
pathogens

Article

Differences in the Endophytic Microbiome of Olive
Cultivars Infected by Xylella fastidiosa
across Seasons

Annalisa Giampetruzzi 1, Paula Baptista 2 , Massimiliano Morelli 3 , Cristina Cameirão 2 ,

Teresa Lino Neto 4, Daniela Costa 4 , Giusy D’Attoma 3 , Raied Abou Kubaa 3,

Giuseppe Altamura 3, Maria Saponari 3, José Alberto Pereira 2 and Pasquale Saldarelli 3,*

1 Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari, 70126 Bari,

Italy; annalisa.giampetruzzi@uniba.it
2 Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança,

5300-253 Bragança, Portugal; pbaptista@ipb.pt (P.B.); ccameirao@ipb.pt (C.C.); jpereira@ipb.pt (J.A.P.)
3 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di

Bari, 70126 Bari, Italy; massimiliano.morelli@ipsp.cnr.it (M.M.); giusy.dattoma@ipsp.cnr.it (G.D.);

raied.aboukubaa@ipsp.cnr.it (R.A.K.); giuseppe.altamura@ipsp.cnr.it (G.A.);

maria.saponari@ipsp.cnr.it (M.S.)
4 Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP),

Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; tlneto@bio.uminho.pt (T.L.N.);

daniela.ffc22@gmail.com (D.C.)

* Correspondence: pasquale.saldarelli@ipsp.cnr.it; Tel.: +39-0805443065

Received: 4 August 2020; Accepted: 31 August 2020; Published: 2 September 2020
����������
�������

Abstract: The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome

was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17.

Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was

carried out on the same trees at two different stages of the infections: In Spring 2017 when plants

were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly

showed desiccations. The progression of the infections detected in both cultivars clearly unraveled

that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic

microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower

population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a

higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear

associations of a single taxon or microbial consortia with the resistance cultivar were found with

both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors

that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes,

and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those

of Fungi.

Keywords: Xylella fastidiosa; bacteria; fungi; archaea; 16S/ITS sequencing; shotgun metagenomic

sequencing; kalamata; FS17; resistance

1. Introduction

Xylella fastidiosa is a Gram-negative gamma proteobacterium in the family Xanthomonodaceae,

of which three main subspecies are described, multiplex, fastidiosa, and pauca [1], all originating from the

Americas. The bacterium is a major threat for European and Mediterranean agriculture, being capable

of infecting different crop species and to establish itself in different Mediterranean agro-ecosystems,
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causing in some cases severe diseases [2]. Infections of this polyphagous and xylem-dwelling

bacterium may prove asymptomatic in several host species while they can induce severe diseases in

crops of agricultural importance. Citrus variegated chlorosis (CVC), affecting fruit size and quality

of oranges and Pierce’s Disease (PD), inducing leaf scorching and grapevine decline, are among the

most destructive and economically important diseases caused by Xylella [3]. The olive quick decline

syndrome (OQDS), a novel disease described for the first time in 2013 in southern Italy [4], represents

an example of the detrimental impacts associated to this pathogen spreading on the Mediterranean

territories and infecting a traditional and widespread species. A hitherto uncharacterized genotype

(namely the sequence type ST53) of X. fastidiosa subspecies pauca was found to be the causal agent

of OQDS, which, coupled with abundant populations of the local xylem-feeding insects (primarily

the so-called “spittlebugs”), determined an epidemic spread of the pathogen, currently affecting an

area of approximately 750,000 ha [2]. The ability to infect up to 595 plant species [5], together with

the insect transmission [6] and the lack of effective treatments to cure infected plants [2], make the

control of Xylella infections very challenging, requiring a compendium of integrated strategies relying

on reducing vector population, eliminating sources of infections, and search for resistance traits in the

affected species. Proofs of genetic resistance have been found in grape [7,8] and citrus [9–12] and more

recently in olive cultivars Leccino and FS17 [13–17]. Even so, mechanisms underlying differential host

responses to Xylella infections are still largely unknown. As for PD, a broad consensus indicates that

symptoms are the result of the systemic colonization of the bacterium which blocks the xylem vessels

and causes a progressive deficit in water transport. In this scenario, anatomical features and abundant

bacterial populations have major roles in impairing xylem conductivity as vascular occlusions are

caused by the occurrence of bacterial aggregates and by tyloses, which are outgrowths of parenchyma

cells of the xylem produced by plants in response to biotic or abiotic stresses [3,18,19].

While genetic [8,20] and/or anatomo-physiological [7,21] studies have contributed to unravel some

of the mechanisms that contribute to constraining Xylella multiplication and movement in resistant

grapevines, very little is known about the relationships of X. fastidiosa with all other microorganisms

inhabiting the xylem vessels and their potential role in limiting infections, i.e., contributing to modulate

the response in resistant phenotypes. In this framework, we studied the dynamics of Xylella plant

colonization in relation to the whole olive microbiome to shed light on the complex network of

interactions occurring among microorganisms inhabiting the same niche, the xylem vessels.

Strategies to study the plant microbiome compositions rely on the isolation and

identification of cultivable microorganisms (cultivation-dependent), or massive sequencing

(cultivation-independent) [22–24]. The majority of the currently available studies rely on the analysis of

next generation sequencing (NGS) datasets from 16S ribosomal RNA gene (16S rRNA) sequences from

bacteria or fungi (internal transcribed spacer, ITS) [25]. However, information on the whole microbiome

can be also obtained through whole metagenome shotgun sequencing (WMSS) [26,27], a strategy that

allows gathering microbial data at very high depth. A combination of both cultivation-dependent

and independent approaches can be effectively exploited for identifying beneficial microorganisms or

consortia potentially antagonizing known plant pathogens to be used as biocontrol agents.

Studies of the microbial endophytes were reported in Xylella pathosystems from citrus, grapevine,

and more recently, from olive. Several authors [28–32] described differences in the endophyte

populations of asymptomatic and symptomatic citrus plants affected by CVC and proposed that

the development of symptoms is the result of an unbalanced ratio among Methylobacterium and

Curtobacterium species, and X. fastidiosa. In particular, Curtobacterium flaccumfaciens was found to

inhibit the growth of X. fastidiosa subspecies pauca in vitro and to prevent or reduce the symptoms in

Catharanthus roseus plants when it was co-inoculated with Xylella [32]. Similarly, a citrus-isolated strain

of Methylobacterium mesophilicum inhibited the growth of Xylella in vitro and reduced its population

in C. roseus plants [31]. Cultivation-dependent or independent approaches were similarly used

to characterize the grapevine-associated endophyte microbiome inhabiting debarked cane tissues

or sap [33,34]. Proteobacteria and Ascomycota were found to be predominant while the bacterium
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Pseudomonas fluorescens and the fungus Achromobacter xyloxidans were found to be inversely correlated

with the X. fastidiosa subspecies fastidiosa populations in grapevine escaping the Pierce’s Disease [34].

The dynamics of the microbial communities in the xylem sap of grapevines under high Pierce’s

Disease pressure was described in three different phenological stages over two growing seasons [33].

This study led to the identification of the grapevine core bacterial and fungal microbiomes of plants

showing mild, moderate, or severe Pierce’s Disease symptoms. Furthermore, the microbial diversity

richness in the grape xylem sap was highest during bloom while the disease condition, as well as the

phenological stage, shaped the microbial communities.

The majority of studies on the olive microbiome based on cultivation-dependent or independent

sequencing, independently of Xylella infections, targeted the rhizosphere compartment [35–38] while

they are limited for endophytes of aboveground tissues. Using 16S rRNA gene amplicon sequencing,

Müller et al. [39] found that the bacterial endophyte communities from leaves and boughs of wild

and cultivated olives were largely shaped by the plant genotype and correlated with the geographic

origin. Interestingly, these authors detected a high proportion of Archaea, whose ecological significance

remains elusive. Similar to the finding from Müller et al. [39], a predominance of Proteobacteria,

Firmicutes, Bacteriodetes, and Actinobacteria phyla were found by Fausto et al. [40] in the olive xylem sap.

However, differently from Müller et al. [39], in their 16S rRNA gene analysis, no traces of Archaea were

found in the xylem sap while these microorganisms were present with low abundances in leaves and

soil fractions. A comparison between cultivation-dependent and independent approaches to study the

xylem microbiome of olive cultivars Picual, Arbequina, and Acebuche [41] showed that the main factor

shaping the xylem-inhabiting microbiome was the olive genotype. Interestingly minor variations in

the microbiome composition were detected between the xylem-sap (recovered using the Scholander

pressure chamber) and the whole homogenized xylem tissue. A large fraction of bacteria were only

detected by culturing (58.8%) and not by amplicon sequencing (16S rRNA gene NGS).

Studies of fungal endophyte communities in olive were mainly performed in aboveground organs

by using cultivation-dependent methods [42–45], while metabarcoding analysis was less frequently

used. All these studies indicated Ascomycota as the most abundant fungal endophytes in olive leaves,

twigs, and fruits. Different factors have been shown to shape olive-associated fungal endophytic

composition, including host genotype (at cultivar level), plant organ, seasonality, and presence of

pathogens [42,44,45].

