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Abstract

The sugarcane aphid (SCA), Melanaphis Sacchari (Zehntner) (Hemiptera: Aphididae), has been considered an
invasive pest of sugarcane in the continental United States since 1977. Then, in 2013, SCA abruptly became a
serious pest of U.S. sorghum and is now a sorghum pest in 22 states across the continental United States.
Changes in insect-associated microbial community composition are known to influence host-plant range in
aphids. In this study, we assessed whether changes in microbiota composition may explain the SCA outbreak
in U.S. sorghum. We characterized the SCA bacterial microbiota on sugarcane and grain sorghum in four
U.S. states, using a metabarcoding approach. In addition, we used taxon-specific polymerase chain reaction
(PCR) primers to screen for bacteria commonly reported in aphid species. As anticipated, all SCA harbored the
primary aphid endosymbiont Buchnera aphidicola, an obligate mutualistic bacterial symbiont. Interestingly,
none of the secondary symbionts, facultative bacteria typically associated with aphids (e.g., Arsenophonus,
Hamiltonella, Regiella) were present in either the metabarcoding data or PCR screens (with the exception
of Rickettsiella and Serratia, which were detected by metabarcoding at low abundances <1%). However, our
metabarcoding detected bacteria not previously identified in aphids (Arcobacter, Bifidobacterium, Citrobacter).
Lastly, we found microbial host-associated differentiation in aphids that seems to correspond to genetically
distinct aphid lineages that prefer to feed on grain sorghum (MLL-F) versus sugarcane (MLL-D).
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The sugarcane aphid (SCA), Melanaphis Sacchari (Zehntner)
(Hemiptera: Aphididae), is a globally distributed species that feeds
on members of Poaceae including sugarcane, sorghum, rice, millet,
corn, and wild grasses (Singh et al. 2004). In most parts of the world
(e.g., Asia, Australia, the Americas, and Africa), SCA is considered a
pest of sorghum (Singh et al. 2004). Its center of origin is currently
unknown, but it is hypothesized to be either in central or northern
Africa or in Asia (Nibouche et al. 2014). In regions of the world
where both sugarcane (Saccharum officinarum and Saccharum spp.
Linnaeus [Poales: Poaceae]) and grain sorghum (Sorghum bicolor,
L. Moench [Poales: Poaceae]) are grown, SCA is reported to have
higher abundances on grain sorghum than on sugarcane and exhibits
preference for sorghum over sugarcane (Nibouche et al. 2015). SCA
was first reported on sugarcane in the continental United States in
Florida during 1977 (Mead 1978) and in Louisiana during 1999
(White et al. 2001). Despite the presence of SCA on commercial
sugarcane, SCA was not a sorghum pest in the continental United
States (Mead 1978, Hall 1987, Denmark 1988, Armstrong et al.
2015, Medina et al. 2017) until spring 2013 when SCA was reported
on grain sorghum (Bowling et al. 2016). SCA damage to sorghum is
caused by feeding activity and honeydew production, which com-
bined can decrease crop yields and harvesting efficiency (Bowling
et al. 2016, Zapata et al. 2016). Damage estimates in U.S. grain
sorghum range from 20 to 100% crop loss (Villanueva et al. 2014,
Kerns 2015, Zapata et al. 2016) plus the additional financial burden
incurred by pest management efforts (Zapata et al. 2016).

Considering the fact that SCA was already present in
U.S. sugarcane, a host-switch could have occurred due to a change
in SCA’s symbiotic bacteria. Symbiotic bacteria are a part of an
insect’s microbiota defined as a collection of microorganisms (e.g.,
bacteria, fungi, protists, and viruses) contained within and on the
surface of an insect host. Similar to the important role microbiomes
play in humans (Hartstra et al. 20135, Findley et al. 2016, Marchesi
et al. 2016), the bacterial composition in aphids can influence their
health, resource use, and vector potential (Oliver et al. 2003, Oliver
et al. 2010, Lukasik et al. 2013). Symbiotic bacteria may influence
insect host-range through nutritional supplementation (Hosokawa
et al. 2007) or by helping their insect hosts withstand plant defenses
(Adams et al. 2013, Ceja-Navarro et al. 2015, Hammer and Bowers
2015). For example, when the kudzu bug (Megacopta cribraria) in-
vaded the United States, it was able to switch from kudzu to soybean
because of its association with a bacterial strain of the obligate sym-
biont (one required for the insect’s survival) Candidatus Ishikawaella
capsulata (Hosokawa et al. 2007, Brown et al. 2014). Similarly, fac-
ultative bacteria (potentially beneficial to the insect, but not essential
for survival) in the genus Arsenophonus improve cowpea aphids’
(Aphis craccivora) fitness on locust plants (Wagner et al. 2015),
whereas Regiella insecticola increases pea aphid fecundity on clover
(Leonardo and Muiru 2003, Tsuchida et al. 2004).

