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Abstract

Mutations occur at vastly different rates across the genome, and populations, leading to dif-

ferences in the spectrum of segregating polymorphisms. Here, we investigate variation in

the rare variant spectrum in a sample of human genomes representing all major world popu-

lations. We find at least two distinct signatures of variation. One, consistent with a previously

reported signature is characterized by an increased rate of TCC>TTC mutations in people

fromWestern Eurasia and South Asia, likely related to differences in the rate, or efficiency

of repair, of damage due to deamination of methylated guanine. We describe the geographic

extent of this signature and show that it is detectable in the genomes of ancient, but not

archaic humans. The second signature is private to certain Native American populations,

and is concentrated at CpG sites. We show that this signature is not driven by differences in

the CpGmutation rate, but is a result of the fact that highly mutable CpG sites are more likely

to undergo multiple independent mutations across human populations, and the spectrum of

such mutations is highly sensitive to recent demography. Both of these effects dramatically

affect the spectrum of rare variants across human populations, and should be taken into

account when using mutational clocks to make inference about demography.

Author summary

Genetic variation among humans is built up by a constant stream of new mutations. New

mutations appear every generation because of unrepaired DNA damage, or copying errors

in DNA replication. Differences between populations in the rate or types of mutations

that appear are one of several factors that affect patterns of genetic variation. Here, we

examined genomes from all major world populations, looking at patterns of variation to

see whether different types of rare variant were more common in different parts of the

world. We found two types of variant that had this property. The first is more common in

Western Eurasia than in other parts of the world and seems to be related to an historical

increase in the rate of a specific kind of mutation. The second type of variant–C>T

changes at CpG sites–is more common in Native Americans, not because mutation rates

are different, but because these mutations occur at a very high rate, and this kind of varia-

tion is very sensitive to differences in demographic history between populations. These
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results demonstrate the importance of considering both mutation and demography in the

interpretation of genetic variation.

Introduction

For a process that provides such a fundamental contribution to genetic diversity, the human

germline mutation rate is surprisingly poorly understood. Different estimates of the absolute

mutation rate–the mean number of mutations per-generation, or per-year–are largely inconsis-

tent with each other [1, 2], and similar uncertainty surrounds parameters such as the paternal

age effect [3–5], the effect of life-history traits [6, 7], and the sequence-context determinants of

mutations [5, 8]. Here, we investigate a related question. Rather than trying to determine the

absolute values of parameters of the mutation rate, we ask how much the mutation spectrum–

specifically, the relative rate of different classes of mutations–varies between different human

populations. Because we are limited in our ability to observe the mutation rate directly (for

example through studies of de novomutations), we use the spectrum of segregating variation as

a proxy. However, the relationship between mutation spectrum and variation spectrum can be

affected by many processes other than mutation, including selection, demography, recombina-

tion and gene conversion.

At least one class of polymorphism, most clearly represented by the trinucleotide mutation

TCC>TTC but apparently including other classes as well, is known to be enriched in Europe-

ans relative to East Asians and Africans [8, 9]. However the geographical extent, history, and

biological basis for this signal are unclear. Analysis of tumor genomes has demonstrated a

number of different mutational signatures operating at different rates in somatic cells and can-

cers, many of which can be linked to specific biological processes or environmental exposures

[10–12]. It seems plausible that population-specific genetic factors or environmental exposures

might similarly lead to variation in germline mutation spectra. Therefore, we used a dataset of

high coverage genomes, representing much of the genetic diversity in present-day humans, to

investigate the following three questions. First, is there evidence of any other differences in the

spectrum of segregating variation across the world? Second, are these differences in variation

driven by differences in mutation rates? Finally, if so, can we infer anything about the biologi-

cal processes driving them?