Because of OQDS novelty, understanding the pathogen-host interactions and the epidemiology of

the infections in the affected area became crucial to develop effective containment measures. A major

finding of the studies to contrast the OQDS epidemic in olives was the discovery of olive cultivars

showing resistance towards X. fastidiosa subspecies pauca ST53, namely FS17 and Leccino, as opposed

to the susceptible Ogliarola salentina, Cellina di Nardò, and Kalamata [13,14]. Both resistant cultivars

were found harboring lower bacterial population sizes and showed less severe symptoms, as compared

to Ogliarola salentina and Kalamata [13,14]. Recently, Vergine et al. [46] explored the potential role of

microbial endophytes in protecting olive cultivar Leccino from the OQDS, in comparison with Cellina

di Nardò. Interestingly, they observed a drastic dysbiosis in response to X. fastidiosa infection in Cellina

di Nardò, while Leccino maintained microbial communities more stable, and with higher diversity

than Cellina di Nardò, in both infected and uninfected plants.

In the present work, we studied the microbiomes of 15 years-old trees of the cultivars FS17 and

Kalamata, co-cultivated in the same orchard located in the core outbreak area of Apulia, in southern

Italy, by using WMSS and 16S/ITS rRNA gene sequencing. Trees were run under the same agricultural

practices and subjected to the same environmental conditions. Tissues were sampled in two seasons

from plants being initially, during 2017, symptomless and showing, during 2018, advanced or limited

symptoms in the cultivars Kalamata and FS17, respectively (Figure 1). The analysis aimed to investigate

the changes in the olive xylem microbiome upon Xylella infection and to assess whether correlations

exist between the composition of the xylem microbiome and the differential phenotypical responses

of the two cultivars to X. fastidiosa infections. Based on the gathered information, a final goal is to
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identify bacterial/fungal microbes or consortia associated with the resistant phenotypes to be exploited

as potential biocontrol agents.

 

Figure 1. Effect of X. fastidiosa infection on olive trees sampled for the aims of this study, in the Apulian

outbreak area (Sannicola, Lecce, Italy), as observed in November 2018. Desiccations on the canopy

of the susceptible cultivar Kalamata (a) were very evident, while the resistant cultivar FS17 (b) still

appeared without or with very mild symptoms.

2. Results

To describe the xylem microbiome of olive trees showing differential response to X. fastidiosa,

a total of 72 libraries were successfully sequenced, respectively, 24 by WMSS (i.e., six samples per two

cultivars per two seasons) and the same number by amplicon sequencing of the 16S/ITS rRNA gene.

2.1. Description of the Microbiome by Whole Metagenome Shotgun Sequencing (WMSS)

Initial attempts to classify the WMSS data using Kraken, with default k-mer size and databases,

proved to be unsuccessful in the correct reads assignment, with the majority of those associated to

the fungal kingdom, corresponding to plant sequences, as assessed by BLASTn analysis (not shown).

We, therefore, re-mapped the sequenced reads with Kraken 2 using a custom database, built using the

kraken2-build option, from nucleotide sequences of archaeal, bacterial, viral, fungal, and plant complete

genomes within the NCBI Reference Sequence (RefSeq) datasets.

Library sizes from April 2017 sampling, ranged between 38,656,227 and 54,871,547 raw reads,

of which 97.5% to 98.5% were classified by Kraken 2 as belonging to plant, bacteria, fungi, archaea,

and viruses. Similarly, library sizes from trees sampled in November 2018 ranged between 25,255,482

and 48,745,550, of which 97.6% to 98.2% were classified by Kraken 2 as belonging to plant, bacteria,

fungi, archaea and viruses (Table 1). A fraction from 1.42% to 2.41% was not classified by Kraken

2 among the 24 libraries. Kraken 2-classified reads were then parsed with MEGAN that assigned

24,597,096–51,202,008 reads (98.31–99.92% of the total, Table 1) to the plant kingdom.
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Table 1. Summary of the Illumina sequencing and reads classification in the two phenological stages (spring: April 2017, autumn: November 2018). * Numbers are

from Kraken 2 classification. (**) Numbers are from MEGAN classification and successive (***) normalization to Plants reads. Percentages of bacteria, fungi, archaea,

and viruses are related to the total reads microbes.

Season Cultivar
Sample
Name *

Raw
Total

Reads *

Reads
Classified *

(%)

Reads
Unclassified *

(%)

Plants
Reads **

(%)

Total
Reads

Microbes
**

Bacteria ***
(%)

Fungi ***
(%)

Archaea
***
(%)

Viruses
***
(%)

Xylella
Cq

Xylella
CFU/ml

%
Xylella/
Bacteria
Reads

%
Average
Xylella/
Bacteria

Spring
April
2017

FS17

FS1-1 50,852,732 49,963,303 (98.2) 889,429 (1.75) 49,808,696 (99.69) 259,160 249,675 (96.34) 6893 (2.66) 1735 (0.67) 857 (0.33) 28.30 34,100 0.37

2.32

FS1-3 46,489,102 45,588,956 (98.0) 900,146 (1.94) 45,428,720 (99.65) 261,865 251,689 (96.11) 7435 (2.84) 1932 (0.74) 809 (0.31) 31.20 4430 0.06
FS1-10 52,171,471 51,356,470 (98.4) 815,001 (1.56) 51,202,008 (99.70) 268,515 261,563 (97.41) 4474 (1.67) 1623 (0.60) 855 (0.32) 27.00 84,900 0.40
FS1-18 54,871,547 53,962,289 (98.3) 909,258 (1.66) 53,845,628 (99.78) 205,545 198,322 (96.49) 4550 (2.21) 1801 (0.88) 872 (0.42) 30.10 9610 0.18
FS1-43 42,746,629 42,110,247 (98.5) 636,382 (1.49) 42,020,764 (99.79) 158,999 154,117 (96.93) 2764 (1.74) 1277 (0.80) 841 (0.53) 22.90 1,520,000 12.87
FS1-45 39,194,825 38,375,168 (97.9) 819,657 (2.09) 38,227,260 (99.61) 240,666 230,319 (95.70) 7825 (3.25 1548 (0.64) 974 (0.40) 35.10 286 0.02

Kalamata

Kal1-53 38,656,227 38,101,308 (98.5) 554,919 (1.44) 38,028,096 (99.81) 130,362 126,247 (96.84) 2375 (1.82) 980 (0.75) 760 (0.58) 36.10 142 0.05

8.69

Kal1-54 44,921,146 43,839,640 (97.5) 1,081,506 (2.41) 43,586,856 (99.42) 405,349 391,036 (96.47) 11,283 (2.78) 2135 (0.53) 895 (0.22) 28.50 29,600 0.10
Kal1-55 39,692,637 39,116,264 (98.5) 576,373 (1.45) 39,009,116 (99.73) 178,457 172,754 (96.80) 2438 (1.37) 1077 (0.60) 2188 (1.23) 33.10 1170 0.02
Kal1-57 42,445,268 41,813,669 (98.5) 631,599 (1.49) 41,711,976 (99.76) 181,331 176,926 (97.57) 2647 (1.46) 1203 (0.66) 555 (0.31) 31.10 4760 0.22
Kal1-65 45,136,293 44,493,779 (98.5) 642,514 (1.42) 44,384,016 (99.75) 194,201 186,304 (95.93) 2783 (1.43) 4058 (2.09) 1056 (0.54) 34.10 577 0.04
Kal1-89 44,631,934 43,883,925 (98.3) 748,009 (1.68) 43,692,880 (99.56) 343,522 337,244 (98.17) 3490 (1.02) 1417 (0.41) 1371 (0.40) 20.40 8,790,000 51.73

Autumn
November

2018

FS17

FS2-1 33,462,404 32,788,919 (97.9) 673,485 (2.01) 32,749,304 (99.88) 65,201 59,793 (91.71) 3284 (5.04) 989 (1.52) 1135 (1.74) 35.10 286 0.95

31.48

FS2-3 32,092,733 31,396,019 (97.8) 696,714 (2.17) 31,371,784 (99.92) 38,374 34,366 (89.56) 2222 (5.79) 770 (2.01) 1016 (2.65) 29.96 10,600 4.89
FS2-10 33,465,333 32,683,674 (97.6) 781,659 (2.34) 32,631,210 (99.84) 90,038 84,585 (93.94) 3636 (4.04) 934 (1.04) 883 (0.98) 25.50 244,000 46.82
FS2-18 32,789,969 32,080,877 (97.8) 709,092 (2.16) 32,029,304 (99.84) 86,409 79,573 (92.09) 4305 (4.98) 957 (1.11) 1574 (1.82) 31.10 4760 15.42
FS2-43 42,453,647 41,659,140 (98.1) 794,507 (1.87) 41,142,644 (98.76) 938,782 923,823 (98.41) 10,798 (1.15) 1082 (0.12) 3079 (0.33) 24.57 469,000 83.11
FS2-45 31,955,583 31,276,525 (97.8) 679,058 (2.13) 31,230,648 (99.85) 77,562 72,841 (93.91) 2862 (3.69) 857 (1.10) 1002 (1.29) 26.60 112,000 37.68