Most research on aphid bacterial composition has been conducted
on a few well studied species, such as the pea aphid and cowpea aphid
through the use of polymerase chain reaction (PCR) with taxon-
specific primers (Chen et al. 1996, Darby et al. 2001, Simon et al.
2003, Brady and White 2013, Brady et al. 2014). However, it is im-
portant to understand the bacterial composition of nonmodel organ-
isms as they may differ in symbiont composition and those symbionts’
biological functions. Although the use of PCR to detect specific taxa
remains an effective method for detection of well-known symbionts
(e.g., Hamiltonella defensa, Serratia symbiotica, and Regiella
insecticola), it requires prior knowledge of the bacterial taxa and
taxon-specific DNA sequences to be used for detection (Munson et al.
1991, Sandstrom et al. 2001, Russell et al. 2003, Oliver et al. 2006).

Another approach called barcoding uses general or universal PCR pri-
mers to amplify common genomic regions from a variety of organ-
isms. After using barcoding to sequence single fragments of DNA or
RNA, the nucleotide composition can be used as a proxy for organism
identification. The advent of high-throughput sequencing (HTS) tech-
nologies, with the initial large data generating technologies referred to
as next-generation sequencing (NGS), allow for the massive parallel
sequencing of short DNA fragments pushing the boundaries of DNA
barcoding and allowing the reconstruction of entire communities of
organisms (Abdelfattah et al. 2018). With metabarcoding, a combin-
ation of PCR identification and high throughput sequencing, most of
the bacteria harbored by an insect can be identified without any prior
knowledge of what an insect may harbor and without the need to cul-
tivate thousands of bacterial colonies or to clone thousands of DNA
fragments (Mardis 2008, Malacrino 2018).

Some of the earliest studies of aphids using 454 pyrosequencing
were done on the microbial symbionts in cowpea aphids (Brady and
White 2013), soybean aphid (Bansal et al. 2014), and pea aphids
(Russell et al. 2013, Gauthier et al. 2015). Recently, metabarcoding
has been used to identify bacteria that were not previously associ-
ated with aphids. Metabarcoding has allowed for the identification
of potential symbionts that might otherwise go unnoticed with the
screening of only specific symbionts (Bansal et al. 2014, Gauthier
et al. 2015, Jousselin et al. 2016, Fakhour et al. 2018).

The objective of our study was to characterize the SCA bacterial
microbiota from aphids collected from sorghum and sugarcane
using PCR and metabarcoding. In addition, we sought to determine
whether a change in SCA microbiota supports a host—plant shift,
from sugarcane to grain sorghum.

Materials and Methods

Field Collections

Specimens of sugarcane aphid were collected from grain sorghum
and sugarcane in four different states (i.e., Florida, Alabama,
Louisiana, and Texas) in the United States between 2014 and 2015
and from sorghum in South Africa in 2014 (Table 1). Aphids within

Table 1. Number of sugarcane aphids that were pooled for each
host plant and state combination used in microbial analyses

Host Number of
Plant Location and year SCA pooled

Grain Sorghum

Alabama 2014 18
Lab Colony 2015-2017 25
Lab Colony 2015 (nonsurface sterilized) 30
Florida 2014 24
Florida 2015 30
Louisiana post 2013 17
South Africa 2013 19
Texas 2013 21
Sugarcane
Alabama 2014 8
Florida 2013 (nonsurface sterilized) 9
Florida 2014 21
Louisiana 2007-2009 7
Louisiana 2015 20
Texas 2015 20

Within each county, each aphid was collected at least 1 km away from each
other (except for lab colony aphids). In total, 14 pooled samples were used
for analysis.
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each state were collected on both grain sorghum and sugarcane
from as many counties as possible, collecting specimens from fields
at least 1 km apart from each other to minimize the chance of sam-
pling siblings. We also added SCA samples from Louisiana sugarcane
collected between 2007 and 2009, before the 2013 SCA invasion
on sorghum in United States (Table 1). Aphids were killed in 95%
ethanol and stored at 4°C.

