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Abstract—A social network is a set of people (or organizations
or other social entities) connected by a set of social relation-
ships, such as friendship, co-working or information exchange.
Social network analysis focuses on the analysis of patterns of
relationships among people, organizations, states and such social
entities. Social network analysis provides both a visual and a
mathematical analysis of human relationships. Web can also
be considered as a social network. Social networks are formed
between Web pages by hyperlinking to other Web pages. In this
paper a state of the art survey of the works done on social
network analysis ranging from pure mathematical analyses in
graphs to analyzing the social networks in Semantic Web is given.
The main goal is to provide a road map for researchers working
on different aspects of Social Network Analysis.

I. INTRODUCTION
A social network is a social structure between actors, mostly

individuals or organizations. It indicates the ways in which
they are connected through various social familiarities ranging
from casual acquaintance to close familiar bonds[1]. Email
traffic, disease transmission, and criminal activity can all be
modeled as social networks.
Social network analysis is the mapping and measuring of

relationships and flows between people, groups, organizations,
animals, computers or other information/knowledge process-
ing entities. The nodes in the network are the people and
groups, while the links show relationships or flows between
the nodes. Social network analysis provides both a visual and
a mathematical analysis of human relationships. Management
consultants use this methodology with their business clients
and call it Organizational Network Analysis. One of the most
interesting things about social structures is their substructure
in terms of groupings or cliques. The number, size, and
connections among the sub-groupings in a network can tell us
a lot about the likely behavior of the network as a whole. How
fast will things move across the actors in the network? Will
conflicts most likely involve multiple groups, or two factions?
To what extent do the sub-groups and social structures overlap
one another?[1] All of these aspects of sub-group structure can
be very relevant to predicting the behavior of the network as
a whole.
Social network data consist of various elements. Following

the definition by Wasserman and Faust[2], social network data
can be viewed as a social relational system characterized by a
set of actors and their social ties. Additional information in the
form of actor attribute variables or multiple relations can be
part of the social relational system. Social network data can be

collected in various ways. The most common approach is by
means of questionnaires, but also interviews, observations, and
secondary sources are frequently used network data collection
methods.[3]
In section 2, we describe different models for visualizing

and analysis of social networks. Some of the most important
properties of social networks is discussed in detail in section
3. In section 4 substructures and groups in social networks
are illustrated. Web can be considered as a social network. A
discussion on it is given in sections 5 and 6. Weblogs as special
subsets of Web can also be considered as Social Networks.
We discuss about Weblogs’s social network in section 7. The
Semantic Web (SW) is an emerging concept that launches the
idea of having data on the Web defined and linked in a way
that it can be used by people and processed by machines [4]
[5] [6] in a ”wide variety of new and exciting applications”[5].
We discuss about Semantic Web analytics on social networks
and their effect on each other in section 8. Finally we have
conclusions and our approaches for future works.

II. SOCIAL NETWORK MODELS

A. Using formal methods to show Social Networks
One reason for using mathematical and graphical techniques

in social network analysis is to represent the descriptions of
networks compactly and systematically. A related reason for
using (particularly mathematical) formal methods for repre-
senting social networks is that mathematical representations
allow us to apply computers to the analysis of network
data. The third, and final reason for using ”formal” methods
(mathematics and graphs) for representing social network data
is that the techniques for graph processing and the rules of
mathematics themselves suggest things that we might look for
in our data [1].
In the analysis of complete networks, a distinction can be

made between
• descriptive methods, also through graphical representa-
tions (see [7])

• analysis procedures, often based on a decomposition of
the adjacency matrix

• statistical models based on probability distributions

B. Using Graphs to Represent Social Relations
Network analysis uses (primarily) one kind of graphic

display that consists of points (or nodes) to represent actors
and lines (or edges) to represent ties or relations. When



sociologists borrowed this way of graphing things from the
mathematicians, they renamed their graphs as ”sociograms”.
There are a number of variations on the theme of so-

ciograms, but they all share the common feature of using
a labeled circle for each actor in the population we are
describing, and line segments between pairs of actors to
represent the observation that a tie exists between the two.
Visualization by displaying a sociogram as well as a summary

Fig. 1. Using Graphs to Represent Social Relations

of graph theoretical concepts provides a first description of
social network data. For a small graph this may suffice, but
usually the data and/or research questions are too complex for
this relatively simple approach.

