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Abstract: Deregulation of signalling pathways that regulate cell growth, survival, metabolism,
and migration can frequently lead to the progression of cancer. Brain tumours are a large group
of malignancies characterised by inter- and intratumoral heterogeneity, with glioblastoma (GBM)
being the most aggressive and fatal. The present study aimed to characterise the expression of cancer
pathway-related genes (n = 84) in glial tumour cell lines (A172, SW1088, and T98G). The transcriptomic
data obtained by the qRT-PCR method were compared to different control groups, and the most
appropriate control for subsequent interpretation of the obtained results was chosen. We analysed
three widely used control groups (non-glioma cells) in glioblastoma research: Human Dermal
Fibroblasts (HDFa), Normal Human Astrocytes (NHA), and commercially available mRNAs extracted
from healthy human brain tissues (hRNA). The gene expression profiles of individual glioblastoma
cell lines may vary due to the selection of a different control group to correlate with. Moreover, we
present the original multicriterial decision making (MCDM) for the possible characterization of gene
expression profiles. We observed deregulation of 75 genes out of 78 tested in the A172 cell line, while
T98G and SW1088 cells exhibited changes in 72 genes. By comparing the delta cycle threshold value
of the tumour groups to the mean value of the three controls, only changes in the expression of
26 genes belonging to the following pathways were identified: angiogenesis FGF2; apoptosis APAF1,
CFLAR, XIAP; cellular senescence BM1, ETS2, IGFBP5, IGFBP7, SOD1, TBX2; DNA damage and
repair ERCC5, PPP1R15A; epithelial to mesenchymal transition SNAI3, SOX10; hypoxia ADM, ARNT,
LDHA; metabolism ATP5A1, COX5A, CPT2, PFKL, UQCRFS1; telomeres and telomerase PINX1,
TINF2, TNKS, and TNKS2. We identified a human astrocyte cell line and normal human brain tissue
as the appropriate control group for an in vitro model, despite the small sample size. A different
method of assessing gene expression levels produced the same disparities, highlighting the need for
caution when interpreting the accuracy of tumorigenesis markers.

Keywords: glioblastoma; cancer pathway; mRNA; multicriterial analysis

1. Introduction

Glioblastoma (GBM) is one of the most prevalent primary malignant brain tumours in
adults, as classified by the World Health Organization (WHO). According to histopatho-
logical and molecular characteristics, glioblastoma is classified into four grades (I-IV) [1].
Despite aggressive multimodal therapy consisting of surgical resection, radiation, and
chemotherapy with the alkylating agent temozolomide, the prognosis remains dismal, with
a median overall survival of 12–15 months after diagnosis [2,3]. The intensive study of
malignant gliomas over the past three decades has determined several molecular hallmarks
that have enhanced classification and therapeutical strategies. As with all other types of
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brain tumours, glioblastomas have a heterogeneous character. The result was the introduc-
tion of the most recent WHO classification of central nervous system tumours in 2021 [4,5].
In addition to the histological approach and somatic mutations, gene expression signatures
contribute significantly to the overall classification of glioblastoma subtypes [6]. Currently,
successful treatment response and outcome predictions for patients with GBM are made
using next generation sequencing analyses that account for intratumoral heterogeneity [7].
The determination of O6-methylguanine-DNA methyltransferase (MGMT), isocitrate dehydroge-
nase (IDH), tumour protein p53 (TP53), platelet-derived growth factor receptor alpha (PDGFRA),
or epidermal growth factor receptor (EGFR) gene expression levels, as well as the presence of
their mutations and methylation status, are important prognostic factors [8–11]. One of the
most commonly used methods in the aforementioned molecular analysis is real-time PCR,
indicating a clear application with minimal errors. The all real-time PCR techniques (classi-
cal method based on dyes, TaqMan probes assay, microarray, RNA sequencing analysis,
etc.) are still highly quantitative and sensitive methods for the detection of gene expression
levels but are generally best for examining a relatively small number of transcripts in a large
set of samples. One of the few disadvantages is the necessity of involving a biostatistics
expert in the evaluation process. However, with proper optimisation, we may encounter
erroneous analysis and, subsequently, variable interpretations of results. Properly chosen
biostatistical methods also clearly contribute to successful analysis. Cell models have also
been used to characterise the mechanisms underlying glioblastoma formation [12].

In the present study, we examined the transcriptomic profiles of glial cancer cell lines:
A172, T98G, and SW1088. We focused on the detection of representative cancer genes
(Human Cancer PathwayFinderTM PCR Array), which were divided into nine pathways:
angiogenesis, apoptosis, cell cycle, cellular senescence, DNA damage and repair, epithelial-
to-mesenchymal transition, hypoxia signalling, metabolism, and telomeres and telomerase
(Table 1). This study’s primary objective is based on a different approach for selecting the
control group and, consequently, for interpreting the results. We analysed three different
control groups (non-glioma cells) widely used in glioblastoma research: Human Dermal Fi-
broblasts (HDFa), Normal Human Astrocytes (NHA), and commercially available mRNAs
acquired from healthy human brain tissues (hRNA). Using real-time PCR analysis, the gene
expression profiles of glioblastoma cell lines differ when compared to a control group based
on correlational differences. Our comprehensive approach, which incorporates numerous
statistical analyses, contributes to the most accurate interpretation of the results.

Table 1. List of analysed genes and their assignment to cellular pathways.

Pathway Symbol Gene Name

Angiogenesis

ANGPT1 Angiopoietin 1

ANGPT2 Angiopoietin 2

CCL2 Chemokine (C-C motif) ligand 2

FGF2 Fibroblast growth factor 2

FLT1 Fms-related tyrosine kinase 1

KDR Kinase insert domain receptor

PGF Placental growth factor

SERPINF1 Serpin peptidase inhibitor, clade F member 1

TEK TEK tyrosine kinase, endothelial

VEGFC Vascular endothelial growth factor C
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Table 1. Cont.

