
Different dietary omega-3 sources during pregnancy
and DHA in the developing rat brain

Synthesis of long chain
n-3 PUFA

Dietary sources of the essential fatty acid
a-linolenic acid (ALA; 18:3n-3) include
green leaves, some seeds, nuts and
cooking oils. The principal dietary source
of the long-chain (LC) n-3 polyunsatu-
rated fatty acids (PUFA) eicosapentae-
noic acid (EPA; 20:5n-3), docosapen-
taenoic acid (DPA; 22:5n-3) and doco-
sahexaenoic acid (DHA; 22:6n-3) is oily
fish, yet it is estimated that only 27% of
UKadults habitually eat oily fish (Scientific
AdvisoryCommittee onNutrition, 2004).

In addition to consumption in the diet,
LC n-3 PUFA can be endogenously
synthesised via a series of elongase,
desaturase and b-oxidation steps from
their essential fatty acid precursor ALA
(Leonard et al., 2004) (figure 1). This

same series of desaturase and elongase
enzymes is also involved in the metab-
olism of the n-6 PUFA linoleic acid (LA)
into its longer-chain, more unsaturated
derivatives (e.g. arachidonic acid). In
Western diets, consumption of LA is
about 10 times that of ALA (Burdge and
Calder, 2006), suggesting that synthesis
of n-6 PUFA will predominate.

Sex and plasma and
tissue n-3 fatty acid
composition

Studies have identified sex differences in
circulating plasma concentrations of LC
n-3 PUFA. While these studies vary in
their sample size, degree of dietary
control exerted and the range of blood
lipids analysed, all have found that
women have significantly higher circu-

lating DHA concentrations compared
to men and that this is independent
of dietary intake (Nikkari et al., 1995;
Giltay et al., 2004; Bakewell et al., 2006;
Crowe et al., 2008). Rat studies have
also identified that the proportion of
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pregnancy would mean that plant n-3 fatty acids would be useful alternatives to
preformed EPA and DHA.
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Abbreviations

ALA a-linolenic acid

DHA docosahexaenoic acid

DPA docosapentaenoic acid

EPA eicosapentaenoic acid

HF high-fat

LA linoleic acid

LC long-chain

LF low-fat

PC phosphatidylcholine

PE phosphatidylethanolamine

PUFA polyunsaturated fatty acid
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DHA is higher in liver and plasma
phospholipids in females than males
(Burdge et al., 2008; Extier et al., 2010;
Childs et al., 2010a).

Data from studies using stable isotope-
labelled ALA demonstrate that there are
sex differences in the ability to synthe-
size LC n-3 PUFA from ALA. Young
women converted a greater proportion
of ALA into EPA and DHA compared to
men (Burdge et al., 2002a; Burdge and
Wootton, 2002b). It has been hypoth-

esised that sex differences are estab-
lished in order to ensure an adequate
supply of LC n-3 PUFA to the developing
fetus during pregnancy (Bakewell,
2006). If this is the case, then it is
possible that LC n-3 PUFA synthesis
may be further upregulated during
pregnancy.

N-3 fatty acids and
pregnancy

Specific maternal dietary fatty acids,
particularly n-3 PUFA, have been dem-
onstrated to be essential for successful
fetal development and later tissue
function in both humans and animals.
Transfer of DHA to the developing fetus
in human pregnancy predominantly
occurs in the last 10 weeks of preg-
nancy, with the majority of this DHA
accumulated within fetal adipose tissue
(Haggarty, 2004). The observation that
DHA is found in high concentrations in
the retina and accumulates in the fetal
brain during late pregnancy and in early
neonatal life has led to the suggestion
that an adequate dietary supply of this
fatty acid is required for optimal brain
and visual development (Farquharson
et al., 1995). Animal studies where n-3

fatty acid deficient diets have been
provided demonstrate that dietary n-3
fatty acids are essential for normal
cognitive and visual function, as revie-
wed in detail elsewhere (Lauritzen et al.,
2001).

Human studies have investigated the
role of LC n-3 PUFA, particularly DHA,
when provided in milk formula to both
preterm and healthy term infants. Meta-
analyses indicate that the addition of
DHA to pre-term infant formula is
beneficial for optimal visual develop-
ment in early life (Sangiovanni et al.,
2000; Uauy et al., 2003). Whether these
effects persist beyond early life (i.e. after
4 months of age) has not yet been
established. In term infants, formula
containing DHA was found to improve
markersof cognitive function (Cheatham
et al., 2006). However, the clinical
relevance of the reported statistically
significant differences and the validity
of the neurodevelopmental tests utilised
in these studies have been questioned
(Koo, 2003).

