closely nested. We used a rescaled
merging cost of 5 as the cut-o� value and decided to cluster
drivers into three groups and one anomaly (S4). For the
smooth condition, we used the same cut-o� value of 5 to
obtain three groups and two anomalies (S7, S4). Among all
the drivers, only two pairs (S5 and S12, S7 and S10) remain
in the same group in both sets of conditions. �is suggests
that tra
c condition strongly inuences individual energy
consumption pattern along the route in ways that a focus
on the total energy consumption during the trip may not
necessarily reveal.

�e energy consumption pro	les (z-scores) along the trial
route for the di�erent groups during congested conditions are
shown in Figure 12. �e overall trend for the clusters shows
a uctuation with di�erent peak locations for each cluster.
�ey all startwith high levels of energy consumption and then
exhibit a dramatic plunge, followed by more modest decrease
until approximately 5 km for clusters A andB and until 9.5 km
for Cluster C. �e initial decline is in line with the shi�ing
from densely signalized road type (arterial road in and
bypass) to expressway, which is also the case in the smooth
return trip. Clusters A and C have subsequent peaks around
9.5 and 13 km, respectively; most drivers in B maintain a
fairly at or slightly increasing pro	le until the end of the
drive. �e shape for S4 is really di�erent and further analysis
suggested that this driver experienced much more extensive
congestion with travel speeds below 10 km/h around the peak
in Figure 12(d).

�e energy consumption pro	les (z-scores) along the
trial route for the di�erent groups in the smooth conditions
are plotted in Figure 13. All clusters uctuate in a similar
“W” shape although the depth of the troughs varies. Energy
consumption decreases steadily in all clusters for the 	rst
1.5 km (similar to the congested condition as a result of
densely signalized road type). �en Cluster B remains stable
until further decreasing starts at around 7.0 km, while Cluster
A and Cluster C continue with the declining trend at di�erent
rates. All three clusters peak at the same point and then
experience rapidly falling energy consumption until they
reach aminimumaround 10.5 km a�er which the energy con-
sumption rises again.�e outliers S4 and S7 do not 	t in with

other clusters; retrieved speed pro	les reveal that the abnor-
mal energy consumption peaks are associated with severe
“speed valleys” around 7.5 km and 11.5 km, respectively, which
are not present for other drivers. Intragroup heterogeneity
is generally larger than in the congested condition, probably
because the recurrent congestions during peak hours place
more constraints on drivers’ driving behavior. Hence, similar
drivers tend to converge in terms of revealed driving behav-
iors.

To better understand the di�erences in energy con-
sumption pro	le, we have mapped both the original energy
consumption (the sum of the trend, harmonic, and noise
components) and speed along the route for each cluster
using QGIS (Figures 14 and 15). For the speed plots, the
crimson color denotes high speeds up to 80 km/h, while the
primrose color denotes low speeds down to 10 km/h. As
for the energy consumption plots, the blue color represents
energy regeneration up to 25Wh, and the red color represents
energy consumption with a maximum value of 70Wh. Road
sectors with negative energy consumption values are de	ned
as “net energy regeneration sectors.”

Figure 14 con	rms that di�erent clusters of drivers show
quite di�erent patterns of energy consumption. �e peaks
and valleys revealed in Figure 12 largely coincidewith changes
in road curvature and road types. All the three clusters display
a decreasing trend in energy consumption when the drivers
move from the densely signalized arterial road sector to the
relatively smoother expressway.�en the three clusters begin
to diverge at the change point to the highway. Cluster A
and Cluster C continue the decreasing trend in energy
consumption, while drivers in Cluster B peak shortly a�er
entering the highway. �e retrieved speed pro	le shows that
Cluster B drivers encounter slightly more severe congestion
when entering the highway and subsequently rapidly increase
their speed. Also, Cluster B drivers display more aggressive
driving behaviors a�er they enter into the highway at the very
beginning.

When departing from the highway and entering the
expressway again, drivers in all clusters show a decrease in
speed because the complex signalized intersection linking
the highway to the expressway is a bottleneck. �e energy
consumption trend of Cluster A peaks near this bottleneck as
the speed shows that it encounters a longer congested length
compared to the other two clusters. A�er drivers enter the
expressway again, the continuous low speed results in low
energy consumption in all clusters. While clusters A and B
maintain a constant trend until the end of the journey, energy
consumption in Cluster C peaks at the bending point of the
expressway (north 3rd ring road and east 3rd ring road).�is
pattern of Cluster C can be attributed to a lack of proactive
slowing down behavior followed by “stop-and-go” driving in
the congested sectors.