Kalamata

Kal2-53 48,745,550 47,873,736 (98.2) 871,814 (1.79) 47,214,900 (98.62) 1,198,439 1,188,286 (99.15) 5768 (0.48) 1299 (0.11) 3086 (0.26) 24.20 608,000 90.05

52.67

Kal2-54 33,545,651 32,875,120 (98.0) 670,531 (2.00) 32,841,592 (99.90) 56,343 51,642 (91.66) 2265 (4.02) 738 (1.31) 1698 (3.01) 21.50 4,060,000 34.41
Kal2-55 38,914,006 38,071,869 (97.8) 842,137 (2.16) 37,429,772 (98.31) 1,162,983 1,152,955 (99.14) 6234 (0.54) 1318 (0.11) 2476 (0.21) 22.10 2,660,000 88.65
Kal2-57 30,275,514 29,663,797 (97.9) 611,717 (2.02) 29,635,620 (99.91) 45,484 40,442 (88.91) 2912 (6.40) 902 (1.98) 1228 (2.70) 21.80 3,290,000 0.45
Kal2-65 29,620,002 29,066,308 (98.1) 553,694 (1.87) 29,033,788 (99.89) 52,570 47,964 (91.24) 2148 (4.09) 771 (1.47) 1687 (3.21) 22.20 2,480,000 19.94
Kal2-89 25,255,482 24,756,720 (98.0) 498,762 (1.97) 24,597,096 (99.36) 287,446 281,221 (97.83) 2430 (0.85) 729 (0.25) 3066 (1.07) 22.40 2,150,000 82.53
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Given the different sizes of the libraries, microbial reads (i.e., bacteria, fungi, archaea and viruses)

were normalized according to Regalado et al. [27], by using plant reads as internal spike-in to which

microbial reads are referred to. Briefly, normalization takes into account either the average size of

all plant reads or the relative abundance of each microbial taxon in the original library. Normalized

microbial reads ranged from 38,374 to 1,198,439, whose major fraction was represented by bacteria

that, in all libraries were 88.91–99.15% of all microbes (total microbes, Table 1, followed by fungi

(0.48–6.40%), viruses (0.21–3.21%), and a(0.11–2.09%) (Table 1). In addition, reads from Cyanobacteria

were also eliminated as they were found corresponding to rDNA from chloroplasts by BLASTn analysis

(data not shown).

Taxa were further filtered by MicrobiomeAnalyst to eliminate those that could be artifacts

(i.e., appearing in only one sample) and those having an identical value (i.e., 0) across all samples.

Only taxa having a 20% prevalence with a minimum of 10, 50, 10, and 10 reads for Archaea, Bacteria,

Fungi and Viruses, respectively, were retained. All libraries were further normalized according to

centered log-ratio (clr) transformation. Rarefaction curves of all data reached the plateau and Good’s

coverage estimation averaged 99.74%, 98.34%, and 100% (Table S1) for Bacteria, Archaea, and Fungi,

respectively, indicating that the majority of diversity was captured with the sequencing effort. However,

this result was not achieved for Viruses (see below).

After data filtering and normalization, 12 phyla, 23 classes, 62 orders, 115 families, and 225 bacterial

genera (Figure 2a and File S1); three phyla, 10 classes, 13 orders, 19 families, and 29 fungal genera

(Figure 3a and File S2); three phyla, 11 classes, 16 orders, 20 families and 34 archaeal genera (Figure 4

and File S3); and 15 viral genera (File S4) were classified. Kraken 2 classification of virus-associated

reads was only referred to viruses having a DNA genome and was limited to the genus level, as many

taxa had been classified as unassigned. Because of these limited and partial information viruses were

not further analyzed.

 

Figure 2. Pie chart representations of the bacteria by (a) whole metagenome shotgun sequencing

(WMSS) and (b) 16S rRNA gene sequencing, in all FS17 and Kalamata olive trees at phylum and genus

level. Only taxa with an abundance greater than 1% are reported, while those below this threshold are

grouped in the category “Others.”.
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Figure 3. Pie chart representations of the fungal community by (a) WMSS and (b) ITS1 rRNA gene

sequencing in all FS17 and Kalamata olive trees at phylum and genus level. Only taxa with an

abundance greater than 2% are reported, while those below this threshold are grouped in the category

“Others.”.

Figure 4. Pie chart representations of the archaeal community by WMSS sequencing in all FS17 and

Kalamata olives at phylum and genus level. Only taxa with an abundance greater than 1% are reported,

while those below this threshold are grouped in the category “Others.”.

Proteobacteria (86.8%) largely dominated the Bacteria kingdom, while Actinobacteria (4.9%),

Firmicutes (4.4%), Bacteroidetes (2.4%), Tenericutes (0.7%), Fusobacteria (0.4%), and Spirochaetes (0.3%)

phyla, were limitedly represented (Figure 2a). Xylella genus occupied 72.1% of the whole

endophytic microbiome, followed by Methylobacterium (2.5%), Sphingomonas (1.8%), Pseudomonas (1.7%),

Staphylococcus (1.3%), Bradyrhizobium (1.1%), Streptomyces (1.0%), Clostridium (0.9%), and Friedmanniella

(0.8%).

Ascomycota was the major (77.9%) fungal phylum with Basidiomycota and Microsporidia accounting

for 21.4% and 0.7% of total reads, respectively (Figure 3a). At genus level, Malassezia (18.2%), Pyricularia

(10.4%), and Fusarium (9.2%) were the most represented, followed by Botrytis (6.2%), Cercospora (5.5%),
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Aspergillus (5.5%), Tetrapisispora (5.0%), Neurospora (4.8%), Colletotrichum (4.2%), and Zymoseptoria

(3.2%).

Among the 10 largely represented Archaea genera were Methanosarcina (12.9%), Methanobrevibacter

(12.7%), Methanothermobacter (11.3%), Methanococcus (10.2%), Methanobacterium (5.1%), Thermococcus

(4.7%), Methanosphaera (4.7%), Nitrosopumilus (4.7%), Methanocaldococcus (3.4%), and Acidianus (3.4%),

in the majority belonging to the major phylum Euryarchaeota (80.1%), followed by Crenarchaeota (11.2%)

and Thaumarchaeota (8.7%) (Figure 4). Plant begomoviruses having a DNA genome were largely the

most represented, covering 72% of the viral taxon microbiome (File S4).

These initial filtering and clr normalization were used for all successive studies regarding bacterial,

fungal, and archaeal microbiomes.

2.2. Description of the Microbiome by 16S and ITS1 rRNA Gene Sequencing

Approximately 99% of a total of 2,056,937 quality-filtered bacterial reads (98.2% of the total reads)

were plant-derived sequences (i.e., mitochondrial and plastidial DNA) (Table 2). Whereas in the

fungal sequence datasets, no plant sequences were retrieved, in contrast, the percentage of unclassified

reads was lower in bacterial (1.8% of the total) than in fungal datasets (27.2%). After removing the

operational taxonomic units (OTUs) with low abundance (i.e., less than five or 10 reads for Bacteria

and Fungi, respectively), it was observed that there was a larger consortium of Fungi associated

with olive tree xylem (535 OTUs, 92 genera, 70 families, 42 orders, 16 classes, and two phyla) than

of Bacteria (348 OTUs, 44 genera, 38 families, 29 orders, 16 classes, and 10 phyla), and most of the

relatively dominant members within the microbial communities were Fungi (1,756,830 fungal reads),

accounting for 99.7% of the total reads. Bacterial communities were predominantly composed by

Proteobacteria (79.8% of the total bacterial reads), Bacteroidetes (8.7%), and Actinobacteria (7.3%) phyla

(Figure 2b), that translates, at the genus level, with the 39.9% abundance of Xylella, followed by

Methylobacterium (10.5%), Sphingomonas (9.4%), Pseudomonas (4.7%), Acidiphilium (3.5%), Hymenobacter

(3.2%), Amnibacterium (2.9%), Pantoea (2.2%), and Kineosporia (2.0%), as the most represented taxa.

The xylem-inhabiting fungal communities were predominantly dominated by members belonging to

Ascomycota (87.1% of the total fungal reads) and Basidiomycota (8.3%) phyla, while 4.6% was unclassified

(Figure 3b). Conversely, 42.4% of the reads could not be assigned to a genus, while most represented

genera were Kabatiella (13.9%), Pyrenochaeta (9.1%), Neococurbitaria (7.6%), and Rhinocladiella (5.5%).

Comparing the bacterial microbiome composition from the WMSS and the 16S rRNA gene

approaches, a strong concordance was found at phylum, class, and order levels (Pearson’s r = 0.99, 0.87,

and 0.93, respectively) considering the 10 dominant taxa (File S1). Conversely, a more distant agreement

was found among fungal microbiome compositions obtained with both approaches, likely because of

the very limited number of sequences (107,821) classified following the metagenome approach (Table 1)

comparing to those (1,756,830) obtained with the amplicon sequencing (Table 2; File S2).
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Table 2. Summary of the Illumina 16S and ITS1 rRNA gene sequencing and reads classification in the two phenological stages.

