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Abstract. 

 

Using fluorescence in situ hybridization 

we show striking differences in nuclear position, 

chromosome morphology, and interactions with nu-

clear substructure for human chromosomes 18 and 

19. Human chromosome 19 is shown to adopt a 

more internal position in the nucleus than chromo-

some 18 and to be more extensively associated with 

the nuclear matrix. The more peripheral localization 

of chromosome 18 is established early in the cell cy-

cle and is maintained thereafter. We show that the 

preferential localization of chromosomes 18 and 19 

in the nucleus is reflected in the orientation of trans-

location chromosomes in the nucleus. Lastly, we 

show that the inhibition of transcription can have 

gross, but reversible, effects on chromosome archi-

tecture. Our data demonstrate that the distribution of 

genomic sequences between chromosomes has im-

plications for nuclear structure and we discuss our 

findings in relation to a model of the human nucleus 

that is functionally compartmentalized.

Key words: chromosome territories •  genome or-

ganization •  nuclear compartmentalization •  tran-

scription •  translocations
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 arrangement of human chromosomes on the mi-

totic spindle could reflect an ordered arrangement

of chromosomes at interphase (Nagele et al., 1995).

Whole chromosomes occupy discrete territories in the nu-

cleus (Cremer et al., 1993 and references therein). Never-

 

theless, with the exception of the inactive X (Xi)

 

1

 

 that is

positioned against the nuclear membrane, and the rDNA-

containing chromosomes that are intrinsic to the nucleo-

lus, there has been little evidence that other whole mam-

malian chromosomes regularly adopt defined addresses

within the nucleus (Manuelidis, 1990).

Here, we investigate whether the two small human chro-

mosomes 18 and 19 (HSA18 and HSA19) adopt different

 

dispositions within the nucleus by fluorescence in situ

hybridization (FISH). There are several reasons why

these two chromosomes make for interesting comparisons:

HSA18 and 19 are similarly sized DNA molecules, con-

taining 85 Mb and 67 Mb of DNA, and so comprising 2.6

and 2%  of the physical length of the genome, respectively

(Morton, 1991), yet these two chromosomes have con-

trasting functional and structural characteristics. HSA19

contains a high density of CpG islands (Craig and Bick-

more, 1994) and repeats of the Alu family (Korenberg and

Rykowski, 1988), replicates most of its DNA in the early

part of S phase (Dutrillaux et al., 1976), and has abundant

hyperacetylated histone H4 in its chromatin (Jeppesen

and Turner, 1993). HSA19 also has the highest observed/

expected ratio of gene-based marker assignments of any

human autosome (Cross et al., 1997; Deloukas et al., 1998)

with 3.7%  of such markers assigned to it. In contrast,

HSA18 has far fewer gene assignments than expected for

its size (Cross et al., 1997; Deloukas et al., 1998), with only

1.7%  of gene-based markers mapped to it. It also has a low

CpG island density, a high concentration of the L1 family

of repeats, and a high proportion of late replicating DNA

(Dutrillaux et al., 1976; Korenberg and Rykowski, 1988;

Craig and Bickmore, 1994). Little hyperacetylated H4 is

detected on this chromosome (Jeppesen and Turner,

1993).

We compare the nuclear position and chromosome mor-

phology of human chromosomes 18 and 19 through the

cell cycle and in different cell types and visualize the asso-

ciation of DNA from each chromosome with substructure

of the nucleus. The effects of inhibiting transcription and

histone deacetylation on nuclear organization are assessed
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1. 

 

A bbreviations used in this paper:

 

 2D, two dimensional; 3D, three dimen-

sional; AMD, actinomycin D; DAPI, 4,6-diamidino-2-phenylindole; DRB,

 

5,6-dichloro-

 

b

 

-

 

D

 

-ribofuranosylbenzimidazole; FISH, fluorescence in situ

hybridization; HSA18, human chromosome 18; HSA19, human chromo-

some 19; MAA, 3:1 methanol/acetic acid; pFa, paraformaldehyde; PI, pro-

pidium iodide; TSA, Trichostatin A; Xa, active X chromosome; Xi, inac-

tive X chromosome.

 o
n
 D

e
c
e
m

b
e
r 2

3
, 2

0
0
8
 

jc
b
.ru

p
re

s
s
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

 Published June 14, 1999

http://jcb.rupress.org


 

The Journal of Cell Biology, Volume 145, 1999 1120

 

and we have used a reciprocal t(18;19) to study the behav-

ior of portions of chromosomes 18 and 19 that have been

moved to new genomic locations. We show that human

chromosomes 18 and 19, and portions thereof, occupy dis-

tinct nuclear compartments and that their associations

with nuclear substructure are dramatically different. We

also demonstrate reversible changes in chromosome mor-

phology, accompanying the inhibition of transcription, that

differ between the two chromosomes. Our demonstration

that, within the nucleus, specific human chromosomes can

have quite different dispositions from each other illus-

trates the importance of transposing linear maps of the ge-

nome into the nuclear space.

 

Materials and Methods

 

Cell Culture, Cell Cycle Fractionation, and Preparation 
of Nuclear Halos

 

Human primary lymphocytes were stimulated with phytohemagglutinin;

both lymphocytes and lymphoblasts (46XY) were grown in RPMI 

 

1

 

 10%

FCS. Human primary fibroblasts (less than passage 10) and HT1080 cells

were grown in DMEM 

 

1

 

 10%  FCS. To identify cells in S phase, BrdU was

added to cultures at 0.1 mM. To irreversibly inhibit transcription, actino-

mycin D  (A MD ) was added 2 h before harvest to 5 

 

m

 

g/ml. To revers-

ibly inhibit R NA  pol II cells were cultured with 50 

 

m

 

g/ml 5,6-dichloro-

 

b

 

-

 

D

 

-ribofuranosylbenzimidazole (DRB) for 5 h (Haaf and Ward, 1996).

Inhibition was relieved by culturing the cells for a further 1 h in the ab-

sence of drug. To inhibit histone deacetylase activity, cells were cultured

in the presence of 10 ng/ml Trichostatin A (TSA) for 2 h (Bickmore and

Carothers, 1995).

Cells were fixed in 3:1 methanol/acetic acid (MAA) using standard pro-

cedures. Human lymphoblasts, swollen in 0.075 M KCl, were also cytocen-

trifuged onto slides and fixed with 4%  paraformaldehyde (pFa) made up

in 120 mM KCl, 20 mM NaCl, 10 mM Tris HCl, pH 8.0, 0.5 mM EDTA,

0.1%  Triton X-100. To preserve three dimensional (3D) nuclear structure,

HT1080 cells and primary fibroblasts were grown on slides and fixed with

4%  pFa for 10–20 min.

