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Abstract

Our aim is to verify if oocyte developmental potential is related to the timing of meiotic pro-

gression and to mitochondrial distribution and activity using prepubertal and adult oocytes

as models of low and high developmental capacity respectively. Prepubertal and adult oo-

cytes were incorporated in an in vitro maturation system to determine meiotic and develop-

mental competence and to assess at different time points kinetic of meiotic maturation, 2D

protein electrophoresis patterns, ATP content and mitochondria distribution. Maturation and

fertilization rates did not differ between prepubertal and adult oocytes (95.1% vs 96.7% and

66.73% vs 70.62% respectively for prepubertal and adult oocytes). Compared to adults,

prepubertal oocytes showed higher parthenogenesis (17.38% vs 2.08% respectively in pre-

pubertals and adults; P<0.01) and polispermy (14.30% vs 2.21% respectively in prepuber-

tals and adults; P<0.01), lower cleavage rates (60.00% vs 67.08% respectively in

prepubertals and adults; P<0.05) and blastocyst output (11.94% vs 34.% respectively in

prepubertals and adults; P<0.01). Prepubertal oocytes reached MI stage 1 hr later than

adults and this delay grows as the first meiotic division proceeds. Simultaneously, the pro-

tein pattern was altered since in prepubertal oocytes it fluctuates, dropping and rising to lev-

els similar to adults only at 24 hrs. In prepubertal oocytes ATP rise is delayed and did not

reach levels comparable to adult ones. CLSM observations revealed that at MII, in the ma-

jority of prepubertal oocytes, the active mitochondria are homogenously distributed, while in

adults they are aggregated in big clusters. Our work demonstrates that mitochondria and

their functional aggregation during maturation play an active role to provide energy in terms
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of ATP. The oocyte ATP content determines the timing of the meiotic cycle and the acquisi-

tion of developmental competence. Taken together our data suggest that oocytes with low

developmental competence have a slowed down energetic metabolism which delays later

development.

Introduction

Oocyte quality is currently regarded as the key limiting factor in female fertility, and it is re-

ferred to as its intrinsic developmental potential. It depends upon the biochemical and molecu-

lar state that allows a mature oocyte to be fertilized and develop to an embryo, which upon

transfer will enable healthy development to term. In accordance with this, poor oocyte quality

results in either aneuploidy, epigenetic disorders, arrested embryonic development or sponta-

neous abortion [1–3] One of the great challenges that remain in the fields of reproductive biol-

ogy and medicine is to understand the nature of the molecular and cellular processes that

control oocyte quality. The process by which mammalian oocytes acquire their developmental

competence involves complex and distinct events of both nuclear and cytoplasmic maturation.

Nuclear maturation mainly involves germinal vesicle break down (GVBD), chromosomal con-

densation (metaphase I—MI) and segregation, and polar body extrusion (metaphase II- MII).

Cytoplasmic maturation involves organelle reorganization, increase in the content of calcium

stores, and storage of molecules that act in the overall maturation process, fertilization and

early embryogenesis [4].

The best test to determine oocyte quality is the in vivo transfer of the obtained embryo, fol-

lowed by gestation, birth, and continuing health of the resulting offspring. Obviously, ethical

problems in human reproductive technologies restrict these experimental approaches to ani-

mal models. However, these experiments are cost prohibitive, take a great deal of time to

achieve results, and require large animal numbers to obtain data that can be statistically ana-

lyzed. Thus, other parameters can be used to assess oocyte quality. Endpoints that are usually

used for this purpose include nuclear maturation success (to MII), fertilization rates, kinetic of

embryonic development, development to the blastocyst stage, blastocyst total cell number,

inner cell mass and trophectoderm cell numbers, oocyte and embryo metabolism, ATP con-

tent, mRNA and proteins storage, and mitochondrial activity and distribution. Examination of

all of these parameters will assist in discovering the complex mechanisms that synchronously

act to impart oocyte quality.

Cytoplasmic maturation is associated with a considerable increase in storage of foodstuffs

and informational macromolecules such as mRNAs, proteins and transcription factors. At this

time, the oocyte undergoes a regional redistribution of cytoplasmic organelles which is func-

tional to the acquisition of meiotic competence that ultimately will influence the basic proper-

ties of the future embryo [4, 5].

Increasing evidence shows the role of mitochondria as determinants of developmental com-

petence for mammalian oocytes, due to their function as energy suppliers [6]. The quantity

and functional status of mitochondria contribute to the quality of the oocyte and play impor-

tant roles in fertilization and embryo development [7]. In particular, it has been shown that

ATP synthesized by mitochondria is crucial for protein synthesis and phosphorylation, which

in turn represents a fundamental requirement for progression of oocyte maturation [8]. Re-

duced efficiency of mitochondrial respiration and ATP content in the oocyte has been shown

to be related to poor embryo development [8–10].

Oocyte Competence and Kinetic of Meiosis

PLOS ONE | DOI:10.1371/journal.pone.0124911 April 20, 2015 2 / 25

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



In addition, it has been postulated that kinetics of cell cycle could be used as an indicator of

oocyte and embryo quality. Cleavage kinetics has been related to the quality of blastocysts in

several species (human [11]; porcine [12]; bovine [13]; ovine [14]). Dominko and First [15]

firstly positively related the kinetic of MII to the cleavage and blastocyst rates, and timing of

meiotic progression is considered as a marker of oocyte quality [16]. However, information on

factors affecting the kinetic of meiotic cycle in mammalian oocytes is lacking.

Comparative analysis of oocytes with high and low developmental potential is essential to

establish reference data that could indicate important mechanisms involved in the acquisition

of developmental competence. The follicular origin of the oocyte has a significant impact on its

developmental potential and it appears that once the oocyte is removed from its follicle its in-

trinsic developmental potential is determined [17]. Although several studies have reported suc-

cessful in vitro embryo production and the birth of live offspring from oocytes of prepubertal

animals, the developmental competence of in vitro-matured prepubertal oocytes is lower than

that of oocytes derived from adults (for review see [18]). Prepubertal ovine oocytes show some

structural and functional limitations compared to the adult ones, which are at the basis of their

reduced developmental competence [19–27].

The aim of our work is to verify if oocyte developmental potential is related to the timing of

meiotic progression and to mitochondrial distribution and activity. We took advance of the ex-

perimental model characterized by the comparison of adult and prepubertal oocytes, which

represent a model of high and low developmental competence, respectively.

Thus, we compared the kinetic of meiosis resumption after incorporation in an in vitro mat-

uration system and the pattern of mitochondrial distribution and activity in adult and prepu-

bertal ovine oocytes.