Pathway Symbol Gene Name

Apoptosis

APAF1 Apoptotic peptidase activating factor 1

BCL2L11 BCL2-like 11 (apoptosis facilitator)

BIRC3 Baculoviral IAP repeat containing 3

CASP2 Caspase 2

CASP7 Caspase 7

CASP9 Caspase 9

CFLAR CASP8 and FADD-like apoptosis regulator

FASLG Fas ligand (TNF superfamily, member 6)

NOL3 Nucleolar protein 3 (apoptosis repressor)

XIAP X-linked inhibitor of apoptosis

Cell cycle

AURKA Aurora kinase A

CCND2 Cyclin D2

CCND3 Cyclin D3

CDC20 Cell division cycle 20 homolog (S. cerevisiae)

E2F4 E2F transcription factor 4, p107/p130-binding

MCM2 Minichromosome maintenance complex component 2

MKI67 Antigen identified by monoclonal antibody Ki-67

SKP2 S-phase kinase-associated protein 2 (p45)

STMN1 Stathmin 1

WEE1 WEE1 homolog (S. pombe)

Cellular senescence

BMI1 BMI1 polycomb ring finger oncogene

ETS2 V-Ets erythroblastosis virus E26 oncogene homolog 2

IGFBP3 Insulin-like growth factor binding protein 3

IGFBP5 Insulin-like growth factor binding protein 5

IGFBP7 Insulin-like growth factor binding protein 7

MAP2K1 Mitogen-activated protein kinase kinase 1

MAP2K3 Mitogen-activated protein kinase kinase 3

MAPK14 Mitogen-activated protein kinase 14

SERPINB2 Serpin peptidase inhibitor, clade B, member 2

SOD1 Superoxide dismutase 1, soluble

TBX2 T-box 2

DNA damage
and repair

DDB2 Damage-specific DNA binding protein 2, 48kDa

DDIT3 DNA-damage-inducible transcript 3

ERCC3 Excision repair cross-complementing rodent repair
deficiency, complementation group 3

ERCC5 Excision repair cross-complementing rodent repair
deficiency, complementation group 5

GADD45G Growth arrest and DNA-damage-inducible, γ

LIG4 DNA Ligase 4, ATP-dependent

POLB DNA Polymerase beta

PPP1R15A Protein phosphatase 1, regulatory subunit 15A
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Table 1. Cont.

Pathway Symbol Gene Name

Epithelial-to-
mesenchymal

transition (EMT)

CDH2 Cadherin 2, type 1, N-cadherin (neuronal)

DSP Desmoplakin

FOXC2 Forkhead box C2

GSC Goosecoid homeobox

KRT14 Keratin 14

OCLN Occludin

SNAI1 Snail homolog 1 (Drosophila)

SNAI2 Snail homolog 2 (Drosophila)

SNAI3 Snail homolog 3 (Drosophila)

SOX10 SRY (sex determining region Y)-box 10

Hypoxiasignalling

ADM Adrenomedullin

ARNT Aryl hydrocarbon receptor nuclear translocator

CA9 Carbonic anhydrase 9

EPO Erythropoietin

HMOX1 Heme oxygenase 1

LDHA Lactate dehydrogenase A

SLC2A1 Solute carrier family 2, member 1

Metabolism

ACLY ATP citrate lyase

ACSL4 Acyl-CoA synthetase long-chain family member 4

ATP5A1 Mitochondrial ATP synthase alpha subunit 1

COX5A Cytochrome c oxidase subunit 5A

CPT2 Carnitine palmitoyltransferase 2

G6PD Glucose-6-phosphate dehydrogenase

GPD2 Glycerol-3-phosphate dehydrogenase 2
(mitochondrial)

LPL Lipoprotein lipase

PFKL Phosphofructokinase, liver

UQCRFS1 Ubiquinol-cytochrome c reductase Rieske iron-sulfur
polypeptide 1

Telomeres and
telomerase

DKC1 Dyskerin

PINX1 PIN2/TERF1 interacting, telomerase inhibitor 1

TEP1 Telomerase-associated protein 1

TERF1 Telomeric repeat binding factor (NIMA-interacting) 1

TERF2IP Telomeric repeat binding factor 2, interacting protein

TINF2 TERF1-interacting nuclear factor 2

TNKS Tankyrase

TNKS2 Tankyrase 2

2. Results

We achieved the results on human RNA isolated from cell lines (tumour and non-
tumour) and normal brain tissues. The expression of cancer pathway-related genes at
the mRNA level was compared among tumour and control group of samples by the real-
time qPCR. Out of the total number of monitored genes (n = 84) in the Human Cancer
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PathwayFinderTM PCR Array, we were able to detect all of them, and only in the control
group was there not a gene for the Fas ligand in any of the samples. In the next sections, we
describe the relationship between the groups of samples for individual genes as well as the
unique multicriteria analysis used for the correct interpretation of the results.

2.1. Relative mRNA Ratio of Control Cells

The selection of an appropriate control sample is a crucial initial step for group qRT-
PCR analyses. On three separate controls (NHA, hRNA, and HDFa) relative mRNA gene
levels associated with cancer development were detected. The Normal Human Astrocyte
cell line was characterised by a significantly higher Ct ratio in the following genes: CDH2,
MKI67, LDH2, IGFBP7, and IGFBP5 (Figure 1). The Keratin 14 gene was amplified in the
NHA line exclusively. Only Angiopoietin 1 exhibited a significantly lower mRNA ratio in
NHA compared to both control groups (hRNA and HDFa). We demonstrated that there
is no amplification of AURKA, ANGPT2, FASLG, or GSC products (Figure 1). Goosecoid
homeobox gene amplification was only detected in Human Dermal Fibroblasts among the
control samples. Compared to NHA and hRNA samples, the HDFa cell line exhibited
overexpression of a single gene, namely Adrenomedullin. In contrast to the other controls,
most genes were found to have lower levels. As undetected mRNA, AURKA, FASLG,
KRT14, and SNAI3 were considered (Figure 1a).

The total human RNA (hRNA) control sample consists of total RNAs from healthy
brain donors that are commercially available. We found only hRNA control to contain the
AURKA gene. ANGPT2, CASP9, E2F4, ETS2, FLT1, GPD2, LPL, MAP2K1, SERPINF1, SNAI3,
SOD1, SOX10, STMN1, TEP1, TERF1, TERF2IP, and TINF2 exhibited significant overex-
pression. In contrast, mRNA levels for IGFBP3, SNAI2, and WEE1 were significantly higher
compared to NHA and HDFa. In addition, the amplification of mRNA for Desmoplakin,
Fas ligand, Goosecoid homeobox, Keratin 14, and vascular endothelial growth factor C was
not detectable (Figure 1a).

2.2. Relative mRNA Ratio in Tumour Cell Lines

Results of the relative mRNA expression ratio comparison between A172, SW1088,
and T98G cell lines are shown in Figure 1b. Similar cancer-related mRNA ratios were
found in all tumour cell lines for 60 out of 84 genes (71.4%). The genes CDH2, DDB2,
DSP, EPO, FGF2, and TEK were overexpressed in an astrocytoma cell line. In addition,
the expression of Cyclin D2, kinase insert domain receptor, and Keratin 14 genes was present
exclusively in the A172 line. In contrast, we found a significantly lower mRNA ratio for
ACSL4, ADM, ANGPT1, and SNAI2. Only the mRNA for the Fas ligand was not detected.
Except for CCND2, FLT1, FOXC2, KDR, KRT14, and TEK, the mRNA expression ratio
of cancer pathway-associated genes in the astrocytoma grade III cell line (SW1088) was
comparable to that of other tumour cell lines (Figure 1b).