Results

We first analyzed data from 300 individuals sequenced to high coverage (mean coverage depth

43X) as part of the Simons Genome Diversity Project [13] (SGDP). We classified single nucleo-

tide polymorphisms (SNPs) into one of 96 mutational classes according to the SNP, and the

two flanking bases. We represent these by the ancestral sequence and the derived base so for

example “ACG>T” represents the ancestral sequence 3’–ACG–5’ mutating to 3’–ATG–5’. We

first focused on variants where there were exactly two copies of the derived allele in the entire

sample of 300 individuals (we call these f2 variants or doubletons). This increases power to

detect population-specific variation because rare variants tend to be recent mutations and are

therefore highly differentiated between populations [14]. For each individual, we counted the

number of f2mutations in each mutational class that they carried, and normalized by the num-

ber of ATA>Cmutations (the most common class and one that did not seem to vary across

populations in a preliminary analysis). The normalized mutation intensities form a 96×300

matrix, and we used non-negative matrix factorization [11, 15] (NMF, implemented in the

NMF package [16] in R) to identify specific mutational features. NMF decomposes a matrix
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into a set of factors, here putatively representing different mutational processes, and individ-

ual-specific loadings for each factor, measuring the intensity of each process in each individual.

It has been used extensively in the analysis of somatic mutations in cancer genomes [10, 11, 17,

18]. An advantage over PCA is that NMF tends to provide components that are sparser and

more interpretable.

NMF requires us to specify the number of signatures (the factorization rank) in advance.

For f2 variants we chose a factorization rank of 4, based on standard diagnostic criteria (S1

Fig). This identified four mutational signatures; of which two were uncorrelated with each

other, replicated in non-cell-line samples, were consistent across samples from the same popu-

lations, and had clear geographic distributions (Fig 1, S2 Fig). Signature 1 corresponds to the

previously described European signal [8] characterized by TCC>T, ACC>T, CCC>T and

TCT>T (possibly also including CCG>T, which overlaps with signature 2). Loadings of this

component almost perfectly separate West Eurasians from other populations, with South-

West Asians intermediate. It is seen most strongly in Western and Mediterranean Europe,

with decreasing intensity in Northern and Eastern Europe, the Near East and South-West

Asia. The COSMIC catalog of somatic mutation in cancer [19] is a database of mutational sig-

natures extracted from samples of tumor genomes, also using NMF. Comparing with all the

COSMIC signatures, we found that our signature 1 is most similar to COSMIC signature 11

(Pearson correlation ρ = 0.81) which is most commonly found in melanoma and glioblastoma

and is associated with use of chemotherapy drugs which act as alkylating agents, damaging

DNA through guanine methylation.

Signature 2 is restricted to some South and Central American populations and, possibly,

Aboriginal Australians. It is characterized by NCG>T mutations similar to the signature caused

by deamination of methylated cytosine at CpG sites, corresponding to COSMIC signature 1

(ρ = 0.96). Interestingly, this signal is found in South America in Andean populations like Que-

chua and Piapoco, and in Central American populations such as Mayan and Nahua, but not in

the closely related Amazonian Surui and Karitiana, nor in North American populations.

The remaining two signatures are more difficult to characterize (S2 Fig). Signature 3 is

characterized by GT>GGmutations, particularly GTG>GGG. It is found in some East Asian

and some South American populations but is not consistent within populations. For example,

it is strongest in one Han sample (B_Han-3), but not at all increased in the two other samples

from the same population. All affected samples are derived from cell lines. It does not match

any mutational signature seen in COSMIC (maximum ρ = 0.16). Plausibly this represents

some as-yet uncharacterized cell-line artifact, or a very localized difference in mutation pro-

cess. Signature 4 affects almost all mutation types, possibly representing a background muta-

tion spectrum, and is most correlated with COSMIC signature 5 (ρ = 0.60) which is found in

all cancers and has unknown aetiology. It is significantly reduced in only a single cell-line

derived sample (S_Quechua-2), so probably represents some unidentified cell-line or data pro-

cessing artifact.

We checked whether these effects could be detected in singletons. At f1 the variation is

apparently dominated by cell line artifacts because principal component analysis (PCA) sepa-

rates cell-line from non-cell-line derived samples (S3 Fig). However, NMF on f1 variants

excluding cell line derived samples recovers signatures consistent with signatures 1 and 2 (S3

Fig), although it does not substantially separate out Native Americans based on signature 2.

PCA on f2 variants does not distinguish cell-line samples, but does separate samples by geo-

graphic region, and recovers factor loadings consistent with NMF-derived signatures 1–3 (S4

Fig). To check that our results were not an artifact of the normalization we used, we repeated

the analysis normalizing by the total number of mutations in each sample, rather than the

number of ATA>Cmutations, and obtained equivalent results (S5 Fig).