Materials and Methods

The Ethics Committee of the Sassari University approved this study.

All chemicals in this study were purchased from Sigma Chemical CO (St. Louis, MO, USA)

unless stated otherwise.

Experimental design

Oocytes from prepubertal (30–40 days old) and adult (4–6 years old) ewes were obtained from

ovaries collected at a commercial slaughterhouse. Thereafter, the following experiments were

performed:

1. Determination of prepubertal and adult oocytes meiotic and developmental competence:

prepubertal and adult oocytes were incorporated into an in vitro embryo production system

in order to compare their meiotic and developmental competence, as evaluated by matura-

tion and fertilization rates, embryo developmental kinetics and total blastocyst output.

2. Evaluation of the kinetic of meiotic progression: timing of meiosis progression is considered

as a marker of oocyte quality [16]. Therefore, we compared the progression of meiotic matu-

ration between adult and prepubertal oocytes at different time points after oocyte incorpo-

ration in the in vitro maturation system: i) GV-MI transition was evaluated after 6,7, 8 and

9 hrs of in vitro culture; ii) MI-MII transition was evaluated after 19, 20, 21 and 22 hrs of in

vitro culture. At each time point, in three replicates, at least 20 prepubertal and adult oocytes

were retrieved from the maturation system and processed for nuclear staining.

3. Determination of protein electrophoretic pattern during meiosis: it has been proposed that

protein synthesis and secretion are related to developmental competence of mammalian oo-

cytes [28]. We compared protein electrophoretic pattern of prepubertal and adult oocytes at
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different time points during in vitro maturation: 0, 7, 19 and 24 hrs after culture. At each

time point, 20 prepubertal and adult oocytes were retrieved from the maturation system

and processed for 2D-electrophoresis.

4. Quantification of ATP intracellular content: oocyte energetic level has been regarded as a

suitable marker of its quality since during meiotic progression an increase in ATP content is

required for subsequent fertilization and embryo development [6, 8, 29]. We determined

ATP intracellular content in prepubertal and adult oocytes at different time points after in-

corporation in an in vitro maturation system: 0, 7, 19 and 24 hrs after culture. At each time

point, in three replicates, 20 prepubertal and adult oocytes were retrieved from the matura-

tion system and processed for ATP intracellular content determination.

5. Submicroscopical evaluation of mitochondria and organelles by light and transmission elec-

tron microscopy: cumulus oocyte complexes (COCs) collected in three replicates from pre-

pubertal and adult ovaries were processed at 0, 7, 19 and 24 hrs of IVM.

6. Evaluation of active mitochondrial distribution patterns: COCs collected in three replicated

experiments from prepubertal and adult ovine ovaries were processed at collection (0 hrs)

and after 24 hrs of IVM to evaluate mitochondrial distribution, mitochondrial activity and

chromosomal configuration and then analyzed by confocal laser scanning microscopy

(CLSM).

Experiment 1: Determination of prepubertal and adult oocyte meiotic and
developmental competence

Collected ovaries were transported from the commercial slaughterhouse to the laboratory with-

in 1–2 h in Dulbecco Phosphate Buffered Saline (PBS) with antibiotics at 27°C. After being

washed in PBS fresh medium, the ovaries were sliced using a micro-blade and the follicle con-

tent was released in medium TCM199 (with Earle’s salts and bicarbonate) supplemented with

25 mmol HEPES, 0.1 g/L penicillin, 0.1 g/L streptomycin and 0.1% (w/v) polyvinylalcohol

(PVA). Cumulus—oocyte complexes (COCs) with 4–10 layers of granulosa cells, oocytes with

a uniform cytoplasm, homogenous distribution of lipid droplets in the cytoplasm and outer di-

ameter of about 90 μm (mean) were selected for these experiments. COCs selected for in vitro

culture were washed three times in the same fresh medium and matured in vitro in TCM 199

supplemented with 10% heat-treated oestrus sheep serum (OSS), 1 IU/mL of FSH/LH, 8 mg/mL

pyruvate and 100 μM cysteamine. 40–45 COCs were put in 500 μL of maturation medium in

four-well Petri dishes (Nunclon, Nalge Nunc International, Denmark), layered with 300 μL of

mineral oil and cultured for 24 h in 5% CO2 in air at 39°C.

Meiotic competence was determined in 4 replicated experiments in prepubertal (n = 1357)

and adult (n = 970) oocytes. After 24 hrs of in vitro maturation COCS were denuded of cumu-

lus cells using a narrow bore glass capillary, fixed for 24 h in acetic acid ethanol solution (1:3

vol/vol), and stained with 1% (wt/vol) of Lacmoid. Chromatin configuration was evaluated

under a phase contrast microscope at 200 to 400 x.

Fertilization potential was computed in 3 replicates using 1070 prepubertal and 766 adult in

vitro matured oocytes. COCs were partially stripped of the granulosa cells and fertilized in

vitro at 39°C and 5% CO2, 5% O2 and 90% N2 atmosphere in four-well Petri dishes (Nunclon).

Frozen thawed spermatozoa from the same ejaculate of a single ram were used for all experi-

mental procedures. The IVF system was composed of 300 μL of synthetic oviductal fluid (SOF)

medium supplemented with 2% heat-treated ovine oestrus serum (OSS) and swim-up derived

motile spermatozoa, at 1x106 spermatozoa/mL concentration, layered with mineral oil. After

Oocyte Competence and Kinetic of Meiosis

PLOS ONE | DOI:10.1371/journal.pone.0124911 April 20, 2015 4 / 25



14 hrs oocytes were washed from spermatozoa and fixed with acetolacmoid as described above.

Oocytes were classified as fertilized when showed 2 pronuclei, as parthenogenetic when showed

only one pronucleus and as polyspermic when presented more than 2 pronuclei or one pronu-

cleus and 2 or more decondensed sperm nuclei.

Developmental competence was determined in 5 replicated experiments after in vitro matu-

ration of prepubertal (n = 2110) and adult (n = 1522) oocytes. Fertilization was carried out as

above described and at 24, 26, 32 hrs post-insemination the number of cleaved oocytes, show-

ing two distinct blastomeres, was recorded. Total cleavage computed all oocytes which cleaved

within 32 hrs post insemination. The cleaved embryos were transferred to a culture system

composed by SOF medium supplemented with 4 mg/mL of bovine serum albumin and essen-

tial and non-essential amino acids at oviductal concentration, and kept in maximum humidi-

fied atmosphere, at 39°C, 5% O2, 5% CO2. Newly formed blastocysts were recorded daily,

starting from the 6th day of culture. Total blastocysts computed those obtained within 9 days

post insemination.