In the glioblastoma cell line (T98G), we detected the overexpression of the Cyclin D3
transcript. Significantly lower mRNA levels were detected for ANGPT2, DSP, KDR, KRT14,
and LPL. Four genes (CCND2, DSP, FASLG, and PGF) lacked fluorescent signals.

2.3. Data Preparation before Determination of Gene Expression Level

The selection of the appropriate control is crucial when comparing mRNA levels
between groups using the ∆Ct method and qRT-PCR analysis. Therefore, with respect
to the control group, the genes of the tested group (tumour) sought may appear to be
inaccurate. Here, we used the ∆Ct method by comparing the relative expression of tu-
mour genes to that of three control genes separately to identify the validity of the results.
We used a combination of several mathematical and statistical methods to prepare gene
expression data.



Int. J. Mol. Sci. 2022, 23, 10883 6 of 23
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. The mean of Ct ratio of mRNA levels. (a) The mRNA expression levels in control group. 
(b) The mRNA expression levels in group of tumour cell lines. Ct ratio, gene of interest/housekeep-
ing genes. Each mRNA level included three replicates. 

Figure 1. The mean of Ct ratio of mRNA levels. (a) The mRNA expression levels in control group.
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2.3.1. Principal Component Analysis

Principal component analysis (PCA) was utilised to examine the variability of gene
expression profiles among various samples (see Material and Methods). Figure 2 shows
the first two components, PC1 vs. PC2 as a scatter plot, with a variance of 41.2% for PC1
and 25.8% for PC2, respectively. As seen in the scatter plot, the gene profiles corresponding
to tumour tissues (red circles) are closer together than the gene profiles of controls. From
an overall perspective, tumour lines can be defined by a putative cluster, whereas other
data are more dispersed. Expression profiles of controls demonstrate a wide variation,
indicating their distinct and cell-line-specific expression. Regarding variability within the
same sample–experimental replicas, only small variations are visible, and all replicas can
be attributed to a given cell line.
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tumour cell lines, dots outside the line are control samples. All values of each sample were measured
in triplicates.

2.3.2. Correlations between Gene Expressions

In the previous analysis, we discovered that LDA can identify and pinpoint the
differences in individual genes and distinguish between the classes of control cell lines
and tumour samples. Subsequently, we have decided to analyse the relationships between
gene expressions in greater detail. By calculating the Pearson correlation coefficient, we
focused on the relationship between the expressions of individual genes. In control cells, a
general gene regulation network controls gene expression. Therefore, significant positive
and negative correlations between gene expressions will result from the regulation network.
Gene correlations can be lost if the regulatory network is dysregulated, such as in tumour
cells. Figure 3a depicts a correlation between the genes in the control samples and the
genes in the tumour samples. In control samples, the average correlation is low (0.33),
but there are substantial differences between the individual genes. For example, TERF1
and TERF2IPa genes had the highest correlation of 0.999, and SNAI2 and CASP9 genes
had the highest anti-correlation of −0.996. In tumour lines, the average correlation is even
lower, 0.031, indicating a significant loss of coordinated gene expressions. Given that the
overall expression profiles of individual genes in tumour cells are more similar (dots in
red elliptical line, Figure 2) than in control cells, which appeared more heterogeneously in
the PCA plot, this may be a surprising result. The difference between PCA and gene–gene
correlation is that PCA describes the variance between full profiles, whereas gene–gene
correlation provides information about possible causal relations between expression values.
In tumour cell lines, the relationship between the SNAI1 and SNAI2 genes is the highest at
0.9999, while the LPL and IGFBP5 genes have the highest anti-correlation (−0.997). The
descending arrangement of the gene correlation (Figure 3b) indicates that tumour samples
have lower overall values than control samples.
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Kernel density estimation revealed a different relationship between gene expressions
(Figure 4). The distribution of gene expression correlations deviates from the Gaussian
distribution for both control and tumour cell lines. In contrast to tumours, the peak density
of control samples is centred around the value of 0.95. Maximum density in the positive
correlation range is roughly in the same place as in control cell lines, but the amplitude is
slightly lower, indicating that some gene–gene correlations have changed. The missing
positive gene–gene correlations have become negative in tumour cell lines. The density
analysis of the control vs. tumour correlation values approaches 0, as shown in Figure 4.
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In the next step, we calculated Pearson correlations between gene expression pro-files
of analysed cell lines (Figure 5). First, the correlation of gene expression profiles within the
control group and within the tumour group was calculated. We found that the average
Pearson correlation coefficient among the control group is 0.71, which is slightly lower
than the average correlation between tumour cells at 0.84. When we pairwise correlated
the expression profiles of control and tumour cells, we arrived at the average correlation
coefficient of 0.56. Some of the gene expression profiles of control vs. tumour cells showed
higher correlation coefficients than profiles of controls-only or tumour-only. For example,
the profiles of HDFa_3 versus the expression profile of hRNA_1 control shows a correlation
coefficient of 0.47. Conversely, the expression profile of HDFa_3 versus expression profile
of SW1088_3 from the tumour group shows the correlation coefficient of 0.72.
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2.4. Fold Change of Cancer Pathway-Related Genes

Figure 6 shows the fold regulation data obtained by correlating cancer cell lines (A172,
SW1088, and T98G) with three distinct control groups (HDFa, NHA, and hRNA). Fold
downregulation is represented by blue values, while fold upregulation is represented by
red values. Changes in regulation that do not reach significance are highlighted in grey.
Not available values (N/A) representing changes in expression are marked in white.

When comparing the expression of genes associated with angiogenesis, we obtained
heterogeneous results (Figure 6). The significantly higher expression of ANGPT1 was
detected in the T98G glioblastoma cell line (2.20 compared to HDFa; 2.48 compared to
hRNA; 27.98 compared to NHA; and 5.48 compared to all controls) and the SW1088 cell
line compared to the NHA control (16.96). In contrast, data analysis of Angiopoietin 1
in A172 revealed a statistically significant decrease in expression levels relative to HDFa
and hRNA controls. At the same time, the expression of the Angiopoietin 1 antagonist
coding gene, ANGPT2, was found to be opposite in comparisons between SW1088 and a
combination of controls (5.35). The fold regulation of ANGPT2 was significantly lower in
all tested cell lines compared to control RNAs isolated from the whole brain. In contrast,
A172 and SW1088 lines exhibited elevated expression levels (7.57 and 56.2) compared to
HDFa control. Compared to control samples, the expression of CCL2 appeared to be stably
increased across tested cell lines, whereas the expression of FGF2 appeared to be stably
decreased. We discovered the reduced expression of FLT1 and PGF. FLT1 expression was
statistically significantly decreased in both glioblastoma cell lines, whereas PGF was not
detected in glioblastoma cell line T98G (Figure 6).