Differences in the rare variant spectrum among human populations
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We replicated these results using data from phase 3 of the 1000 Genomes project [20]

(Methods). To do this, we counted f2 and f3 variants in each trinucleotide class and then, for

each individual, computed the proportion of the total mutations carried by that individual that

were in each of signatures 1 and 2 (Fig 2). This confirmed that that mutations consistent with

signature 1 are enriched in populations of European and South Asian ancestry (Fig 2A; mean

proportions 0.085, 0.077; Z-score for difference Z = 42; for European/South Asian compared

to all other populations) and that mutations consistent with signature 2 are enriched in Peru-

vians in Lima (PEL) and people of Mexican ancestry in Los Angeles (MXL)– the two 1000

Genomes populations with the most Native American ancestry (Fig 2B; mean proportions

0.216, 0.172; Z = 34 for PEL+MXL compared to all other populations). Thus, the observed

Fig 1. Distribution and characterization of signatures 1 and 2 for f2 variants. A: Factor coefficients for these two signatures, for 300 individual
samples colored by region.B: Geographic representation of the factor loadings from panelA. Darker colors represent higher loadings.C:
Characterization of the signatures in terms of mutation intensity for each of 96 possible classes. Bars are scaled by the frequency of each trinucleotide
in the human reference genome. Below, the most highly correlated signatures from the COSMIC database are shown for comparison.

doi:10.1371/journal.pgen.1006581.g001
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differences in the spectrum of variation are consistent across datasets. We then asked whether

these differences could be interpreted as differences in the mutational spectrum.

To investigate whether non-mutational processes could be driving these differences, we

investigated the dependence of the two signatures on four genomic features. First we investi-

gated dependence on transcriptional strand by classifying each mutation (not collapsed with

its reverse complement, and defined on the + strand) according to whether it was on the cod-

ing or noncoding strand obtained from the UCSC genome browser (Methods). Signature 1

shows a skew whereby the C>T mutation is more likely to occur on the transcribed (i.e. non-

coding) strand inWest Eurasians, relative to populations from other regions (Fig 3A & 3B).

Because transcription coupled repair is more likely to repair mutations on the transcribed

strand [21] this result, consistent with Harris (2015) [8], suggests that the excess signature 1

mutations in West Eurasians are driven more by G>A than by C>T mutations. Signature 2

shows a global skew where the C>T mutation is more likely to occur on the untranscribed

strand, consistent with these mutations resulting from deamination of methylated cytosine,

and we do not see a significant difference between individuals with high versus low levels of

signature 2 mutations (Fig 3C and 3D). Second, we obtained methylation data for a testis cell

line, produced by the Encyclopedia of DNA Elements (ENCODE) project [22]. Signature 2

mutations are ~8.5 times as likely to occur in regions of high (> = 50%) versus low (<50%)

methylation. We do not detect any difference in this ratio between regions, or between indi-

viduals with high versus low signature 2 rates, although the number of mutations involved is

probably too low to provide much power (Methods; Fisher’s exact test P = 0.14). Third, we

tested dependence on B statistic [23], a measure of conservation. We found that the relative

magnitudes of both signatures 1 and 2 depend on B statistic, but that both these dependencies

were independent of the per-population intensities of the signatures (Fig 4A and 4B). This,

Fig 2. Signatures 1 and 2 in the 1000 Genomes. A: Proportions of f2 and f3 variants in signature 1 (here defined as TCT>T, TCC>T, CCC>T and
ACC>T) in each 1000 Genomes individual, by population.B: Proportions of f2 and f3 variants in signature 2 (here defined as NCG>T, for any N) in each
1000 Genomes individual, by population (five outlying samples excluded).

doi:10.1371/journal.pgen.1006581.g002
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along with a similar result for recombination rate, (Fig 4C and 4D) confirm that these differ-

ences are not strongly associated with differences between population in patterns of selection,

recombination, or recombination-associated processes such as gene conversion.