C. Using Matrices to Represent Social Relations
The most common form of matrix in social network analysis

is a very simple one composed of as many rows and columns
as there are actors in our data set, and where the elements
represent the ties between the actors. The simplest and most
common matrix is binary. That is, if a tie is present, a one is
entered in a cell; if there is no tie, a zero is entered. This kind
of a matrix is the starting point for almost all network analysis,
and is called an ”adjacency matrix” because it represents who
is next to, or adjacent to whom in the ”social space” mapped
by the relations that we have measured. By convention, in a
directed graph, the sender of a tie is the row and the target
of the tie is the column. Let’s look at a simple example. The
directed graph of friendship choices among Bob, Carol, Ted,
and Alice looks like figure 1. Since the ties are measured at
the nominal level (that is, the data are binary choice data), we
can represent the same information in a matrix that looks like
figure 2 [1]:

Fig. 2. Using Matrices to Represent Social Relations

D. Statistical Models for Social Network Analysis
Statistical analysis of social networks spans over 60 years.

Since the 1970s, one of the major directions in the field was to

model probabilities of relational ties between interacting units
(social actors), though in the beginning only very small groups
of actors were considered. Extensive introduction to earlier
methods is provided by Wasserman and Faust [2]. Two of the
most prominent current directions are Markov Random Fields
(MRFs) introduced by Frank and Strauss [8] and Exponential
Random Graphical Models (ERGMs), also known as p∗ [9]
[10]. The ERGM have been recently extended by Snijders et al
[11] in order to achieve robustness in the estimated parameters.
The statistical literature on modeling Social Networks as-

sumes that there are n entities called actors and information
about binary relations between them. Binary relations are
represented as an n× n matrix Y , where Yij is 1, if actor i
is somehow related to j and 0 otherwise. For example, Yij

= 1 if i considers j to be friend. The entities are usually
represented as nodes and the relations as arrows between
the nodes. If matrix Y is symmetric, then the relations are
represented as undirected arrows. More generally Yij can be
valued and not just binary, representing the strength (or value)
of the relationship between actors i and j [12]. In addition,
each entity can have a set of characteristics xi such as their
demographic information. Then the n dimensional vector X
= x1,...,xn is a fully observed covariate data that is taken into
account in the model (e.g. [13]).
There are several useful properties of the stochastic models.

Some of them are:
• The ability to explain important properties between enti-
ties that often occur in real life such as reciprocity, if i is
related to j then j is more likely to be somehow related
to i; and transitivity, if i knows j and j knows k, it is
likely that i knows k.

• Inference methods for handling systematic errors in the
measurement of links [14].

• General approaches for parameter estimation and model
comparison using Markov Chain Monte Carlo methods
(e.g. [15]).

• Taking into account individual variability [16] and prop-
erties (covariates) of actors [13].

• Ability to handle groups of nodes with equivalent statis-
tical properties [17].

There are several problems with existing models such as
degeneracy analyzed by [18] and scalability mentioned by
several sources [13] [19]. The new specifications for the
Exponential Random Graph Models proposed in [11] attempt
to find a solution for the unstable likelihood by proposing
slightly different parameterization of the models than was used
before.

III. SOCIAL NETWORK PROPERTIES

There are some properties of social networks that are very
important such as size, density, degree, reachability, distance,
diameter, geodesic distance. Here we describe some more
complicated properties which may be used in social network
analysis. The following properties are taken from [1].



A. Maximum flow
One notion of how totally connected two actors are, asks

how many different actors in the neighborhood of a source
lead to pathways to a target. If I need to get a message to
you, and there is only one other person to whom I can send
this for retransmission, my connection is weak - even if the
person I send it to may have many ways of reaching you.
If, on the other hand, there are four people to whom I can
send my message, each of whom has one or more ways of
retransmitting my message to you, then my connection is
stronger. This ”flow” approach suggests that the strength of
my tie to you is no stronger than the weakest link in the chain
of connections, where weakness means a lack of alternatives.

B. Hubbell and Katz cohesion
The maximum flow approach focuses on the vulnerability

or redundancy of connection between pairs of actors - kind of
a ”strength of the weakest link” argument. As an alternative
approach, we might want to consider the strength of all links
as defining the connection. If we are interested in how much
two actors may influence on one another, or share a sense of
common position, the full range of their connections should
probably be considered.
Even if we want to include all connections between two

actors, it may not make a great deal of sense (in most cases) to
consider a path of length 10 as important as a path of length 1.
The Hubbell and Katz approaches count the total connections
between actors (ties for undirected data, both sending and
receiving ties for directed data). Each connection, however,
is given a weight, according to it’s length. The greater the
length, the weaker the connection.