Among the investigated apoptosis genes, lower expression of APAF1, BIRC3, CFLAR,
and XIAP was detected in all test groups, with statistical significance and fold regulation
varying according to divergent control groups (Figure 6). For instance, in the A172 group,
expression of BIRC3 was three times lower in correlation with NHA than in the hRNA
control group. The same pattern was observed when fold regulation values were correlated
with HDFa and hRNA. In the astrocytoma cell line, we found that the gene encoding
Caspase 2 was upregulated in relation to HDFa control (3.15). CASP2 deregulation was
not significant in either glioblastoma cell line, but it was constantly increasing. In contrast
to CASP2, the expression of another caspase family protease, CASP9, was inconsistently
deregulated (Figure 6). CASP9 expression was only found to be negatively regulated in
glioma cancer cell lines when compared to the hRNA control group. However, we found
that all lines correlated to NHA had relatively high positive fold changes (Figure 6).

Our results in cell cycle-related genes indicate, with a few exceptions, a significant
increase in the expression of genes involved in cell division (CDC20, E2F4, MCM2, MKI67,
and SKP2). Notable is the similarity between the expression fold changes of the CDC20
and E2F4 genes in the control group (Figure 6). Decreased expression of CCND3 was
prominently identified in SW1088 in terms of hRNA and NHA control groups (−7.52 and
−2.45). The expression of Stathmin was found to be decreased in all test groups. However,
there are differences in fold regulation relative to controls. WEE1 expression was found
to be statistically significant in all glioma cell lines, but only when compared to hRNA
controls (4.75, 2.79, 2.24).

We observed decreased expression of BMI1, ETS2, IGFBP5, IGFBP7, SOD1, and TBX2
from all investigated genes associated with cellular ageing molecular pathways, but differ-
ences in negative fold regulation with respect to control groups were remarkable (Figure 6).
For instance, among all glioma cancer cell lines, the fold change of IGFBP7 expression was
decreased approximately 16.5 times more in comparison to the NHA control group than in
comparison to the hRNA control and approximately 2.5 times more in comparison to hu-
man dermal fibroblasts. To mention the regulation of mitogen-activated kinase’s expression
in glioblastoma cell lines, MAP2K1, MAP2K3, and MAPK14 genes were only upregulated
when compared to HDFa and NHA. All three MAP kinases within the tested cell lines were
downregulated with varying statistical significance in terms of hRNA control.
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Among the eight investigated genes involved in the response to DNA damage in the
A172 group, DDB2, GADD45G, and POLB were significantly upregulated when compared
to the HDFa control group (Figure 6). There was downregulation of LIG4 in glioma cancer
cell lines. In A172, the expression of this gene was approximately 4.2 times lower when
compared to LIG4 expression in hRNA control. SW1088 and T98G cell lines exhibit a similar
pattern. Despite differences in fold change values due to control group selection, other
statistically significant results from Figure 6 were broadly in line with expectations. SNAI1
and SNAI2 were downregulated genes related to the EMT pathway that we discovered in
all cell lines, but only with regard to NHA control (Figure 6). When compared to HDFa and
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hRNA control groups, the expression of SNAI1 and SNAI2 in SW1088 and T98G lines was
increased. In terms of hRNA, all glioma cell lines showed a significant decrease in SOX10
expression (−4502; −26,634; −19,800), indicating that SOX10 is highly expressed in our
normal human brain control. In comparison to HDFa and NHA controls, SOX10 appeared
to be downregulated. Other detected downregulated genes were CDH2, FOXC2 and OCLN.
Downregulation of FOXC2 was present only in the glioblastoma cell line. Fold regulation
in SW1088 cell lines was not determined.

Analysis of hypoxia-signalling factors revealed a decrease in expression in the majority
of genes, including SLC2A1, the gene- encoding Glucose transporter type 1 (Figure 6). This
result is statistically significant only in SW1088 (−7.31;−32.3;−12.8) when compared to the
hRNA control in the A172 cell line (−3.89). The Erythropoietin-encoding gene EPO appears
to be exclusively downregulated in SW1088. In contrast, fold change was detected without
statistical significance in the other two cell lines (A172) or was not detected at all (T98G).

Most cellular metabolism genes investigated in glioma cell lines (ATP5A1, COX5A,
CPT2, PFKL, and UQCRFS1) were found to be statistically downregulated. ACSL4 was
found to be downregulated in only one of the glioma cell lines, A172. Although GPD2
and LPL were found to be upregulated in A172 and SW1088, with similar fold changes
and statistical significance when compared to HDFa, NHA, and a combination of controls,
we discovered that both genes were downregulated when compared to the hRNA control
group. In contrast, LPL expression in T98G was significantly reduced, with the lowest
achieved value in comparison to the hRNA control group. G6PD upregulation was revealed
to be statistically significant only in the SW1088 (5.46; 2.67; 3.34) and T98G (13.7; 6.67; 8.35)
cell lines (Figure 6). We also observed increased expression of ACLY, but none of these
differences was statistically significant.

Of the eight investigated genes involved in telomere maintenance and telomerase
regulation, three (PINX1, TNKS, and TNKS2) were found to be downregulated in all glioma
cell lines when compared to individual controls (Figure 6). No significant differences in
fold changes of PINX1 expression were found in A172 or SW1088 in comparison to all three
negative controls (Figure 6). The fold change in expression in T98G was approximately
two times lower (−2.31; −4.74; −3.98). We identified an increase in expression of TEP1,
TERF1, and TERF2IP in glioblastoma and astrocytoma cell lines compared to HDFa and
NHA control cell lines. The study found no statistically significant changes in TERF2IP
expression in the T98G cell line. In contrast, we found a statistically significant decrease in
TEP1, TERF1, and TERF2IP expression when compared to hRNA control.

2.5. Multi-Criteria Decision of Gene Expression in Sample Correlation

To determine the power of individual genes in groups, a multi-criteria decision support
system was used. As a result, we were able to identify a group of genes in the correlation
between controls and tumours.