Season Cv.
Sample
Name

Total
Raw Reads

Sequences
Classified (%)

Sequences
Unclassified (%)

Plant
Sequences

(%) Bacteria (%) Fungi (%)
%

Xylella/
Bacteria

%
Average
Xylella/
Bacteria

16S ITS 16S ITS 16S ITS 16S

Spring
April
2017

FS17

FS1-1 13,604 110,867 13,137 (96.6) 88,348 (79.7) 467 (3.4) 22,519 (20.3) 12,753 (97.1) 384 (2.9) 88,338 (100) 0.8

10.3

FS1-3 14,415 25,801 13,859 (96.1) 17,759 (68.8) 556 (3.9) 8042 (31.2) 13,386 (96.6) 473 (3.4) 17,759 (100) 0.4
FS1-10 14,930 77,958 14,440 (96.7) 59,012 (75.7) 490 (3.3) 18,946 (24.3) 14,253 (98.7) 187 (1.3) 59,012 (100) 1.6
FS1-18 12,303 62,221 11,899 (96.7) 31,172 (50.1) 404 (3.3) 31,049 (49.9) 11,826 (99.4) 73 (0.6) 31,172 (100) 2.7
FS1-43 10,505 64,245 10,259 (97.7) 34,647 (53.9) 246 (2.3) 29,598 (46.1) 10,125 (98.7) 134 (1.3) 34,647 (100) 56.0
FS1-45 12,735 90,246 12,250 (96.2) 63,942 (70.9) 485 (3.8) 26,304 (29.1) 11,772 (96.1) 478 (3.9) 63,942 (100) 0.0

Kalamata

Kal1-53 11,780 22,772 11,335 (96.2) 15,618 (68.6) 445 (3.8) 7154 (31.4) 11,296 (99.7) 39 (0.3) 15,618 (100) 0.0

13.2

Kal1-54 15,279 26,9041 14,598 (95.5) 174,764 (65) 681 (4.5) 94,277 (35.0) 13,807 (94.6) 791 (5.4) 174,761 (100) 0.0
Kal1-55 12,827 26,740 12,407 (96.7) 18,577 (69.5) 420 (3.3) 8163 (30.5) 12,156 (98.0) 251 (2.0) 18,577 (100) 0.0
Kal1-57 9529 18,716 9259 (97.2) 12,313 (65.8) 270 (2.8) 6403 (34.2) 9222 (99.6) 37 (0.4) 12,313 (100) 0.0
Kal1-65 10,275 111,806 9936 (96.7) 67,804 (60.6) 339 (3.3) 44,002 (39.4) 9897 (99.6) 39 (0.4) 67,804 (100) 0.0
Kal1-89 12,140 17,612 11,612 (95.7) 15,966 (90.7) 528 (4.3) 16,746 (95.1) 10,808 (93.1) 804 (6.9) 15,966 (100) 79.2

Autumn
November

2018

FS17

FS2-1 151,666 88,600 151,475 (99.9) 78,642 (88.8) 191 (0.1) 9958 (11.2) 15,1200 (99.8) 275 (0.2) 78,642 (100) 0.0

20.5

FS2-3 246,844 209,701 246,317 (99.8) 188,116 (89.7) 527 (0.2) 21,848 (10.4) 246,201 (99.9) 116 (0.05) 187,853 (99.9) 6.9
FS2-10 195,548 219,077 195,319 (99.9) 203,699 (93.0) 229 (0.1) 15,975 (7.3) 195,168 (99.9) 150 (0.1) 203,102 (99.7) 46.0
FS2-18 175,303 91,227 175,011 (99.8) 73,264 (80.3) 292 (0.2) 18,023 (19.8) 174,853 (99.9) 158 (0.1) 73,204 (99.9) 12.7
FS2-43 92,265 103,006 92,257 (100) 97,801 (94.9) 8 (0) 5205 (5.1) 92,062 (99.8) 195 (0.2) 97,801 (100) 44.1
FS2-45 131,843 65,534 131,659 (99.9) 23,987 (36.6) 184 (0.1) 41,709 (63.6) 131,416 (99.8) 243 (0.2) 23,825 (99.3) 13.2

Kalamata

Kal2-53 168,034 54,316 167,912 (99.9) 23,089 (42.5) 122 (0.1) 31,227 (57.5) 167,418 (99.7) 494 (0.3) 23,089 (100) 77.9

45.0

Kal2-54 243,771 69,589 243,266 (99.8) 58,880 (84.6) 505 (0.2) 10,728 (15.4) 243,189 (99.9) 77 (0.03) 58,861 (100) 39.0
Kal2-55 121,959 199,625 121,878 (99.9) 143,056 (71.7) 81 (0.1) 56,569 (28.3) 121,179 (99.4) 699 (0.6) 143,056 (100) 81.4
Kal2-57 162,670 47,373 162,263 (99.7) 47,368 (100) 407 (0.3) 244 (0.5) 162,224 (99.9) 39 (0.02) 47,129 (99.5) 0.0
Kal2-65 69,232 78,285 69,182 (99.9) 39,009 (49.8) 50 (0.1) 39,276 (50.2) 69,143 (99.9) 39 (0.1) 39,009 (100) 15.4
Kal2-89 155,471 84,249 155,407 (100) 81,875 (97.2) 64 (0) 2374 (2.8) 155,219 (99.9) 188 (0.1) 81,875 (100) 56.4
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2.3. Olive Xylem Microbiome Composition by WMSS Analysis

The normalization of the different WMSS libraries against the plant reads allowed to estimate

the Xylella abundances within each bacterial microbiome and to make comparative analysis among

different trees, without any PCR-biases which conversely may occur with 16SrRNA gene approach.

The minimum number of normalized reads detected in the sequenced libraries (Table 1) and classified

as Xylella by Kraken 2 corresponded to 43 in the tree “Kal1-55” and were confirmed by BLASTn analysis.

The qPCR assay of the same DNA template yielded a negative result, suggesting a possible higher

sensitivity of the high-throughput sequencing technology compared to qPCR.

It could be observed that during both sampling periods the proportion of Xylella vs. the total

bacterial reads was always lower in trees of cultivar FS17 than in Kalamata and it increased in both

cultivars as infections progressed in time (i.e., 2.32% FS17 vs. 8.69% Kalamata in Spring 2017 and 31.48%

FS17 vs. 52.67% Kalamata in Autumn 2018) (Table 1). Data from WMSS showed that all selected trees

contained Xylella-derived sequences, although at the start of the study in most of the trees the bacterium

was close to the threshold of detectability by qPCR (i.e., Cq > 30). The Xylella/Bacteria relative read

abundance significantly correlated (r = 0.63, p < 0.001) with Xylella population size (CFU/mL) estimated

by qPCR detection (Figure S1). Indeed, a one-way ANOVA comparison of the average estimated sizes

of X. fastidiosa populations (Figure S2) revealed that significant differences existed among plants of the

two cultivars when considered in the two sampling periods (Table S2). Moreover, the Tukey’s HSD

post-hoc pairwise comparison showed that X. fastidiosa populations: (1) Were similar between the

two cultivars at the start of the experiment; (2) did not significantly change in FS17 between the two

years and the two sampling periods (compare FS17 April 2017 vs. November 2018); (3) increased more

rapidly in Kalamata (compare Kalamata April 2017 vs. November 2018).

Low rates of Xylella-reads were found in cultivar FS17, with only one sample yielding values

higher than 50%, while values higher than 50% were frequent in the libraries prepared from the trees

of the cultivar Kalamata (Table 1), for which one of the libraries exhibited value higher than 90%

(Kal2-53). In detail, and considering every single plant throughout the two sampling seasons, only in

one FS17 tree, FS2-43, Xylella relative abundance represented more than 50% of the total Bacteria,

while this occurred in four olives (Kal1-89, Kal2-53, Kal2-55, and Kal2-89) of the cultivar Kalamata

(Table 1). These high Xylella relative abundances, which particularly in the cultivar Kalamata reached

even 90.05% of total Bacteria (Kal2-53), suggest that this bacterium tends to occupy the whole bacterial

niche. A finding that is demonstrated by the existence of a linear correlation (R2 coefficient: 0.92)

among Xylella and total Bacteria (Figure S2 and Table 1) reads, showing that when total bacterial reads

increase in a sample, the increase was mainly due to Xylella reads.

Based on the existence of a linear correlation between Xylella average population size (CFU/mL)

and Xylella/Bacteria relative abundance (Figure S3) an arbitrary threshold, corresponding to 5% of

Xylella-reads over the whole Bacteria, was selected and used to categorize the samples with high

(FS1-43, FS2-10, FS2-18, FS2-43, FS2-45, Kal1-89, Kal2-89, Kal2-53, Kal2-54, Kal2-55, Kal2-65) or low

(FS1-1, FS1-3, FS1-10, FS1-18, FS1-45, FS2-1, FS2-3, Kal1-53, Kal1-54, Kal1-55, Kal1-57, Kal1-65, Kal2-57)

Xylella populations. The threshold was selected based on the occurrence of at least one of the two

criteria, 5% WMSS Xylella abundance and/or population size higher than 5 Log CFU/mL (1.0E + 05,

Table 1). This distinction/condition has been used in all following analyses.

