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Abstract Delta (D) efficiency is defined as the ratio of an
increment in the external mechanical power output to
the increase in metabolic power required to produce it.
The purpose of the present study was to investigate
whether differences in leg muscle activity between run-
ning and cycling can explain the observed difference in D
efficiency between the two activities. A group of
11 subjects performed incremental submaximal running
and cycling tests on successive days. The D efficiencies
during running and cycling were based on five exercise
stages. Electromyograph (EMG) measurements were
made of three leg muscles (gastrocnemius, vastus later-
alis and biceps femoris). Kendall’s correlation coeffi-
cients between the mean EMG activity and the load
applied were calculated for each muscle, for both run-
ning and cycling. As expected, the mean D efficiency
during running (42%) was significantly greater than that
during cycling (25%). For cycling, all muscles showed a
significant correlation between mean EMG activity and
the load applied. For running, however, only the gas-
trocnemius muscle showed a significant, but low corre-
lation (r=0.33). The correlation coefficients of the vastus
lateralis and biceps femoris muscles were not signifi-
cantly different from 0. The results were interpreted as
follows. In contrast to cycling, which includes only
concentric contractions, during running up inclines ec-
centric muscle actions play an important role. With
steeper inclines, more concentric contractions must be
produced to overcome the external force, whereas the
amount of eccentric muscle actions decreases. This
change in the relative contribution of concentric and
eccentric muscle actions, in combination with the fact

that eccentric muscle actions require much less metabolic
energy than concentric contractions, can explain the
difference between the running and cycling D efficiency.

Keywords Locomotion Æ Efficiency Æ Muscle
contraction type Æ Electromyography

Introduction

The D efficiency of an activity is the ratio of an increment
in the external mechanical power output to the increase
in metabolic power required to produce it, and is
expressed as a percentage. The D efficiency during run-
ning is significantly greater than that during cycling
(Zacks 1973; Asmussen and Bonde-Petersen 1974; Bijker
et al. 2001). Furthermore, the D efficiency of running is
also much greater than the muscle efficiency, which is
estimated to have a maximal value of 29% (Cavanagh
and Kram 1985). Poole et al. (1992) compared efficien-
cies during cycling, using measurements of both pul-
monary and leg oxygen uptake ( _VVO2). No significant
difference between these D efficiencies was observed and
therefore Poole et al. (1992) concluded that, during cy-
cling, processes other than those in the exercising leg
muscles do not substantially contribute to the increased
metabolic cost at greater power outputs. For running,
changes in the metabolic energy cost of processes other
than the exercising legs can only explain the great D
efficiency if the metabolic energy cost of these processes
decreases with running against greater applied loads
(steeper inclines). This seems unlikely. Therefore, as-
suming that for cycling as well as for running the exer-
cising legs determine the metabolic cost of the
movement, the difference in the D efficiency between
running and cycling must be due to a difference in the
functioning of the exercising leg muscles.

Electromyography (EMG) can be used to study
muscle activity non-invasively. Quantified EMG mea-
surements of muscles can indicate if the muscle force is
increasing or decreasing (Deluca 1997). In addition,
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Komi et al. (1987) and Praagman (2001) have shown
clear relationships between the mean EMG activity of
concentric exercise and energy expenditure. However,
for eccentric muscle actions, no relationship between
mean EMG signals and applied load can be observed
(Komi et al. 1987). Therefore, the estimation of mean
EMG activity seems to be a good way of investigating
possible differences in the actions of the leg muscles
during running and cycling.

The purpose of the present study was to investigate
differences between running and cycling in the relation-
ships between mean EMG activity of the exercising leg
muscles and the external power output. Further, we in-
vestigated if such differences in muscle actions can ex-
plain the observed difference in D efficiency between
running and cycling.

Methods

Subjects

A group of 11 healthy (7 men, 4 women) subjects participated in
this study. All subjects were informed about the protocol to be used
and gave written informed consent. Their [mean (SD)] age was
23.7 (4.0) years, body mass was 69.3 (7.9) kg and height was
1.79 (0.10) m.

