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Abstract

Background: While mathematical models are often used to predict progression of cancer and treatment outcomes,

there is still uncertainty over how to best model tumor growth. Seven ordinary differential equation (ODE) models of

tumor growth (exponential, Mendelsohn, logistic, linear, surface, Gompertz, and Bertalanffy) have been proposed, but

there is no clear guidance on how to choose the most appropriate model for a particular cancer.

Methods: We examined all seven of the previously proposed ODE models in the presence and absence of

chemotherapy. We derived equations for the maximum tumor size, doubling time, and the minimum amount of

chemotherapy needed to suppress the tumor and used a sample data set to compare how these quantities differ

based on choice of growth model.

Results: We find that there is a 12-fold difference in predicting doubling times and a 6-fold difference in the

predicted amount of chemotherapy needed for suppression depending on which growth model was used.

Conclusion: Our results highlight the need for careful consideration of model assumptions when developing

mathematical models for use in cancer treatment planning.
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Background

Cancer is a leading cause of death and places a heavy

burden on the health care system due to the chronic

nature of the disease and the side effects caused by many

of the treatments [1–3]. Much research effort is spent

improving the efficacy of current treatments [4] and on

developing new treatment modalitites [5–9]. As cancer

treatment moves towards personalized treatment, math-

ematical models will be important component of this

research, helping to predict the time course of the tumor

and optimizing treatment regimens [10, 11].

Mathematical models are used in a number of ways

to help understand and treat cancer. Models are used to

understand how cancer develops [12] and grows [13–16].

They are used to optimize [17, 18] or even personalize [11,

19, 20] current treatment regimens; predict the efficacy

of new treatments [21] or combinations of different ther-

apies [22–24]; and give insight into the development of

*Correspondence: h.dobrovolny@tcu.edu
2Department of Physics & Astronomy, Texas Christian University, 2800 S.

University Drive, 76129, Fort Worth, TX, USA

Full list of author information is available at the end of the article

resistance to treatment [25, 26]. While models have great

potential to improve development and implementation of

cancer treatment, they will only realize this potential if

they provide accurate predictions.

The basis of any mathematical model used to study

treatment of cancer is a model of tumor growth. This

paper focuses on ordinary differential equation (ODE)

models of tumor growth. A number of ODE models have

been proposed to represent tumor growth [27, 28] and are

regularly used to make predictions about the efficacy of

cancer treatments [29]. Unfortunately, choice of a growth

model is often driven by ease of mathematical analysis

rather than whether it provides the best model for growth

of a tumor [27].

Some researchers have attempted to find the “best” ODE

growth model by fitting various models to a small number

of experimental data sets of tumor growth [30–33]. Taken

altogether, the results are rather inconclusive, with results

suggesting that choice of growth model depends at least

in part on the type of tumor [31, 32]. This leaves modelers

with little guidance in choosing a tumor growth model.
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Many researchers realize that improper choice of

growth model is problematic [27] and can lead to dif-

ferences in predictions of treatment outcomes [28, 29].

However, there has not yet been a study that compares

and quantifies differences in predictions of the various

models and how these differences affect predictions of

treatment outcomes. This paper presents results of anal-

ysis of the various ODE growth models highlighting their

predictions of tumor growth in the presence and absence

of chemotherapy. We also fit the models to sample exper-

imental tumor growth data sets and find a wide range of

predicted outcomes based on the choice of growth model.

Methods

Mathematical models

Early studies of tumor growth were concerned with

finding equations to describe the growth of cancer cells

[13–16] and many of the models examined here were pro-

posed at that time. The models predict the growth of a

tumor by describing the change in tumor volume, V, over

time. The model equations used in this analysis are pre-

sented in Table 1 and the models are described below.

a, b, and c are parameters that can be adjusted to describe

a particular data set.

Exponential: In the early stages of tumor growth, cells

divide regularly, creating two daughter cells each time. A

natural description of the early stages of cancer growth

is thus the exponential model [34], where growth is pro-

portional to the population. The proportionality constant

a is the growth rate of the tumor. This model was often

used in early analysis of tumor growth curves [13–16] and

appears to work quite well at predicting early growth. It is

known to fail, however, at later stages when angiogenesis

and nutrient depletion begin to play a role [27, 32].