DNA Extraction

Nymphs and apterous adults from each combination of host plant
species and location (Table 1) were pooled together and surface ster-
ilized before DNA extraction (Meyer and Hoy 2008, Medina et al.
2011), yielding a total of 14 samples (each containing an average of
approximately 20 individuals). DNA was extracted using the DNeasy
Blood and Tissue Kit (QIAGEN, Valencia, CA) following the standard
protocol recommended by the manufacturer. DNA concentration and
quality were assessed using a NanoDrop spectrophotometer (Thermo
Fisher Scientific Inc., Waltham, MA). Aliquots from those same sam-
ples were also used for both taxon-specific PCR and metabarcoding.

PCR for Specific Aphid Symbionts

We used taxon-specific PCR primers to screen for nine bacterial
genera found in other aphid species. These bacterial genera included:
Arsenophonus, Cardinium, Hamiltonella, Regiella, Rickettsia,
Rickettsiella, Serratia, Spiroplasma, and Wolbachia (Fukatsu et al.
2001, Russell and Moran 2006, Oliver et al. 2010, Brady and White
2013). PCR reactions were run on a MyCycler Thermal Cycler (Bio-
Rad, Hercules, CA) in a total volume of 10 pl containing: 2.5 mM
MgCl2, 10X Taq reaction buffer (NEB), 2.5 mM dNTPs (Omega
Bio-Tek, Norcross, GA, USA), 5 uM of forward and reverse primers,
0.1 pl of 5U/ul Tag DNA Polymerase (NEB, Ipswich, MA), and 2 pl
of DNA template. The list of taxon-specific primers and annealing
temperatures can be found in Supp Table 1 (online only). All diag-
nostics included positive (i.e., symbiont-positive specimens known to
host the bacteria of interest) and negative controls (i.e., nuclease-free
water). PCR products were visualized on a 1% agarose gel stained
with GelRed (Biotium, Fremont, CA) under UV light. For samples
that produced products of the expected size, we re-ran PCRs with
a total volume of 25 pl and either purified the product using the
GenCatch PCR Cleanup Kit (Epoch Life Sciences, Missouri City,
TX) or in the case of double bands appearing on a gel, the band
of interest (i.e., a band matching the correct size compared to the
ladder) was excised and purified using the GenCatch Gel Extraction
Kit (Epoch Life Sciences, Missouri City, TX). Purified products were
sent to an offsite facility for Sanger sequencing (GENEWIZ, South
Plainfield, NJ). Resulting sequences were searched by MegaBLAST
in the GenBank database default parameters, and only sequences re-
turning >97% similarity to the expected bacterial genus were con-
sidered for inclusion in bacterial presence analyses.

16S rRNA Metabarcoding

DNA samples were sent to the Molecular Research DNA Lab (MR.
DNA, Shallowater, TX) for metabarcoding analyses targeting the
bacterial V3-V4 16S rRNA bacterial region (Herlemann et al. 2011,
Su et al. 2016). Samples were sequenced on an Illumina MiSeq plat-
form (Illumina, San Diego, CA) using the MiSeq Reagent Kit v3
300PE chemistry. Together with experimental samples, we submitted
two negative controls to identify potential environmental bacterial
contaminants (Salter et al. 2014). One of the negative controls con-
sisted of a sterilized water sample run with all the chemicals and the
same protocol used for DNA extraction without any aphid DNA
(Salter et al. 2014, Malacrino et al. 2018). The second negative

control consisted of a single pool of all the last wash liquids obtained
from the surface sterilization of insects, which was used for the iden-
tification of bacteria likely to be potential surface contaminants.