Protocol

All subjects performed a submaximal running and cycling test on
different days. After a warm up period of 10 min, the subjects
started the test protocol. Each test consisted of five, 6 min-long
exercise stages to ensure steady-state measurements, followed by a
rest of 4 min. Heart rate values (beatsÆper minute) were collected
using a heart rate monitor (Polar Vantage). To ensure that only the
aerobic energy system was involved, only those exercise trials with
heart rate values less than 85% of the maximal heart rate (Snyder
et al. 1994) and respiratory exchange ratios (R) values less than 0.95
were used in the calculation of D efficiency. Maximal heart rate was
estimated as (220 minus age in years).

During the running test, the subjects ran on a treadmill at a
freely chosen comfortable velocity (between 2.81 and 3.75 mÆs–1).
Stride frequency was controlled with help of a metronome. The
subjects ran up inclines between 0% and 5% in random order. The
mechanical power (Pmech) increment between two successive incli-
nation values was about 20 W.

The study of Marsh et al. (2000) showed that pedal cadence
does not influence cycling D efficiency. Therefore, for practical
reasons, in the present study during the cycling test all subjects
cycled at a cadence of 80 r.p.m. The mean (SD) Pmech output
during the initial cycling stage was 56.2 (8.7) W. The difference
between two successive stages during cycling was about 25 W.
Cycling exercise stages were also presented in random order.

Calculation of D efficiency

During the last 2 min of each exercise stage, the volume flow rate,
O2 and CO2 concentrations of the expired gas were measured
breath-by-breath (Oxycon Champion, Mijnhart). The R values
were calculated over the same period of time. Assuming purely
aerobic energy production, metabolic power (Pmet, in watts) was
calculated as (Garby and Astrup 1987):

Pmet ¼ ð4940 � Rþ 16040Þ=60½ � � _VVO2 ð1Þ

where _VVO2 is in litres per minute.

In the cycling test, the external Pmech was calculated from the
product of crank torque and crank angular velocity. In the running
test, extra external Pmech was calculated as:

Pmech ¼ mb � g � v � sinðaÞ ð2Þ

where mb is the mass of the subject (kilograms), g is the acceleration
due to gravity and equal to 9.81 mÆs–2, v is the velocity of the tread-
mill (metres per second) and a is the angle of inclination (degrees).

For each subject, linear regression equations were calculated
from the extra external Pmech and associated Pmet data. The D
efficiencies were calculated from the regression coefficient of the
regression lines.

EMG measurements

The EMG signals from three superficial leg muscles [gastrocnemius
(lateral head), vastus lateralis and biceps femoris] were recorded
using Ag-AgCl surface electrodes with an inter electrode distance of
approximately 2.0 cm. Before attaching the electrodes, a skin im-
pedance below 2.5 kWwas ensured by shaving, sanding and cleaning
the skin. The EMG signals were amplified, analogue band-pass fil-
tered (10–200 Hz) and sampled at a frequency of 1,000 Hz. During
the running and cycling tests, EMG signals were recorded during the
first 20 s of the 5th min of each exercise stage. Off-line, the digital
EMG signals were corrected for offset, full-wave rectified and low-
pass filtered (12 Hz). From the 20 s recordings, mean EMG values
were calculated from ten successive running and cycling cycles.

Statistical analysis

For running as well as for cycling, for each muscle the non para-
metric Kendall’s correlation coefficient (Siegel and Castellan 1988)
was calculated between the mean EMG value and the external
Pmech output. Differences in D efficiency between running and cy-
cling were tested for significance using a Student’s t-test for paired
comparisons (P=0.05).

Results

In Fig. 1 a typical example of the two regression lines
and the resulting D efficiencies is presented. As expected,

Fig. 1. Typical example of the regression lines for running and
cycling, calculated from the data for the extra external mechanical
power output and the metabolic power required. Both D efficiencies
(eff) are presented in the figure
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the mean (SEM) D efficiency during running was sig-
nificantly greater than that during cycling [42% (3.2)
compared to 25% (1.5), P<0.001].