Mendelsohn: A generalization of the exponential growth

model was introduced by Mendelsohn [35]. In this

model, growth is proportional to some power, b, of the

population.

Table 1 ODE models of tumor growth

Model Equation

Exponential V̇ = aV

Mendelsohn V̇ = aVb

Logistic V̇ = aV
(

1 −
V
b

)

Linear V̇ =
aV

(V+b)

Surface V̇ =
aV

(V+b)
1
3

Gompertz V̇ = aV ln b
(V+c)

Bertalanffy V̇ = aV
2
3 − bV

Logistic: The logistic (or Pearl-Verhulst) equation was

created by Pierre Francois Verhulst in 1838 [36]. This

model describes the growth of a population that is limited

by a carrying capacity of b. The logistic equation assumes

that the growth rate decreases linearly with size until it

equals zero at the carrying capacity.

Linear: The linear model assumes initial exponential

growth that changes to growth that is constant over time.

In our formulation of the model, the initial exponential

growth rate is given by a/b and the later constant growth

is a. The model was used in early research to analyze

growth of cancer cell colonies [16].

Surface: The surface model assumes only a thin layer of

cells at the surface of the tumor are dividing while the

cells inside the solid tumors do not reproduce; they are

mitotically inactive [37]. Our formulation again assumes

exponential growth at early times with the surface growth

taking over at longer times.

Bertalanffy: The Bertalanffy equation was created by

Ludwig Bertalanffy as a model for organism growth [38].

This model assumes that growth occurs proportional to

surface area, but that there is also a decrease of tumor vol-

ume due to cell death. This model was shown to provide

the best description of human tumor growth [30].

Gompertz: Benjamin Gompertz originally created the

Gompertz model in 1825 in order to explain human mor-

tality curves [39]. The model is a generalization of the

logistic model with a sigmoidal curve that is asymmetri-

cal with the point of inflection. The curve was eventually

applied to model growth in size of entire organisms [40]

and more recently, was shown to provide the best fits for

breast and lung cancer growth [32].

Dynamical analysis

Our goal is to assess differences in model predictions.

While we are often concerned with prediction of time

points in the near future, it is also informative to study the

long-term predictions of a mathematical model. To this

end, we find the fixed points of each equation which will

tell us the long-term predictions of each of the models.

Stability analysis [41] is used to determine the boundary

between growth and decay of the tumor.

We also determine the doubling time,

DT =
ln2

λ
, (1)

where λ is the initial growth rate of the tumor. The dou-

bling time is often used as ameasure of how fast the tumor

grows [42]. We use a Taylor expansion of the equations

in Table 1 about V = 0 to determine the initial growth



Murphy et al. BMC Cancer  (2016) 16:163 Page 3 of 10

rate. While this means that the calculated doubling time

is an approximation and only valid during the early por-

tion of the growth phase, many experimental data sets

only follow the growth for a short period of time so this

is representative of what might be calculated in actual

experiments.

Chemotherapy

In addition to assessing the predictions of the growth

models alone, we examined how predictions differed

when chemotherapy was added to the models. This is par-

ticularly important since growth models are often used as

a basis for predicting the efficacy of cancer therapies.

Since this is just illustrative, we choose a simple imple-

mentation of chemotherapy. We assume that there is a

constant supply of drugC0 acting on the tumor.We simply

subtract the term C0V from each equation [29] and again

use stability analysis to determine the conditions that lead

to eradication of the tumor.

Data fitting

Data fromWorschech et al. [43] of a GI-101A xenograft in

nude mice (Figure 1A of [43], control data) was extracted

usingWebPlotDigitizer, an online data extraction tool. Fit-

ting was performed by minimizing the sum of squared

residuals (SSR),

SSR =
∑

i

(xi − mi)
2, (2)

where xi are the experimental data points, and mi are the

predicted model values at the same times. The lowest SSR

was found using the Python Scipy fmin_tnc function,

which uses a truncated Newton algorithm.

Since the models have a different number of free param-

eters, comparison using only the SSR is not always fair

since models with more free parameters have more free-

dom to to fit the data. To correct for this bias, we

use Aikaike’s information criterion (AICC), corrected for

small sample size, which penalizes models with more

parameters if there is not enough improvement in the SSR.

The AICC is given by

AICC = nln

(

SSR

n

)

+
2(K + 1)n

n − K − 2
, (3)

where n is the number of data points and K is the num-

ber of parameters [44]. The model with the lowest AICC is

considered to be the better model given the experimental

data it is approximating.