Experiment 2: Evaluation of the kinetic of meiotic progression

Oocyte in vitro maturation was performed as above described. In three replicates, at each time

point (0, 6 to 9, 19 to 22 hrs of in vitro culture), oocytes were decumulated by gentle pipetting

using a narrow bore glass capillary, fixed in ice cold methanol, and incubated with 10μg/mL

Hoechst 33342 in ice-cold methanol for 15 min. Stained oocytes were mounted into a small

droplet of glycerol on a glass slide and examined under an epifluorescence inverted microscope

(Nikon Diaphot, Japan).

Here and thereafter, 0 hrs of maturation indicate GV stage, 7 hrs indicate MI stage and 22

or 24 hrs indicate MII stage.

Experiment 3: Determination of protein electrophoretic pattern during
meiosis

Prepubertal and adult COCs were matured as described above, retrieved from the culture sys-

tem at different time points (0 hrs, 7 hrs, 19 hrs and 24 hrs), denuded by gentle pipetting and

stored at -80°C until analysis. At thawing, oocytes (n = 20 from each experimental group) were

diluted to 300 μl with rehydration buffer (8M urea, 4% CHAPS, 20 mg/ml DTT, 2% pharma-

lytes, and trace amount of bromophenol blue) and used to rehydrate a pH 3–10 linear gradient

IEF Immobiline Dry Strip (Biorad, Hercules, CA, USA). Isoelectric focusing (IEF) was per-

formed using a Protean IEF Cell (Biorad) for 12 hrs at 20°C, followed by 500V for 1,000 Vhr,

1,000V for 2,000 Vhr, and 8,000V for 22,000 Vhr.

IPG strips were incubated in equilibration buffer 1 (50mM Tris—HCl, pH 8.8, containing

6M urea, 30% glycerol, 2% SDS, trace amount of bromophenol blue, and 100 mg/ml DTT) for

15 min, rinsed with equilibration buffer 2 (50mM Tris—HCl, pH 8.8, containing 6M urea, 30%

glycerol, 2% SDS, trace amount of bromophenol blue, and 450 mg/ml iodoacetamide) for

10 min. Strips were rinsed in SDS—gel running buffer, transferred into 12% SDS gels and

sealed with 0.5% (w/v) agarose solution before running the second dimension (50 mA/gel) in a

15°C termostated Protean II electrophoretic cell (Biorad). After electrophoresis, gels were silver

stained (SilverQuest staining kit, Invitrogen, USA) and dried (Biorad Gel dryer). Experiments

were repeated three times and differences between gel images were analyzed using the PdQuest

software (Biorad). This software allows us to compare gels obtained from the two experimental

groups at the same maturation time, in order to identify the spots present in gels of only one

experimental group (qualitative differences), and to determine differences in intensity (quanti-

tative differences) between spots present in gels of both groups at the same maturation time.

Oocyte Competence and Kinetic of Meiosis
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Experiment 4: Quantification of ATP intracellular content

ATP was quantified in oocytes using capillary electrophoresis according to Zinellu et al. [30].

After being picked up from maturation systems at different hours and decumulated by gentle

pipetting, oocytes were assessed for chromatin configuration after Hoechst staining, under an

epifluorescence microscope (Nikon, Diaphot) at 40x magnification [31]. At each time point 20

oocytes showing a specific nuclear stage were selected: i.e. GV decondensed chromatin in ger-

minal vesicle at 0 hrs, MI (metaphase plate) at 7 hrs and MII (metaphase plate and a polar

body at 19h and 22h of maturation. Selected oocytes were transferred in 5 μL PBS, mixed with

5 μL of ice cold 0.6 mol/L perchloric acid and incubated for 15 min at room temperature before

being centrifuged for 3 minutes at 10000 rpm in an Eppendorf Microfuge (Eppendorf, Ham-

burg, Germany). The supernatant was neutralized with 1.5 μL of 3.5 mol/L K2CO3. After 3

minutes centrifugation in a Eppendorf Microfuge at 10000 rpm, the supernatant was deriva-

tized before capillary electrophoresis. Ten μL of sample or standard were mixed with 40 μL of

1.8 mol/L 1-ethyl-3-(30-N,N0-dimethyl-aminopropyl)-carbodiimide hydrochloride (dissolved

in 50 mmol/L HEPES buffer, pH 6.5) and 5 μL of 27 mmol/L Bodipy FL EDA (dissolved in

50 mmol/L HEPES buffer, pH 6.5) and incubated for 25 h at 37°C in the dark. A P/ACE 5510

CE system equipped with Laser Induced Fluorescence (Beckman instruments, CA, USA) was

used. The dimension of the uncoated fused silica capillary was 75 mm ID and 57 cm length

(50 cm to the detection window). Analysis was performed applying 21 nl of sample under ni-

trogen pressure (0.5 psi) for 3 s using a 10 mmol/L sodium phosphate buffer, pH 11.4. The sep-

arating conditions (22 kV at normal polarity) were reached in 20 s and held at a constant

voltage for 8 min. All separations were carried out at 40°C.

Experiment 5: Submicroscopical and morphometric evaluation of
mitochondria and organelles by light and transmission electron
microscopy

Prepubertal (n = 82) and adult (n = 68) COCs were fixed at sampling (0 hrs), and at different

time intervals during IVM (7, 19, 24 hrs), and processed for light microscopy (LM) and trans-

mission electron microscopy (TEM) analysis as previously described [32]. COCs fixation was

performed in 1.5% glutaraldehyde (SIC, Rome, Italy) in PBS solution. After fixation for 2–5

days at 4°C, the samples were rinsed in PBS, post-fixed with 1% osmium tetroxide (Agar Scien-

tific, Stansted, UK) and rinsed again in PBS. Oocytes were then embedded in small blocks of

1% agar of about 5×5×1 mm in size, dehydrated in ascending series of ethanol (Carlo Erba

Reagenti, Milan, Italy), immersed in propylene oxide (BDH Italia, Milan, Italy) for solvent sub-

stitution, embedded in epoxy resin EMbed-812 (Electron Microscopy Sciences, Hatfield, PA,

USA) and sectioned by a Reichert-Jung Ultracut E ultramicrotome. Semithin sections (1 μm

thick) were stained with toluidine blue, examined by LM (Zeiss Axioskop) and photographed

using a digital camera (Leica DFC230). Ultrathin sections (60–80 nm) were cut with a diamond

knife, mounted on copper grids and contrasted with saturated uranyl acetate followed by lead

citrate (SIC, Rome, Italy). They were examined and photographed using a Zeiss EM 10 and a

Philips TEM CM100 Electron Microscopes operating at 80KV. Semithin sections and ultrathin

sections were used also for a morphometric evaluation in all groups of the number of mito-

chondria, number of mitochondrial clusters and number of mitochondria per each cluster at

sampling (0 hrs) and after 24 hrs of IVM.