C. Taylor’s Influence
The Hubbell and Katz approach may make most sense when

applied to symmetric data; because they pay no attention to
the directions of connections (i.e. A’s ties directed to B are
just as important as B’s ties to A in defining the distance
or solidarity – closeness– between them). If we are more
specifically interested in the influence of A on B in a directed
graph, the Taylor influence approach provides an interesting
alternative.
The Taylor measure, like the others, uses all connections,

and applies an attenuation factor. Rather than standardizing on
the whole resulting matrix, however, a different approach is
adopted. The column marginals for each actor are subtracted
from the row marginals, and the result is then normed.
Translated into English, we look at the balance between
each actor’s sending connections (row marginals) and their
receiving connections (column marginals). Positive values then
reflect a preponderance of sending over receiving to the other
actor of the pair -or a balance of influence between the two-.

D. Centrality and Power
All sociologists would agree that power is a fundamental

property of social structures. There is much less agreement
about what power is, and how we can describe and analyze

its causes and consequences. Table I summarizes some of the
main approaches that social network analysis has developed
to study power, and the closely related concept of centrality.

Power Aspect
Name

Definition Influences

Degree Number of ties for an actor Having more oppurtunities
and alternatives

Closeness Length of paths to other actors Direct bargaining and ex-
change with other actors

Betweenness Lying between each other pairs
of actors

Brokering contacts among
actors to isolate them or pre-
vent connections

TABLE I
COMPARING THREE ASPECTS OF POWER IN SOCIOGRAMS (DEGREE,

CLOSENESS, AND BETWEENNESS)

IV. GROUPS AND SUBSTRUCTURES IN SOCIAL NETWORKS
One of the most common interests of structural analysts is

in the ”sub-structures” that may be present in a network. Many
of the approaches to understanding the structure of a network
emphasize how dense connections are compounded and ex-
tended to develop larger cliques or sub-groupings. Network
analysts have developed a number of useful definitions for
algorithms that identify how larger structures are compounded
from smaller ones.
Divisions of actors into cliques or ”sub-groups” can be a

very important aspect of social structure. It can be important in
understanding how the network as a whole is likely to behave.
For example, suppose the actors in one network form two non-
overlapping cliques; and, suppose that the actors in another
network also form two cliques, but that the memberships
overlap (some people are members of both cliques). Where the
groups overlap, we might expect that conflict between them
is less likely than when the groups don’t overlap. Where the
groups overlap, mobilization and diffusion may spread rapidly
across the entire network; where the groups don’t overlap,
traits may occur in one group and not diffuse to the other.
The main features of a graph, in terms of its cliques or

sub-graphs, may be apparent from inspection:
• How separate are the sub-graphs (do they overlap and
share members, or do they divide or factionalize the
network)?

• How large are the connected sub-graphs? Are there a few
big groups, or a larger number of small groups?

• Are there particular actors that appear to play network
roles? For example, act as nodes that connect the graph,
or who are isolated from groups?

A. Cliques
The idea of a clique is relatively simple. At the most general

level, a clique is a sub-set of a network in which the actors
are more closely and intensely tied to one another than they
are to other members of the network. In terms of friendship



ties, for example, it is not unusual for people in human groups
to form cliques on the basis of age, gender, race, ethnicity,
religion/ideology, and many other things.
The strongest possible definition of a clique is some number
of actors (more than two, usually three is used) who have
all possible ties present among themselves [20]. A Maximal
Complete Sub-Graph is such a grouping, expanded to include
as many actors as possible.
The strict clique definition (maximal fully connected sub-
graph) may be too strong for many purposes. It insists that
every member or a sub-group have a direct tie with each
and every other member. You can probably think of cases of
cliques where at least some members are not so tightly or
closely connected.
There are two major ways that the clique definition has been
relaxed to try to make it more helpful and general. One
alternative is to define an actor as a member of a clique if they
are connected to every other member of the group at a distance
greater than one. Usually, the path distance two is used. This
corresponds to being ”a friend of a friend”. This approach to
defining sub-structures is called N -clique, where N stands
for the length of the path allowed to make a connection to all
other members [21].