Results

Tumor growth in the absence of chemotherapy

A simple analysis of the different models shows that they

have very different predictions of the long-term dynamics

of tumor growth. The fixed points, doubling time and con-

dition for growth of the tumor are presented in Table 2.

All models have two fixed points, one of which is zero.

The remaining fixed point represents the maximum pos-

sible tumor size predicted by the model. In a real system,

the maximum possible tumor size, or carrying capacity,

is a function of the tumor’s environment and its access

to resources [45] and can change as the tumor grows,

particularly in the case of extracapsular extension when

it extends beyond the bounds of its original organ. Four

of the models (exponential, Mendelsohn, linear, and sur-

face) predict that tumors will continue growing without

bound, a biologically unrealistic scenario. The remaining

threemodels (logistic, Gompertz, and Bertalanffy) predict

that tumors will grow to some maximum size and reach a

stable equilibrium at that point.

The growth criteria listed in Table 2 gives the condi-

tion for growth or decay of the tumor if a few cancer

cells appear in the system. While the criteria all have

slightly different forms, they essentially tell us that the

initial growth rate once tumor cells appear must be posi-

tive. All the models agree that if the initial growth rate is

positive, the tumor will continue to grow until it reaches

its maximum size; the disease-free equilibrium is unsta-

ble. The doubling time for each model gives an indication

of how quickly the tumor will reach this maximum size.

Unfortunately, comparing the formulas does not really

give much insight into differences in model predictions

without having some estimate of the parameter values. In

a later section, we give a quantitative assessment of dif-

ferences in model predictions using sample tumor growth

data.

Tumor growth in the presence of chemotherapy

As described in Methods, we assess how chemotherapy

alters the dynamics of each of the growth models using

the simplifying assumption of constant drug concentra-

tion.We again use stability analysis to assess the long-term

Table 2 Model predictions in the absence of chemotherapy

Model Maximum Doubling Growth

size time condition

Exponential ∞
ln 2
a

a > 0

Mendelsohn ∞
ln 2
a

a > 0

Logistic b ln 2
a

a > 0

Linear ∞
b ln 2
a

a
b

> 0

Surface ∞
b
1
3 ln 2
a

a

b
1
3

> 0

Gompertz b − c ln 2

a ln
(

b
c

) a ln
(

b
c

)

> 0

Bertalanffy
(

a
b

)3 ln 2
a−b

a − b > 0



Murphy et al. BMC Cancer  (2016) 16:163 Page 4 of 10

predictions made by each of the models. Each of the

models again predicts that there are two possible fixed

points, one of which is zero. The other fixed point repre-

sents the maximum possible tumor size in the presence

of chemotherapy and is presented in Table 3. In this case,

only one model (exponential) predicts that the tumor

will continue to grow indefinitely even in the presence

of chemotherapy. The remaining models all predict that

the chemotherapy will hold the tumor to some maximum

size. Unfortunately, it is again difficult to assess the rela-

tive sizes of the predicted maximum size without having

values for parameters.

We can again determine the boundary condition that

delineates growth of the tumor from decay of the

tumor. In this case, this represents the minimum amount

of chemotherapy needed to cause eradication of the

tumor. Essentially, the minimum amount of chemother-

apy needed is the amount that results in a kill rate equal to

the initial growth rate of the tumor.

Quantitative example

In the previous sections, we derived equations for maxi-

mum tumor size and conditions for growth of the tumor

in the presence and absence of chemotherapy for each

of the ODE growth models. However, it is difficult to

assess just how large differences between model predic-

tions are without having values for model parameters. In

this section, we use sample tumor growth data extracted

from the literature to quantitatively assess differences in

model predictions.

We use data from Worschech et al. [43] which consists

of measurements of growth of GI-101A cells injected sub-

cutaneously into nude mice. This is an unusually long data

set consisting of 14 time points spanning 114 days. In

addition to assessing differences in model predictions, we

will use this data set to examine whether model predic-

tions can be improved with the collection of more data.