The number of mitochondrial clusters was evaluated at the LM level in 5 oocytes per group,

on at least 3 equatorial sections per oocyte (distance between the sections: 3–4 μm), and values

were expressed in number of clusters per 100 μm2 of the oocyte area. Mitochondrial counting

was performed through collection of low-magnification TEMmicrophotographs of the same
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oocytes, on 3 equatorial sections per oocyte. Images were further enlarged on the PC screen, in

order to easily recognize and count mitochondria. Values were expressed in number of mito-

chondria per 100 μm2 of the oocyte area. The number of mitochondria per each cluster was ex-

trapolated from an integrated evaluation of the above data.

Experiment 6: Evaluation of mitochondrial activity and active
mitochondrial distribution by confocal laser scanning microscopy

COCs collected from prepubertal (n = 45) and adult (n = 41) ewes ovaries in three replicate ex-

periments were processed at collection (0 hrs) and after 24 hrs of IVM to evaluate the mito-

chondrial distribution, mitochondrial activity and chromosomal configuration and then

analyzed by confocal laser scanning microscopy (CLSM). COCs were subjected to a double

staining with MitoTracker Red CM-H2XRos (Molecular Probes, Inc., Eugene, OR, USA; M-

7513), hereafter called MT-Red, a mitochondrial-specific fluorescent and cell-permeant probe

and Hoechst 33342, to stain chromosomes. Reduced MT-Red is a derivative of dihydro-X-

rodamine and is readily sequestered only by actively respiring organelles, depending upon

their oxidative activity. This reduced probe does not fluoresce until it enters live cells, where it

is oxidized to the corresponding fluorescent mitochondrion-selective probe and then seques-

tered in the mitochondria.

Immature germinal vesicle (GV) stage oocytes were retrieved at 0h IVM and used as con-

trols. Following IVM, COCs were incubated for further 30 min at 38.5°C in TCM-199 plus

10% FCS supplemented with 1 IU/mL FSH,1IU/mL LH, 100 μM cysteamine, 8 mg/mL pyru-

vate; 500 nMMT-Red (stock solution: 100 μM in DMSO).

After exposure of COCs to the probes, cumulus cells were mechanically removed from the

oocytes by repeated pipetting. Oocytes were then washed three times in fresh, pre-warmed

0.1% PVA in PBS/ and fixed in 2.5% glutaraldehyde/PBS for at least 15 min. After fixation, oo-

cytes were washed three times in PBS/PVA and mounted on glass slides with 2.5 μg/mL

Hoechst 33342 3:1 (v/v) in PBS and glycerol solution. Slides were kept at 4°C in darkness

until evaluation.

A Leica TCS SP5 CLSMwith LAS lite 170 Image software equipped with a 405-nm diode

laser and a multiphoton laser was used for chromosomal and mitochondrial analysis. For mito-

chondrial evaluation, samples were observed with a multiphoton laser to detect MitoTracker Red

CM-H2XRos (ex: 579 nm; em: 599 nm). Each oocyte was examined along the z-axis by means of

about 30 serial confocal planes (each 3 μm thick), going from the top to the bottom of the cell.

Microscope adjustments and photomultiplier settings were kept constant for all experiments. Ac-

quisition, storage and image analysis were made with the LAS lite 170 Image software. To evalu-

ate quantitatively the fluorescence intensity in the confocal microscopic sections an image

analysis was performed using ImageJ software (V, 1.43u; National Institutes of Healt; [33]).

Statistical analyses

Maturation, fertilization and developmental rates, kinetics of maturation and development and

active mitochondria phenotypes were analyzed using chi square test or Fisher exact test when

appropriate. ATP concentrations, 2D electrophoretic protein spots during meiotic progression,

morphometric data on semithin and ultrathin sections and fluorescence intensity data obtained

by confocal microscopy were analysed by ANOVA test after analysis for homogeneity of vari-

ance by Levene’s test.

Statistical analyses were performed using the statistical software program Statgraphic Cen-

turion XV (version15.2.06 for Windows; StatPoint, Inc., Herndon, VA, USA) and a probability

of P� 0.05 was considered to be the minimum level of significance.
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Results

Experiment 1: Determination of prepubertal and adult oocyte meiotic and
developmental competence

As showed in Table 1, maturation rates after 24 hrs of culture and fertilization rates did not dif-

fer between prepubertal and adult oocytes. On the other hand, prepubertal oocytes showed

higher rates of both spontaneous parthenogenetic activation (17.38% vs 2.08% in adults), and

polispermy (14.30 vs 2.21% in adults; P<0.01). Thereafter, the higher developmental compe-

tence of adult oocytes compared to prepubertal ones was confirmed by higher cleavage rates

(67.1 vs 60.0% in adult and prepubertal oocytes respectively; P<0.05) and higher blastocyst

output (51.3 vs 19.9% in adult and prepubertal oocytes, respectively; P<0.01).

In addition, the kinetic of embryo development was delayed in prepubertal oocytes com-

pared to adult ones. At 26 hrs post-fertilization, adult fertilized oocytes underwent the first

cleavage at higher rate compared to prepubertal ones (69.2% vs 40.8%, respectively; P<0.01).

Therefore, the first cell cycle was longer in prepubertal than in adult fertilized oocytes. This

delay grew as embryo development progressed and reached 24 hrs at the blastocyst stage.

Experiment 2: Evaluation of the kinetic of meiotic progression

The kinetic of maturation differs between adult and prepubertal oocytes. As showed in Fig 1A,

oocytes derived from adult (n = 1139) and prepubertal (n = 1186) ewes reached the MI stage

with a different timing. At 7 hrs of culture, MI rates were higher in adult than in prepubertal

oocytes (34.7% vs 14.1% in adult and prepubertal oocytes respectively; P<0.001). Prepubertal

oocytes reached similar MI rates only between 8 and 9 hrs of culture, indicating a delay in the

kinetic of maturation of at least 1 hour. The delay in meiotic progression in prepubertal oocytes

was confirmed by data obtained during MI-MII transition, monitored from 19 to 22 hrs of

IVM. As showed in Fig 1B, the MII stage was reached earlier in adult (n = 1026) than in

Table 1. Meiotic and developmental competence of prepubertal and adult sheep oocytes.