B. N-Clans

The N -clique approach tends to find long and stringy
groupings rather than the tight and discrete ones of the
maximal approach. In some cases, N -cliques can be found
that have a property that is probably undesirable for many
purposes: it is possible for members of N -cliques to be
connected by actors who are not, themselves, members of
the clique. For most sociological applications, this is quite
troublesome. For these reasons, some analysts have suggested
restricting N -cliques by insisting that the total span or path
distance between any two members of anN -clique also satisfy
a condition. The kind of a restriction has the effect of forcing
all paths among members of an n-clique to occur by way
of other members of the n-clique [1]. This approach is the
N -Clan.

C. K-Plexes

An alternative way of relaxing the strong assumptions of
the Maximal Complete Sub-Graph is to allow that actors may
be members of a clique even if they have tiles to all but k
other members [22]. For example, if A has ties with B and
C, but not D; while both B and C have ties with D, all four
actors could fall in clique under the K-Plex approach. This
approach says that a node is a member of a clique of size
n if it has direct ties to n − k members of that clique. The
k-plex approach would seem to have quite a bit in common
with the n-clique approach, but k-plex analysis often gives
quite a different picture of the substructures of a graph. Rather
than the large and stringy groupings sometimes produced by
n-clique analysis, k-plex analysis tends to find relatively large
numbers of smaller groupings. This tends to focus attention on

overlaps and co-presence (centralization) more than solidarity
and reach [1].

Substructure
Name

Description

Clique Actors who have all possible ties among themselves

N-Clique Actors are connected to every member of the group at a
maximum distance of N

N-Clans N-Cliques that all paths among members occur by the
way of other members of N-Clique

K-Plex Clique in which actors have ties to all but k of members
of the group

K-Core Actors are connected to k of members of the group

Component Parts of sociogram that are connected within bu discon-
nected with other components

Cut Points Nodes which if removed, the structure becomes divided
into un-connected systems

Block The divisions into which cutpoints divide a graph

Lambda Set Set of actors who if disconnected, would most greatly
disrupt the flow among all of the actors

TABLE II
COMPARING DIFFERENT APPROACHES FOR DEFINING SUBSTRUCTURES

AND GROUPS IN SOCIOGRAMS

V. THE WEB AS A SOCIAL NETWORK
The Web is an example of a social network. Social networks

are formed between Web pages by hyperlinking to other Web
pages. To leverage the existence of hyperlinks, we model the
Web as a graph where vertices are Web pages and hyperlinks
are edges. While Web pages may be similar in terms of
textual or multimedia content, a hyperlink is usually an explicit
indicator that one Web page author believes that anothers page
is related or relevant.
The possibility to publish and gather personal information

(such as the interests, works and opinions of our friends
and colleagues) has been a major factor in the success of
the Web from the beginning. Remarkably, it was only in
the year 2003 that the Web has become an active space of
socialization for the majority of users [23]. That year has seen
the rapid emergence of a new breed of Web sites, collectively
referred to as social networking services (SNS). The first-
mover Friendster1 attracted over 5 million registered users in
the span of a few months [24], which was followed by Google
and Microsoft starting or announcing similar services.
Although these sites feature much of the same content

that appears on personal Web pages, they provide a central
point of access and bring structure in the process of personal
information sharing and online socialization. Following reg-
istration, these sites allow users to post a profile with basic
information, to invite others to register and to link to the
profiles of their friends. The system also makes it possible to
visualize and browse the resulting network in order to discover

1http://www.friendster.com/



friends in common, friends thought to be lost or potential new
friendships based on shared interests. (Thematic sites cater to
more specific goals, such as establishing a business contact or
finding a romantic relationship [23]).

A. Applying social network analysis to the Web
Starting in 1996, a series of applications of social network

analysis were made to the Web graph, with the purpose of
identifying the most authoritative pages related to a user query.
1) PageRank in Google: If one wanders on the Web for

infinite time, following a random link out of each page with
probability 1 − p and jumps to a random Web page with
probability p, then different pages will be visited at different
rates; popular pages with many in-links will tend to be visited
more often. This measure of popularity is called PageRank
[25], defined recursively as