An exponential culture of lymphoblastoid cells was labeled with 0.1 mM

BrdU for 45 min before harvest. 1.25 

 

3

 

 10

 

8

 

 cells in 10 ml of PBS, 1%  FCS,

0.3 mM EDTA, 0.1%  glucose were loaded at 11 ml/min into a 5-ml elutri-

ation chamber of a JE5.0 centrifugal elutriator (Beckman) at 2,500 rpm.

Fractions were taken at increasing flow rates up to a maximum of 60 ml/

min; the last fraction was collected at 60 ml/min, 2,000 rpm. Fractions were

assayed by FACS

 

®

 

 after staining with propidium iodide (PI), by nuclear

size, and by their pattern of BrdU incorporation.

Interphase nuclei from lymphoblasts, prepared in polyamine buffer,

were incubated in extraction buffer (Bickmore and Oghene, 1996) con-

taining increasing concentrations of NaCl (0.5, 1.0, 1.2, and 1.8 M). Slides

were then fixed twice in MAA before FISH.

 

Preparation of Chromosome Painting Probes

 

Chromosome paints for HSA18 and 19 were prepared in a variety of dif-

ferent ways and their specificity was confirmed by FISH to mitotic chro-

mosomes. A  chromosome 19 paint was prepared by human-specific inter-

Alu PCR from a Chinese hamster–human monochromosome 19 hybrid

cell line GM10449A and labeled by nick translation. To test that this

probe detected the entirety of HSA19, total DNA from the hybrid cell

line was also nick translated and a commercially available HSA19 paint,

produced by both inter-Alu and inter-LI PCR (Oncor) was also tested.

Chromosome paints prepared by the amplification of total DNA from mi-

crodissected HSA19p and q arms were also used (Guan et al., 1996).

A total chromosome 18 paint was prepared from FACS

 

®

 

-sorted chro-

mosomes digested with MseI, and ligated to catch-linkers (5

 

9

 

-TACCGT-

TAAGCGTCAATCATGG-3

 

9

 

 [CH18-1] and 5

 

9

 

-CCATGATTGACGCT-

TAACGG-3

 

9

 

 [CH18-2]), provided by S. Cross. CH18-2 was used as a

primer for PCR in the presence of biotin- or digoxigenin-labeled dUTP

for 35 cycles. Total DNA from the Chinese hamster–human somatic cell

hybrid GM10110, a commercially available chromosome 18 paint (Oncor)

and microdissected 18p and q arm paints (Guan et al., 1996) were also

tested.

 

The area taken up by FISH signal with paints from different sources

was assessed in 50 nuclei. No significant differences were found between

paints for the same whole chromosome prepared in different ways but de-

tected with the same fluorochrome. However, when signals from the same

paints labeled with both biotin and digoxigenin and cohybridized were

compared, Texas red (TR) signals occupied a larger proportion of the nu-

clear area than did FITC signals. Therefore, it was important that compar-

isons made were with the same fluorochrome.

 

FISH and Immunofluorescence

 

FISH on 3:1 fixed nuclei was as described previously (Bickmore and

Carothers, 1995). Where flattened cells had been fixed in pFa for 15 min,

slides were treated with 0.07 M NaOH-EtOH (2:5) for 5 min before dena-

turation. 3D-preserved cells were fixed in 4%  pFa for 10 min, washed in

PBS, and then permeabilized with 0.5%  saponin, 0.5%  Triton X-100 in

PBS for 10 min at room temperature. The slides were incubated in 20%

glycerol-PBS for 30 min and then subjected to 

 

,

 

5 repeated freeze–thaw

cycles in liquid N

 

2

 

. Before hybridization these slides were treated with

0.1 M HCl for 5 min at room temperature and with 100 

 

m

 

g/ml RNase A at

37

 

8

 

C for 20 min. Slides were then denatured at 75

 

8

 

C in 70%  formamide,

2

 

3

 

 SSC, pH 7.0, for 3 min followed by 1 min in 50%  formamide, 2

 

3

 

 SSC,

pH 7.0 (Kurz et al., 1996). 150 ng of chromosome paint and 10–30 

 

m

 

g CotI

DNA, or 200 ng labeled P1-BAC DNAs and 3 

 

m

 

g Cot 1 DNA, were used

per slide. Biotinylated probes were detected using fluorochrome-conju-

gated avidin (FITC or TR) (Vector), followed by biotinylated antiavidin

(Vector) and a final layer of fluorochrome-conjugated avidin. Digoxige-

nin-labeled probes were detected with sequential layers of FITC-conju-

gated antidigoxigenin (BCL) and FITC-conjugated anti–sheep (Vector).

To combine immunofluorescence with FISH in cells fixed with 4%  pFa,

after detection of the hybridization signals, slides were incubated for 1 h at

room temperature, or at 4

 

8

 

C overnight, with a 1:10 dilution of rabbit anti-

pKi67 MIB-1 antibody (Dianova) and a monoclonal antibody LN43.2 (gift

of B. Lane) directed against B-type lamin. These were detected with TR

anti–rabbit and AMCA anti–mouse secondary antibodies (Vector). Slides

were counterstained with either 1 

 

m

 

g/ml 4,6-diamidino-2-phenylindole

(DAPI) or 0.2 

 

m

 

g/ml PI and examined either using a Zeiss Axioplan fluo-

rescence microscope, equipped with a triple band-pass filter (Chroma

81000), or with a BioRad-MRC 600 confocal laser scanning microscope

fitted with an argon laser and a dual filter set (FITC and PI). For random

selection of nuclei for analysis, images were taken of consecutive nuclei

that presented in a spiral scan pattern from the center of the slide and

which did not touch adjacent nuclei. Gray scale images from the Axioplan

were collected with a CCD camera (Photometrics), pseudocolored, and

merged using Digital Scientific SmartCapture extension to IPLab Spec-

trum.

 

Image Analysis

 

Using IPLab Spectrum software, scripts were written to analyze the data

from flattened specimens. In the first, most applicable to the analysis of

circular (spherical) nuclei, the DAPI image was segmented and the area

and centroid coordinates calculated. The mean FITC and TR pixel inten-

sities within the area of the DAPI segmented nucleus were calculated and

subtracted from the FITC and TR images to remove background. A  re-

gion of interest was then defined manually around the signal. The signal

within this region was then segmented and the area and signal intensity

weighted centroid coordinates calculated. The area of the signal was nor-

malized for nuclear size by dividing by the nuclear area (see Table II). The

DAPI image was converted to binary form. Using the coordinates of the

signal weighted centroid as the center, an appropriately sized segmenta-

tion disc was adjusted by dilation and erosion until a single pixel with zero

intensity was determined. This was taken as the nearest edge of the nu-

cleus to the signal. The signal segment was converted to binary form, a

chord was drawn from the centroid of the signal to the nearest edge of the

nucleus, and the coordinates established for the first pixel with zero inten-

sity. This was taken to be the edge of the hybridization signal closest to

nuclear periphery. These coordinates were used to determine the relative

distances between either the edge of the hybridization signal, or the

weighted center of the signal, and the nearest edge of the nucleus and also

between the center of the signal and the center of the nucleus (see Table I).