Most of the variation in signature 2, however, can be explained by differences in demogra-

phy between populations (Fig 5). In particular, a relatively high proportion of signature 2

mutations are repeat mutations (i.e. mutations that have occurred more than once in different

individuals), and the frequency spectrum of such mutations is more sensitive to demography–

particularly recent expansions–than non-repeat mutations. To show this, we first looked at the

proportion of variants at different frequencies that were in signature 2 (i.e. C>T mutations at

CpG sites; Fig 5A). There is a strong enrichment of these variants in Native Americans at fre-

quency 2, but not for singletons, nor for frequencies greater than 3. It is hard to imagine a

purely mutational process that would affect variants of frequency 2, but not 1. Next, instead of

Fig 3. Transcriptional strand bias in mutational signatures.We plot the log of the ratio of f2mutations
occurring on the untranscribed versus transcribed strand. Therefore a positive value indicates that the C>T
mutation is more common than the G>Amutation on the untranscribed (i.e. coding) strand. P values in
brackets are, respectively, ANOVA P-values for a difference between regions and t-test P-values for a
difference between i)West Eurasia and other regions (excluding South Asia) in A&B ii) 11American samples
with high rates of signature 2 mutations and other regions in C&D.A: Boxplot of per-individual strand bias for
mutations in signature 1 (TCT>T, TCC>T, CCC>T and ACC>T). One sample (S_Mayan-2) with an extreme
value (0.48) is not shown.B: Population-level means for each of the mutations comprising signature 1.C,D:
as A&B but for signature 2. We separated out the 11 American samples with high rates of signature 2
mutations.

doi:10.1371/journal.pgen.1006581.g003
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restricting to variants of a particular frequency, we counted the proportion of derived alleles

per genome that are in signature 2 (Fig 5B, Methods). While there is an increase in this propor-

tion in Native Americans, it is extremely small– an increase in proportion of 1.6×10−5 relative

to East Asians. Further, this increase is not restricted to Native Americans with high rates of

signature 2 f2mutations. This suggests that while there may be subtle variation in the rate of

signature 2 mutations, the effects we observed are not driven by this, but rather by the fact that

signature 2 mutations have been shifted into different frequency classes in different popula-

tions, relative to other mutations. One important property of signature 2 mutations is that

CpG sites have a much higher mutation rate than non-CpG sites [24], and therefore a much

higher rate of repeat mutations. For example, ~12% of de novo CpGmutations are expected to

occur at sites that are already polymorphic in 1000 Genomes phase 1 (n = 1,092) [25], and 87%

of exonic de novo CpG mutations are polymorphic in ExAC (n = 60,706) [26]– rates that are

about ten times higher than those for non-CpG mutations. In the SGDP (n = 300), 17.7% of

signature 2 f2muations are shared between Africans and non-Africans, compared to 8.3% of

all f2mutations, suggesting that around 9% of signature 2 f2mutations are repeat mutations.

Fig 4. Dependence of signatures on genomic features. A,B: dependence on conservation, measured by
B statistic (0 = lowest B statistic; highest conservation).A: Comparison of proportions of signature 1 f2

mutations betweenWest Eurasia and other populations (excluding South Asia).B: Comparison of proportions
of signature 2 f2mutations between the 11 American samples with the highest proportions, and all other
samples.C,D: As A&B, but showing dependence on recombination rate decile computed in 1kb bins.

doi:10.1371/journal.pgen.1006581.g004
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Fig 5. Differences in signature 2 can be explained by demography. A: The proportion of variants that are in signature 2 for different regions, for
allele counts from 1 to 15.B: The proportion of variants that are in signature 2 for f2 variants on the x-axis, and all variants per-genome on the y-axis.
Samples in SGDP panel B, processed in a different pipeline, shown as triangles.C: Simulated allele frequency spectra for repeat mutations for 50
haplotypes under the standard (i.e. constant population size) coalescent, and both single and repeat mutations under the coalescent with exponential
growth (100-fold in 0.04Ne generations). The y-axis is scaled by the expected frequency of single mutations in the constant size case (i.e. 1/n). Inset
trees show examples of the genealogies obtained–constant size on left, exponential growth on right. Results from 200,000 independent trees.D:
Simulation of the proportion of mutations that are at CpG sites at different frequencies, assuming that 15% of all mutations are CpGs and 10% of CpGs
are repeat mutations. Compare toA.

doi:10.1371/journal.pgen.1006581.g005
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This shifts the relative frequency spectra because the spectrum of repeat mutations is more

sensitive to recent population growth than that of non-repeat mutations (a similar argument

applies for triallelic sites [27]). In particular, under recent population growth genealogies

become more star-like and the numbers of singleton non-repeat mutations increases, but the

number of doubleton repeat mutations increases even more (Fig 5C). This means that the

ratio of CpG to non-CpG variants at any given frequency is extremely sensitive to recent

demography, and the patterns that we observe could be explained by recent exponential

growth on the order of between 10- and 100- fold in most populations (Fig 5D). Thus, it seems

likely that differences in the proportion of rare, or private, variants in this class are driven by

differences in the rate of recent population growth rather than differences in mutation rate

and implies that Native American populations with high rates of rare signature 2 mutations

experienced rapid population growth after the initial founding bottleneck of the Americas.