PageRank(v) = p/N + (1− p)
∑

u→v

PageRank(u)
OutDegree(u)

where ’→’ means ”links to” and N is the total number of
nodes in the Web graph. (The artifice of p is needed because
the Web is not connected or known to be aperiodic, therefore
the simpler eigenequation is not guaranteed to have a fuxed
point.) The Google search engine simulates such a random
walk on the Web graph in order to estimate PageRank, which is
used as a score of popularity. Given a keyword query, matching
documents are ordered by this score. Note that the popularity
score is precomputed independent of the query, hence Google
can be potentially as fast as any relevance-ranking search
engine.
2) Hyperlink induced topic search (HITS): Hyperlink in-

duced topic search [26] is slightly different: it does not crawl
or pre-process the Web, but depends on a search engine. A
query to HITS is forwarded to a search engine such as Alta
Vista, which retrieves a subgraph of the Web whose nodes
(pages) match the query. Pages citing or cited by these pages
are also included. Each node u in this expanded graph has
two associated scores hu and au, initialized to 1. HITS then
iteratively assigns

av =
∑

u→v

hu and hu =
∑

u→v

av

where
∑

u hu and
∑

v av are normalized to 1 after each
iteration. The a and h scores converge respectively to the
measure of a page being an authority, and the measure of
a page being a hub. Because of the query-dependent graph
construction, HITS is slower than Google. A variant of this
technique has been used by Dean and Henzinger to find similar
pages on the Web using link-based analysis alone [27]. They
improve speed by fetching the Web graph from a connectivity
server which has pre-crawled substantial portions of the Web
[28].

VI. INFERRING COMMUNITIES IN WEB

Community formation is one of the important activities in
the Web. The Web harbors a large number of communities. A

community is a group of content creators that manifests itself
as a set of interlinked pages. Given a large collection of pages
our aim is to find potential communities in the Web[29]. The
link structure of the www represents a considerable amount
of latent human annotation, and thus offers a promising
starting point for structural studies of the Web. There has
been a growing amount of work directed at the integration
of textual content and link information for the purpose of
organizing [30] [31], visualizing [28] and searching [32] [33]
[27] in hypermedia such as the www. We review approaches
for identification of communities from link topology in this
section.
One of the key distinguishing features of the algorithms we
will consider is the degree of locality used for assessing
whether or not a page should be considered a community
member. On the one extreme are purely local methods which
consider only the properties of the local neighborhood around
two vertices to decide if the two are in the same community.
Global methods operate at the other extreme, and essentially
demand that every edge in a Web graph be considered in
order to decide if two vertices are members of the same
community. In the following subsections, first we review two
local algorithms (Bibliographic Metrics and Bipartite Cores),
and then a global one (HITS Communities).

A. Bibliographic Metrics
Figure 3 illustrates two complementary metrics known as

bibliographic coupling and co-citation coupling. In the figure,
we see that the two metrics count the raw number of out-bound
or in-bound references, respectively, shared by two pages u
and v. Both metrics were originally formulated to capture
similarity between scientific literature [34] by comparing the
amount of overlap between the bibliographies or referrers for
two different documents [35].

Fig. 3. Graphic portrayal of bibliographic metrics, (a) bibliographic coupling,
and (b) co-citation coupling. For vertices u and v, the similarity metric is
shown as the amount of overlap that vertices have in the set of outbound
neighbors or in-bound neighbors.

B. Bipartite Cores
Bipartite cores are also local methods for inferring commu-

nities. Bibliographic metrics (especially when normalized) are
effective for characterizing the degree of similarity between
two pages in terms of what they link to and what links to
them. What is missing in this framework is the notion that a



collection of pages can be related to each other in an aggregate
sense.
A complete bipartite graph is a directed graph with vertices

that can be divided into two sets, L and R (for left and right)
with L ∪ R = V and L ∩ R = φ, such that each vertex in L
has an edge to each vertex in R. We use the notation, Klr to
denote a complete bipartite graph with l = |L| and r = |R|.
Bipartite subgraphs are relevant to Web communities for at
least two reasons that subtly relate to one another. First, a
bipartite core, Klr, has the properties that all vertices in L
have a bibliographic coupling value lowerbounded by r and all
vertices in R have a co-citation coupling value lowerbounded
by l. Thus, bipartite subgraphs consist of vertices that have
a minimal degree of similarity in terms of raw bibliographic
metrics. The second reason why bipartite subgraphs are rele-
vant to Web communities is because they empirically appear
to be a signature structure of the core of a Web community
[36].