For cycling, all muscles showed a substantial increase
in mean EMG activity with increased Pmech output
(Fig. 2). For running however, only the gastrocnemius
muscle showed an increase in mean EMG activity
(Fig. 2). For the vastus lateralis muscle, the difference in
increase in EMG activity between cycling and running is
illustrated in Fig. 3, where raw rectified EMG data are
presented for each exercise stage of the running and
cycling test.

For cycling, all three leg muscles measured showed a
significant relationship between mean EMG activity and
the external Pmech output. For running however, only
the correlation coefficient of the gastrocnemius muscle
was significantly different from 0 (see Table 1).

Discussion

The main finding of the present study was that during
running the vastus lateralis and biceps femoris muscles
did not show a relationship between the mean EMG
activity and the increased external Pmech output. For
cycling, all muscles measured did show a relationship
between EMG activity and external Pmech output.

Ericson et al. (1985), van Ingen Schenau et al. (1997)
and Miura et al. (2000) concur that during cycling only
concentric muscle actions are involved. Komi et al.
(1987) and Shinohara et al. (1997) showed that there is a
positive relationship between the EMG activity of con-
centric exercise and the load applied. The results of the
present study therefore support the idea that during
cycling concentric muscle actions dominate. Since the
efficiency of concentric exercise has a maximal value of
30% (Cavanagh and Kram 1985), the D efficiency during
cycling should not exceed this value. In the present study
the mean cycling D efficiency was 25%. Results from
previous studies (Asmussen and Bonde-Petersen 1974;
Suzuki 1979; Coyle et al. 1992; Bijker et al. 2001) have
also shown that the D efficiency of cycling is indeed less
than the efficiency of concentric exercise.

Since Komi et al. (1987) did not observe a relationship
between EMG activity during eccentric muscle actions
and external Pmech output, our data for running suggest
that during running up shallow inclines non-concentric
muscle actions play an important role. There is little
doubt that level running includes stretch-shortening
cycles (Margaria 1976; Taylor 1985; van Ingen Schenau
et al. 1997). During the landing phase the active muscles
are stretched to decelerate body mass whereas during the
push off phase the active muscles are shortening. The
active stretch allows the tendons of the muscles to store
elastic energy, which can be re-used during the subse-
quent concentric phase. As a result, the gross efficiency
during running can be much greater than the muscle
efficiency (van Ingen Schenau et al. 1997; Ettema 2001).

Fig. 2. Increases in mean electromyogram (EMG) activity of three
leg muscles resulting from increases in external mechanical power
output during running (circles) and cycling (squares). The increase
in mean EMG activity is calculated as the percentage increase with
respect to the exercise stage having the lowest mechanical power
output

558



Previous studies suggested that during running up
inclines storage and re-use of elastic energy also takes
place, which could explain the large D efficiencies ob-
tained during running (Lloyd and Zacks 1972; Asmus-
sen and Bonde-Petersen 1974). According to van Ingen
Schenau (1984), however, during running up inclines,
work produced by the muscles to overcome the external
force is lost and can therefore not be stored. Since

muscles can only recover energy that has been previously
stored, the storage and re-use of elastic energy could not
explain the great running D efficiency. In such reasoning,
however, van Ingen Schenau (1984) assumes that
stretching of the muscle also implies a stretch of the
contractile elements of the muscle-tendon complex. Of
course, if that is the case it is difficult to explain how a
muscle can contribute to external work (De Haan et al.
1989). Roberts et al. (1997), however, showed that in the
gastrocnemius muscle of turkeys who ran on the level,
no stretch of the contractile elements occurred. Fur-
thermore, Kram and Taylor (1990) based their cost-of-
generating-force hypothesis on the idea that during level
running the contractile elements of the muscle operate
isometrically. Therefore, assuming that during running
on the level, as well as up inclines, in the stretching phase
no stretch of the contractile elements takes place, it is
likely that in both running situations (level and incli-
nation) storage and re-utilization of elastic energy plays
a role. Elastic energy storage and re-use can only explain
the great D efficiency during running if during running
up inclines the amount of elastic energy stored and re-
used increases. Minetti et al. (1994), however, asserted
that during running up any gradient a fixed maximal
amount of elastic energy is stored and re-used. There-
fore, although storage and re-use of elastic energy
probably improves the economy of running up inclines,
it cannot explain the great D efficiency during running.