The alternative method for assessing gene expression is based on separate, two-value
quantification of the consequences of over- or underexpression. Not only is knowledge
of the data carriers and gene expression important here, but so is the emphasis on the
form of the set ordering in sets of triplicates. The results in the plots are represented by a
normalised (dimensionless) two-factor form called R+, R−. Each R represents a proportion
of the numerator’s dissimilarity tendencies. Both measures preferentially account for when
there is either an increase (superscript +) or decrease (superscript −) in gene expression in
the test subject relative to the control. The denominators in the measures only serve for
normalisation because they track intra-group differences in expression. For a robust linear
combinatorial representation of stochastic measures, we proposed a data-driven approach
inspired by the weighting theory of measures derived from multi-criteria decision support
systems theory [11]. The details of our procedures for deriving R+, R−, as well as the
methods of calculation, are difficult to explain concisely; therefore, we provide a detailed
description of them in the Supplementary Material.
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Figure 7 depicts the resultant correlation of genes (up or down) for individual path-
ways. As mentioned above, the individual points represent triplicate measurements of
the logarithmic values of delta Ct for all samples, correlating the control and tumour
groups. Correlation 2D plots of in-plane gene expression (R+, R−) constructed for tumour
cell lines include comparison with controls. A 45-degree line separates the regions of
overexpression and underexpression; at this line, overexpression and underexpression are
therefore balanced, the scenarios when noise predominates are covered by the (0.1) × (0.1)
square. This square region is hence statistically less important. In addition to the shown
genes, it is necessary to mention points that far exceeded our proposed trend scale and
were therefore deemed irrelevant. We identified the following genes as having decreased
expression in tumour lines compared to controls: FGF2, APAF1, CFLAR, XIAP, STMN1,
WEE1, ERCC5, LIG4, PPP1R15A, OCLN, SOX10, ARNT, LDHA, ATP5A1, COX5A, CPT2,
PFKL, UQCRFS1, ETS2, IGFBP3, IGFBP5, IGFBP7, SOD1, TBX2, PINX1, TINF2, TNKS, and
TNKS2 (out of range). CCL2, CASP2, CDC20 (out of range), E2F4, MCM2, MKI67, SKP2,
ACLY, G6PD, GPD2, MAPK14, DKC1, and TERF1 were the genes with increased levels in
the tumour lines.
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controls. R+ represents a negative proportion of the numerator’s dissimilarity tendencies, R− positive.
A 45-degree line separates the regions of overexpression and underexpression; at this line, overexpres-
sion and underexpression are therefore balanced. The scenarios when noise predominates are covered
by the (0.1) × (0.1) square. There are three main regions in the graph to categorize according to the
level of gene expression with three ways of marking the corresponding points: statistically significant
and overexpressed with R+ > 1 (red circles), statistically significant underexpressed with R− > 1 (blue
triangles), finally statistically less significant (black squares) bordered by 0 ≤ R+ ≤ 1, 0 ≤ R− ≤ 1.
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3. Discussion

Glial tumours are biologically aggressive neoplasms with an abnormally high pro-
liferative capacity and a diffuse invasion pattern. Glioblastoma (grade IV astrocytoma),
composed of poorly differentiated neoplastic astrocytes, is the most malignant astrocytic
tumour. Based on histopathological and molecular criteria, the WHO grading system
categorises gliomas into grades I through IV [4]. Although the majority of neurological
tumours derive from the glial lineage, it is unknown whether tumour cells arise from the
transformation of an immature precursor or the dedifferentiation of a mature glial cell.
Several genetic pathways are involved in the initiation and progression of these neoplasms,
especially in the emergence of secondary GBMs.

In our study, we focused on the transcriptomic analysis of genes associated with the
cancer pathways in glial tumour cells. As the experimental models, we chose the human
glioma cell lines A172 (glioblastoma), SW1088 (astrocytoma), and T98G (glioblastoma).
A172 and T98G cell lines are currently the most commonly used glioma cell lines for gene
expression analysis. Weller’s team performed the first large-scale analysis of 12 glioma
cell lines, estimating the profile of 5800 genes. Their cluster and gene expression corre-
lation analysis identified subsets of genes whose expression levels exhibited significant
associations with drug sensitivity profiles [13]. Kiseleva et al. identified morphological,
surface markers, and several growth factor genes or extracellular matrix genes in the char-
acterisation of both glioblastomas, A172 and T98G [14]. Among the nine tested genes, the
expression of Alpha actin 2 was notably high in both cell lines. In addition, the data revealed
a high level of activity of genes encoding major angiogenesis inducers (VEGF, FGF2, TGFb1)
and Thrombospondin-1. The transcriptomic analysis of SW1088 cells was associated with
individual genes or various inhibitory effects [15–17]. In our previous study, we determined
the effect of ABT-737 and MIM-1 inhibitors on the mRNA level of apoptosis-associated
genes in the T98G cell line [18]. As a control group, human astrocyte (HA) cells were used.
Significant changes in apoptotic gene expression were obtained in both cell lines, with
the greatest number of altered genes (n = 42) occurring in the HA line following MIM-1
treatment. Regardless of the genes involved in determining fold regulation between groups
of samples, the choice of control samples will always be decisive. In addition, based on our
final multivariate criterion, it is evident that results vary not only according to the choice of
control but also according to the evaluation method employed. Therefore, the discussion
will centre solely on the genes selected using the MCDA method.

Angiogenesis, as one of the hallmarks of cancer [19], plays a crucial role in glioblastoma
growth through oncogene activation and/or downregulation of tumour suppressor genes,
resulting in the upregulation of angiogenic pathways [20]. The initial step in the induction of
angiogenesis in GBM is the overexpression and secretion of angiogenic growth factors, such
as vascular endothelial growth factor (VEGF), followed by their binding to the receptors on
epithelial cells [21]. Fibroblast growth factor 2 encoded by the FGF2 gene is a crucial positive
regulator of glioblastoma cell proliferation and survival [22]. However, our results showed
a decrease in FGF2 expression. Although the loss of the FGF2 receptor gene is associated
with a poor prognosis in glioma patients [23], FGF2 seems to be persistently expressed
because it has been identified as an oncogenic factor in GBM [24], and its expression has
been confirmed in other gliomas and meningiomas [25].

Apoptosis refers to a programmed cell death characterised by non-inflammatory
cellular fragmentation [26]. It is an essential regulatory mechanism for cell proliferation
and death. Intrinsic or extrinsic pathways can initiate apoptosis, with both leading to
proteolytic activation of caspases and controlled cell death. Cancer cells have evolved
mechanisms to sustain proliferative signalling, thereby sustaining cell growth and avoiding
cell death. In the current study, only nine apoptotic genes were included in the array, with
caspase-2 and caspase-7 being the most expressed in tumour lines. The remaining genes
involved in apoptosis regulation were downregulated, including CFLAR, XIAP and APAF1.
X-linked inhibitor of apoptosis protein is the most potent and best-defined anti-apoptotic
IAP family member that directly counteracts apoptosis by binding to caspase-9 and the
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effector caspases-3 and -7 [27]. The X-linked inhibitor of apoptosis protein is abnormally
expressed in a variety of human cancers [28,29]. Although this is not evident in brain
tissue, Murphy et al. investigated the low levels of XIAP in GBM patients and brain
cell lines [30]. The protein encoded by the antiapoptotic gene CFLAR is a Caspase-8 and
FADD-like apoptosis regulator. By binding to the death receptor, it protects cells from cell
death signalling and inhibits receptor-mediated apoptosis [31]. Induction of hypoxia in
the A172 glioblastoma cell line results in the expression of CFLAR [32]. CFLAR expression
was detected in glioblastoma tissue samples [33]. Despite these findings, our analysis
showed a significant reduction in CFLAR expression. Apoptotic peptidase activating factor
1 (APAF1) is a proapoptotic protein that participates in the formation of apoptosomes in
response to cell death signals [34]. Overexpression of APAF1 induced apoptosis in U-373MG
human glioma cells [35]. Our previous study on apoptotic gene expression revealed a slight
decrease in the expression of APAF1 in glioblastoma patient samples [36]. In this study,
we confirmed our previous findings regarding glioma cell lines. A decrease in APAF1
expression may lead to apoptosis reduction, thereby favouring cancer cell survival [36].