Data Analysis

Data handling was carried out using QIIME 1.9 (Caporaso et al.
2010, Caporaso et al. 2012), quality-filtering reads (Phred > 25),
binning OTUs using open-reference OTU-picking through UCLUST
algorithm, and discarding chimeric sequences discovered with
USEARCH 6.1 (Edgar 2010). OTUs were taxonomically assigned
through the BLAST method using Greengenes database for 16S
rRNA (Caporaso et al. 2012). The OTU table was then filtered to
remove all singletons, OTUs coming from amplification of chloro-
plast DNA, and those clearly belonging to contaminants (i.c.,
Gardnerella, Granulicatella, Haemophilus, Leptotrichia, Prevotella,
Ruminococcus, Staphylococcus, and Streptococcus). The two nega-
tive controls used in this study clustered apart from the aphid sam-
ples and allowed us to further clean our dataset from contaminants.
Using a statistical approach to discover potential contaminants
(Davis et al. 2018; Raw reads are available at NCBI SRA under
accession number PRJNA419038), we further removed 30 OTUs
from our samples. In addition, we subtracted from each sample
the quantity of OTU reads found in both control types we used,
under the assumption that they could be surface contaminants. Since
each sample had a different sampling depth and library size, before
subtraction we normalized counts using the Variance Stabilizing
Transformation algorithm from DESeq2 package (Love et al. 2014)
and removed any batch effects using package limma (Ritchie et al.
2015). Negative values were then converted to zero, and we per-
formed another round of singleton removal.

Differences in the structure of microbial communities between
aphids collected from different host plants was assessed through a
PERMANOVA analysis (999 permutations) using host plant as a
fixed variable and sampling location to stratify permutations as a
random variable to account for geographical variability. Distances
between samples were calculated through a weighted UniFrac ma-
trix and then visualized using Non-Metric Multidimensional Scaling
(NMDS). Differences in relative abundance of each bacterial genus
between samples from different host plants were tested through
a mixed-effect model (host plant as fixed effect, and location as
random variable) with lmer function (Ime4 R package), using False
Discovery Rate (FDR) correction for multiple comparisons. All ana-
lyses were performed using R statistical software (R Core Team
2013) with the packages vegan (Dixon 2003), phyloseq (McMurdie
and Holmes 2013), and picante (Kembel et al. 2010).

Results

Bacterial Identification with PCR

PCR analyses did not detect bacterial symbionts commonly reported
in other aphid species (i.e., Arsenophonus, Hamiltonella, Regiella,
Rickettsia, Rickettsiella, Spiroplasma, and Wolbachia) see the ex-
ample for H. defensa (Supp Fig. S2 (online only)). These bacteria
were also not identified using metabarcoding, with the exception of
Rickettsiella and Serratia, which were also detected in low abun-
dances using metabarcoding.

Microbiota and Host-Association with

Metabarcoding

In total, 1,081,493 reads (with a sample average of 86,565 =
18,914 SE paired end reads) were obtained from Illumina MiSeq,
which clustered into 267 OTUs. Through a multivariate approach,
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we found host-associated differentiation of bacterial communi-
ties between aphids collected on sugarcane and grain sorghum (F
1, =4.73; P = 0.009). The differentiation of the microbial commu-
nity harbored by SCA clustered by host plant, which is visible in the
NMDS plot (Fig. 1).

As anticipated, the majority of the bacterial reads belonged
to the obligate aphid bacterial symbiont Buchnera. The raw un-
weighted percentages for Buchnera averaged between 90 and 99 %,
which overpowers the signal of less prominent bacteria if uncor-
rected. Consequently, all values are reported in weighted relative
abundances. Buchnera composed a greater proportion of the bac-
terial community in aphids feeding on sorghum than those col-
lected on sugarcane (F, , = 10.58; P = 0.006; 41.4 = 6.9% and
29.7 = 6.1%, respectively). In addition, metabarcoding detected
bacteria (with abundances >1%) belonging to nineteen different
genera in twelve orders (Supp Table 2 [online only]). A signifi-
cantly greater proportion of Arcobacter sequences were detected
in SCA associated with sugarcane than in SCA associated with sor-
ghum (F, , = 12.73; P < 0.01; Fig. 2, Supp Table 2 [online only]).
In contrast, a greater proportion of Citrobacter sequences were
detected in SCA associated with sorghum than in SCA associated
2 = 7-03; P = 0.02; Fig. 2, Supp Table 2 [on-
line only]). Some aphid-associated bacteria occurred at a low abun-

with sugarcane (F

dance of reads and included Acidovorax, Lactobacillus, Ralstonia,
Rickettsiella, and Serratia (Supp Table 2 [online only]). The sample
from Louisiana sugarcane collected during 2007-2009 lacked
Citrobacter and Serratia, while hosting Rickettsiella (Supp Table 3
[online only]).