We will initially use only the first half of the time series,

Table 3 Model predictions in the presence of chemotherapy

Model Maximum Minimum concentration

size needed to cure

Exponential ∞ C0 = a

Mendelsohn
(

C0
a

)
1

b−1
C0 = a

Logistic b(a−C0)
a

C0 = a

Linear a
C0

− b C0 =
a
b

Surface a3

C0
− b C0 =

a

b
1
3

Gompertz b

e
C0
a

− c C0 = a ln
(

b
c

)

Bertalanffy
(

a
b+C0

)3
C0 = a − b

seven points spanning 65 days. Note that many tumor

growth data sets contain fewer than ten points and often

span only a week or two [31], so this truncated data set is

quite representative of much of the data available in the

literature.

Model fits to this truncated data, along with the best

fit parameter estimates are presented in Fig. 1. All the

models provide reasonable fits to the data, with the expo-

nential model producing the worst SSR since it only has

one free parameter. The model with the lowest SSR is

the Bertalanffy model in this case. However, the AICC

indicates that the exponential model actually provides the

best explanation for the data since the improvement in

SSR did not offset the inherent improvement in fit with

the addition of the extra parameter. A close inspection of

the fits shows that they largely agree on the growth tra-

jectory while there are experimental data points to guide

the time course, but they appear to diverge beyond the

last experimentally collected time point. This is partic-

ularly problematic since mathematical models are often

used for extrapolation, suggesting that proper choice of

growth model is extremely important for correctly pre-

dicting the future growth of tumors as well as for assessing

how treatment might affect growth of the tumor.

As a test of the accuracy of each model, we can use

the best fit parameter estimates from the truncated data

to predict the remaining seven time points of the full

data set. As a measure of the accuracy of the predictions,

we can calculate the SSR for each model prediction. The

model predictions, along with the SSRs, are presented in

Fig. 2. While the model that provided the best fit to the

data was the Bertalanffy model and the model that pro-

vided the best explanation for the data was the exponential

model, the model that actually provides the best estimate

of the future growth of the tumor is the surface model.

This is likely because the experimental data are measure-

ments of a xenograft which grows as an approximately

spherical tumor where only the cells near the surface are

dividing. With the exception of the exponential model,

the models underestimate the actual growth of the tumor.

In the case of the Bertalanffy, Gompertz, and logistic

models, this is because the truncated data set did not pro-

vide enough information to correctly estimate the max-

imum tumor size. Unfortunately, these three models are

particularly popular choices for modeling tumor growth

[27, 29] because they include a biologically realistic slow-

ing of the growth rate as the tumor increases. Yet it is

precisely this feature that results in the poor predictive

value of the models.

In practice, mathematical models are often not used to

predict full time series, but are used to calculate quanti-

ties of interest to clinicians. Using the formulas derived in

sections “Tumor growth in the absence of chemotherapy”

and “Tumor growth in the presence of chemotherapy”, we
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Fig. 1Model fits to data. Best fits of the ODE tumor growth models to the first half of the data from Worschech et al. [43]. Parameter estimates are

given in the table below the graph

can use our parameter estimates to calculate maximum

tumor size, doubling time, and minimum concentration

of chemotherapy needed for suppression of the tumor.

These quantities are presented in Fig. 4 (top row) for the

truncated Worschech data. Four of the models (exponen-

tial, Mendelsohn, linear, and surface) predict indefinite

growth of the tumor. The remaining three models pre-

dict finite tumor sizes, but the predicted maximum size

varies by almost an order of magnitude, with the Gom-

pertz and logistic models estimating a maximum tumor

volume of ∼ 2000mm3 while the Bertalanffy model esti-

mates a maximum tumor volume of ∼ 16000mm3. The

doubling time estimated by the different models also

shows a good deal of variation, ranging from ∼ 2 d for

the Mendelsohn and Bertalanffy models to ∼ 26 d for

the exponential model. The assumption of exponential

growth underlies many calculations of the tumor growth

rate or doubling time [42, 46] and the exponential model

is also the model of choice for this data, so it is con-

cerning that the exponential model provides one of the

extreme estimates of doubling time. Of particular concern

is the variation in predictions of the minimum amount

of chemotherapy needed to suppress a tumor. The Berta-

lanffy and Mendelsohn models predictions are about six

times larger than the predictions of the remaining mod-

els. If we use one of these models to decide on treatment

plans, we could be treating patients with far more drug

than is actually necessary. The extreme values predicted

by the Bertalanffy model are especially concerning since

the Bertalanffy model provided the lowest SSR and might

be a choice for some modelers in predicting the future

growth of this particular tumor.
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Fig. 2 ODE models’ predicted time course of tumor growth. Each model was fit to the first seven time points and parameter estimates were used to

extrapolate the remaining seven time points. The SSR for each prediction is given in the table below the graph