In contrast, differences in signature 1 are consistent with a difference in mutation rate. In

particular, individuals with a high rate of signature 1 f2 variants also have a high total propor-

tion of signature 1 mutations (Fig 6A), and we see enrichment in Europeans relative to other

groups in singletons, and for variants with allele counts up to around 30, corresponding to a

frequency of around 5% (Fig 6B). The enrichment changes as a function of frequency, which

suggests that the increase in mutation rate might have changed over time. Therefore, to study

the time depth of these signals, we investigated whether signature 1 could be detected in

ancient samples by constructing a corrected statistic, that measures the intensity of the muta-

tions enriched in signature 1, normalized to reduce spurious signals that arise from ancient

DNA damage (Methods). This statistic is enriched to present-day European levels in both an

eight thousand year old European hunter-gatherer and a seven thousand year old Early Euro-

pean Farmer [28] but not in a 45,000 year old Siberian [29], nor in the Neanderthal [30] or

Denisovan [31] genomes (Fig 6C)–consistent with a recent estimate that this increase in muta-

tion rate lasted between 2,000 and 15,000 years before present [9]. The statistic is predicted by

neither estimated hunter-gatherer ancestry, nor early farmer ancestry, in 31 samples from 13

populations for which ancestry estimates were available [28] (linear regression p-values 0.22

and 0.15, respectively). Thus the effect is not strongly driven by this division of ancestry. If

it has an environmental basis, it is not predicted by latitude (linear regression of signature 1

loadings against latitude for West Eurasian samples; p = 0.68), but is predicted by longitude

(p = 6×10−8; increasing east to west).

Discussion

We characterized two independent differences among human populations in their spectrum

of rare variants, however this may not be comprehensive. Our power to detect differences in

variation spectra depends on a number of factors, including sample size, and the level of back-

ground variation. While modest differences in variant spectra might be much more wide-

spread than we describe here [9], it is clear that the West Eurasian signature 1 enrichment is

by far the most dramatic. Two questions naturally follow from this result. First, does this result

imply a difference in absolute mutation rate? And second, what is the biological basis behind

this signature?

In our previous analysis of the SGDP data [13] we showed that the rate of mutation accu-

mulation differed between populations. In particular, mutation accumulation, relative to

chimpanzee, was consistently around 0.1% higher in non-Khoesan groups than Khoesan

groups, and around 0.5% higher in non-Africans than Africans. Since the mean divergence

time between two humans is much less than the mean divergence between humans and

chimp, these results imply a much greater difference in mutation rate–for example we

Differences in the rare variant spectrum among human populations
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estimated that the rate of mutation accumulation would be around 5% higher on the non-Afri-

can relative to the African branch. The proportion of f2mutations attributable to signature 1

(i.e TCT>T, TCC>T, CCC>T and ACC>T) increases from a mean of 7.8% in Africans to

Fig 6. Details of signature 1. A: The proportion of variants that are in signature 1 for f2 variants on the x-axis, and all variants per-genome on the y-
axis. Samples in panel B, processed in a different pipeline, shown as triangles. B: Proportion of mutations in signature 1 as a function of derived allele
count from 1 to 30. C: Signature 1, corrected to be robust to ancient DNA damage (Methods), for f2 variants in the SGDP and five high coverage ancient
genomes. Solid lines show 5–95% bootstrap quantiles.

doi:10.1371/journal.pgen.1006581.g006
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10.0% (range 8.8–11.1%) inWest Eurasians. If we make the assumptions that the only differ-

ences in mutation rate are the ones we detected, the absolute rates of all other mutation types

are the same between populations, and the difference in mutation rate has been present for the

entire period since the divergence of Africans and non-Africans, then this change implies a

maximum increase in genome-wide mutation rate of 2.3% (range 1.1–3.6%). This is in insuffi-

cient to explain the approximately 5% excess of mutations in West Eurasian in the SGDP data,

and is also likely to be a large overestimate of the possible effect since Harris and Pritchard esti-

mate that the elevated rate of mutation accumulation in this class was restricted to 15,000 to

2,000 years ago instead of persisting over the whole period since the divergence of Africans

and non-Africans [9]. In any case, as we previously observed [13], this cannot explain the dif-

ference in total mutation accumulation rate, because that effect is not restricted to West

Eurasians.