As stated above, stretch-shortening cycles include
both eccentric and concentric muscle actions. During
running up inclines, the amount of concentric contrac-
tions has to increase to overcome the external force (i.e.
gravity) whereas the contribution of eccentric muscle
decreases (Minetti et al. 1994; Taylor 1994), but will still
be substantial. It is well known that the metabolic cost
of eccentric muscle actions is much less than that of
concentric contractions (Asmussen 1953; Bigland-
Ritchie and Woods 1976; Rall 1985). As Minetti et al.
(1993) showed, a change in the relative contribution of
concentric and eccentric muscle actions, combined with
the difference in metabolic costs between both muscle
actions will lead to very small increases in the metabolic
cost for running up shallow inclines. Consequently, for
running up shallow inclines, as used in the present study,
the D efficiency will be much greater than the concentric
muscle efficiency. During running up steep inclines,
concentric contractions will probably dominate, just as
they do during cycling. As a result, the D efficiency
during running up steep inclines should be much less
than the D efficiency during running up shallow inclines.
It would be interesting to test this hypothesis in further
research.

Fig. 3. A typical example of raw rectified electromyogram (EMG)
data of the vastus lateralis muscle for the different exercise stages
during cycling (left column) and running (right column)

Table 1. Kendall’s correlation
coefficients between mean
electromyogram (EMG) values
and external Pmech

Gastrocnemius muscle Vastus lateralis muscle Biceps femoris muscle

Cycling 0.55a 0.92a 0.64a

Running 0.33a 0.02 0.06

aCorrelation coefficient is significantly different from 0
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The gastrocnemius muscle has a large compliant
Achilles tendon, which seems to be ideal for stretching.
Therefore, at first sight it seems strange that this muscle
shows a significant relationship between the mean EMG
activity and the load applied during running up shallow
inclines, suggesting that concentric contractions play an
important role. Hof and van den Berg (1983) showed
that there is a difference between ankle plantar flexor
and knee extensor muscles in their contribution of ec-
centric and concentric muscle actions during level run-
ning. Whereas, during level running, for the knee
extensors the contribution of eccentric muscle actions
was substantial, for the ankle plantar flexors concentric
contractions already played a prominent role. Conse-
quently, during running up inclines, where more con-
centric contractions must be produced, the
gastrocnemius muscle (which is an ankle plantar flexor)
will show a much better relationship between EMG
activity and the load applied than the vastus lateralis
muscle (knee extensor).

In our explanation of the great D efficiency of run-
ning, as well as a constant amount of elastic energy
stored and re-used, we have also assumed that the
amount of internal Pmech produced remained constant
during running up shallow inclines. Minetti et al. (1994),
indeed, showed that for the range of inclines that was
used in the present study, the amount of internal Pmech

produced remained nearly constant and would therefore
not influence the D efficiency during running. Another
assumption we made was that the average vertical
ground reaction force will not change substantially
during running up shallow inclines. Since the metabolic
cost of running seems to be directly proportional to the
average vertical ground reaction force (Kram 2000) a
change in this force would influence the D efficiency.
However, the inclines used in the present study were so
small that the change in the average vertical ground
reaction force, and consequently also in the metabolic
cost of supporting the mass of the body, would have
been negligible and would not have influenced the D
efficiency during running.

In conclusion, the present study showed a difference
between running and cycling in the relationship between
the mean EMG activity of leg muscles and the load
applied. This difference can be used to explain the ob-
served difference in D efficiency between the two types of
locomotion. For cycling, the high correlation coefficients
confirm the theory that concentric contractions are the
main muscle actions. For running, the lack of a rela-
tionship between EMG activity and the load applied
suggests that during running up shallow inclines, ec-
centric muscle actions also play an important role. A
change in the relative contributions of concentric and
eccentric muscle actions, combined with the large dif-
ference in metabolic cost between both muscle action
types can explain the great D efficiency during running.
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