PREPUBERTAL ADULT

Meiotic competence metaphase II 1290 (95.1%) 938 (96.7%)

Developmental competence fertilization 2 pronuclei 713 (66.73%) 541 (70.62%)

1 pronucleous 186 (17.38%)a 16 (2.08%)b

polyspermic 153 (14.3%)a 17 (2.21%)b

cleavage 22 hpi* 206 (16.27%)a 361 (35.36%)b

26 hpi* 311 (24.57%)a 345 (33.79%)b

32 hpi* 749 (59.16%)a 315 (30.85%)b

total° 1266 (60.00%)a 1021 (67.08%)c

blastocysts 6 dpi& 0a 234 (35.36%)b

7 dpi& 122 (24.57%)a 131 (33.79%)b

8 dpi& 87 (59.16%) 159 (30.85%)

9 dpi& 43 (17.06)a 0b

Total^ 252 (11.94%)a 524 (34.43%)b

Into rows different superscripts are statistically different (Chi square test: a vs b = P<0.01; a vs c = P<0.05).

* computed on the number total cleaved embryos.
° computed on the number of inseminated oocytes.
& computed on the number of the total blastocysts.
^ computed on the number of inseminated oocytes.

doi:10.1371/journal.pone.0124911.t001
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prepubertal (n = 981) oocytes (P<0.001). In fact at 19 hrs of culture the MII nuclear plate was

observed in the 70.4% of adult oocytes compared to the 36.4% of prepubertal ones. Prepubertal

oocytes reached MII rates comparable with adult ones only at 22 hrs of in vitro culture.

Experiment 3: Determination of protein electrophoretic pattern during
meiotic progression

Fig 2 resumes data on quantification of spots resolved in 2D electrophoretic gels of proteins ex-

tracted from prepubertal and adult oocytes at different time points of in vitro maturation.

After 9 hrs of in vitro culture, the number of spots were statistically lower in prepubertal than

in adult gels (295.6 ±12.8 vs 376±14.2 respectively; P<0.05), while at 24 hrs more spots were

counted in prepubertal gels than in adults (573±11.9 vs 449.7±15.2; P<0.01). Qualitative

Fig 1. Kinetics of in vitro maturation in prepubertal and adult oocytes. Values are expressed as (A)
percentages of prepubertal (n = 1186) and adult (n = 1139) oocytes that reached MI at 6 to 9 hrs of maturation
culture and (B) percentages of prepubertal (n = 1026) and adult (n = 981) oocytes that reached MII stages
between 19 and 22 hrs of maturation culture. *indicates statistical difference at each time point between the
two experimental groups; (Chi square test: P<0.001).

doi:10.1371/journal.pone.0124911.g001

Fig 2. Quantification of spots detectable in 2D electrophoresis gels of proteins extracted from 20
prepubertal and adult oocytes at different times of maturation culture. (ANOVA; * indicates statistical
difference between adult and prepubertal groups at each time; different upper case letters indicate statistical
difference into adult group; different lower case letters indicate statistical difference into prepubertal group).

doi:10.1371/journal.pone.0124911.g002
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differences in specific spots, (i.e. spots present in gels of only one experimental group at each

time) after image analysis of prepubertal and adult gels are showed in Table 2. A representative

panel of the electrophoretic gels of prepubertal and adult proteins at different hours of matura-

tion is showed in Fig 3.

Experiment 4: Quantification of ATP intracellular concentration

As summarized in Fig 4, ATP concentration during maturation was lower in prepubertal than

adult oocytes (mean ± SEM, 2.32 ± 0.09 vs 3.24 ± 0.18 pmol/oocyte respectively). In adult oo-

cytes, after a significant decline observed from 0 to 7 hrs of culture (from 3.00 ± 0.26 pmol to

2.39 ± 0.10 pmol; P<0.01), ATP intracellular concentration peaked at 19 hrs (3.95 ± 0.24

pmol) of culture and then remained stable.

In prepubertal oocytes, a similar pattern was observed in the first 7 hrs of culture, but ATP

intracellular concentration started to rise again only after 19 hrs of culture and did not reach

values higher than the initial ones after 24 hrs of culture.

Experiment 5: Submicroscopical and morphometric evaluation of
mitochondria and organelles by light and transmission electron
microscopy

According to Khalili and coworkers [34], type and quality of the organelles, with particular re-

gard to mitochondria were evaluated by TEM and taken into consideration to evaluate ultra-

structural differences between prepubertal and adult COCs.

IVM: 0 hrs (control groups). By LM and TEM at low magnification, all the oocytes evi-

denced a round shape, with a thin perivitelline space surrounded by a continuous zona pellu-

cida. The ooplasm appeared rich of clear vacuoles and strongly electron-dense lipid droplets

(Fig 5a). A rosette-type arrangement of round-to-ovoid mitochondria, interspersed among sin-

gle mitochondria, vacuoles, lipid droplets and SER, was evidenced in prepubertal and adult oo-

cytes by TEM (Figs 5 and 6). Mitochondrial clusters were often bigger in the cortical area than

in the perinuclear cytoplasm. At high magnification, numerous mitochondria presented a clear

vesicle inside or showed a typical hooded configuration (Figs 5b, 5c and 6). Mitochondrial cris-

tae were easily discernible (Fig 5c). Well developed smooth endoplasmic reticulum (SER) and

Golgi membranes were observed in adult oocytes (Fig 6).

IVM: 7 hrs. The ooplasm of prepubertal and adult oocytes was rich of clusters of mito-

chondria dispersed among clear vacuoles of different shape and dimension, tubules of SER or

elements of the Golgi apparatus (Fig 7). Mitochondrial clusters appeared sometime more

prominent in prepubertal than in adult oocytes, and mostly located in the cortical ooplasm

(Fig 7).

IVM: 19 hrs. TEM analysis in prepubertal and adult oocytes showed an even distribution

of small clusters of mitochondria interspersed with isolated mitochondria mainly—but not

Table 2. Qualitative spot differences between prepubertal and adult 2D electrophoretic gels at differ-
ent times of in vitro oocyte maturation.

Group 0h 7h 19h 24h

prepubertal 0 62 8 121

adult 25 12 82 12

In each row are resumed the number of spots present only in the electrophoretic gels of a group

(prepubertal or adult) but not in the other (adult or prepubertal) at each essay time during maturation.

doi:10.1371/journal.pone.0124911.t002

Oocyte Competence and Kinetic of Meiosis

PLOS ONE | DOI:10.1371/journal.pone.0124911 April 20, 2015 10 / 25



Fig 3. Representative electrophoretic gels of 20 oocyte proteins at 0, 7, 19 and 24 hrs of maturation
culture. Arrows represent one example of a spot detectable in both prepubertal and adult oocyte protein gels
at 7 hrs of maturation and detectable only in prepubertals at 19 and 24 hrs of culture.

doi:10.1371/journal.pone.0124911.g003
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exclusively—in the cortical region (Fig 8). Aggregations of mitochondria appeared smaller

than in previous sampling (IVM 0 and 7 hrs). Moreover, in prepubertal oocytes the amount of

isolated mitochondria seemed to be bigger than in adults, with abundant cytoplasmic area de-

void of mitochondria.