The erosion analysis script segmented the DAPI signal and recorded

the area and centroid coordinates. The area was divided into concentric

shells (1–5) of equal area from the periphery of the nucleus to the center.

Background was removed from the FISH signal by subtraction of the

mean signal pixel intensity within the segmented nucleus, as described
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above. The proportion of FISH signal and DAPI fluorescence was then

calculated for each shell (see Fig. 1).

For confocal analysis nuclei were scanned and imaged using BioRad

Comos software. Images from four high resolution scans were averaged

using a Kalman electronic filter and 0.5 or 1 

 

m

 

m optical sections were

taken. The positioning of chromosomes in relation to the nuclear periph-

ery was assessed manually from the PI staining using display software in

IP LabSpectrum. The area of hybridization signal in optical sections was

measured as a proportion of the nuclear area as defined by the counter-

stain.

 

Results

 

Chromosomes 18 and 19 Occupy Contrasting Positions 
within the Nucleus

 

Chromosome paints for HSA18 and 19 were used in FISH

to two-dimensional (2D) preparations of nuclei, swollen in

hypotonic, and fixed in MAA, from asynchronous cultures

of two primary and two transformed human cell types

(Fig. 1, a–d), and also to nuclei swollen in hypotonic and

then fixed with 4%  pFa (Fig. 1 e). In all of these cases

HSA18 and 19 were seen to adopt different positions

within the nucleus, and when nuclei were cohybridized

with differently labeled paints for HSA18 and 19 (Fig. 1, a

and b) signals for both chromosomes 18 appeared to be in

a more peripheral location than those of HSA19.

Using flattened specimens enabled the capture and

analysis of images from large numbers of nuclei (

 

z

 

50 in

each case) hybridized either with biotinylated HSA18 or

HSA19 (Fig. 1) and subsequent statistical evaluation of

the relative nuclear positions of these two chromosomes.

In the circular (spherical) nuclei of lymphocytes and lym-

phoblasts the distances between both the edge, and the

signal intensity weighted center of the chromosome terri-

tory, to the edge of the nucleus were measured, as was the

distance between the center of the nucleus and the signal

intensity weighted center of the chromosome territory

(Table I). Signals for both chromosomes 18 were signifi-

cantly closer to the nuclear periphery in lymphocytes and

lymphoblasts than those of HSA19 and, conversely, chro-

mosomes 19 were located significantly closer to the center

of the nuclear area than HSA18s. These data were inde-

pendent of whether total PCR amplified chromosome 19p

and q arm DNA was used as a probe or whether the DNA

was labeled by inter-Alu PCR (Table I).

The nuclei of fibroblasts and fibrosarcoma cells are el-

lipsoid, so the analyses in Table I were not appropriate.

2D nuclei from four cell types were examined by erosion.

The nuclear area was divided into concentric shells (1–5)

of equal area from the periphery of the nucleus to the cen-

ter. The proportion of FISH signal and DAPI fluorescence

was calculated for each shell. The absolute values of these

are influenced by the geometric properties of the nucleus

in each cell type and the definition of the nuclear periph-

ery afforded by the DAPI counterstain, but a comparison

of the proportion of the DAPI stain or hybridization signal

from HSA18 and 19 paints in each concentric nuclear shell

(Fig. 1) indicates that chromosome 18 is more peripheral

than HSA19 within the diploid nuclei of all the cell types

and in nuclei fixed with either MAA or pFa. The propor-

tion of hybridization signal from HSA18 in the outermost

shell (shell 1) was always greater than, or similar to, the

proportion of DAPI stain located there, whereas the pro-

portion of HSA19 located in this shell was always signifi-

cantly less than the proportion of the DAPI stain. Con-

versely, in the most central shell (shell 5) the proportion of

HSA19 signal found there was always greater than that of

the DAPI stain. The same relative positions of HSA18 and

19 were also seen in fibrosarcoma cells carrying trisomies

 

Table I. Relative Nuclear Positions of HSA18 and 19

 

Cell type

Cell cycle

stage/preparation

Normalized edge signal to

edge nucleus (

 

4

 

 by 

 

√

 

NA)

Normalized center signal to

edge nucleus (

 

4

 

 by 

 

√

 

NA)

Normalized center signal to

center nucleus (

 

4

 

 by 

 

√

 

NA)

18 19 18 19 18 19

 

Lymphoblastoid Interphase (4% pFa) 0.09 0.12 0.20 0.25 0.35 0.30

Interphase (MAA) 0.08 0.18 0.18 0.32 0.38 0.25

p arm 0.15 0.27

 

6

 

0.02

 

0.19 0.32

 

6

 

0.02

 

0.36 0.23

 

6

 

0.02

 

q arm 0.13 0.29

 

6

 

0.02

 

0.18 0.34

 

6

 

0.02

 

0.38 0.22

 

6

 

0.02

 

G

 

1

 

0.08 0.18 0.19 0.32 0.38 0.25

Early S 0.10 0.16 0.21 0.29 0.35 0.24

Late S 0.13 0.18 0.24 0.32 0.31 0.23

G

 

2

 

0.11 0.16 0.22 0.30 0.34 0.26

AMD 0.09 0.17 0.20 0.30 0.35 0.25

DRB 0.15 0.24 0.21 0.32 0.34 0.24

DRB release 0.14 0.23 0.20 0.31 0.35 0.24

TSA 0.09 0.19 0.19 0.32 0.37 0.24

Normal lymphocytes 0.07 0.16 0.17 0.32 0.39 0.23

t(18;19) lymphocytes Normal chromosomes 0.06 0.18 0.19

 

6

 

0.02

 

0.35 0.38

 

6

 

0.02

 

0.21

Derived chromosomes 0.09

 

6

 

0.02

 

0.15 0.18

 

6

 

0.02

 

0.28 0.38

 

6

 

0.03

 

0.29

 

Measurements made (in pixels) from 50 2D nuclei for the distance between the edge of the chromosome territory to the edge of the nucleus, and between the center of gravity of

the chromosome territory to the center of the nucleus, in lymphoblastoid cells fixed either with 4% pFa or MAA, and from both asynchronous cultures as well as from different cell

cycle fractions separated by centrifugal elutriation. Cell cycle stage was assessed both by FACS

 

®

 

 analysis and by staining patterns with BrdU (see Fig. 3 b). Measurements were

also made with 2D nuclei from lymphoblasts treated with inhibitors of transcription (AMD or DRB) and histone deacetylation (TSA). Nuclei within standard cytogenetic prepara-

tions of normal lymphocytes and those from a t(18;19) were also measured. All distances were standardized by dividing by the square root of nuclear area (NA) as an estimate of

the nuclear radius. All standard errors of the mean were 

 

#

 

0.01 unless otherwise indicated. The significance of the difference in position between HSA18 and 19 was assessed us-

ing a two-sample, two-tailed distribution Student’s 

 

t

 

 test. 