Given that the short time series led to a large varia-

tion in predicted outcomes, we examined whether the

collection of extra time points might lead the models to

more closely agree on predicted outcomes. We fit the

full Worschech time series with each of the ODE growth

models, as shown in Fig. 3. Many of the estimated param-

eter values change somewhat from the estimates deter-

mined by the fits to the first half of the time series. The

most notable of these is the second parameter (b) of the

Bertalanffy model which drops to essentially zero, sug-

gesting that the best description of the data by this model

neglects death within the core of the tumor. The model

with the best fit in this case is the logistic model, which

has both the lowest SSR and lowest AICC , so the addi-

tion of extra information can alter the choice of growth

model. Again, however, we see that the models all pro-

vide reasonably good fits to the experimental data, but

start to diverge beyond the last data point. It is unclear

if this divergence will lead to large variations in clinical

parameters.

The maximum tumor size, doubling time and mini-

mum amount of chemotherapy needed for suppression

predicted by each model based on parameter estimates

from the full Worschech time series are shown in Fig. 4

(center row). As before, four of the models predict unfet-

tered growth of the tumor, but they are now joined by

the Bertalanffy model in predicting unrealistically large

tumors. Since there is now essentially no death of tumor

cells in the Bertalanffy model, the tumor continues to

grow indefinitely. The maximum tumor sizes predicted by

the Gompertz and logistic models have increased slightly

to ∼ 5000 mm3 and ∼ 7000 mm3, respectively. This is

because the new data clearly shows that the tumor does

not stop growing at 2000 mm3. The doubling times pre-

dicted by the Mendelsohn and Bertalanffy models are still

quite a bit smaller than those predicted by the remaining

models, although these estimates have increased. Finally,

the predicted amount of chemotherapy needed to sup-

press the tumor by the Mendelsohn model drops, coming

noticeably closer to the values predicted by all but the

Bertalanffy model.

To quantify the changes we see with the addition of extra

time points, we calculate the percent difference in each

prediction between estimates based on the truncated time

series and estimates based on the full time series (Fig. 4,

bottom row). Of those models that predict a finite tumor

size, we see that all have increased the predicted size of

the tumor. The predicted doubling time has also increased

for all of the models. This suggests that all of the models

were underestimating the true doubling time of the tumor.

Similarly, the percent differences suggest that the mod-

els all overestimated the amount of chemotherapy needed

to suppress the tumor. The Mendelsohn and Bertalanffy

models, which predicted particularly small doubling times

and large amount of chemotherapy, show the largest per-

cent changes in both estimates with the addition of extra

time points. The surface model, which most accurately

predicted the full time course based on estimates from
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Fig. 3Model fits to data. Best fits of the ODE tumor growth models to the data from Worschech et al. [43]. Parameter estimates are given in the

table below the graph

the first half, shows the smallest percent change with the

addition of extra time points.

Discussion

This paper examines several commonly used ODEmodels

of tumor growth and quantitatively assesses the differ-

ences in their predictions of clinically relevant quantities.

We first derived equations for the maximum tumor size,

doubling time, and the condition for growth of all the

models. We then derived equations for the maximum

tumor size in the presence of chemotherapy and the min-

imum amount of chemotherapy needed to suppress a

tumor. Finally, we used experimental tumor growth data

along with these equations to compare predicted values

of maximum tumor size, doubling time, and minimum

amount of chemotherapy needed for suppression for each

of the ODE models. We find that there is a six-fold

difference in the minimum concentration of chemother-

apy required for suppression of the tumor and a 12-fold

difference in estimates of the doubling time. While the

exact amount of variation in predictions between different

models will differ for other data sets, we expect that there

will be disagreement in model predictions for all data sets.

In fact, this data set was particularly long, so the models

were constrained to agree for a longer time period than

with most other data sets. This, along with our finding

that increasing the duration of the data set reduced the

variability in model predictions suggests that differences

in model predictions might be even larger for most other

data sets. These findings suggest that modelers and clini-

ciansmust carefully consider their choice of growthmodel

and how different growth assumptions might alter model

predictions of the efficacy of treatment.