Analysis of similarities (ANOSIM) was performed on bacterial, fungal and archaeal communities

inhabiting FS17 and Kalamata xylem, to assess the statistical significance of sample groupings and

evaluate factors having a major role in shaping the microbiomes. Principal component analysis (PCA)

and ANOSIM significantly (R = 0.5165, p = 0.0001. Figure 5c; Table S3) separated olives sampled in

Spring 2017 from those sampled in Autumn 2018, indicating that season was the main factor shaping

bacterial communities either considering all olives or separately those of the two cultivars (R = 0.5481,

p = 0.0052 in cultivar FS17; R = 0.6111, p = 0.002 in cultivar Kalamata). A further factor driving

bacterial community composition was Xylella that significantly distinguishes trees with low and high

abundance (R = 0.2376, p = 0.0055; Table S3), although its effect was different when cultivars were
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separately considered. Indeed, a significant separation was observed in cultivar Kalamata (R = 0.4611,

p = 0.0081; Table S3) while it was not (R = 0.2424, p = 0.0774; Table S3) in cultivar FS17, indicating that

microbiomes of the latter cultivar are not heavily affected by the presence of Xylella. No significant

differences occurred among olives sampled in Spring 2017 either considering Xylella abundance or

between the two cultivars (Table S3). While Xylella makes a significant difference among samples

analyzed during Autumn 2018 (R = 0.3504, p = 0.0155; Table S3), this was not related to the cultivar

(R = 0.1093, p = 0.1541; Table S3).

The exclusion of Xylella from the data did not change the overall clustering of samples in PCA

analysis and significance in ANOSIM (not shown). Collectively, the analysis of these data showed

that Xylella abundance and season played a major role in driving the olive bacterial microbiome in

both cultivars and Xylella shaped mainly the microbiome of the susceptible cultivar Kalamata, while

it did not significantly affect that of cultivar FS17. Moreover, our analysis was not biased by the

inclusion of the data from Xylella, although this taxon occupies the majority of the bacterial niche in

some plants indicating that clr transformation efficiently decreases the influence of highly abundant

microorganisms. To reduce the bias of highly abundant bacterial taxa an alternative strategy for data

normalization was attempted and was based on the fourth root transformation of the reads. However,

the fourth root performed worse than clr transformation, as Xylella effect on shaping the microbiomes

PCA distribution was very significant (not shown). Indeed, excluding Xylella from the PCA analysis,

a significant separation according to the season of sampling and Xylella abundance were obtained

(not shown), as observed with clr-transformed data.

A major factor distinguishing the overall fungal microbiome was the period of sampling (Figure 5f;

Table S4). A very high ANOSIM R-value supported this distinction by very low p-values (R = 0.9007,

p = 0.0001) for both cultivars, as well as for FS17 (R = 0.9611, p = 0.0021) and Kalamata (R = 0.8185,

p = 0.0019) separately. This indicates that fungal communities are strictly related to the seasonal

physiological state of olives and environmental conditions. Moreover, Xylella significantly affected the

fungal community of all plants (Figure 5d; R = 0.2872, p = 0.0049, Table S4) and this effect occurred

significantly on the FS17 microbiomes (R = 0.3382, p = 0.025; Table S4) while moderately (R = 0.2296,

p = 0.074; Table S4) on those of the cultivar Kalamata. No significant differences were found among

microbiomes of the two cultivars either considering all olives or those having high or low Xylella

abundances and plants sampled in Spring 2017 or Autumn 2018 (Figure 5e; Table S4).

Archaeal communities were not substantially affected by the three considered factors: Cultivar,

season, and Xylella. Although significant differences were observed among all plants belonging to

the two cultivars (Figure 5h; R = 0.09238, p = 0.0504; Table S5) these were very small as can be

inferred by the low value of the R-value. Only a slightly significant difference was determined among

Kalamata communities sampled in the two seasons (R = 0.2185, p = 0.035; Table S5). While no

significant differences were observed among FS17 and Kalamata microbiomes sampled in the two

periods (Figure 5i and Table S5), neither among those having low or high Xylella abundances (Figure 5g

and Table S5). This lack of separation was reflected by the lack of specific Archaea genera driving the

microbiomes (not shown), which further confirmed the independence of Archaea from any of the three

variables (cultivar, season, and Xylella) considered. Because of these findings, no further analyses were

carried out with Archaea.

Considering both periods of sampling, the alpha diversity of bacteria (Figure 6a), fungi (Figure 6b),

and archaea (Figure 6c) FS17 microbiomes was higher than that of Kalamata, although these differences

were not significant. Similarly, a lower diversity was found in bacterial and fungal microbiomes

of plants sampled during Autumn 2018, as compared to those from Spring 2017, although this

was significant only for Fungi. Conversely, intra-plants diversity significantly dropped in bacterial

microbiomes of olives containing high Xylella populations, independently of the cultivars, as could be

expected in plants were the bacterium tends to occupy the whole ecological niche (Figure 6a). A lower

and significant diversity was also found in fungal microbiomes of plants with high Xylella abundance,

while it was not significant for Archaea, although following the same trend (Figures 5c and 6b).
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Figure 5. Principal component analysis and ANOSIM test using clr-normalized data of bacterial (a–c), fungal (d–f), or archaeal (g–i) microbiomes from all FS17 and

Kalamata plants. Clustering is according to Xylella abundance (high vs. low) (a,d,g), cultivar (FS17 vs. Kalamata) (b,e,h), and season (Spring vs. Autumn) (c,f,i).

ANOSIM test showed the R-statistic (R) and the statistical significance (p). Olives sampled in Spring and Autumn are respectively in black and red colors, while dots

and diamonds indicate FS17 and Kalamata olives, respectively. N.S.: Not significant.
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Figure 6. Alpha diversity (Shannon diversity index) of (a) bacterial, (b) fungal, and (c) archaeal microbiomes from all sampled olives. Diversities were compared

between plants harboring high or low Xylella infections, cultivars, or season of sampling. Boxplots depict medians (central horizontal lines), the interquartile ranges

(boxes), and 95% confidence intervals (whiskers). ANOVA test showed the F-value (F) and the statistical significance (p < 0.05).
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2.4. Olive Xylem Microbiome Composition by 16S and ITS1 rRNA Gene Analysis

Nonmetric multidimensional scaling (NMDS) plotting was carried out using 16S rRNA gene

data to describe similarities/differences among microbiomes from FS17 and Kalamata trees and the

significance of clustering was tested by ANOSIM and PERMANOVA analysis. The NMDS plots and

ANOSIM analysis showed that the whole bacterial (Figure 7a) and fungal (Figure 7b) communities

composition differ significantly between seasons (Spring vs. Autumn; R = 0.836, p = 0.001 for

Bacteria; R = 0.892, p = 0.001 for Fungi) and between trees (FS17 + Kalamata; R = 0.223, p = 0.01 for

Bacteria; R = 0.322, p = 0.003 for Fungi), with high and low abundance of Xylella, although these

latter dissimilarities were less supported, as showed by a low R-value. In contrast, no significant

differences were found on both bacterial and fungal community composition between cultivars

(FS17 vs. Kalamata). The PERMANOVA analysis corroborated these results, by showing that the

variability on bacterial composition was mainly explained by season (26.6%, p = 0.001) and abundance

of Xylella (12.2%, p = 0.001), while the cultivar only explained 3.3% of the total bacterial variation,

which was not statistically significant (p = 0.252). Similarly, the fungal composition in olive tree xylem

was mainly explained by season and Xylella abundance, being responsible for 26.7% (p = 0.001) and

16.0% (p = 0.002) of the total variation, respectively. Cultivar explained 5.3% of the fungal variation,

but the result was not statistically significant (p = 0.050).

 

 

Figure 7. Nonmetric multidimensional scaling (NMDS) plots and ANOSIM test for the (a) bacterial

and (b) fungal assemblages in the xylem of olive trees due to different Xylella abundance (high vs. low),

host cultivar (FS17 vs. Kalamata), and season (Spring vs. Autumn). Bray–Curtis coefficient was used

as a measure of similarity between populations and Kruskal’s stress values obtained for bacteria and

fungi were 0.097 and 0.087, respectively. ANOSIM test showed the R-statistic (R) and the statistical

significance (p).
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In addition, 16S rRNA gene sequencing confirmed the evidence recovered from the WMSS

showing that Xylella tends to occupy the whole xylem niche negatively affecting the rest of the Bacteria

community. Indeed, considering the two time points, the average ratio of Xylella over total Bacteria

increased from 10.3% to 20.5% for FS17 and from 13.2% to 45% for Kalamata (Table 2). Thus, as observed

from WMSS analysis, FS17 was able to better restrain the multiplication of the bacterium than Kalamata.

The bacterial species richness was significantly different between cultivars (LR chi-square = 7.05,

p < 0.01) and seasons (LR chi-square = 105.57, p < 0.001), being higher in cultivar FS17 and in Spring,

than in cultivar Kalamata and in Autumn, respectively (Figure 8a). The richness of fungal endophytes

only differed significantly (LR chi-square = 120.14, p < 0.001) between seasons, being higher in Spring

than in Autumn (Figure 8b).

 

Figure 8. Richness of (a) bacterial and (b) fungal communities occurring in the xylem of olive trees in

relation to Xylella abundance (high vs. low), host cultivar (FS17 vs. Kalamata), and season (Spring

vs. Autumn). Boxplots depict medians (central horizontal lines), the interquartile ranges (boxes),

and 95% confidence intervals (whiskers). Statistical differences between pairs of values are showed

(n.s., not significant; ** p < 0.01; *** p < 0.001).