 

P

 

 

 

,

 

 0.000 in all cases. The significance of the difference in position between the derived and normal chromosomes in the

t(18;19) was similarly assessed, but 

 

P

 

 

 

,

 

 0.059 for normal and derived 18s and 0.11 for the chromosomes 19.
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for either HSA18 or 19 (the population of these cells has a

variable karyotype) (Fig. 1 d).

Extrapolation of data from 2D preparations assumes

that the relative organization of the intact nucleus is not

significantly perturbed. In 

 

Drosophila

 

, a comparison of

data collected from hypotonically treated and squashed

nuclei, with those collected from 3D-preserved nuclei, has

confirmed the validity of this assumption (Csink and Heni-

Figure 1. Human chromosomes 18 and 19 interphase territories. 2D preparations of nuclei, swollen in hypotonic and fixed either with

MA A  (a–d) or with 4%  pFa (e), were hybridized with HSA 18 and 19 paints. In the central panels of a–e HSA 18 and 19 paints were

biotinylated and detected with avidin-FITC (green). In the left-hand panels of a and b, paints were labeled either with biotin and de-

tected with TR (red) or with digoxigenin and detected with FITC (green). All nuclei were counterstained with DAPI (blue). (a) Pri-

mary lymphocytes; (b and e) lymphoblastoid cell line; (c) primary fibroblasts; (d) HT1080 fibrosarcoma cells. Bars, 2 mm. On the right,

histograms show the mean proportion of DAPI stain (blue bars), and HSA18 (filled bars) and HSA19 (open bars) hybridization signals

in each of the five concentric shells of equal area eroded from the periphery (1) to the center (5) of 50 segmented nuclei. Error bars

show SEM.
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koff, 1998). However, we still considered it important to

confirm our observations in 3D human nuclei that had not

been subject to hypotonic swelling. Also, signals that ap-

pear to be in the center of flattened nuclei might be lo-

cated close to the periphery on either the top or bottom

surface of the nucleus. Therefore, hybridization signals for

HSA18 and 19 were examined in optical sections through

the nuclei of primary fibroblasts and HT1080 cells that had

been fixed with pFa, using confocal laser scanning micros-

copy (Fig. 2). In 94%  of cells (

 

n

 

 

 

5 

 

78 cells, 156 chromo-

somes), a substantial amount of the signals from both

chromosomes 18 was coincident with the nuclear periph-

ery, as defined from the DNA counterstain (e.g., Fig. 2 a).

By contrast, in 16%  of cells hybridized with an inter-Alu

HSA19 paint (

 

n

 

 

 

5 

 

56 cells, 112 chromosomes) and sec-

tioned at 0.5-

 

m

 

m intervals, and in 20%  of cells hybridized

with total HSA19 DNA (

 

n

 

 

 

5 

 

35 cells, 70 chromosomes)

(1-

 

m

 

m sections) we could not detect any signal from either

chromosome 19 adjacent to the nuclear periphery at this

level of resolution (e.g., Fig. 2 d). Hence our observations

in 3D-preserved cells, that had been fixed with pFa and

not subjected to hypotonic swelling, are consistent with

the conclusions of our analysis of 2D specimens. It was

also interesting to note that in the 

 

z

 

 sections of 3D-pre-

served fibroblasts, 65.5%  of chromosomes 18 were close to

the lateral edge of confocal midsections (e.g., both chro-

mosomes in Fig. 2 a). Proximity of chromosomes 18 to the

upper or lower edges of the nucleus could be seen (note

the green hybridization signals within the outer optical

sections of Fig. 2 b). Where chromosomes 19 did appear

close to the nuclear periphery this was often at the top or

bottom surface of the nucleus.

The demands of preserving nuclear structure yet allow-

ing hybridization to denatured target DNA are conflicting.

However, it has been shown that in cells fixed with pFa,

 

permeabilized, and then processed for FISH using the

method described here, that centromeres remain in the

same spatial position before and after the FISH procedure

(Cremer et al., 1993; Kurz et al., 1996). To confirm that

some components of nuclear compartments and the nu-

clear periphery were not disrupted by this procedure,

FISH with HSA18 and 19 paints was combined with im-

munofluorescence for a B-type lamin, a component of the

nuclear lamina (Gerace et al., 1978), and for pKi-67, a pro-

tein that locates from satellite DNA to the nucleolus from

mid-late G

 

1 

 

(Fig. 3 a) (Bridger et al., 1998). Between 50

and 100 nuclei were examined and the majority of chro-

mosomes 18, but not 19, were located close to the nuclear

lamina, as detected with anti–lamin B.

 

Chromosome 18 and 19 Localization Is Established 
Early in the Cell Cycle

 

The pKi-67 antigen coats chromosomes in mitosis and for

most of interphase (from mid G

 

1

 

 through to G

 

2

 

) it accu-

mulates in the nucleolus. However, in very early G

 

1

 

 pKi-67

is distributed in nuclear foci that correspond with blocks of

heterochromatin (Bridger et al., 1998). In combined im-

munofluorescence-FISH of 3D preparations of human fi-

broblasts HSA18 was located close to the lamina both in

cells with a nucleolar pattern of pKi-67 distribution and

also in those cells with a pKi-67 staining pattern indicative

of early G

 

1

 

. A t these same stages human chromosome 19

appeared to be in a more internal region of the nucleus

(Fig. 3 a). Hence, the difference in subnuclear compart-

mentalization of HSA18 and 19 is established very early in

the cell cycle, probably as cells exit telophase.

HSA18 and 19 territories were also examined in the 2D

nuclei from exponentially growing human lymphoblasts,

pulsed with BrdU, and fractionated by centrifugal elutria-

Figure 2. Subnuclear localization of HSA18 and 19 in optical sections through 3D-preserved nuclei. Confocal z  series (1 mm) of hybrid-

ization to 4%  pFa–fixed 3D human dermal fibroblasts with paints for either HSA18 (a and b) or HSA19 (c and d), prepared from ran-

domly amplified total DNA from each chromosome and detected with FITC (green-yellow) and counterstained with PI (red). Cells

were either untreated (a and c) or treated with DRB (b and d). Bars, 10 mm.
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tion (Fig. 3 b). 50 nuclei from each cell cycle stage fraction

were examined. The relative positions of HSA18 and 19

were maintained throughout the cell cycle. Chromosome

18 was more peripheral than HSA19 even in cells that, on

the basis of their fractionation and pattern of BrdU stain-

ing, appeared to be in late S phase (Fig. 3 b and Table I).