We cannot be definitive about the biological cause of variation in signature 1, but our analy-

ses provide a clue. In terms of the immediate mutagenic cause, signature 1 is most similar to

COSMIC [19] signature 11 (Pearson correlation ρ = 0.81), which is associated with alkylating

agents used as chemotherapy drugs, damaging DNA through guanine methylation. The rever-

sal of transcriptional strand bias for this signature in West Eurasians supports the idea that the

increased rate of these mutations in West Eurasians is driven by damage to guanine bases, con-

sistent with deamination of methyl-guanine to adenine, leading to the G>A (equivalently

C>T) mutations that we observe. An increase in this rate might be driven by an increase in

guanine methylation, either through environmental exposure, or through inherited variation

that affected demethylation pathways. Signature 1 is also highly correlated with COSMIC sig-

nature 7 (ρ = 0.75), caused by ultraviolet (UV) radiation exposure but it is difficult to imagine

how this could affect the germline, would not explain our observed increase in ACC>T muta-

tions, would not be expected to reverse the strand bias, and should produce an enrichment of

CC>TT dinucleotide mutations in West Eurasians that we do not observe (p = 0.41). Harris

(2015) [8] suggested that UV might cause germline mutations indirectly through folate defi-

ciency in populations with light skin pigmentation (since folate can be degraded in skin by UV

radiation). It is unknown what mutational signature would be caused by this effect, but the

fact that we do not observe enrichment of signature 1 in other lightly pigmented populations

like Siberians and northeast Asians suggests that it is not driving the signal.

Our analysis of signature 2 underscores the importance of modeling repeat mutations, at

least for CpG sites, in rare variant analysis. One consequence is that any analysis that restricts

to part of the frequency spectrum is potentially confounded by this effect–this includes subtle

effects that might arise from studies that have differential power to call rare variants among

samples– implying that it might be difficult to reliably detect differences in CpG mutation rate

from polymorphism data. Nonetheless it seems that the relative rate of CpG mutation accumu-

lation does vary across populations, but only very slightly. Our results also suggest that the

CpG:non-CpG ratio as a function of frequency could be a useful statistic for estimating the

rate of recent population growth and that some Native American populations have experi-

enced extremely rapid growth in recent history.

It is important to understand changes in the mutation rate on the timescale of hominin evo-

lution in order to calibrate demographic models of human evolution [32] and the observation

of variation in mutation spectra between populations [8] made this calibration even more com-

plicated. Further work in this area will involve more detailed measurement of mutation rates

in diverse populations– to date, most work on somatic, cancer, or de novo germline mutations

has been conducted in populations of West Eurasian origin– and the extension of these

approaches to other populations will be required to fully understand variation in mutation

rates and its consequences for demographic modeling.

Differences in the rare variant spectrum among human populations
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Methods

Identifying mutational signatures

We used SNPs called in 300 individuals from the Simons Genome Diversity Project [13]

(SGDP). The SGDP provides position- and sample-specific masks, with strictness ranging

from 0–9 (0 = least strict). We first called variants at filter level 1, independently in each indi-

vidual, which is recommended for most analyses. This gave us a list of sites that were reliably

variable in at least one of the 300 samples. Then, to avoid underestimating the frequency of

variants due to some samples being masked, we recalled all these sites in every individual at

the less strict filter level 0. We polarized SNPs assuming that the chimpanzee reference pan-

Tro2 carried the ancestral allele (ignoring sites where the chimp genome could not be aligned

to the human genome), and classified by the two flanking bases in the human reference

(hg19). We restricted to sites of given derived allele counts. For example, when we analyze f2
variants, we consider both variants where a single individual is homozygous derived and vari-

ants where any two separate individuals (ignoring population labels) are heterozygous derived.

We count two mutations if the individual is homozygous and one if it is heterozygous. We

then merged reverse complement classes to give counts of SNPs occurring in 96 possible muta-

tional classes. Finally, we normalized these counts by the frequency of ATA>ACAmutations.