Discussion

Advances in technology have allowed us to go from the identification
of bacteria through classical microbiology techniques (Escobar-Zepeda
et al. 2015) to the use of PCR to screen for specific bacterial taxa
(Haynes et al. 2003, Vorburger et al. 2009, Ferrari et al. 2011, Brady
etal.2014) and now to the ability to screen for entire microbiomes using
high throughput sequencing without any prior knowledge of their com-
position. Our approach using taxon-specific PCR and metabarcoding
allowed us to screen for bacteria previously reported in aphids, while
enabling us to identify other potential bacteria that SCA harbors.
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Fig. 1. NMDS (Non-Metric Multidimensional Scaling) analysis showing host-
associated clustering in bacterial composition (PERMANOVA: F = 4.73,
P =0.009). Samples collected before the pest outbreak, are marked with an a
box labeled 2007-2009. The grain sorghum samples are surrounded by a solid
ellipse while the sugarcane samples are surrounded by a dashed ellipse. Host
plants: GS (grain sorghum) and SC (sugarcane). Locations: AL (Alabama), C
(laboratory colony collected fromTexas), FL (Florida), LA (Louisiana), SA (South
Africa), andTX (Texas).

The use of PCR confirmed that sugarcane aphids harbor few com-
monly known aphid bacterial symbionts, with the exception of the
obligate symbiont Buchnera aphidicola Buchner(Enterobacterales:
Enterobacteriaceae) and facultative symbionts Rickettsiella and
Serratia (identified in low abundances <1% with metabarcoding).
Using metabarcoding we identified novel bacteria not previously
reported in aphids (Arcobacter, Bifidobacterium, Citrobacter). In
addition, metabarcoding allowed us to identify significantly higher
abundances of bacteria in aphids from sugarcane (i.e., Arcobacter)
when compared with aphids in grain sorghum (i.e., Buchnera and
Citrobacter). A reduction in the abundance of the obligate symbiont
Buchnera aphidicola in the presence of other bacteria is anticipated,
as was shown with quantitative PCR in pea aphids that exhibited
reduced Buchnera titers used to measure relative abundances in the
presence of the secondary symbiont Rickettsia (Sakurai et al. 2005).

Bacterial symbionts can facilitate nitrogen use, breakdown
sugar, and degrade pesticides in their insect hosts (Anderson
et al. 2013, Ben-Yosef et al. 2014, Cheng et al. 2017). We iden-
tified Bifidobacterium in SCA collected from grain sorghum and
sugarcane, a bacterium that it is known to break down carbohy-
drates in both insects and humans (Killer et al. 2009, O’Callaghan
and van Sinderen 2016, Alberonia et al. 2019) and in SCA may
play a role in processing phloem. In addition, two bacteria associ-
ated with detoxification in other insects were found. For example,
Citrobacter is associated with increased insecticide resistance in
the tephritid fruit fly Bactrocera dorsalis (Hendel) (Cheng et al.
2017). Similarly, bacteria in the genus Pseudomonas are known
to detoxify caffeine in coffee berry beetles Hypothemus hampei
(Ceja-Navarro et al. 2015) and may have a similar detoxifying
potential in SCA.

Some bacteria may be biologically relevant even when found in
low abundances (Stouthamer et al. 2018). While a relative abun-
dance <1% may reflect some sequencing error, our use of strin-
gent quality control filtering helped increase the reliability of low
abundance reads (Bokulich et al. 2013). Both Rickettsiella spp.
and Serratia spp. are reported to have biologically relevant func-
tions at low abundances in other aphids (Enders and Miller 2016).
Interestingly, Rickettsiella, which is known to alter body color in
pea aphids (Tsuchida et al. 2010), was found in SCA and if similar
in function, might influence the attractiveness of SCA to natural en-
emies (i.e., predators and parasitoids). SCA also harbored Serratia,
which has been reported to provide heat tolerance in other aphids
(Russell and Moran 2006, Oliver et al. 2010).