While our findings could be dismissed because they are

based on a single example or because the models and the

implementation of chemotherapy are highly simplified,

we believe they highlight a significant problem. While

many mathematical models used for clinical assessment
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Fig. 4 Estimates of clinically important measurements. Model predictions of the maximum tumor volume (left), doubling time (center), and

minimum concentration of chemotherapy needed for eradication (right) based on parameter estimates from the half (top row) or the full (center

row) Worschech data set. The bottom row shows the percent change in each of the predictions when the full data set is used rather than the

truncated data set

of patients and development of radiation or chemother-

apy plans are more complex than those presented here

[47], they must all make some assumption of how the

tumor will grow. Due to the complexity of these models,

however, it is difficult to trace the effect of the choice of

growth model and determine how this choice might alter

the model’s predictions. In fact, while model predictions

are often assessed for sensitivity to errors in estimates of

the parameters [48, 49], the effect of model assumptions

is often neglected. Our findings, however, indicate that

these assumptions could have a profound effect on model

predictions since our simple models show that different

choices of growthmodel result in large variations inmodel

predictions. The results of these inaccuracies could have

significant impacts on patient outcomes since we might

either provide too much treatment, causing more severe

side effects, or too little treatment, possibly resulting in

continued growth of the tumor. In fact, a recent analysis

of patients receiving radiation therapy suggests that tumor

size relative to its maximum possible size is a stronger

indicator of response to treatment than simply the tumor

size [50]. This is because the radiosensitivity of tumor cells

is dependent on their growth and tumors closer to their

maximum size are growing more slowly than tumors that

still have room to grow. This simply highlights the need

to accurately determine how tumors are growing when

planning for dose and fractionation schedule.

While some research has attempted to find the best

ODEmodel to describe tumor growth [30–33], the results

seem to suggest that there are no broad guidelines; the

most appropriate model seems to be dependent on the

details of the experiment. These papers used least-square

minimization, or minimization of information criterion

to determine the “best” model [44]. In our example, use

of minimum SSR would lead us to choose the Berta-

lanffy model as the “best” model, while use of AICC would

lead us to choose the exponential model to fit the trun-

cated Worschech data set. However, further investigation

suggests that either of these models would actually be a

poor choice of model. The Bertalanffy did a poor job of
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predicting the future growth of the tumor (Fig. 2), and

gave an extremely low estimate of the doubling time and a

high estimate for the amount of chemotherapy needed to

suppress the tumor. The exponential model overestimated

the growth rate of the tumor and does not allow for slower

growth of the tumor as resources are depleted.

While some modelers would perhaps fit several differ-

ent growth models to a data set, current model selection

techniques were not designed for the type of model selec-

tion problem faced by cancer modelers. Statistical mea-

sures such as the SSR, AICC , Mallow’s Cp [51], Schwarz

Bayesian information criterion [52], among others, all

measure how well the model explains experimental data

that has already been collected. A model selected as the

best model using one of these measures should work

reasonably well to make predictions if future behavior

is similar to past behavior. Unfortunately, we know that

this is often not the case when modeling tumor growth.

Most experimental data sets capture the early growth of

the tumor [31]. Modelers, however, would like to pre-

dict future growth where space and resource limitations

hamper growth and structural changes such as a necrotic

core, extracapsular extension, and angiogenesis will also

affect growth dynamics [53–55], so the data used to select

the model does not necessarily reflect the dynamics at

the time when the predictions are made. In addition, it is

well-known that experimental results in many pre-clinical

systems do not translate well to human clinical studies

[56–59]. A model chosen based on goodness-of-fit cri-

teria to data from a pre-clinical experiment might not

provide the most accurate predictions of future growth

and treatment outcomes in humans. Our example sug-

gests that more robust testing of model assumptions is

needed before settling on a particular formulation. Min-

imization of SSR or information criterion does not guar-

antee selection of the best model for predicting future

behavior.

Conclusions

Our results show that choice of tumor growth model

can lead to as much as a 12-fold change in predicted

outcomes and that the model that best fits experimen-

tal data might not be the model that best predicts future

growth. It is our hope that the findings presented here will

spur more investigation into the effect of choice of can-

cer growth model on predicted treatment outcomes and

that researchers will consider more than just best fit when

selecting a growth model.
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