C. HITS Communities
By utilization of HITS algorithm mentioned in previous

section we can identify communities across documents. Note
the crucial fact that the textual content of the pages involved is
only considered in the initial step, when a root set is assembled
from a search engine. Following this, the algorithm simply
propagates weight over links without further regard to the
relevance of the pages it is working with. The fact that hits can
reliably identify pages that are not only authoritative but also
relevant to the user’s initial query implies something about the
breadth of the topic: since the initial root set was sufficiently
rich in relevant pages, the densest community of hubs and
authorities in the surrounding base set was relevant as well.
[37]

VII. BLOGSPHERE AS SOCIAL NETWORKS
Recently, blogs (or Weblogs) have become prominent social

media on the Internet that enable users to quickly and easily
publish content including highly personal thoughts. A blog is
typically a Web site that consists of dated entries in reverse
chronological order written and maintained by a user (blogger)
using a specialized tool. Since a blog entry can have hyperlinks
to Web pages or other blog entries, the information structure of
blogs and links (sometimes called the blogspace) can be seen
as a network of multiple communities. As defined in Glossary
of Internet Terms2:
”A blog is basically a journal that is available on the Web.

The activity of updating a blog is blogging and someone who
keeps a blog is a blogger. Blogs are typically updated daily
using software that allows people with little or no technical
background to update and maintain the blog. Postings on a
blog are almost always arranged in chronological order with
the most recent additions featured most prominently.”
Bloggers might list one another’s blogs in a blogroll and might
read, link to a post, or comment on other blogs’ posts (A

2http://www.matisse.net/files/glossary.html

post is the smallest part of a blog which has some contents
and readers can comment on it. A post also has a date of
publish). Bloggers frequently read each other’s postings, and
the phenomenon of listing and commenting on information
found through a user’s online exploration is common. These
posts and comments are intended to relay the latest interesting,
humorous, or thought provoking information the user has run
across. This information is added to the blog with the full
realization by, or hope of, the author that it will be read by
others.
Weblogs are subsets of Web and so can be considered as
Social Networks. But their link structure may be somehow
different if we consider comments and entry to entry links
in blogs. Mohsen Jamali and Hassan Abolhassani [38] used
this special link structure to extend HITS and introduce a
new ranking algorithm form Weblogs. To measure Weblog
popularity Gilad Mishne and Natalie Glance [39] used two
indicators: the number of incoming links as reported by the
Blogpulse index, and the number of page views for Weblogs
that use a public visit counter such as Sitemeter. They made a
great attempt to analyze the comments of blogs and the relation
between the Weblog popularity and commenting patterns in it.
[40] uses link structure in Weblogs to build a recommender
system for Weblogs.
Cameron Marlow [41] employed social network analysis to
describe the social structure of blogs. He has explored two
measures of authority: popularity, as measured by Webloggers’
public affiliations and influence measured by citation of each
others writing. These metrics were evaluated with respect to
each other and with the authority conferred by references in
the popular press. Ko Fujimura et al. [42] proposed a new
algorithm called ”EigenRumor” that scores each blog entry by
weighting the hub and authority scores of the bloggers based
on eigenvector calculations. This algorithm enables a higher
score to be assigned to the blog entries submitted by a good
blogger but not yet linked to by any other blogs based on
acceptance of the blogger’s prior work. In the EigenRumor
model, however, the adjacency matrix is constructed from
agent-to-object links, not page-to-page (or object-to-object)
links. An agent is used to represent an aspect of human being
such as a blogger, and an object is used to represent any object
such as a blog entity in this paper. Using the EigenRumor
algorithm, the hub and authority scores are calculated as
attributes of agents (bloggers) and by weighting these scores
to the blog entries submitted by the blogger, the attractiveness
of a blog entity that does not yet have any in-link submitted
by the blogger can be estimated.

VIII. SEMANTIC WEB AND SOCIAL NETWORKS
There’s a revolution occurring and it’s all about making the

Web meaningful, understandable, and machine-processable,
whether it’s based in an intranet, extranet, or Internet. This
is called the Semantic Web, and it will transition us toward a
knowledge-centric viewpoint of ’everything’ [43]. The Seman-
tic Web (SW) is an emerging concept that launches the idea
of having data on the Web defined and linked in a way that it



can be used by people and processed by machines [4] [44] [5]
[6] in a ”wide variety of new and exciting applications” [5]. It
develops ”languages for expressing information in a machine
processable form” [4], so to enable the machine to be able to
participate and help inside the information space [45].
The Semantic Web and social network models support one
another. On one hand, the Semantic Web enables online and
explicitly represented social information; on the other hand,
social networks, especially trust networks [46], provide a
new paradigm for knowledge management in which users
”outsource” knowledge and beliefs via their social networks
[47]. In order to turn these objectives into reality, many
challenging issues need to be addressed as the following.