The main goal of the cell cycle is to ensure accurate DNA replication in the S phase and
the final formation of two identical daughter cells in the mitotic phase. The cells use various
checkpoints to maintain the optimal progression of the cell cycle, which will slow down
or stop the event if necessary [37]. Ki-67, a prognostic and proliferative marker expressed
by the MKI67 gene in cell nuclei during the active phases of the cell cycle (G1-M) with
maximum expression at the G2/M phase interface, is used to control the malignant nature
of cells [38]. In gliomas, its elevated expression, which increases with malignancy grade,
has been well characterised [39]. The absolute highest expression of all genes was observed
in CDC20. The protein of the same name is responsible for regulating the mitotic phase
of the cell cycle. Jeremy Rich’s team identified an increased expression of CDC20 in GBM
compared to lower grade gliomas and healthy brain tissue. Their results also indicate the
importance of CDC20 proto-oncogene expression in glioblastoma stem cells, as it plays an
essential role in the regulation of proliferation, self-renewal, and survival of these cells [40].
It even contributes to glioma chemoresistance. In accordance with the aforementioned
studies, we also identified upregulation of the CDC20 gene in all monitored groups.

Stathmin is an oncoprotein “18” that is distributed throughout the cytoplasm of cells
and regulates microtubule kinetics, thereby affecting cell cycle proliferation and differen-
tiation. Many studies indicate that STMN1 expression is elevated in glioblastomas [41]
and a variety of human cancers [42,43]. Our analyses identified a significant downregula-
tion of STMN1 in all tumour lines relative to the average control, suggesting reduced cell
proliferation and tumour cell migration. The essential cell cycle regulator WEE1 kinase
was similarly underexpressed in tumour cell lines. Its primary function is to stop the
progression of the cell cycle at the transition from G2 to the mitotic phase in cells with
defectively replicated or damaged DNA [44]. In addition, glioblastoma patients whose
WEE1 expression is upregulated have a shorter survival rate [45,46]. We identified elevated
levels of the WEE1 gene in all tumour lines when compared to human RNA from healthy
brain tissues.

The main role of DNA repair mechanisms is to respond to environmental factors that
cause DNA damage [47]. These gene mutations can result in a diminished or impaired
capacity to repair DNA and an accumulation of damaged DNA, which ultimately increases
the risk of cancer. Furthermore, tumour cells overexpress the genes encoding DNA repair
mechanisms, increasing repair capacity and treatment resistance [48]. DNA ligase IV joins
single-strand breaks in a double-stranded polydeoxynucleotide in an ATP-dependent reac-
tion, and its low expression results in inefficient function of the repair system. Compared
to normal astrocytes, brain tumour lines had lower levels of the LIG4 coding gene, and
these findings correlated with transcriptomic and genomic analyses [49]. In all tumour cell
lines, decreased LIG4 expression was observed. We also observed a significant reduction
in expression of the ERCC5 gene, whose product is part of the nucleotide excision repair
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system [50]. Borderline low levels of the gene encoding Protein Phosphatase 1 Regulatory
Subunit 15A have been confirmed.

Epithelial to mesenchymal transition (EMT) is the process by which epithelial cells
lose their epithelial characteristics and acquire a mesenchymal phenotype, resulting in
increased mobility and chemoresistance [51]. Although glioma cells are not of epithe-
lial origin, an EMT-like process in GBM can be induced [52]. Overexpression of various
growth factors, such as transforming growth factor (TGF), epidermal growth factor (EGF),
fibroblast growth factor (FGF), and HIF-1, cause EMT in cancer cells [53]. As a result of
growth factor-mediated signalling, transcription factors (Snail, Slug, dEF1, SIP1, Twist1,
and FOXC2) are activated and induce an EMT-like phenotype [54]. Multiple signalling
pathways participate in these processes. The phosphatidylinositol-3-kinase (PI3K)/Akt
signalling pathway plays an important role in regulating cell growth and maintaining
cancer biology. Cooperation with other signalling pathways such as transforming growth
factor β (TGF-β), nuclear factor (NF)-κB, and Ras and Wnt signalling pathways leads to
direct or indirect induction of the EMT process, resulting in enhanced invasiveness, aggres-
sion, chemoresistance, and apoptosis resistance of the tumour mass [55]. The transcription
factor SOX10 is one of the key determinants of oligodendroglial differentiation. Therefore,
Bannykh and colleagues decided to compare the presence of SOX10 in oligodendrogliomas
and astrocytomas to determine its specificity. Although at lower levels [56], the majority of
oligodendrogliomas and a significant proportion of astrocytomas, including glioblastomas,
produced SOX10. Consistent with previous research, multivariable analysis confirmed a
decrease in the expression of SOX10 and OCLN, which belongs to the EMT group [57,58].

Cancer cells surrounding the necrotic nucleus lack nutrients and oxygen. Hypoxia
is the primary physiological trigger of angiogenesis [59], which is activated by Hypoxia-
inducible factor 1 [60]. HMOX1 is one of the many genes expressed during hypoxia induced
by HIF-1. Due to its antioxidant and antiapoptotic effects, Hemoxigenase 1 plays a crucial
role in tumour growth [61]. Because HMOX1 activity stimulates angiogenesis, this enzyme
is a suitable indicator of glioma neovascularization [62]. Only the T98G glioblastoma cell
line was found to have elevated levels of the HMOX1 gene. In contrast, only LDHA and
ARNT were downregulated relative to controls. Lactate dehydrogenase A (LDHA) is a key
enzyme in the anaerobic glycolytic pathway [63]. In addition to promoting acidification of
the microenvironment, lactate production promotes the metastatic nature of the tumour [64].
Several authors have reported on the significance of glioblastoma LDHA expression [65–67].
Chesnelong and colleagues found low expression and high methylation of LDHA in IDHmt
glioblastomas [68]. Kathagen-Buhmann et al. identified a decline in LDHA production
in non-migrated cells [67]. Since LDHA expression is promoted by hypoxia, low levels of
LDHA in gliomas that were cultivated under standard conditions in the presence of oxygen
may be attributable to an oxygenated environment.