IVM: 24 hrs. At the end of the culture, a reorganization of mitochondria occurred again.

Clusters appeared bigger than after 19 hrs of IVM and more voluminous in adult than in pre-

pubertal oocytes (Fig 9). Abundant mitochondrial cristae were observed into hooded or ovoid

mitochondria in prepubertal and adult oocytes and, often associated with membrane-bound

vesicles and tubular elements of the smooth endoplasmic reticulum (insets of Fig 9).

Morphometric evaluation. Morphometric evaluation on semithin and ultrathin sections

revealed that the number of mitochondria significantly increased in adult MII oocytes in com-

parison with the other groups, among which no significant differences were found. The num-

ber of mitochondrial clusters remains unaltered in all the groups under examination. The

number of mitochondria per each cluster significantly increased only in adult MII oocytes, re-

spect to the other groups (Table 3).

Experiment 6: Evaluation of patterns of active mitochondrial distribution
by confocal laser scanning microscopy

The fluorescent image intensity of active mitochondria measured using ImageJ software is

summarized in the Fig 10. Prepubertal and adult GV stage oocytes did not shown differences

in fluorescence intensity. At MII stage fluorescence is higher than in GV in both prepubertal

(P<0.05) and adult (P<0.01) groups. Adult MII showed higher fluorescence compared

to prepubertals.

Mitochondrial distribution patterns were classified in three groups, as previously reported,

with some modifications [35]: 1) Pattern A: homogeneous FINE, with small granulations

spread throughout the cytoplasm; 2) Pattern B: homogeneous GRANULAR, with large granu-

lations spread throughout the cytoplasm; 3) Pattern C: heterogeneous CLUSTERED, when

Fig 4. Fluctuation of ATP intracellular content in prepubertal and adult ewe oocytes during in vitro
maturation. Data are expressed as mean ± SEM. Lower case letters indicate statistical difference among
different time points in the adult group: ANOVA p<0.01. Upper case letters indicate statistical difference
among different time points in the prepubertal group: ANOVA p<0.01. * Indicates statistical difference at each
time point between adult and prepubertal groups (ANOVA: p<0.01).

doi:10.1371/journal.pone.0124911.g004
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particularly large granulations were present, spread all over the cytoplasm or located in specific

cytoplasmic domains. In the majority of prepubertal oocytes observed, the distribution of mito-

chondria was homogenous fine (Pattern A) or granular (Pattern B), with a higher prevalence of

the former (Fig 11). More specifically, Pattern A was observed in the 55.6% of prepubertal GV

and 66.7% of prepubertal MII, while Pattern B in the 44.4% of prepubertal GV and 33.3% of

Fig 5. Morphology of prepubertal ovine oocytes (control group). (a) Representative micrograph by TEM,
showing the oocyte surrounded by a continuous zona pellucida (ZP) and a multilayer of granulosa cells
(GCs). A normal distribution of vacuoles (V) and lipid droplets (LD), typical for the ovine oocyte, is seen. Note
also the presence of numerous mitochondria (m). Bar: 5 μm. (b) Rosette-like arrangement of mitochondria.
TEM, bar: 1 μm. (c) High magnification TEMmicrograph of mitochondria. Arrows indicated hooded
mitochondria. Asterisks: mitochondria containing a clear vesicle. Arrowheads: mitochondrial cristae. V:
vacuoles; m: mitochondria; LD: lipid droplets.

doi:10.1371/journal.pone.0124911.g005
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prepubertal MII. Adult oocytes showed a different mitochondrial distribution respect to prepu-

bertal animals, with a lower proportion of homogenous fine (Pattern A), a higher percentage

of homogeneous granular (Pattern B) and the clusterization (Pattern C) only at MII stage.

In detail, Pattern A was found in the 20% of adult GV and 9.1% of adult MII; Pattern B in the

80% of adult GV and 36.4% of adult MII; Pattern C in the 54.5% of adult MII stage oocytes

(Table 4).

Fig 6. Morphology of adult ovine oocytes (control group). (a) Clusters of mitochondria (m) in close
proximity to tubular element of the smooth endoplasmic reticulum (SER) and clear vacuoles (V). TEM, bar:
1 μm. (b) Groups of round-to-ovoid mitochondria (m) near to tubular elements of SER and a Golgi apparatus
(G). TEM, bar: 1 μm. (c). N: nucleus, NE: nuclear envelope; V: vacuoles; m: mitochondria. Arrows: hooded
mitochondria; asterisks: mitochondria containing a clear vesicle.

doi:10.1371/journal.pone.0124911.g006
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In prepubertal and adult GV oocytes CLSM analysis revealed that the trans-zonal cyto-

plasmic projections penetrating through the zona pellucida the oocyte from the surrounding

granulosa cells, appeared intensely labeled by MT-Red. Moreover, an evident thin layer of ac-

tive mitochondria was present under the plasma membrane in GV-stage oocytes. On the con-

trary, MII-stage oocytes from prepubertal and adult animals showed a more homogeneous

distribution of mitochondria in the cytoplasm.

Fig 7. Morphology of prepubertal (a) and adult (b) ovine oocytes at 7 hrs of IVM.Representative low
magnification TEMmicrograph, showing the oocytes surrounded by a continuous zona pellucida (ZP), with
clusters of mitochondria (m) located in the cortex. Bar: 5 μm. Inset: high magnification of a rosette-like
arrangement of mitochondria (m). GCs: granulosa cells. ZP: zona pellucida. LD: lipid droplets. V: vacuoles.
Bar: 1 μm.

doi:10.1371/journal.pone.0124911.g007
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Discussion

In the present work we showed that ATP concentration and protein pattern fluctuations in low

quality oocyte is altered compared to high quality ones. We demonstrated that in GV stage of

low and high quality oocyte active mitochondria have a fine or granular homogeneous distribu-

tion while only in high quality oocytes most of MII display functional mitochondria aggregated

Fig 8. Morphology of prepubertal (a) and adult (b) ovine oocytes at 19 hrs of IVM. Representative low
magnification TEMmicrograph, showing the oocytes surrounded by a continuous zona pellucida (ZP), with
small clusters and isolated mitochondria (m). Bar: 2 μm. Insets: high magnification of a small cluster of
mitochondria (m). Secretory vacuoles are visible in the inset of Fig 4a (arrowheads). Bar: 0.5 μm. CGs:
cortical granules; ZP: zona pellucida; V: vacuoles.

doi:10.1371/journal.pone.0124911.g008
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in a clustered structure. The number of mitochondria grows from GV to MII in adult oocytes

but not in prepubertals, increasing the number of mitochondria/cluster. We evidence that the

prompt recover of ATP production after the transition GV-MI is fundamental to oocyte pro-

gression toward meiosis and determines the kinetic of the meiotic cycle.