• Knowledge representation. Although various ontologies
capture the rich social concepts, there is no need to have
hundreds of ”dialectic” ontologies defining the same con-
cept. How can we move toward having a small number
of common and comprehensive ontologies?

• Knowledge management. The Semantic Web is, relative
the entire Web, fairly connected at the RDF graph level
but poorly connected at the RDF document level. The
open and distributed nature of the Semantic Web also
introduces issues. How do we provide efficient and ef-
fective mechanisms for accessing knowledge, especially
social networks, on the Semantic Web?

• Social network extraction, integration and analysis.
Even with well-defined ontologies for social concepts,
extracting social networks correctly from the noisy and
incomplete knowledge on the (Semantic) Web is very
difficult. What are the heuristics for integrating and fusing
social information and the metrics for the credibility and
utility of the results?

• Provenance and trust aware distributed inference.
Provenance associates facts with social entities which
are inter-connected in social network, and trust among
social entities can be derived from social networks. How
to manage and reduce the complexity of distributed
inference by utilizing provenance of knowledge in the
context of a given trust model? [48]

Despite their early popularity, users have later discovered
a number of drawbacks to centralized social networking
services. First, the information is under the control of the
database owner who has an interest in keeping the information
bound to the site. The profiles stored in these systems cannot
be exported in machine processable formats, and therefore
the data cannot be transferred from one system to the next.
Second, centralized systems do not allow users to control the
information they provide on their own terms. These problems
have been addressed with the use of Semantic Web technology.
The friend-of-a-friend(FOAF) project3 is a first attempt at a
formal, machine processable representation of user profiles and
friendship networks.
[49],[50] show that the Friend of a Friend (FOAF) on-

tology is among the most used semantic Web ontologies.

3http://www.foaf-project.org/

The Swoogle Ontology Dictionary shows that the class
foaf:Person4 currently has nearly one million instances spread
over about 45,000 Web documents. The FOAF ontology is not
the only one used to publish social information on the Web.
For example, Swoogle identifies more than 360 RDFS or OWL
classes defined with the local name ”person”.
Extracting social network from noisy, real world data is a

challenging task, even if the information is already encoded
in RDF using well defined ontologies. The process consists
of three steps: discovering instances of foaf:Person, merg-
ing information about unique individuals, and linking person
through various social relation properties such as foaf:knows.
[48]

IX. CONCLUSIONS
In this paper we’ve reviewed social networks, formal meth-

ods to show them, and social networks’ properties. Social
network analysis methods provide some useful tools for ad-
dressing many aspects of social structure.
The Web itself can be considered as a social network. In the
Web’s social network, documens are node of the sociogram
and links between documents are the edges of the sociogram.
Weblogs, which are a special subset of Web could also be
considered as social networks. We have described special link
structure for Weblogs which contains comments other than
explicit links.
The Semantic Web (SW) is an emerging concept that launches
the idea of having data on the Web defined and linked in a
way that it can be used by people and processed by machines.
The Semantic Web and social network models support one
another. Table V shows basic properties of kinds of social
networks described in this paper, and shows differences in
their formations.
As future works, we intend to mine the social networks of

Persian Weblogs using the methods surveyed in this paper and
find new interesting models. Also we’re going to use semantics
of those Weblogs and their link structure (their social network)
to cluster the Weblogs using Semantic Web concepts.

Social
Network
Type

Actors Ties Direction

Friendship
Netwotk

People in
Society

Friendship relations
between people

Undirected

Web’s Social
Network

Web Pages Links Between Web
Pages

Directed

Semantic
Web Social
Networks

Semantic
Web Docs or
Concepts in
Them

Semantic Relations
Between Documents
or Concepts, such as
foaf : knows.

Directed
or Undi-
rected

TABLE III
COMPARING BASIC PROPERTIES OF DIFFERENT KINDS OF SOCIAL
NETWORKS DESCRIBED. IT SHOULD BE NOTED THAT ALL OF THESE

NETWORKS CAN BE ANALYZED BY GRAPH THEORY ALGORITHMS

4it is the Qualified name (QName) of http://xmlns.com/foaf/0.1/Person.
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