The remaining matrix represents the normalized intensity of each mutation class in each sam-

ple, relative to the sample with the lowest intensity. Formally, let Cij be the counts of mutations

in class i for sample j. Then, the intensities that we analyze, Xij are given by,

Xij ¼
Cij

CfATA>Cgj

We decomposed this matrix X using non-negative matrix factorization [15] implemented

in the NMF R package [16] with the multiplicative algorithm introduced by Lee & Seung [15],

initialized using the non-negative components from the output of a fastICA analysis [33]

implemented in the fastICA package in R (https://cran.r-project.org/web/packages/fastICA/

index.html). For the diagnostic plots in S2 Fig, we used 200 random starting points to compare

the results of different runs. When we initialized the matrix randomly, rather than using fas-

tICA, we obtained a slightly closer fit to the data (root-mean-squared error in X of 0.024 vs

0.025) and similar factor distributions, except that all signatures were dominated by CpG

mutations (panels A-B in S6 Fig). Removing a constant amount of each CpG mutation from

each signature recovered signatures closer to the fastICA-initialized signatures (panel C in S6

Fig), so we concluded that this was a model-fitting artifact, and did not reflect true signatures.

Finally we performed the analysis on a matrix normalized be the total number of mutations in

each sample ∑i Cij rather than the number of ATA>Cmutations. (S5 Fig).

The ordering of the factors is arbitrary so, where necessary, we reordered for interpretabil-

ity. To plot mutational signatures and compare with the COSMIC signatures, we rescaled the

intensities of each class according to the trinucleotide frequencies in the human reference

genome. The scale of the weightings is therefore not easily interpretable. To perform principal

component analysis on X, we normalized so that the variance of each row was equal to 1.

Analysis of 1000 Genomes data

We classified 1000 Genomes variants according to the ancestral allele inferred by the 1000

Genomes project, and counted the number of f2 and f3 variants carried by each individual in

each mutation class. We ignored SNPs that were multi-allelic or where the ancestral state was

not confidently assigned (confident assignment denoted by a capital letter in the “AA” tag in
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the “INFO” field of the vcf file). For each individual, we computed the proportion of the total

mutations carried by that individual that were in each of signatures 1 and 2. We excluded the

five outlying samples: HG01149 (CLM), NA20582 & NA20540 (TSI), NA12275 (CEU),

NA19728 (MXL) which had extreme values in one of these signatures.

Transcriptional strand

We downloaded the knownGenes table of the UCSC genes track from the UCSC genome

browser (http://genome.ucsc.edu/). Taking the union of all transcripts in this table, we classi-

fied each base of the genome according to whether it was transcribed on the + or–strand, both,

or neither (including uncalled bases). These regions totaled 607Mb, 637Mb, 36Mb and

1,599Mb of sequence respectively. We then counted mutations (not collapsed with their

reverse complements) in our dataset that occurred in regions that were transcribed on the

+ or - strand, ignoring regions where both or neither strand was transcribed.

Methylation status

We downloaded the Testis_BC 1 and 2 (two technical replicates from the same sample) tables

from the HAIBMethyl RRBS track from the UCSC genome browser (http://genome.ucsc.edu/).

We constructed a list of 33,305 sites where both replicates had> = 50%methylation and

another list of 166,873 sites where both replicates had<50%methylation. We then classified the

CpGmutations in our dataset according to which, if either, of these lists they fell into. Ulti-

mately, there were only 1186 classified mutations in the whole dataset, including 43 in Native

American samples and 12 in Native American samples with high rates of signature 2. Therefore,

although we found no significant interactions between methylation status and population, it

may be simply that we lack power to detect it.

B statistic and recombination rate

We classified each base of the genome according to which decile of B statistic [23] or HapMap 2

combined recombination rate [34] (in 1kb blocks) it fell into and counted mutations in each class.

Analysis of total number of mutations

To count the total mutations per-genome in Figs 5A and 6A, we counted mutations at all fre-

quencies, rather than restricting to variants at a particular frequency in the whole dataset. We

excluded the last 20Mb of chromosome 2, where 46 samples had high rates of missing data.