In addition to the potential symbionts mentioned above, we de-
tected potential plant pathogens associated with members of the grass
family (Poaceae) that include Acidovorax spp., Corynebacterium
spp. and Ralstonia spp. The Acidovorax spp. group has been re-
ported to cause tissue browning in some plants (Xie et al. 2011)
and red stripe disease in infected sugarcane plants (Girard et al.
2014, Santa Brigida et al. 2016, Yonzone and Devi 2018). Similarly,
Corynebacterium spp. is known as an animal and plant pathogen
(Christie et al. 1991, Barba et al. 2015), with green peach aphid
reported as capable of transmitting this bacterium to potatoes re-
sulting in ring rot (Christie et al. 1991), whereas Ralstonia spp. is
known to cause plant wilting and death in numerous agricultural
crops (Alvarez et al. 2010, Meng 2013). Further investigation is re-
quired to determine whether the strains of these bacteria found in
SCA are plant pathogens and if SCA is capable of their transmission.

While the bacteria reported above have been identified in
other insects and some have known functions, other bacteria
that we identified that have been reported from other insects
require further investigation (i.e., Acinetobacter, Arcobacter,
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Fig. 2. Relative abundance of bacterial taxa in SCA collected from grain sorghum and sugarcane. Three bacterial genera (i.e., Arcobacter, Buchnera, and
Citrobacter) showed significantly different abundances between aphids on different host plants. ns = P> 0.05; *P=0.02; **P < 0.01.

Bacillus, Burkholderia, Cloacibacterium, Delftia, Flavobacterium,
Propionibacterium, and Sphingomonas; Srivastava and Rouatt
1963, Kikuchi et al. 2005, Konig 2006, Xiang et al. 2006, Killer
et al. 2009, Leroy et al. 2011, Malhotra et al. 2012, Morales-
Jiménez et al. 2012, Cakici et al. 2014, Montagna et al. 2014,
Ceja-Navarro et al. 2015, Meirelles et al. 2016, Meriweather et al.
2016, Segata et al. 2016, Cheng et al. 2017, Duguma et al. 2017,
Luna et al. 2018). For example, Flavobacterium has been reported
from pea aphids (Srivastava and Rouatt 1963), and while mem-
bers of the order Flavobacteriales are reported to provision their
insect hosts with nutrients (Wu et al. 2006, Bennett et al. 2014,
Rosas-Pérez et al. 2014), it is unknown whether this bacteria
would have a similar role in SCA. Similarly, Micrococcus in the
European corn borer has potential contributions to gut enzymatic
activity (Vilanova et al. 2012); however, its potential function in
SCA is not known.

Interestingly, we did not detect bacterial symbionts that are
well known from previous aphid studies with either PCR or
metabarcoding. For example, we did not detect any reads associated
with Hamiltonella defensa, which in another study was reported
as a byproduct of bacterial read filtering from high-throughput
sequencing of SCA (Harris-Shultz et al. 2017). We conclude that the
presence of these other symbionts may be rare or completely absent
in SCA populations in the United States.

We originally predicted that a change in the SCA microbiome
composition might be responsible for SCA switching from sugarcane
to grain sorghum resulting in the pest outbreak in 2013. While our
results show host-associated bacterial differentiation in SCA col-
lected from sugarcane and sorghum, these differences seem to cor-
respond to the characterization of two genetically distinct aphid
Multilocus Lineages or MLLs (Nibouche et al. 2018). These gen-
etically distinct MLLs differ in host plant use: MLL-D prefers to
feed on sugarcane and has likely been present in the United States
since the 1970s while MLL-F prefers to feed on sorghum and was
only recently detected in the United States (Nibouche et al. 2015,
Nibouche et al. 2018). Therefore, the sudden SCA outbreak was
likely caused by the introduction of a sorghum adapted strain of
SCA, which also has host-associated bacterial differences, and not
by the sudden acquisition or loss of a specific bacterial symbiont.
Analysis of sugarcane aphids from Louisiana grain sorghum and
sugarcane before and after the pest outbreak show an increase in