�e occurrence of a net energy regeneration road sector
(blueish sector) is always associated with a peak in the
energy consumption pro	le (Figure 12).�is partly solves the
“energy regeneration conundrum” mentioned in Section 4.1.
Higher regenerated energy comes at the cost of using more
energy to speed up and regain free-ow speed.�e e
ciency
improvement brought by EV motors and the regenerative
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Figure 9: �e 	rst eight reconstructed components plotted as time series.
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Figure 10: Reconstructed trend (a), harmonic (b), and noise (c).
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Figure 11: Dendrograms of the clustering results, congested (a) and smooth (b).
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Figure 12: Energy consumption pattern for di�erent clusters in congested tra
c condition: (a) Cluster A: S2, S7, S10, S11, and S13; (b) Cluster
B: S3, S5, S8, S9, and S12; (c) Cluster C: S1 and S6; (d) anomaly: S4.
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Figure 13: Energy consumption pattern for di�erent clusters in smooth tra
c condition: (a) Cluster A: S1, S2, S3, S8, and S9; (b) Cluster B:
S5, S11, S12, and S13; (c) Cluster C: S6 and S10; (d) anomaly: S4 and S7.

function has not annihilated the inuence of “stop-and-go”
driving behavior.

In smooth tra
c conditions (Figure 15), the patterns are
not as obvious as during peak hour. �e overall intragroup
di�erence in energy consumption is larger than during peak
hour. All the three clusters reach their lowest energy con-
sumption around the exit of the highway to the expressway.
Cluster A peaks roughly at the middle point of the highway
sector due to drivers driving at high speeds for the longest
time span. Cluster B has the longest plateau in energy con-
sumption with a mild and consistent driving pro	le. Cluster
C performs quite e
ciently at the start of the journey; in
fact, it keeps a mild speed pro	le until it reaches the bending
point of the expressway, a�er which its pattern becomes
similar to Cluster B.

It is worth mentioning that net energy regeneration
sectors occur less o�en in smooth than in congested tra
c
conditions. While a freer driving environment might be
expected to induce more variation in energy consumption,
this is not borne out in our experiment.�e setting for urban
driving in megacities like Beijing is always quite constrained

(speed limit, tra
c signal, road curvature, road safety
regulations, etc.), so the speed pro	le cannot be manipu-
lated to the same extent as on test tracks as in previous
research [13]. In fact, the most signi	cant contributor to the
energy consumption pattern seems to be “stop-and-go”
driving incurred during congested tra
c conditions, which
subsequently results in even larger variation among drivers.

5. Conclusions

�is paper has introduced an exploratory experiment of EV
driving behavior which was undertaken to understand the
variation of EV energy e
ciency among di�erent drivers in
Beijing context. It is among the 	rst attempts to systematically
compare real-world spatial sequence data on energy con-
sumption for EV drivers, and the approaches put forward in
the paper can be used for data from large-scale EVeets in the
future. �e signi	cant heterogeneity among drivers’ revealed
energy consumption along the trial route, which is not
captured in the statistical results at the level of the total
journey, meriting further attention in future research with a
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Figure 14: Speed and energy consumption pro	les for di�erent clusters in congested condition.

larger and more diverse eet of EVs and greater numbers of

drivers.

�e paper has made two more speci	c contributions to
the existing literature. First, it has shown that in combination

the SSAmethod and agglomerative clustering using theDTW

distance o�er a feasible approach to simplify and decipher

the heterogeneity in energy consumption pro	les that are

present in sequential but seemingly erratic data. Second, both
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Figure 15: Speed and energy consumption pro	les for di�erent clusters in smooth condition.

the SSA method-based analysis and the earlier correlation

analysis have revealed how energy e
ciency is a�ected clearly

by drivers’ behavior and through this by road infrastructure

(e.g., type of road, curvature), tra
c conditions (congestion),

and personal driving styles. Of particular interest is that

more heterogeneity exists among drivers in the same cluster

in relatively smooth tra
c than in congested, peak hour
conditions. �is suggests that recurrent congestion during
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peak hours places more constraints on driving behavior so
that drivers with similar driving styles tend to converge in
revealed driving behavior.

�e analysis reported in this paper is unable to di�er-
entiate the impacts of the physical environment (recurrent
congestion, road curvature) from those of individual-speci	c
driving style. Nevertheless, a certain degree of consistency
is observed in the driving behavior of more energy e
cient
drivers under di�erent tra
c conditions.While the study has
not directly focused on the analysis of eco-driving behavior,
the results are in line with the claim that eco-driving can
have substantial inuence on energy consumption in EVs
(which usually are more energy e
cient than ICEVs). In
contrast, it seems likely that the “energy regeneration ratio”
is a poor indicator of eco-driving. �e use of energy regen-
erative function may bring about more local-scale net energy
regeneration sectors on a particular trip, but this bene	t is
always associated with an overall trend of increased energy
consumption. Our results imply that behavioral change in
driving can lead to substantial energy e
ciency improve-
ments, even in EV eets. It is particularly in congested
tra
c conditions where the bene	ts of EV eco-driving can
be reaped.

�e 	ndings of this research point out the importance for
car manufacturers to estimate the driving range more accu-
rately by including personal driving style factor, infrastruc-
ture design, and tra
c condition factors in the calculations
and projections of EV energy consumption. Providing such
information may help to overcome range limitations among
drivers and assist them to modify their driving habits. It may
also increase public trust in information on EV performance
that is provided by manufacturers.
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