Coalescent simulations

We simulated a sample of 50 haplotypes under the standard coalescent, by first simulating a

coalescent tree, and then generating mutations on the tree as a Poisson process. For the simu-

lations shown in Fig 5, we simulated 200,000 independent trees. To simulate repeat mutations,

we simulated two mutations and performed an OR operation on the genotype vectors–this

correctly captures the probabilities of nested and non-nested mutations. To simulate exponen-

tial growth, we first simulate under the standard coalescent, and then rescale time t such that

the new time t’ is given by:

t0 ¼

1

g
egt � 1ð Þ t � s

1

g
egs � 1ð Þ þ t � sð Þ t > s

8

>

>

<

>

>

:
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where g ¼ logðNÞ

s
to simulate N-fold growth starting at time s. We simulated forN = 100 and 1000

and chose s = 0.01 in coalescent time, corresponding to 0.01×2Ne generations, or around 9,000

years if we assume human-like parameters of Ne = 15,000 and a generation time of 30 years.

Analysis of ancient genomes

We identified heterozygous sites in five ancient genomes from published vcf files, and

restricted to sites where there was a single heterozygote in the SGDP. The corrected signature

1 log-ratio is defined by

M ¼ log
2

XfTCC>Agj
XfACC>Agj

XfTCT>Agj
XfCCC>Agj

XfTCA>Agj
XfACA>Agj

XfTCA>Agj
XfCCA>Agj

( )

and then normalized so that the distribution in African populations has mean 0 and standard

deviation 1. We estimated bootstrap quantiles by resampling the counts Cij for the ancient

samples and recomputingM.

Increase in absolute mutation rate

Suppose that in a single sample there areMmutations in total, of which N are from a particular

signature. Let p ¼ N
M
. Suppose the number of mutations in that signature increases by ΔN, but

the number of all other mutations stays the same. Then the new proportion of mutations in

the signature is q ¼ NþDN
MþDN

. Under these assumptions, the increase in the total mutation rate
DN
M
¼ q�p

1�q
.

Supporting information

S1 Fig. Diagnostic plots for NMF using variants of frequency 2. Each plot shows the value of

a measure, computed over 50 random start points, for factorization ranks from 2 to 8. From

left to right: Dispersion, a measure of reproducibility of clusters across runs (1 = perfectly

reproducible); Residual sum of squares (lower = better fit); Silhouette, a measure of how reli-

ably elements can be assigned to clusters (1 = perfectly reliably).

(PDF)

S2 Fig. Distribution and characterization of mutational signatures2,4 3 and 4. A: Per-sam-

ple coefficients for signatures 3 and 4. B: Geographic distribution of signatures 3 and 4. C:

Mutational spectrum of signature 3.D: Mutational spectrum of signature 4. E-F: Comparison

of loadings of signatures 1 and 2 with signatures 3 and 4. In supplementary plots, we denote

the signatures obtained from fr variants with rank k by signaturer,k, so that signature2,4 is

equivalent to the signature in the main text.

(PDF)

S3 Fig. Analysis of f1 variants. A: The first two principal components of the mutational spec-

trum of f1 variants, showing the difference between cell line and primary tissue derived sam-

ples. B&C: Mutational signatures inferred from f1 variants with rank 2, but excluding cell line

samples. B: Factor loadings for signature1�,2 1 and 2 (asterisk denotes no cell lines). C: Muta-

tional signatures1�,2 1 and 2. Signature1�,2 1 is confounded with CpG mutations in this case,

but clearly shows an elevated level of TCC>T and ACC>T mutations.

(PDF)

S4 Fig. Principal component analysis of the mutational spectrum of f2 variants. A: The first

two principal components of the mutational spectrum of f2 variants, showing no difference
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between cell line and primary tissue derived samples. B: Principal component positions.

Labeled by sample source (A) and geographic region (B). C: Component loadings. Note that

principal components 2,3 and 4 correspond roughly to mutational signatures2,4 3, 1 and 2

respectively.

(PDF)

S5 Fig. NMF analysis of f2 variants at rank 4—as the main analysis, but normalizing the

mutational spectra by the total number of mutations in each sample, rather than the num-

ber of ATA>Cmutations.

(PDF)

S6 Fig. NMF analysis of f2 variants at rank 4 with random initialization of the NMF algo-

rithm. A: Distribution of signatures across samples. B: Mutational signatures 1–4. C: Muta-

tional signatures 1–4 where, for each CpG mutation class, we subtracted the minimum over all

four signatures from the signature.

(PDF)
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