This suggests that the relative nuclear positions of chro-

mosomes 18 and 19 are maintained before, during, and af-

ter chromosome replication.

 

Human Chromosome 19 Occupies a Less Compact 
Chromosome Territory than Chromosome 18

 

Paralleling their DNA content, chromosomes 18 at C-meta-

phase have a mean area 10%  greater than chromosomes

19 (Table II). However, HSA19 hybridization signal ap-

peared to occupy a larger proportion of nuclear area in 2D

preparations than did HSA18 (Fig. 1). The normalized

area of hybridization signals for both homologues of

HSA18 and 19 were measured in lymphocytes and lym-

phoblasts (Table II and Fig. 4 a). HSA18 occupied a signif-

icantly smaller fraction of nuclear area than HSA19, in

 

flattened preparations of both MAA- and pFa-fixed nu-

clei, independent of the method of labeling of HSA19. The

differences in the proportion of nuclear area occupied by

whole chromosome paints for HSA18 and 19 were also

seen when the signals from chromosome paints specific for

the p or q arms of the chromosomes were compared (Ta-

ble II and Fig. 5, a–d) (Guan et al., 1996). For example,

although the q arm of the submetacentric chromosome 18

is estimated to contain 65 Mb of DNA, it occupied the

same proportion of the nuclear area as the estimated 37

Mb of DNA in the q arm of metacentric chromosome 19

(Table II).

Variance in the proportion of nuclear area occupied by

the two chromosomes 18 within a single nucleus was simi-

lar to that of chromosomes 18 in different nuclei (0.007 vs.

0.010,

 

 P 

 

,

 

 0.079). However, for HSA19 territories there

was significantly less variance between homologues within

the same nucleus (0.016) than between chromosomes in

different nuclei (0.040,

 

 P 

 

,

 

 0.001) indicating that chromo-

some 19 compaction may vary between cells that, for ex-

ample, are at different stages of the cell cycle to a larger

extent than chromosomes 18. In elutriated fractions of

Figure 3. HSA18 and 19 territories through the

cell cycle. (a) Combined FISH and immunoflu-

orescence in 4%  pFa–fixed 3D fibroblasts with

either chromosome 18 or 19 paints (green)

and with antibodies against pKi-67 (red) and

B-type lamin (blue). The cells on the left are in

early stages of G 1 and those on the right in mid

G 1, S, or G 2 based on their pattern of pKi-67

staining (Bridger et al., 1998). Bar, 5 mm. (b)

FISH for HSA18 or 19 (red) in flattened prepa-

rations of MAA-fixed lymphoblast nuclei,

pulsed with BrdU (green), and separated by

centrifugal elutriation. Blue is DAPI. Bar, 2

mm. FACS® analyses of PI-stained nuclei from

elutriated fractions chosen to represent G 1,

early S, late S, and G 2 are shown beneath each

panel. Horizontal bars on the FACS® profiles

indicate the gating for cells in G 1 (left) and for

those in S and G 2 (right).
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lymphoblasts, areas of HSA18 signals were always smaller

than those of chromosome 19 and the proportion of nu-

clear area that they occupied decreased from G

 

1

 

 to G

 

2

 

. In

contrast, HSA19 occupied the largest proportion of nu-

clear area in early S phase (Table II).

Signals from chromosome 19 also appeared to be more

dispersed and irregular than those of HSA18 in both flat-

tened nuclei (Fig. 1) and in optical sections of 3D nuclei

(Fig. 2). We do not have the facilities necessary to directly

compute the volumes of HSA18 and 19 in 3D reconstruc-

tions. However, we analyzed the sum of the areas occu-

pied by segmented hybridization signal from each chromo-

some as a proportion of the sum of nuclear areas in 1-

 

m

 

m

sections through 10 nuclei (20 chromosomes 18 and 19

each). By this analysis, chromosomes 18 and 19 occupied

3.4 

 

6

 

 0.3%  and 5.0 

 

6

 

 0.3% , respectively, of the summed

nuclear areas of these 3D-preserved cells (Fig. 4 b). The

proportion of the summed nuclear areas occupied by sig-

nals from chromosomes 19 is significantly larger (

 

P

 

 

 

,

 

0.001) than that occupied by chromosome 18, consistent

with the analyses performed on flattened specimens (Ta-

ble II).

 

Transcription and Histone Acetylation Affect Territory 
Compaction but Not Nuclear Position

 

To analyze the effects of transcription on the territories of

HSA18 and 19, lymphoblasts were treated with AMD, an

irreversible inhibitor of RNA pols I and II. To assess the

drug’s effectiveness a sample of cells, before and after

treatment, was examined by immunofluorescence with an

antibody against snRNPs (data not shown) (Carmo-Fon-

seca et al., 1992; Bregman et al., 1995). In AMD-treated

cells the chromosome 19 territory, but not that of HSA18,

 

occupied a significantly smaller proportion of the nuclear

area than in untreated cells (Table II and Fig. 4 a). The

adenosine analogue DRB is a reversible and specific in-

hibitor of RNA polymerase II. The effect of DRB, and its

removal, on lymphoblast and fibroblast cells was assessed

by the redistribution of nuclear and nucleolar antigens by

immunofluorescence (data not shown) (Scheer et al., 1984;

Bridger et al., 1998). In the presence of DRB HSA19 terri-

tories occupied a smaller proportion of the nuclear area in

flattened specimens than those of HSA18 and this com-

paction of HSA19 was partially reversed after removal of

DRB for 1 h (Table II and Fig. 4 a). This was confirmed by

analyzing the proportion of nuclear area occupied by sig-

nal from each territory summed across confocal 1-

 

m

 

m op-

tical sections of 3D-preserved cells fixed in pFa. Whereas

in untreated cells the summed chromosome 19 territory

areas were 1.5 times larger than those of HSA18, in DRB-

treated cells chromosome 19 appeared to be only 0.33

times the size of chromosome 18 (

 

n

 

 

 

5 

 

10 cells each) (Fig. 4

b). No significant differences between the summed areas

of chromosomes 18 within treated and untreated cells

were detected (

 

P

 

 

 

,

 

 0.3), however, chromosomes 19 in

DRB-treated cells appeared to be significantly smaller

than those in untreated controls (

 

P

 

 

 

,

 

 0.000).

By contrast, treatment of cultures with the histone

deacetylase inhibitor TSA, to concentrations known to in-

fluence replication timing within lymphoblast cells (Bick-

more and Carothers, 1995), enhanced the differences in

HSA18 and 19 areas (Table II and Fig. 4 a). There was no

change in the relative chromosome positions within the

nucleus when transcription was inhibited with AMD or

DRB, or in the presence of TSA (Table I).