The largest number of changes in gene expression (n = 8) between tumour and non-
malignant groups were identified in metabolic genes (PFKL, ATP5A1, UQCRFS1, CPT2,
COX5A, ACLY, GPD2, and G6PD). Even under aerobic conditions, tumour cells are known
for their high glycolytic activity [69]. Along with an increase in glucose consumption
and lactate production, this promotes rapid cell proliferation and GBM growth, which is
correlated with the elevated activity of glycolytic enzymes [70]. Phosphofructokinase-1 is a
regulatory glycolytic enzyme catalysing the phosphorylation of fructose-6-phosphate to
fructose-1,6-bisphosphate. The presence of its liver isoform (PFKL) in gliomas was anal-
ysed by Stanke et al. However, they did not observe any statistically significant changes
compared to healthy tissue [71]. In our samples, we identified a statistically significant
decrease in PFKL expression, confirming that the prevalent isoform in brain tissue is the
platelet isoform (PFKP), not PFKL [72]. A high expression of Glucose-6-phosphate dehydro-
genase was spotted. Glucose-6-phosphate dehydrogenase (G6PD) is one of the pentose
phosphate pathway (PPP) enzymes that catalyses the production of NADPH [73]. During
normoxia, glioma and non-neoplastic brain cells both produce an abundance of these
enzymes. A negative association between G6PD expression and survival in patients with
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low-grade glioma was discovered [74]. COX5A is one of the three subunits of cytochrome c
oxidase, a respiratory chain complex IV encoded by mitochondrial DNA [75]. UQCRFS1
is a respiratory chain complex III subunit. Both COX5A and the gene encoding another
subunit of complex III, UQCRB, are downregulated in glioblastoma patients compared to
healthy individuals. In contrast, when compared to expression in gliomas of lower grade
malignancy, COX5A expression is significantly increased in GBM, and UQCRB expression
is at approximately the same level. The reduced expression has also been linked to a poor
prognosis [71]. In line with previous findings, we were able to identify the downregulation
of COX5A and UQCRFS1.

Cellular senescence is an irreversible process of cell cycle arrest [76]. During this
process, senescent cells undergo morphological changes that include flattening, increased
cytoplasmic volume, or increased granularity. Only the MAPK14 gene was found to be
overexpressed in our sample cohort, while six other genes were found to be underexpressed
(IGFBP3, IGFBP5, IGFBP7, SOD1, TBX2, and ETS2). ETS2 is a transcription factor that
regulates apoptotic and angiogenic genes, as well as genes involved in proliferation and dif-
ferentiation [77]. Cam et al. identified ETS2 expression in glioblastomas and, in association
with ∆Np73, confirmed its role in tumour progression, angiogenesis, and improved tumour
cell survival [78]. On the contrary, bioinformatic analysis of transcriptomic data from
glioma patients revealed a decrease in gene expression of ETS2 regardless of the degree of
malignancy [79]. In glioma cell lines, we found a statistically significant decrease in ETS2
expression. Superoxide dismutase 1, encoded by the SOD1 gene, is an enzyme that converts
free superoxide radicals into less harmful hydrogen peroxide and oxygen [80]. A decrease
in SOD1 expression has been identified in glioblastomas and is associated with improved
response to radiotherapy and a better prognosis for patients [81,82]. SOD1 expression was
also reduced in glioma cell lines when compared to non-malignant cell controls. The only
overexpressed gene involved in the regulation of senescence is MAPK14. Mitogen-activated
protein kinase 14, a protein product of MAPK14, is an essential component of the MAP
kinase signal transduction pathway that influences the direct activation of transcription
factors in response to cell stress stimuli [83]. MAPK14 expression was found to be elevated
in glioma cells, which is in contrast to the findings of other studies, which indicated that
the expression of this gene was decreased in glioblastoma samples [84].

Human telomeres, located at the ends of chromatids, are tandem nucleotide repeats of
a short DNA sequence associated with various telomere-binding proteins with a predom-
inantly protective function [85]. The primary function of telomeres is to compensate for
incomplete DNA replication at chromosome ends, thereby maintaining intact genetic infor-
mation [86]. However, as a result of cell division, telomeres become progressively shorter,
resulting in cellular senescence and apoptosis induction [87]. PINX1 was identified as a po-
tent telomerase inhibitor that interacts directly with the catalytic activity of telomerase [88].
Our analysis revealed a decrease in PINX1 expression. Previous studies have shown a
correlation between a decrease in PINX1 expression and the metastatic nature and poor
prognosis of cancer patients [89]. In glioblastoma cell lines with induced overexpression
of PINX1, there was a reduction in cell migration and proliferation due to cell cycle arrest
at the G1 phase [90]. In contrast, there is evidence that PINX1 expression is associated
with poor survival in glioma patients because it promotes cell proliferation [75,91]. The
DKC1 gene encodes Dyskerin, an additional protein that regulates telomerase activity [92].
Glioma is one of several human cancers in which DKC1 is upregulated [93,94]. Consistent
with previous findings, elevated expression of DKC1 in glioma cell lines was also identified.
Tankyrases (TNKS, TNKS2) are proteins involved in telomere length maintenance [95],
which, together with regulation of the Wnt/β-catenin pathway, is important for cancer cell
renewal and survival [96]. Expression of TNKS and TNKS2 was decreased in glioma cells
compared to non-malignant cells and normal brain tissue. Additionally, the expression of
TINF2 was reduced. We identified an increase in TERF gene expression.

Glial tumours are biologically aggressive neoplasms with an elevated, often aberrant,
and diffusely invading proliferative capacity. Composed of poorly differentiated neoplastic
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astrocytes, glioblastoma (grade IV astrocytoma) is the most malignant astrocytic tumour.
According to histopathological and molecular criteria, the WHO grading system categorises
gliomas into grades I through IV, based on their degree of malignancy. Although the
majority of neurological tumours derive from the glial lineage, it is unclear whether tumour
cells result from the transformation of an immature precursor or the dedifferentiation of a
mature glial cell. Several genetic pathways are involved in the initiation and progression of
these neoplasms, particularly during the manifestation of secondary GBMs.