the sorghum adapted MLL-F in sugarcane (Nibouche et al. 2018). In
SCA, sugarcane populations had greater abundances of Arcobacter
and a lower abundance of Citrobacter when compared to samples
collected on sorghum. In fruit flies that harbor Citrobacter these bac-
teria enhance detoxification that enables resistance to insecticides
(Cheng et al. 2017), which could have a similar function in SCA.
The function of Arcobacter is still unknown despite its presence
in multiple insect species. In addition, bacteria such as Citrobacter
and Serratia (lacking in samples collected before SCA invasion on
U.S. sorghum) were detected in aphids from both grain sorghum and
sugarcane after 2013, suggesting that the sorghum adapted MLL-F
aphids are spilling over into sugarcane. Alate aphids can be trans-
ported by wind to new locations and host plants (Wiktelius 1984,
Irwin et al. 1988, Loxdale et al. 1993, Mann et al. 1995), which may
explain why some SCA samples collected from sugarcane after 2013
(in Alabama, Florida, and Louisiana) have microbial compositions
that cluster closer to SCA collected on grain sorghum. Our findings
suggest a spillover of SCA from sorghum to sugarcane likely due to
dispersal. Although changes in the microbiota composition between
SCA before and after 2013 are unlikely to have caused the SCA out-
break in sorghum, the bacteria that we identified may play important
roles in SCA.

Microbial organisms, such as bacteria, fungi, and viruses may
play important roles in the management of insect pests (Lacey et al.
2001, Glare et al. 2012, Lacey et al. 2015). We currently know that
some microorganisms influence the effectiveness of pest control
strategies. For example, pea aphid association with specific strains
of Hamiltonella defensa or Regiella insecticola confers increased re-
sistance against parasitoid attacks (Oliver et al. 2003, Oliver et al.
2009, Vorburger et al. 2009), thus reducing the effectiveness of bio-
logical control. In contrast, pea aphids harboring some strains of
Serratia symbiotica can be killed with lower doses of insecticide from
different chemical classes including a neonicotinoid, carbamate,
keto—enol, and organic thiophospahate (Skaljac et al. 2018). Thus,
in theory we could manipulate the microogranisms associated with
insect pests, either by adding or eliminating microbes that benefit
or harm pest control efforts. We currently use entomopathogens as
biopesticides and manipulating symbiotic microorganisms would
help expand pest control. The manipulation of pests’ microbiotas
as part of IPM may significantly reduce runoff and off-target effects
associated with chemical control (Chandler et al. 2011, Dara 2017,
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Lenteren et al. 2018) of some insect pests. The ability to incorporate
relevant genes in insects and plants using novel gene editing methods
(e.g., CRISPR-Cas9) provides another promising application for
characterizing and manipulating pest insects” microbiota. Future ap-
proaches to genetic pest control may benefit not only from altering
insect genes and their expression (e.g., through gene editing or RNAi
for targeted gene silencing), but also by incorporating microorgan-
isms’ genes to enhance IPM.

Our research team plans to continue examining the role(s) that
SCA bacteria may play in this insect pest. Future research will in-
clude assessing the prevalence of these bacteria among aphids in
different locations as well as the potential detoxification role of
Citrobacter in SCA. As was seen in pea aphids where their microbial
composition influenced stress tolerance or fecundity (Oliver et al.,
2010), these potential bacterial roles in SCA need to be character-
ized. In addition, screening of low abundance bacteria in different
aphid populations, will allow us to determine transmission rates of
bacteria in SCA. Last, further research into the potential role that
microbes play in the attraction of natural enemies or mutualists to
SCA is needed and could provide valuable insight for the use of
biological control.

Opverall, we found that populations of SCA in the continental United
States contain only two of the well-studied facultative symbionts re-
ported in aphids. It is important to note that HTS allowed us to iden-
tify bacteria in SCA, which had not been known to be associated with
aphids, but have been hypothesized to act as potential symbionts in other
insects. In addition, we found evidence of host-associated differentiation
in SCA microbiota. This study provides a foundation for understanding
the bacterial composition of SCA, which can be used to better inform
Integrated Pest Management (IPM) of this pest in grain sorghum by pro-
viding novel targets for control.
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