 

The Orientation of Normal and
Translocation Chromosomes

 

Subnuclear localization of specific human chromosomes

may result from differences in DNA sequences distributed

along the chromosome arms, or at the centromeres or telo-

meres of each chromosome. To determine whether both

arms of chromosome 18 lie close to the nuclear periphery,

and whether both 19p and q are equidistant from the cen-

ter of the nucleus, paints specific for either 18p or q and

19p and q were cohybridized to flattened lymphoblast nu-

clei (Guan et al., 1996). Both 18p and q appeared in associ-

ation with the edge of the nucleus (Fig. 5, a and b) and

both 19p and q were found in a more central location (Fig.

5, c and d). Examination of the distances between the edge

of the nucleus and the edge or intensity weighted signal

center for the

 

 p and q arms, and between the center of the

nucleus and the intensity weighted signal centers (Table I)

confirmed that the relative subnuclear localization ob-

served for HSA18 and 19 reflects properties of both the p

and q arms equally. To establish the orientation of chro-

mosome 18 with respect to the nuclear periphery, HSA18

paint was also cohybridized with P1 52M11 and BAC

75F20, specific for 18pter and 18qter, respectively (gift of

J. Fantes). Most (63–65% ) territories in flattened nuclei

fixed in MAA had the p or q telomere at one or the other

end of the territory (n 5 98). In most other cases the telo-

mere appeared to be on the surface of the territory facing

the nuclear interior; localization to the surface of the terri-

Table II. Relative Area of HSA18 and 19
Chromosome Territories

Cell type

Cell cycle stage or

treatment

Proportion of nuclear area

occupied by chromosome Area

HSA19/

HSA1818 19

Lympho- C-Metaphase N/A N/A 0.92

cytes Interphase 5.760.2 9.260.3 1.60(P , 0.00)

Lympho- C-Metaphase N/A N/A 0.90

blasts Interphase 5.360.1 6.860.3 1.28(P , 0.00)

p 1 q arms 1.4 1 3.060.1 2.5 1 2.960.2 1.23(P , 0.00)

Interphase

(4% pFA)

5.060.2 6.260.2 1.24(P , 0.00)

G1 6.160.1 7.360.2 1.20(P , 0.00)

Early S 5.560.2 9.360.3 1.70(P , 0.00)

Late S 5.460.1 7.760.2 1.43(P , 0.00)

G2 4.860.1 6.660.2 1.40(P , 0.00)

AMD 5.460.2 5.660.2 1.03(P , 0.40)

DRB 5.860.2 5.260.2 0.90(P , 0.04)

DRB release 5.360.1 5.860.2 1.09(P , 0.11)

TSA 4.960.1 7.460.3 1.51(P , 0.00)

Territories from 25 metaphase spreads or 50 2D nuclei were analyzed in each case.

The mean proportion of nuclear area (area signal 4 nuclear area in pixels) and the

standard error of the mean are shown where applicable. The ratio of areas for

C-metaphase chromosomes 19/18 is similar to the ratio of lengths for these chromo-

somes previously recorded (Van Dyke et al., 1986). All cells were treated with hypo-

tonic and fixed with MAA unless otherwise indicated. The significance of the differ-

ence in area between signals from chromosomes 18 and 19 was assessed using a

two-sample, two-tailed distribution Student’s t test. N/A, not applicable.
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Figure 4. Dependence of territory sizes on transcription and histone deacetylation. (a) Frequency histograms of the proportion of nu-

clear area occupied by hybridization signals (detected with FITC) of HSA18 (filled bars) and 19 (open bars) in 50 swollen and flattened

MAA-fixed lymphoblastoid nuclei. (b) Histograms of the proportion of summed nuclear area occupied by hybridization signals (de-

tected with FITC) of HSA18 (filled bars) and 19 (open bars) through the confocal sections of 5–10 fibroblast nuclei fixed with 4%  pFa.

Vertical solid and dashed lines show mean proportionate areas for HSA18 and 19, respectively. Cells were either untreated, or treated

with AMD, DRB, or TSA before harvest. DRB-treated cells were also grown for 1 h in the absence of DRB (DRB release).
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tory adjacent to the nuclear envelope was rare (7–11% )

(Fig. 5 e). This was also the case in 3D-preserved nuclei

(Fig. 5 f) and suggests that HSA18 might contact the nu-

clear periphery through the bulk of its chromosome arms,

not specifically through either telomeric end.

Are the positions of HSA18 and 19 within the nucleus

therefore confined to the intact chromosomes or can they

be conferred by subchromosomal regions? Chromosomes

and nuclei in standard cytogenetic preparations from an

asymptomatic individual with a balanced reciprocal trans-

Figure 5. The orientation of

chromosomes 18 and 19 in nor-

mal nuclei and those from a

t(18;19). (a and b) Lymphoblast

nuclei cohybridized with paints

specific for 18p and q arms

(Guan et al., 1996). 18p is in red

in a and in green in b. 18q is in

the reciprocal color in each case,

as indicated. DAPI counter-

stain is blue. (c and d) Lympho-

blast nuclei cohybridized with

paints specific for 19p and q

arms (Guan et al., 1996). 19p is

in red in c and in green in d. 19q

is in the reciprocal color in each

case, as indicated. DAPI coun-

terstain is blue. (e) Flattened

primary lymphocytes hybrid-

ized simultaneously with HSA18

paint (red) and telomeric clones

52M11 and 75F20 (green) spe-

cific for 18pter and qter, respec-

tively. DAPI counterstain is

blue. (f) 3D-preserved nuclei co-

hybridized with HSA18 paint

(green) and telomeric clones

52M11 and 75F20 (red). Red

signal in the cytoplasm is from

endogenous biotin. Telomere

signals are apparent with only

one of the territories, those as-

sociated with the other territory

are in a different focal plane. (g)

FISH to a metaphase spread

from an individual with t(18;

19)(p11;p13) with chromosome

18 material shown in green and

19 in red. The appropriately col-

ored arrows indicate the derived

chromosomes. (h and i) Inter-

phase nuclei from t(18;19) cells.