2.5. Bacteria/Fungi Genera Shaping the Olive Xylem Microbiome

To identify factors shaping the bacterial microbiomes, a random forest (RF) analysis, which allows

ranking the importance of bacterial genera, was carried out using data from WMSS. The RF graphical

output shows that Spring 2017 and Autumn 2018 microbiomes were strongly characterized by 12

microbial features (genera). Indeed, Bradyrhizobium, Peptoniphilus, Plantactinospora, Corynebacterium,

and Rhodopseudomonas genera characterize the Autumn microbiomes, while Streptomyces, Friedmanniella,

and Frankia those of Spring (Figure 9a). Besides the obvious Xylella, all other identified genera Brochotrix,

Hydrogenophaga, Klebsiella, Micrococcus, Ralstonia, and Pantoea were significantly but weakly associated

with olives with high Xylella abundance. Conversely, only Bifidobacterium (Figure 9b) moderately

associates with olives having a low Xylella abundance. Whereas not significant genera were identified
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by the comparison of the two cultivars (not shown). Similar results were obtained excluding Xylella

from the dataset.

 

 
Figure 9. Graphical summary of the random forest analysis of the bacterial community. Significant

genera are ranked in decreased order according to their mean decrease accuracy. Color map indicates

abundance (red)/scarcity (blue) of genera characterizing samples with high or low Xylella abundances

according to (a) the season or (b) Xylella experimental factors tested. The out-of-bag (OOB) values are

reported, and the analysis was trained with 5000 trees.

Random forest analysis perfectly confirmed the main role of the season in differentiating the olive

fungal microbiomes as the performance of the test was very significant (i.e., the grown trees early overlap

and the out-of-bag (OOB) value is 0) (Figure 10a). The genus Malassezia was significantly associated

with the Autumn 2018 microbiomes while the genera Fusarium and Pyricularia were found among the

Spring 2017-associated microbiomes. Moreover, Xylella role in shaping the Fungi microbiome was

present although limited, as shown by the low performance (OOB = 0.417) of RF analysis (Figure 10b).

However, also testing Xylella abundance as an experimental factor, Malassezia was identified as an

associated genus, in addition to Debaromyces. Conversely, fungal genera associated to microbiomes

having a low Xylella abundance belonged to Thermothelomyces, Fusarium, Yarrowia, and Naumovozyma

(Figure 10b). Similarly, to identify a set of bacterial/fungal genera associated to Xylella (high vs.

low), host cultivar (FS17 vs. Kalamata), and season (Spring vs. Autumn), a co-inertia analysis was

performed either for bacteria (Figure 11a) or fungi (Figure 11b) using data from 16S and ITS1 rRNA

gene sequencing, respectively. The results showed a set of bacterial genera positively associated

with a high abundance of Xylella, with Thermus, Paracoccus, Sarcina, Neisseria, and Streptococcus being

the predominant genera. Members of these genera were also found to be positively correlated with
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Autumn 2018. In contrast, olive tree samples from Spring 2017 and with low abundance of Xylella,

were found to be positively correlated with the presence of members belonging mostly to Mucispirillum,

Lachnospiraceae, Blautia, Staphylococcus, and one unknown bacteria (S24-7). Olive cultivars could not

be differentiated based on the association of specific bacterial endophytes. Co-inertia analysis also

revealed that a set of fungal genera were positively correlated to each season or Xylella abundance

(high/low), whereas host plant cultivars were not differentiated by fungal endophytes (Figure 11b).

In particular, the fungal genera Peniophoraceae, Malassezia, Alternaria, Neocucurbitaria, and Elsinoaceae

were found to be the most positively correlated to trees with a high abundance of Xylella and collected

in Autumn 2018. In contrast, the fungal genera Catenulostroma, Monticola, Arthrocatena, and Didymella

were the most positively correlated to trees with a low abundance of Xylella and with Spring 2017.

 

Figure 10. Graphical summary of the random forest analysis of the fungal community. Significant

genera are ranked in decreased order according to their mean decrease accuracy. Color map indicates

abundance (red)/scarcity (blue) of genera characterizing samples with high or low Xylella abundances

according to (a) the year or (b) Xylella experimental factors tested. The OOB values are reported,

and the analysis was trained with 5000 trees.
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■ □Figure 11. Co-inertia factorial map showing positive (�) and negative (�) relationships between (a)

bacterial and (b) fungal genera from olives with different Xylella abundance (high vs. low), from different

cultivar (FS17 vs. Kalamata), and diverse seasons (Spring vs. Autumn). Square size is proportional to

correlation intensity. The Fungi co-inertia factorial map shows only the genera with correlations higher

than 0.25 (both positive and negative).

3. Discussion

An in silico analysis of the xylem microbiome of field-grown olives exposed to natural X. fastidiosa

infection was performed with two sequencing approaches, a classical 16S/ITS rRNA gene amplicon

sequencing and WMSS. Both approaches have their pros and cons, which mainly rely on the analysis of

a single gene, consolidated pipelines for the analysis, and low costs for 16S/ITS rRNA gene, opposed to

higher sequencing depths, costs, and data recovery using WMSS [47–50].

To the best of our knowledge, this is the first study investigating the WMSS analysis of the

xylem microbiomes of trees infected with X. fastidiosa, using non-targeted sequencing. Although the

recovered sequence data largely originated (up to 99.92%) from the olive genome, the depth of WMSS

was exhaustive of the bacterial, fungal, and archaeal endophytic microbiome of these plants, as shown

by the rarefaction analysis and the taxa identified, which are similar to those reported in other studies

in olive (see below). WMSS returned reads classified in the Bacteria, Archaea, and Eukarya kingdoms,

this latter composed of plant and fungal taxa. Virus-associated reads were found, but their study was

abandoned not only for the paucity of the viral-sequences recovered, but also considering that the

majority (~65%) of the plant-associated viruses are RNA-viruses, and localize in the phloem or the

parenchyma of the infected hosts, while our analysis targeted the xylem tissues. Indeed, the presence

of viruses in the xylem is a poorly investigated subject of research and evidence reports the release in

the extracellular space of “virus-replication factories” of RNA-genome species which, however, seems



Pathogens 2020, 9, 723 19 of 29

to contribute to the systemic Virus spread, while the presence of intact viral particles is not completely

demonstrated [51,52].

Bacteria were found to be the main class of microorganisms inhabiting the olives endophyte

microbiome, reaching 99.14% of all microbe-associated reads, a finding previously reported in WMSS

analyses of Arabidopsis thaliana microbiome [27,53] and likely explained by the larger size of fungal

genomes that, together with the lack of sufficient fungal genomic data available in databases, limit their

classification. Conversely, 16S/ITS rRNA gene analysis returned the opposite picture, showing that the

majority of classified reads were from fungi, a result likely biased by the high percentage (up to 99%)

of reads amplified by the 16SrRNA gene primers that indeed belonged to the olive genome. The same

problem has been reported by many other researchers being most critical in plant above-ground green

tissues, including in olive trees [39]. Despite the differences in bacteria/fungi relative composition,

both sequencing approaches (WMSS and 16S rRNA gene) identified Proteobacteria, Actinobacteria,

Firmicutes, and Bacteriodetes as the most dominant phyla, in agreement with previous studies [39,40].

A good correlation in the classification of the bacterial taxa was obtained between the two sequencing

approaches at higher taxonomical levels (phylum, order, and class), while it decreased when lower

levels were considered, likely due to the different depth of the data. These four dominant phyla

were indeed found to be predominant in the microbiomes recovered from Xylella-infected Leccino

and Cellina di Nardò trees [46], as well as in the endophytic microbiome of healthy olive trees [41].

The dominant fungal phyla were Ascomycota and Basidiomycota, confirming previous ITS microbiome

analyses [42,44,46,54], but the agreement between WMSS and ITS rRNA gene approaches was not

maintained as different taxa abundances were classified at all taxonomic levels. The occurrence of

Archaea was confirmed by WMSS analysis and, as in the study of Müller et al. [39], Euryarchaeota,

Crenarchaeota, and Thaumarchaeota were the most represented phyla. Little is known about the role

of these microbes in plant microbiomes, in which they have been found as main constituents [55].

Perhaps, the xylem microbiome is an appropriate ecological niche for these extremophiles and notably,

in our analysis, it is particularly rich in several methanogenic genera that thrive in these conditions.