Present data confirm a previous work [36] showing a difference in developmental compe-

tence between prepubertal and adult ovine oocytes in terms of both quantity and quality of

produced blastocysts which allow us to classify prepubertal oocytes as “low quality” oocytes.

The low quality of prepubertal oocyte cytoplasm was previously associated with cytoplasmic

Fig 9. Morphology of prepubertal (a) and adult (b) ovine oocytes at 24 hrs of IVM. Representative low
magnification TEMmicrograph, showing the oocytes surrounded by a continuous zona pellucida (ZP), with
clusters of mitochondria (m) bigger in adults than in prepubertals. Bar: 2 μm. Insets: high magnification of a
cluster of mitochondria (m). Bar: 0.5 μm. ZP: zona pellucida; V: vacuoles. Arrows: hooded mitochondria;
asterisks: mitochondria containing a clear vacuole.

doi:10.1371/journal.pone.0124911.g009
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molecular defects [24, 25, 31]. The kinetic of the first mitotic cycles has been reported to be in-

dicative of the developmental potential of the preimplantation embryo [37, 38]. The delay in

the kinetic of maturation in prepubertal compared to adult oocytes, could be related to the sub-

sequent differences emerged in their developmental competence.

Prepubertal oocytes reach MI stage 1 hr later than adult ones. This delay grows as the first

meiotic division proceeds. After 19 hrs of IVM, MII rates in adult oocytes are higher than in

prepubertal ones, which reach comparable rates only after 21 hrs of culture. The delay is ampli-

fied at the blastocyst stage where the difference in development kinetic between prepubertal

and adult embryos reaches almost 24 hrs. Embryonic development occurs in the absence de

novo transcription till the oocyte-to-embryo transition and is dependent of mRNA and/or pro-

teins stored into the oocyte during oogenesis [39].

Proteins appear to be of basic importance for meiotic resumption [40] but also for the at-

tainment of cytoplasmic maturation. Abnormalities in protein metabolism during in vitro mat-

uration were evidenced in prepubertal oocytes compared to the adult counterpart [31, 41].

We have previously shown in prepubertal oocytes alterations in the expression of some genes

[24, 25], and in the ATP-dependent phosphorylation activity of key proteins involved in the

control of meiotic progression [31]. Protein pattern reprogramming plays a fundamental role

Table 3. Morphometric evaluation of the number of mitochondria, mitochondrial clusters andmitochondria per cluster in prepubertal and adult
sheep oocytes at the GV (0 hrs of culture) and MII (24 hrs of culture) stages.

GV prepubertal GV MII prepubertal MII
adult adult

N° of mitochondria/100 μm2 26.37 ± 7.20a 21.25 ± 8.73a 29.97 ± 13.28a 43.19 ± 11.54b

N° of mitochondrial clusters/100 μm2 2.46 ± 0.75 2.30 ± 1.21 2.84 ± 0.93 2.94 ± 0.93

N° of mitochondria/cluster 10.04 ± 3.31a 8.94 ± 2.49a 10.21 ± 1.58a 14.13 ± 3.23b

Values are expressed as mean ± SD. Statistical analysis is calculated between columns in each row. Different superscripts in the same row indicate a

significant difference (ANOVA: P <0.05).

doi:10.1371/journal.pone.0124911.t003

Fig 10. Quantification of active mitochondrial-specific fluorescence intensity of the Mitotracker stain
in prepubertal and adult oocytes at GV and MII stage. Values are expressed as arbitrary units
(Mean ± SE); Different letters indicate a statistical difference (ANOVA: a vs b = P<0.05; a,b vs c = P<0.01).

doi:10.1371/journal.pone.0124911.g010
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Fig 11. Representative CLSM patterns of active mitochondria distribution at GV and MII stages in
prepubertal and adult ovine oocytes. (a) fine distribution of mitochondria in GV-stage oocytes; (b) fine
distribution in MII-stage oocytes; (c) a granular distribution in GV-stage oocytes; (d) granular distribution in
MII-stage oocytes; (e) clustered distribution in MII-stage oocytes. On the right are particulars of fine (f),
granular (g) and clustered (h) distributions.

doi:10.1371/journal.pone.0124911.g011
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in the control of meiotic cycle and it is an essential process in the preparation of mammalian

oocyte for fertilization. In our experiments we evidenced a perturbation of protein patterns in

prepubertal and adult oocytes at different times during in vitro maturation. We showed that

the number of protein spots in 2D electrophoretic gels did not differ between prepubertal and

adult electrophoretic gels at 0 and 7 hrs of maturation culture. At 19 h of culture the number of

protein spots is higher in adults compared to prepubertal while, on the contrary, at 24 h prepu-

bertal gels showed a higher spot number than adult ones. This suggests abnormalities in prepu-

bertal oocyte protein metabolism that delay the acquisition of the protein pattern which allows

to progress to MII. Confirming this suggestion we demonstrated that MII stage in prepubertal

oocytes is reached later than in adult ones and only after 22 hrs of culture MII rates do not dif-

fer between prepubertals and adults.

Energy in the form of ATP is critical for nuclear/cytoplasmic maturation events and for de-

velopmental potential of the embryo [7, 42, 43]. Spindle formation and chromosome behaviour

depend on the expression and activity of motor proteins, which use ATP as their energy source.

Once the oocyte resumes meiosis, mitochondria provide ATP for cytoskeletal and cytoplasmic

organization [44]. In the present study we evidenced that ATP content in adult oocytes de-

creases during GV/MI transition, to rise and reach a plateau at 19 hrs. In prepubertal oocytes

ATP rise is delayed and till 22 hrs do not reach levels comparable to adult ones.

TEM observations revealed that the mitochondria number and its cytoplasmic distribution

change during IVM, reflecting fluctuations in ATP intracellular contents. We showed an incre-

ment in the number of mitochondria in adult oocytes at MII compared to GV while in prepu-

bertal this number did not change.