HSA18-derived material is de-

tected in green in h and in red in

i. HSA19 is detected in the re-

ciprocal color in each panel as

indicated. As in g, appropriately

colored arrows indicate the de-

rived chromosomes. A  line was

drawn from the center to the

edge of the nucleus passing

through each derived chromo-

some. A  second line, perpendic-

ular to the first, was put through

the middle of the signal and it

was ascertained which side of

this line the translocated portion

was found. (j) Histograms of the

position of the edge of the signal in relation to the edge or the center of the nucleus, in 50 t(18;19) nuclei, for both the normal (open

bars) and derived (filled bars) chromosomes 18 and 19. There is no significant difference in the positions of derived and normal chromo-

somes (P , 0.059 for HSA18 and  P , 0.110 for HSA19).
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location t(18;19)(p11;p13) were analyzed. We estimate

that 20 Mb of material from 18p (24%  of HSA18) and 15 Mb

of 19p (23%  of HSA19) have been exchanged in this trans-

location (Fig. 5 g). The nuclear disposition of both the nor-

mal and derived chromosomes was analyzed (Fig. 5, h and

i). Although the derived chromosome 18 tended to be less

peripheral than the normal 18, this difference was not sta-

tistically significant (Table I, P , 0.059), neither was the

apparently more central location of the normal 19 over

that of the derived 19 significant (P , 0.11) (Table I and

Fig. 5 j). However, there was a striking difference in the

relative orientations of the two derived chromosomes. The

translocated portion of 19p was more central than the re-

mainder of the derived 18 in almost 80%  of nuclei. Con-

versely, nearly 90%  of translocated 18ps were peripheral

to the derived 19 material. Hence the characteristic subnu-

clear localization of HSA18 and 19 can be conferred by

15–20-Mb subchromosomal regions and is not dependent

on the centromeric heterochromatin from each chromo-

some. As no viable cells are available from this t(18;19) in-

dividual we could not analyze the localization of the de-

rived chromosomes in 3D-preserved cells.

Chromosomes 18 and 19 Have Different Associations 
with Nuclear Substructure

The nuclear scaffold and matrix are nuclear substructures

that include the lamina, residual nucleoli, and a proteina-

ceous network pervading the nuclear volume and that are

left after extraction of soluble nuclear proteins with the

detergent-like salt lithium diiodosalicylate (LIS) or with

high salt (Mirkovitch et al., 1984; Luderus et al., 1992).

Nuclei were extracted with increasing concentrations of

NaCl before fixation in MAA and hybridization with

HSA18 and 19 paints (Fig. 6). At low salt concentrations

(0.5 M) no substantial release of DNA from the nucleus

was seen. At 1 M NaCl, residual nuclei surrounded by ha-

los of released DNA were revealed by DAPI staining and

FISH exposed striking differences in behavior of HSA18

and 19. Most chromosome 18 DNA was released up to 3 mm

away from the nuclear remnants, whereas the detectable

chromosome 19 DNA remained in the center of the nu-

cleus. As salt concentration increased up to 1.8 M, release

of HSA18 became more exaggerated, extending for 7 mm

away from the confines of nuclei, within which chromo-

some 19 was still tightly restrained (Fig. 6). These differ-

ences in chromosome behavior were unchanged in nuclei

from cells that had been treated with AMD to inhibit tran-

scription.

Discussion

In this paper we have examined and compared the subnu-

clear localization of human chromosomes 18 and 19. In

different primary and transformed human cells, and in

both flattened specimens and in cells fixed to preserve 3D

structure, we observed distinct dispositions toward either

the interior or periphery of the nucleus for both the p and

q arms of chromosomes 19 and 18, respectively (Figs. 1, 2,

and 5 and Table I).

Specific parts of chromosomes may adopt different ori-

entations during the cell cycle (Ferguson and Ward, 1992;

Vourc’h et al., 1993; Brown et al., 1997; Csink and Heni-

koff, 1998; Li et al., 1998), but it was not known whether

entire mammalian chromosomes move or change their

state of condensation. Measurements of chromatin move-

ments in vivo suggest that significant passive diffusion of

chromatin could occur during the course of interphase but

predict that whole chromosomes are largely constrained

within a limited subregion of the nucleus (Marshall et al.,

1997). Therefore, specific subnuclear localization of DNA

segments might be established most effectively as cells exit

mitosis and before interphase nuclear architecture is fully

formed. The distinctive arrangements of HSA18 and 19,

that we have described here, are established early in the

cell cycle and are maintained throughout interphase (Fig.

3). However, the difference in spatial localization between

HSA18 and 19 is at its smallest during late S phase (Table

I). This may reflect some movement of HSA18 to a more

internal location accompanying the replication of its DNA

(Li et al., 1998).

Figure 6. Associations of HSA18 and 19 with nuclear substruc-

ture. Lymphoblastoid nuclei extracted with 0.5, 1.0, 1.2, and 1.8 M

NaCl, fixed with MAA, and hybridized with alternately labeled

chromosome 18 and 19 paints, the color of which is indicated at

the right of each panel. DNA was stained with DAPI (shown in

blue on the right and in black and white on the left). Chromo-

some 19 material is retained within the residual nucleus. HSA18

is released into the DNA halo at high salt concentrations. Bar, 2 mm.
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In addition to the differences between HSA18 and 19 in

subnuclear localization, we have also demonstrated differ-

ences in the proportion of nuclear area that these two hu-

man chromosomes occupy in 2D preparations. The larger

proportion of nuclear area occupied by HSA19, as com-

pared with that of HSA18, is in contrast to the larger phys-

ical size (in bp) of the latter chromosome (Morton, 1991)

and its greater size in metaphase preparations (Table II).

Since much of HSA 18 has the characteristics typical of

G -band chromosome regions, whereas H SA 19 is more

R -band–like in its properties (Dutrillaux et al., 1976; Ko-

renberg and Rykowski, 1988; Jeppesen and Turner, 1993;

Craig and Bickmore, 1994), our data are consistent with

the regional differences in chromatin compaction at the

0.1–1.5-Mb level that have been recorded between G- and

R-band regions of the human genome in nuclei prepared

in similar ways to those described here (Yokota et al.,

1997). The proportion of nuclear area occupied by HSA19

reached a peak in early S phase. This might reflect HSA19

chromatin decondensation preceding its replication (Csink

and Henikoff, 1998) or merely the doubling of DNA con-

tent for this gene-rich chromosome before most of the rest

of the genome.

The apparently larger area of HSA19 within flattened

nuclei is also seen in 3D-preserved nuclei (Fig. 4 b). While

sophisticated computational algorithms are necessary to

accurately compute chromosome volumes within the nu-

clear space (Eils et al., 1996; Visser et al., 1998), our sim-

plified approach of adding together the chromosome sig-

nal area and nuclear area in series of optical sections taken

through nuclei suggests that chromosome 19 may occupy a

larger volume within the human nucleus than chromo-

somes 18 and hence be less condensed. Hybridization sig-

nals seen with paints for HSA19 also appeared to us to

have a more irregular and scattered character than those

from HSA18 (e.g., Fig. 1). The chromosome territory of

the active X (Xa) is similarly more rutted in appearance

than that of Xi (Eils et al., 1996); however, the volumes

calculated for the territories occupied by Xa and Xi in op-

tical sections are, in fact, the same despite the more com-

pact appearance of Xi in flattened preparations (Eils et al.,

1996). It remains to be determined whether the actual nu-

clear volumes occupied by HSA18 and 19 are different

from each other.