When the whole microbial communities are considered, in contrast with previous studies [56,57],

no cultivar effect on bacterial and fungal endophytic assemblages was found using both sequencing

approaches. However, our result is in agreement with the results of a recent microbiome investigation

on the Verticillium-olive pathosystem showing similar root endosphere and rhizosphere microbial

communities between susceptible and tolerant cultivars [37]. In our study, the negligible host cultivar

effect on microbiome composition might be explained by the high presence/abundance of Xylella in the

orchards surveyed that seems to have overshadowed the effect of host cultivar in shaping endophytic

microbial communities. Indeed, the level of Xylella abundance showed to have a strong effect on

endophytic assemblage, explaining 12.2% or 16.0% of the variance in bacterial and fungal diversity

across samples, respectively in the 16S/ITS1 rRNA gene analysis, while in WMSS analysis Xylella

represented 72.14% of the bacterial endophytic microbiome in the orchard. Our analysis shows that

Xylella abundance largely increased over time, tending to occupy the whole bacterial niche of the

xylem. However, a major and significant effect of Xylella is exerted on the bacterial community of the

cultivar Kalamata, thus showing that FS17, although infected, is more resilient to the presence of X.

fastidiosa. Thus, we hypothesized that olive tree-associated microbial assemblages are probably shaped

by niche-based processes, being the interaction between Xylella and the native microbiome a key driver

of these selective forces, as previously suggested by McNally and Brown [58]. In both olive cultivars,

an increase in Xylella abundance over time was observed, which seems to have a large impact on the

rest of the microbial community, except for Archaea. It is possible that during the colonization of plant

tissues, Xylella utilizes methods to displace resident species from their established niches to create

its own niche. Such microbes that are likely to exert a high influence on the structure of microbial

communities have recently been termed as keystone species [59].

Season was the most important parameter for shaping the bacterial and fungal communities in

both WMSS and 16S/ITS1 rRNA gene analyses. Likewise, seasonal variations were found to affect
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bacterial [60] and fungal [61] endophytic communities of other plant species, including olive trees [44].

The highest abundance and richness of Bacteria and Fungi observed during Spring may be due to

climatic conditions that favor the growth or dispersal of microorganisms, as previously suggested [44].

However, the decrease of microbial diversity in Autumn might also be a response to the increase in

Xylella abundance on the endophytic community of olive trees from Spring 2017 to Autumn 2018.

Within these communities, Xylella may compete with their neighbors for space and resources, which

may lead to changes in microbial diversity [62]. Archaea communities, only detected in WMSS, did not

significantly change according to the season, X. fastidiosa infection status, and cultivars, perhaps

because of their higher ability to adapt to changing environmental conditions. Any conclusion about

their role and microbial interactions in the olive microbiome is very speculative.

Unfortunately, we did not find a consensus between both sequencing strategies concerning

the identification of bacterial and fungal consortia strongly associated with Xylella abundance,

the olive cultivar, or the season. With 16S/ITS1 rRNA gene a set of bacterial (Thermus, Paracoccus,

Sarcina, Neisseria, and Streptococcus) and fungal (Peniophoraceae, Malassezia, Alternaria, Neocucurbitaria,

and Elsinoaceae) taxa, at genus/family level, highly positively correlated with the high abundance

of Xylella, was found. The genus Thermus can be found in many diverse habitats [63] including

insects’ gut microbiome [64], and plants’ microbiome [65] with no specifically recognized function.

Paracoccus genus includes species with plant growth-promoting traits [66]. Sarcina has been identified

as part of animals’ gut microbiota [67]. Members of the genera Neisseria [68], Streptococcus [69],

Malassezia [70], and Neocucurbitaria [71] are mostly described as human pathogens, being not mentioned

in literature for their association to plants. The genus Alternaria includes both plant-pathogenic and

saprophytic species and is one of the most well-known fungal genera that produces diverse secondary

metabolites, including toxins [72] and antimicrobial compounds [73]. The family Peniophoraceae

comprises saprophytic Fungi, whose role in plants is still not known [74]. The Elsinoaceae family is

not well-studied but it is known to include plant pathogens [75]. This lack of consistency in cultivar-

or resistance-associated Bacteria was also revealed in a companion paper [76] where endophytes,

and among the others, members of the Methylobacterium and Curtobacterium genera previously indicated

as potential biocontrol endophytes [31,32], were isolated from the same FS17 and Kalamata olives.

All the isolated genera (Methylobacterium, Sphingomonas, Curtobacterium, Novosphingobium, Frondihabitans,

Agrococcus, and Micrococcus) were identified in WMSS and the majority of them in 16S rRNA gene

analysis, but none were found having in vitro antagonistic activity against Xylella [76]. In addition,

the present work does not identify the association of microbial consortia with the host resistance,

leaving open the possibility that other plant traits are responsible for controlling Xylella population

size and its pathogenic effects.

Among the season-associated Bacteria, WMSS identified the nitrogen-fixing Bradyrhizobium

genus [77], already reported in olive by [41], the anaerobes Peptoniphilus [78], which include human

pathogenic species, and the Streptomyces genus, whose members are known as bioremediators and

plant-growth-promoters [79]. The only WMSS and 16S/ITS rRNA gene shared genus was Malassezia

that was positively associated to plants with high Xylella abundance.

In conclusion, the bacterial and fungal communities in olive trees xylem appeared to be more

tightly structured by season and Xylella abundance, than by host cultivar, probably due to the high

pressure of inoculum in the orchard where olive trees were sampled. We hypothesized that Xylella

interacts with the host and the native microbiome dynamically, being responsible for shaping the

whole microbial community. However, this effect was variable depending on host cultivar, being

microbiome-associated Kalamata was more prone to change than those of cultivar FS17, due to the

presence of Xylella. Indeed, Xylella colonization is significantly more extensive in Kalamata than

FS17, which confirms, together with the limitedness of symptoms, the traits of resistance identified in

the latter cultivar. Altogether, these results suggest that other mechanisms, likely controlling Xylella

population size and its pathogenic effects by genetic [13] or anatomic [7] traits, may be responsible for

this phenotype.
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4. Materials and Methods

4.1. Collection of Plant Samples

The endophytic microbiome colonizing the xylem tissues was analyzed from 12 field-grown

olive trees of the susceptible (Kalamata) and resistant (FS17) cultivars (six each) exposed to natural X.

fastidiosa infections. Trees were sampled and analyzed twice, in Spring 2017 when infections were still

confined with the bacterium in most cases close or under the limit of detection of the qPCR assay and

trees being mostly symptomless, and then in Autumn 2018 when the infections reached detectable

population levels in trees of both cultivars, with trees of the cultivar Kalamata showing manifest branch

desiccations while canopies of the FS17 trees were still symptomless or showing very mild desiccations

(i.e., tree FS43). More specifically, samples were collected during April 2017 and November 2018 to

take into account the incubation period of the infections [80], and concomitantly to evaluate the change

in the microbiomes of resistant and susceptible cultivars with respect to Xylella infections.

Samples, consisting of young olive twigs (approximately 0.5 cm diameter), were collected in April

2017 (Spring) and November 2018 (Autumn) from olive trees located in the X. fastidiosa-outbreak area

in Apulia, in the municipality of Sannicola (40◦07′13.77” N, 18◦02′40.51” E, Lecce, Italy). Trees from

the cultivars FS17 and Kalamata, approximately of the same age (15 years old), were in distinct rows of

the same orchard, under the same agricultural management practices. Samples were collected from

six trees of each cultivar in 2017 and the same trees in 2018. Following EPPO PM 7/24 (4) standard

guidelines [81], 10 twigs of about 0.5 cm in diameter were collected from each tree in the mid part of the

canopy, from the four cardinal points, avoiding tissues in an advanced stage of desiccation. Samples

were immediately stored in sealed plastic bags and kept refrigerated at 4 ◦C to avoid dehydration until

later processing in the laboratory.

4.2. Extraction of Total DNA and Detection of Xylella Fastidiosa

For microbiome DNA extraction from xylem tissue, twigs from each tree sample were cut into

10-cm-long pieces and washed with running tap water, before surface sterilization by sequential

dipping in 2% sodium hypochlorite for 2 min, 70% ethanol for 2 min, and three rinses in sterile distilled

water. Aliquots of the sterile distilled water used in the final rinse were plated onto tryptic soy agar

(TSA). After incubation at 25 ◦C for 15 days no colonies were apparent, thus confirming the efficacy

of the disinfection procedure [82]. After surface disinfection, the end of each twig section and the

bark were removed and the debarked tissue was scraped until the hard xylem was exposed, with a

sterile scalpel. A total of 1 g of xylem chips was weighed from each tree, placed in a sealed sterile bag

(BIOREBA AG, Switzerland) containing 10 mL of hexadecyltrimethylammonium bromide (CTAB),

and macerated with a Homex homogenizer (BIOREBA AG, Switzerland). Sample processing was

performed in sterile conditions within a flow hood chamber. Samples were further processed for total

DNA extraction, performed according to Loconsole et al. [83] and followed by treatment with 50 µg/mL

RNase A (Zymo Research Corporation, Orange, CA, USA).