Mitochondria distribution is modified during in vitro maturation. While at 0 hrs of IVM

prepubertal and adult oocytes showed a similar arrangement of mitochondria, with big cortical

clusters often in close proximity to elements of the SER or Golgi apparatus, at 7 hrs such aggre-

gations appeared smaller in adults than in prepubertal oocytes. After 19 hrs of culture a sort of

reduction/dispersion of mitochondrial clusters was evidenced, with the presence of numerous

isolated elements spread throughout the ooplasm, especially in prepubertal oocytes. At the end

of the culture period (IVM 24 hrs), big clusters were newly visible in adult but not in prepuber-

tal oocytes, where small aggregations were still present. In all, numerous isolated mitochondria

were scattered in the cytoplasm.

Our data are in agreement with previous studies on mammalian oocytes revealing that mi-

tochondria are redistributed during IVM (cattle: [8, 45]; dogs: [46]; goat: [47]; horse: [48]; hu-

mans: [29, 49, 50]; mice: [51]; pigs: [3, 52]). However, the conclusions were not consistent with

each other, suggesting a probably species-specific mitochondrial arrangement. For example,

during IVM of horse oocytes mitochondria aggregation changed from finely distributed

through crystalline to an aggregated, granulated appearance [48]. Calarco [51] reported that

fully mature mouse oocytes showed obvious polarity of mitochondrial distribution. In cyno-

molgus monkey oocytes, mitochondria were evenly distributed throughout the cytoplasm.

Table 4. Distribution of different mitochondria aggregation patterns in GV and MII prepubertal and adult ovine oocytes.

FINE GRANULAR CLUSTERED

GV Prepubertal 15 (55.6%)a 12 (44.4%)a 0a

Adult 6 (20.0%)b 24 (80%)b 0a

MII Prepubertal 18 (66.7%)a 9 (33.3%)a 0a

Adult 3 (9.1%)b 12 (36.4%)a 18 (54.5%)b

Different superscripts are statistically different (Chi square test: P<0.01).

doi:10.1371/journal.pone.0124911.t004
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There was no aggregation of mitochondria around nuclear material, and their distribution did

not differ between GV and MII stages [53]. This is, to our knowledge, the first study comparing

mitochondrial redistribution during IVM in ovine prepubertal and adult oocytes.

Català et co-workers [42] using MitoTracker Orange CMTMRos showed in prepubertal

ovine oocytes that at GV stage active mitochondria are homogeneous or peripheral distributed

and at MII active mitochondria are polarized around the metaphase spindle and inside the

polar body. Using confocal microscopy and the fluorescent labelling MitoTracker Red

CM-H2XRos to label active mitochondria we did not observe a similar distribution of active

mitochondria, probably caused by the different fluorescent probe used. We evidenced in GV

stage a sub-cortical membrane distribution of active mitochondria, which produced the

amount of ATP need to maintain molecular trafficking between corona radiata and oocyte cy-

toplasm [54, 55]. At MII stage, active mitochondria lost this compartmentalization and were

spread all over the cytoplasm and this was believed to be an indication of cytoplasmic matura-

tion [3, 55].

This finding was in accordance with studies carried out on other mammals such as cows,

pigs and humans [8]. Our study did not reveal the accumulation of mitochondria around the

nucleus as showed in other species (mouse: [51]; bovine: [8]; porcine: [3, 52]; monkey: [53];

human: [56]).

Fluorescent intensity measurement of Mitotracker labelled mitochondria revealed a higher

mitochondrial activity in MII than GV stage oocytes and in adult MII compared to prepubertal

ones. As stated above we classified prepubertal and adult sheep oocytes into three classes, as re-

ported by De Los Reyes [35], according to different phenotypes in the cytoplasm distribution

of active mitochondria during in vitro maturation which could be related to oocyte develop-

mental competence. A fine homogenous dispersion of active mitochondria in cytoplasm could

be an indicator of poor developmental competence, being carried from most of prepubertal

GV and MII stage oocytes. Most of adult GV oocytes showed the same fine granular dispersion

of active mitochondria but MII stage oocytes lost this distribution pattern and acquired a gran-

ular and, mostly, a clustered distribution. The presence of granular and clustered distribution

in MII adult oocytes which showed the highest ATP levels and developmental competence,

suggest that mitochondria clusterization is related to an increased mitochondria activity and a

higher intracytoplasmic ATP concentration. On the contrary, the persistence of diffused

unclustered mitochondria indicates their low activity and it justifies the low ATP concentration

measured in prepubertal oocytes. These mitochondrial distribution patterns found by CLSM

are interestingly correlated to the ultrastructural study. While CLSM analysis evidenced exclu-

sively functionally active mitochondria, ultrastructural studies allowed i) to detect all mito-

chondria present in a specific sub-ooplasmic domain, independently of their metabolic state,

and ii) to highlight the presence of morphological alterations, that could be related to a bio-

molecular imbalance. At GV stage TEM data did not show any difference in the number and

distribution of mitochondria between prepubertal and adult oocytes: mitochondria presented a

clusterized rosette-type arrangement interspersed among single mitochondria. At the same

stage, results on active mitochondria distribution obtained by Mitotracker staining and CLSM

showed that the 55.56% of prepubertal GV and the 20% of adult GV has a homogeneous fine

distribution (Pattern A) and those that remain has a granular distribution (Pattern B). Overlap-

ping these data we can speculate that some of mitochondria in clusters seen by TEM are

“switched-off”, thus resulting not active in the Pattern A distribution. In the granular distribu-

tion (Pattern B) more numerous active mitochondria are present in TEM clusters, conferring

the granular aspect to CLSM images.

At MII-stage after TEM analysis revealed a higher number of mitochondria but a compara-

ble number of clusters in adult oocytes compared to prepubertals, meaning also a higher
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number of mitochondria/cluster. CLSM data evidenced that in most of prepubertal oocytes ac-

tive mitochondria are finely distributed (Pattern A = 66.7%) and those that remain exhibit a

granular distribution (Pattern B), while in most of adult oocytes (54.5%) active mitochondria

are distributed in big clusters (Pattern C), indicating that most mitochondria of big clusters

seen in TEM were active. A schematic drawing (Fig 12) depicts our morphological and

morphometric evidences.

In conclusion our work evidenced the importance of the quality of oocyte cytoplasm to de-

termine the fate of an embryo and contributed to clarify the biochemical mechanisms associat-

ed with the meiotic progression and acquisition of developmental competence. We

demonstrated that mitochondria and their functional aggregation during maturation play an

active role to provide energy in terms of ATP. The cytoplasmic ATP content promotes all the

energy requiring processes which determine the timing of the cell cycle and the acquisition of

developmental competence. The oocytes with low developmental competence have a slowed

down energetic metabolism which delay physiological times of later development.
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