We have also shown here that transcription affects the

topology of chromosome territories since the larger appar-

ent size of HSA19 is only seen in the presence of transcrip-

tion by RNA polymerase II (Fig. 4), i.e., in untreated cells

or in cells in which the inhibition of transcription by DRB

has been relieved. In the absence of transcription (AMD

or DRB treatments) HSA19 occupies a compact territory

similar in size, or smaller, than that of HSA18 (Table II

and Fig. 4). We do not see the gross disruption of chromo-

some territories in the presence of DRB that was reported

previously (Haaf and Ward, 1996), except in a small mi-

nority of both treated and untreated cells that we believe

are dying cells. We have no explanation for this discrep-

ancy, but different cell types may have different tolerances

and responses to the same concentrations of drugs.

The enhanced differences in areas of HSA19 and 18 we

recorded when histone deacetylation was inhibited with

TSA (Table II and Fig. 4 a) suggest that levels of steady-

state histone acetylation influence the gross architecture

of chromosome territories. However, chromosome posi-

tion within the nucleus is independent of transcription and

histone acetylation activities (Table I).

More genomic sequences partitioning with the opera-

tionally defined nuclear matrix (MARs) or nuclear scaf-

fold (SARs) derive from HSA18 than from 19 (Craig et al.,

1997). This, together with the proximity of HSA18 to the

lamina (Fig. 3 a), a component of the nuclear matrix, lead

us to expect that there might be a tight association of this

chromosome with the matrix. However, in Drosophila, se-

quences isolated as SARs do not correspond with loci at

the nuclear periphery (Marshall et al., 1996) and so the re-

lationship between MARs-SARs and sequences that visi-

bly remain inside of the residual nucleus after extraction,

rather than in the surrounding halo of DNA loops, is not

clear. Indeed, we saw very little retention of chromosome

18 DNA within nuclear matrices in contrast to the reten-

tion of chromosome 19 within the bounds of residual nu-

clei (Fig. 6). The degree of extension of chromosome 18

sequences varied between nuclei, but within individual nu-

clei the two homologues behaved similarly (Fig. 6). It has

been reported that z16 kb of inactive DNA can decon-

dense to cover z5 mm in extracted nuclei (Gerdes et al.,

1994); therefore, the 85 Mb of chromosomes 18 extruded

from nuclei with high salt retain a substantial degree of

higher order structure that is independent of interactions

with the nucleus.

RNA is an important component of the nuclear matrix,

and active genes associate with residual nuclei and not

with the nuclear halo (Gerdes et al., 1994). However, re-

tention of HSA19 within the residual nucleus and release

of HSA18 was seen in the absence of transcription (AMD

treatment). The more central location of chromosome 19

in the human nucleus may be mediated by substantive and

transcription-independent association with, as yet uniden-

tified, nuclear proteins that resist extraction from the nu-

cleus with high salt. Jackson and Pombo (1998) have dem-

onstrated that early replicating DNA is retained within the

residual nucleus of salt-extracted human cells and, indeed,

the bulk of HSA19 replicates earlier in S phase than does

HSA18 (Dutrillaux et al., 1976).

Subnuclear localization of HSA18 and 19 is not deter-

mined by the centromeres of the chromosomes since dis-

tinctive localization is retained by regions (,20 Mb) of the

chromosome arms of HSA18 and 19 that are translocated

to the reciprocal-derived chromosome (Table I and Fig. 5,

g–j). We also find no evidence that the telomeres of the

chromosomes are attached at the nuclear periphery of hu-

man nuclei (Fig. 5, e and f) as has been observed in simpler

eukaryotes (Hiraoka et al., 1990; Funabiki et al., 1993;

Gotta et al., 1996). We conclude that differences in the

overall composition of bulk chromosome 18 and 19 DNA

sequences may play a direct role in the nuclear destiny of

these two chromosomes and the genes placed upon them.

It has been argued that lack of phenotypic abnormalities

in individuals with balanced translocations is evidence that

spatial arrangement of different chromosomes in the nu-

cleus is not functionally important. This was based on the

assumption that such translocations disrupt the normal nu-

clear location of chromosome domains (Haaf and Schmid,

1991; Qumsiyeh, 1995). However, we have shown that this
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is not necessarily the case to any significant degree (Table

I and Fig. 5, g–j). The diffusion constraints on chromatin

movement in vivo (Marshall et al., 1997) mean that the

physical proximity of different chromosomes in inter-

phase, and their interactions with nuclear substructure,

may be important in determining the likelihood of any two

chromosomes meeting and exchanging material in a trans-

location (Qumsiyeh, 1995). The most recurrent chro-

mosome rearrangements in humans are Robertsonian

translocations between the acrocentric rDNA–carrying

chromosomes that are known to be physically close to one

another in both interphase and metaphase (Kaplan et al.,

1993). We surveyed two large databases cataloguing bal-

anced translocations in humans (http://www.hgmp.mrc.

ac.uk/local-data/Cad_Start.html and http://mendel.imag.fr/

BACH/transloc/carto/) and found that t(18;19) is indeed

very rare in the human population when compared with

other translocations among small chromosomes.

The segregation of different chromosomes of the karyo-

type with different functional characteristics, described

here, is reminiscent of the extreme genome separation

seen in plant hybrids (Leitch et al., 1991). What are the bi-

ological consequences of this type of compartmentaliza-

tion? The chromosomal and nuclear position of a gene can

influence its activity (Brown et al., 1997; Andrulis et al.,

1998) and the position of a gene within the nucleus can be

dictated by the sequences it is joined to on the chromo-

some (Csink and Henikoff, 1996; Dernburg et al., 1996).

The edge of the nucleus is also a place where genes are

repressed in many eukaryotes (Bridger and Bickmore,

1998). Condensed heterochromatin and later replicating

DNA tend to concentrate toward the nuclear periphery in

many vertebrates (Rae and Franke, 1972; Fox et al., 1991;

Kill et al., 1991; Ferreira et al., 1997), whereas early repli-

cating DNA and poly(A) RNA partition toward the nu-

clear interior (Carter et al., 1993). At the level of individ-

ual loci some, but not all, active mammalian genes have

been found predominantly within the nuclear interior,

whereas inactive genes have been located at the nuclear

and nucleolar peripheries (Xing et al., 1995). The number

of gene-based markers that has been assigned to HSA18 is

small in comparison to those located on HSA19 (Craig

and Bickmore, 1994; Deloukas et al., 1998). Because of

their location within the nuclear space, the relatively small

number of genes located on human chromosome 18 might

be habituated to very different types of transcriptional

regulation to those on HSA19. Flexibility of expression of

exogenous genes placed into these two different chromo-

some environments may also differ. This might impose

constraints on the chromosomal position of genes through

evolution.
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