The presence of X. fastidiosa in the DNA extracts was assessed by quantitative polymerase chain

reaction (qPCR) according to the protocol previously described by Harper et al. [84], using primers

XF-F (5′-CACGGCTGGTAACGGAAGA-3′), XF-R (5′-GGGTTGCGTGGTGAAATCAAG-3′), and XF-P

probe (5′-FAM-TCGCATCCCGTGGCTCAGTCC-BHQ1-3′). The qPCR reactions were performed on a

CFX 96™ Real-Time System (BioRad Laboratories, Hercules, CA, USA), with TaqMan® Fast Advanced

Master Mix (Thermo Fisher Scientific, Waltham, MA, USA), using the following cycling conditions:

95 ◦C for 5 min, then 40 cycles of 94 ◦C for 10 s and 62 ◦C for 40 s. Estimated X. fastidiosa population size,

corresponding to each Cq value, was inferred by a standard calibration curve. The linear regression

equation was computed from a triplicate assay using DNA extracted from 10-fold serial dilutions

of bacterial suspension, ranging from 107 to 102 CFU/mL, and spiked in homogenized tissues of

non-infected olives.
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Statistical comparison of the average estimated X. fastidiosa population size among the four

different samplings (i.e., FS17 April 2017, Kalamata April 2017, FS17 November 2018, Kalamata

November 2018) was performed by one-way analysis of variance (ANOVA), followed by Tukey’s

post-hoc pairwise comparison. To ensure that the assumptions required for standard parametric

analysis of variance were satisfied, the normal distribution of data had been preliminarily ascertained

by the Shapiro–Wilk’s test, and homogeneity of variance assessed according to Levene’s test. In all

analyses, the null hypothesis was rejected at the 0.05 α-level.

4.3. Whole Metagenome Shotgun Sequencing and Bioinformatic Analysis

WMSS was performed with the Illumina 2× 150 bp format using the TruSeq DNA PCR-free protocol

(Illumina Inc., San Diego, CA, USA) that allows a representation of the underlying species composition

and relative abundances in a sample without the introduction of PCR bias. Library preparation

and sequencing were outsourced to Macrogen Europe (the Netherlands) for tissues sampled in 2017

and to LGC Biosearch Technologies (Germany) for tissues sampled in 2018. The raw reads obtained

were quality checked and, whenever required, adaptor sequences were trimmed out using FastQC

tool (Andrews, 2010) and reads with a final length <20 bases were discarded. Taxonomic profiling

of the raw Illumina read dataset was carried out with Kraken, an ultrafast metagenomic sequence

classification tool (Wood and Salzberg, 2014), toward a Kraken database, built using a custom Perl

script [85] and the default 31 k-mer. The obtained database consisted of 687 sequences from Archaea,

1337 chromosome sequences plus 8078 complete genome sequences from Bacteria, 249 sequences from

Fungi, and 7540 complete genome sequences of Viruses. This initial analysis classified the majority of

reads as belonging to the Fungi kingdom, but an in-depth BLASTn search of this fraction disclosed

that these reads indeed corresponded to plant DNA sequences. We, therefore, discarded these data

and successively re-classified reads with Kraken 2, the newest version of the software [86], using a

custom-made Kraken database that includes: 533 (Archaea), 38,758 (Bacteria), 11,953 (Viruses), 1472

(Fungi), and 621,633 (plant) sequences, respectively, and a longer 41 k-mer. Raw reads from each

sample were searched against this custom-made Kraken database, resulting in their classification at

different taxonomic levels.

Plant reads corresponding to ribosomal RNAs were manually eliminated from the Kraken files

after being identified by BLASTn analysis. Kraken 2.mpa files were imported in MEGAN [87] from

which separate Bacteria, Fungi, Archaea, and Viruses comparison.txt files were produced by using

absolute read counts and ignoring all unassigned reads. To correct for the different sequencing depth of

libraries, microbial reads (i.e., Bacteria, Fungi, Archaea, and Viruses) from the respective comparison.txt

files were normalized according to Regalado et al. [27], by using plant reads as internal spike-in. Briefly,

Kraken 2-classified data were normalized according to the formula

Xnormi = P̂ ·
Xrawi

Pi

were Xnormi, P, Xrawi, and Pi stand respectively for the normalized reads in samplei, the average

number of plant reads among all samples, the raw number of reads assigned to a microbial taxon,

and the number of plant reads in that sample. Microbe-normalized comparison.txt files containing

data from all libraries were imported in MicrobiomeAnalyst [88,89] where taxa having less than a 20%

prevalence and with a minimum of 10, 50, 10, and 10 reads for Archea, Bacteria, Fungi, and Viruses,

respectively, were filtered out (a 20% prevalence filter with a minimum of 50 reads means that at

least 20% of its values should contain at least 50 reads in the case of Bacteria). Data having a low

variance (i.e., taxa constant throughout the samples) were filtered by applying a 10% inter-quantile

range measure of variance and were further normalized according to clr transformation, to take into

account the compositional nature of the metagenomic data [90].

Good’s coverage index (which estimates the probability that the next read will belong to an existing

taxon) and biomarkers characterizing Xylella abundance (high vs. low), cultivar (FS17 vs. Kalamata), and
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season (Spring vs. Autumn), were estimated by random forest analysis, by using MicrobiomeAnalyst

with default parameters of 5000 trees to grow and randomness setting parameters. Clr-transformed

data were ordinated by principal component analysis (PCA) using a variance-covariance matrix and

the significance of the clustering was tested by analysis of group similarities (ANOSIM), computed

using the Euclidean index of distance similarity, by the PAST3 software [91].

Pearson’s correlation analysis was performed to analyze the correlation between the proportion

of Xylella to total bacterial reads and the population size, as estimated by qPCR. The assumption of

normal distribution was preliminarily assessed by the Shapiro–Wilk’s test. Statistical significance was

accepted at the α = 0.05 level.

4.4. 16S and ITS1 rRNA Gene Library Sequencing and Bioinformatic Analysis

The DNA was analyzed by high throughput sequencing using Illumina MiSeq platform with the

paired-end option (2 × 250 bp). Bacterial community present in xylem wood shavings were assessed

by sequencing the V4 region of the 16S gene of rRNA gene with the primer pairs 515f/806rB [92],

using services available at the Instituto Gulbenkian de Ciência (IGC, Portugal). For the fungal

community, the ITS1 region of rRNA gene was amplified with the primer pairs ITS1F/ITS2 [92] and

custom sequenced at LGC Biosearch Technologies (Germany) facilities. The raw sequencing data were

first subjected to a quality report visualized in FastQC. Based on the quality scores, read trimming

was performed in Sickle [93] to eliminate the incorrectly placed bases in the 3′-end and 5′-end regions,

to obtain a greater read quality. Singles, i.e., unpaired reads, for which only the reverse or forward

sequence was approved on the quality report, were also eliminated, keeping only good quality paired

reads for the following analysis. After trimming, read errors constructed during the sequencing

process were corrected using SPAdes [94]. The merge of overlapping paired-end reads was performed

using USEARCH [95]. A new quality report was then performed with FastQC. From this report, read

filtering parameters based on expected amplicon size were determined. The filtering was applied

using ea-utils [96]. Clustering of reads in OTUs, and their taxonomic assignment at 97% similarity, was

performed with MICCA [97]. Taxonomic classification was assigned by using the reference database

SILVA version 132 [98,99] for the Bacteria and UNITE version 8.0 [100,101] for the Fungi. Unassigned

OTUs and those that were identified as mitochondrial or plastid DNA, as well as OTUs with low

abundance (i.e., less than five or 10 reads for Bacteria and Fungi, respectively), were removed from

further analyses. All statistical analyses were performed by using this dataset, where the Xylella species

data were excluded.

The effect of the abundance of Xylella, host cultivar, and season in the microbiome diversity was

determined by evaluating the richness by using the vegan package [102] and diversity function in R

software [103]. To compare the differences between means, one-way ANOVA, followed by Tukey’s

post-hoc test (significance level α = 0.05) was performed by using the same software.

Non-metric multidimensional scaling (NMDS) was performed using Bray–Curtis index with

normalized OTU matrix, to calculate the average dissimilarity in the composition of bacterial or fungal

communities in olive tree xylem due to different Xylella abundance (high vs. low), host cultivar

(FS17 vs. Kalamata), and season (Spring vs. Autumn). Kruskal’s stress was used to estimate the

model’s goodness of fit, with a commonly accepted value when lower than 0.2 [104]. ANOSIM analysis

of similarity was also performed, using Bray–Curtis distance matrices, to find significant differences

between the bacterial or fungal community groups observed in NMDS ordination. This analysis

generates a p-value (significant if ≤ 0.05) associated to an R-value, which ranges from 0 (completely

similar) to 1 (completely different) [105]. Both NMDS and ANOSIM analyses were performed using

the vegan package (metaMDS and anosim functions, respectively) in R software.

Contribution of Xylella abundance, host cultivar, and season to the xylem microbiome community

structure was deciphered by using permutational multivariate analysis of variance (PERMANOVA),

which was performed using the function adonis in the R vegan package. Additionally, a co-inertia

analysis (CIA) was conducted to determine the relationship between bacterial/fungal genera and the
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abundance of X. fastidiosa, host cultivar, or season. This analysis was performed in R, using the ade4

package [106] and the table.value function to visualize the results.

Raw sequence reads and related metadata were deposited at the Sequence Read Archive (National

Center for Biotechnology Information, USA National Library of Medicine, Bioproject #PRJNA629675:

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA629675).
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Figure S3: Linear correlation between Xylella and total Bacteria, Table S1: Good’s coverage index estimation for
Bacteria, Fungi and Archaea, Table S2: Results of one-way ANOVA comparing the average estimated X. fastidiosa
population size among the four different samplings, Table S3: Summary of the ANOSIM statistics comparing
Bacteria microbiomes, Table S4: Summary of the ANOSIM statistics comparing Fungi microbiomes, Table S5:
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