Human studies have demonstrated that
there are significant effects of pregnancy
upon blood lipid fatty acid composition,
though the effects observed have been
mixed. For example, while some studies
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Figure 1. Biosynthesis of LC n-3 PUFA from a-
linolenic acid.
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Figure 2. EPA content of plasma phosphatidylcholine in male and female rats fed an ALA-rich
diet for 20 days. Values are mean � SD, n=6 per group. *Significantly different from males
(p<0.05). Data are taken from [10].

260 OCL VOL. 18 N8 5 septembre-octobre 2011



have identified a reduction in plasma
phospholipid DHA status during preg-
nancy (Wijendran et al., 1999; Hornstra,
2000), others have reported increased
DHA content of plasma phospholipids
(Postle et al., 1995; Burdge et al., 2006)
or red blood cells (Stewart et al., 2007).
These differences between studies can
most likely be attributed to variations in
the type of sample analysed, whether
resultswere expressed as a percentage or
in absolute concentrations, and the
possible confounding effect of maternal
diet and adipose tissue composition.
Studies in rats comparing virgin animals
with those at the end of pregnancy have
shown that the fatty acid composition of
phospholipids from plasma and liver is
significantly altered in response to preg-
nancy with higher DHA and lower
arachidonic acid contents (Smith and
Walsh, 1975; Cunnane, 1989; Chen
et al., 1992; Burdge et al., 1994). In rats,
higher DHA in liver and plasma phos-
phatidylcholine (PC) has been attributed
to changes in PC synthesis (Burdge et al.,
1994).However, it is unclearwhether the
increased availability of DHA is a result of
mobilisation of DHA from adipose tissue,
increased dietary intake or greater syn-
thesis by desaturation and elongation of
precursors.

Use of an ALA rich diet
in rat models

We have identified that there are
significant diet � sex interactions in
rat tissue n-3 fatty acid composition
(Childs et al., 2010a). Female rats fed
an ALA rich diet had a higher proportion
of EPA in plasma and liver PC compared
to males (figure 2), with data suggesting
that these differences may be mediated
by higher expression of D6 desaturase
(D6D) mRNA and greater D6D activity in
females thanmales (Childs et al., 2010a).
We also identified that providing an ALA
rich diet during pregnancy resulted in
equivalent EPA status in fetal immune
tissues (figure 3A) and equivalent DHA
status in the fetal brain to that achieved
in the offspring of dams fed a high-
fat salmon-oil diet (figure 3B) (Childs
et al., 2010b). This indicates a significant
role of maternal and/or fetal LC n-3
PUFA synthesis in determining fetal LC
n-3 PUFA status in a tissue specific
manner. The effect of maternal diet
during pregnancy upon fetal brain DHA
content persists until weaning (figure 4).

Discussion

We have found that the percentage
content of n-3 fatty acids among rats
receiving standard laboratory chow
ad libitum and the response of rats to
ALA supplementation regimes com-
pares favourably with available data
from human studies. If dietary ALA
during pregnancy significantly influen-

ces fetal brain and immune tissue LC n-3
PUFA content in humans this would
have significant implications for strat-
egies aimed at improving infant cogni-
tive function or promoting infant
immune development and reducing
the risk of immune dysfunction (e.g.
atopic sensitisation). To date, studies
in pregnancy examining these infant
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Figure 3. EPA and DHA contents of thymus and brain phosphatidylethanolamine from 20-day
gestation pups from rat dams fed different experimental diets for 20 days of pregnancy. Values
are mean�SD, n=6 per group. Means without a common letter differ, P<0.05. LF, low fat diet;
HF, high fat diet; ND, not detected (<0.1%). Data are taken from [29].
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Figure 4. DHA content of brain phosphatidylethanolamine of pups from rat dams fed different
high fat (HF) experimental diets for 20 days of pregnancy. Day 20 indicates day 20 of
gestation; week 3, 6, 9 and 12 indicate weeks post-birth. Values are mean n=6 per group. *HF
Salmon significantly different from the other two groups, P<0.05. Data are not previously
published.
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outcomes have largely provided marine-
sources of n-3 fatty acids. The availability
of plant-oil sources of n-3 fatty acids
would greatly benefit vegetarian and
vegan women and would have an
environmental impact by reducing
demand upon marine resources.

Further rat studies will be necessary to
determine the threshold of ALA supple-
mentation required to maintain equiv-
alent brain DHA and immune tissue EPA
to that achieved with a fish-oil rich diet.
Whether these changes to tissue fatty
acid composition result in anydifferences
in offspring visual, cognitive or immune
function is also yet to be determined. It
would be of interest to conduct human
studies to investigate whether there are
similar sex differences in the response to
dietary ALA. If the effects observed in our
rat model of dietary ALA during preg-
nancy were replicated in human studies,
this approach could be used to inves-
tigate whether there are benefits to
offspring health, including women who
are unwilling or unable to consume
marine-based interventions (i.e. fish or
fish oils).
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