4. Materials and Methods
4.1. Cell Culturing

The glioma tumour cell panel (T98G, A172 and SW1088) was purchased from Ameri-
can Type Culture Collection (ATCC) under catalogue numbers: CRL-1690™, CRL-1620™,
HTB-12™; respectively). Cell cultures were maintained as monolayer in Dulbecco’s modi-
fied Eagle’s media with 25 mM glucose, and supplemented with foetal bovine serum (10%,
v/v), and penicillin/streptomycin (1×; PAA). Normal Human Astrocytes (NHA) were pro-
vided from ATCC and cultured in Dulbecco’s modified Eagle’s media high glucose/F12 (1:1;
Merck KGaA, Darmstadt, Germany) supplemented with foetal bovine serum (10%, v/v),
and penicillin/streptomycin (1×; PAA). The Human Dermal Fibroblasts (HDFa; Gibco—
Thermo Fisher Scientific, Waltham, MA, USA) was used as non-specific tissue control and
cultured in HAM´s Nutrient Mixture F12 (Merck KGaA, Darmstadt, Germany) supple-
mented with foetal bovine serum (10% v/v; Gibco—Thermo Fisher Scientific, Waltham,
MA, USA) and penicillin/streptomycin (1×; PAA Laboratories GmbH, Austria). Cells
were cultured at 37 ◦C in an atmosphere of 5% CO2. Before each experiment, single-cell
suspension was prepared using 0.05% trypsin/EDTA solution, and cells were counted
using CountessTM automated cell counter (Thermo Fisher Scientific, Waltham, MA, USA).

4.2. Control Brain RNA

Commercially available total RNA from human brain tissue of single healthy normal
donor was used as a control group (HR-201, Human Brain Total RNA—Amsbio, Abingdon,
UK) for quantitative PCR. For quantitative PCR analysis, we used three independent
transcripts into cDNA.

4.3. RNA Extraction and cDNA Synthesis

Total RNA was isolated using AllPrep® DNA/RNA Mini Kit (Qiagen Inc., German-
town, MD, USA). Concentration of isolated RNA was measured in Implen P300 NanoPho-
tometer (Implen GmbH, München, Germany). Two micrograms of purified cellular RNA
was converted to single-stranded cDNA using RT2 First Strand Kit (330,401; Qiagen Inc.,
Germantown, MD, USA) according to the protocol supplied by the manufacturer.

4.4. Real-Time PCR Array

Real-time PCR (quantitative PCR) was carried out using RT2 SYBR® Green RoxTM

qPCR Mastermix (330,502; Qiagen Inc., Germantown, MD, USA) in 96-well plate format of
the Human Cancer PathwayFinderTM PCR Array (PAHS-033ZC; Qiagen Inc., USA). The
PCR reaction mix (SYBR® Green RoxTM qPCR Mastermix (1340 µL), PCR water (1290 µL)
and cDNA (50 µL) was distributed into the 96-well plate to a final volume of 25 µL per
well. The sealed plate was briefly centrifuged at 1000× g for 1 min. Amplification was
performed in the ViiA7 Real-Time PCR system (Thermo Fisher Scientific, Waltham, MA,
USA). After denaturation at 95 ◦C for 10 min, fluorescence was detected over 40 cycles
(95 ◦C for 15 s, 60 ◦C for 1 min).

4.5. Statistical Analysis

Samples of cDNA were measured in triplicate, and the levels of the genes of interest
were normalized to the three endogenous controls (β-actin, ACTB; Ribosomal protein large
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unit P0, RPLP0 and Glyceraldehyde-3-phosphate dehydrogenase, GAPDH), determined
using the ∆∆Ct method. The expression data from the separate control group:

• Human Dermal Fibroblasts (HDFa);
• Normal Human Astrocytes (NHA);
• Human Brain Total RNA (hRNA).

These were used as a reference in the ∆∆Ct method calculation for each glial
cell line (T98G, A172 and SW1088) individually. The relative expression of 84 genes
in tumour cell lines and non-neoplastic samples was calculated using the RT2 Profiler
PCR Array Data Analysis Web Portal (Qiagen) based on 2−∆∆Ct method [97], where
∆∆Ct = (CtGOI − CtHKG)TESTING GROUP − (CtGOI − CtHKG)CONTROL GROUP. Fold-change
calculations were performed using Qiagen data analysis software (https://dataanalysis2
.qiagen.com/pcr, accessed on 1 January 2022). The genes with a significant difference in
expression were those with an average fold-change of ≤−2.0 or ≥2.0, and statistically
significant differences were those with a corresponding p value of <0.05.

Gene expression values were normalised to a 0–1 scale for both control and tumour
cell lines. Using the KNIME Analytics Tool, sample normalisation, principal component
analysis, and linear discriminant analysis were calculated.

For the statistical analyses mentioned above, only genes with detectable signals in all
samples were selected from the raw data set. The Euclidean distance was used to calculate
the distance between the samples. Using Pearson correlation, gene–gene expressions
of control and tumour samples were correlated, respectively. The Pearson correlation
coefficient for the two populations (X, and Y) is calculated as follows:

ρX,Y =
cov(X, Y)

σXσY

where cov(X,Y) is the covariance; σX is the standard deviation of X; and σY is the standard
deviation of Y. The analyses were calculated in Python using Anaconda Navigator and
JupyterLab. The Pandas, NumPy, and SciPy libraries were used. Kernel density and band-
width optimisation were calculated using the Shimazaki and Shinomoto web application
(https://www.neuralengine.org/res/kernel.html, accessed on 8 March 2022). We used the
Matplotlib Python library to visualise the heatmap of gene correlations.

5. Conclusions

We focused on the transcriptomic analysis of genes associated with cancer pathways
in glial tumour cells. As the experimental models, we selected the human glioblastoma cell
lines A172 and T98G and the astrocytoma cell line SW1088. Sixty genes were deregulated
in glioblastoma cell line A172 in comparison to the HDFa control group; 57 genes in
comparison to the human RNA control group; and 54 genes in comparison to the human
astrocytes control group, according to transcriptomic data. In the astrocytoma cell line
SW1088, we found differences in the expression levels of 57, 60, and 59 genes related to
HDFa, hRNA, and NHA control groups, respectively. In correlation with T98G and HDFa,
47 significantly deregulated genes were discovered. With hRNA, 57 genes, and the NHA
control group, 52 genes with varying expression levels were identified. By combining the
PCA method and multi-criteria decision in the analysis of gene expression, we were able to
identify altered genes involved in cancer pathways in heterogeneous sample groups. We
managed to reduce the selection of significant genes based on a combined mathematical
analysis. In tumour cells, we finally identified 26 genes that showed a deregulated state
compared to the average expression value of three different controls. The most changed
genes represented pathways involved in cellular senescence (BM1, ETS2, IGFBP5, IGFBP7,
SOD1 and TBX2) and then metabolism (ATP5A1, COX5A, CPT2, PFKL, UQCRFS1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231810883/s1. References [98–100] are cited in the supple-
mentary materials.
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