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Although many genetic association studies have been carried

out, it remains unclear which genes contribute to depression.

This may be due to heterogeneity of the DSM-IV category of

depression. Specific symptom-dimensions provide a more

homogenous phenotype. Furthermore, as effects of individual

genes are small, analysis of genetic data at the pathway-level

provides more power to detect associations and yield valuable

biological insight. In 1,398 individuals with a Major Depressive

Disorder, the symptom dimensions of the tripartite model of

anxiety and depression, General Distress, Anhedonic Depres-

sion, and Anxious Arousal, were measured with the Mood and

Anxiety Symptoms Questionnaire (30-item Dutch adaptation;

MASQ-D30). Association of these symptom dimensions with

candidate gene sets and gene sets from two public pathway

databases was tested using the Global test. One pathway was

associated with General Distress, and concerned molecules

expressed in the endoplasmatic reticulum lumen. Seven path-

ways were associated with Anhedonic Depression. Important

themes were neurodevelopment, neurodegeneration, and cytos-

keleton. Furthermore, three gene sets associated with Anxious

Arousal regarded development,morphology, and genetic recom-

bination. The individual pathways explained up to 1.7% of the

variance. These data demonstratemechanisms that influence the

specific dimensions. Moreover, they show the value of using

dimensional phenotypes on one hand and gene sets on the other

hand. � 2012 Wiley Periodicals, Inc.

Key words: GWAS; pathway; tripartite model; MDD

INTRODUCTION
Major depressive disorder (MDD) is highly prevalent, with a

lifetime prevalence of 15% [Weissman et al., 1993]. Patients

with MDD vary widely with respect to their symptom profiles. If

this is not taken into account, symptom-specific risk factors

will remain undetected. Further, extensive comorbidity between

depressive and anxiety disorders exists, suggesting that part of their

pathogenesis is shared [Mineka et al., 1998; Vollebergh et al.,

2001; Kendler et al., 2003]. These problems can be overcome by

addressing the etiology of underlying, homogeneous symptom

dimensions. The tripartite model of anxiety and depression is a

well-validated dimensional model [Clark and Watson, 1991].

The dimension of General Distress (i.e., negative affect) contains

symptoms common to both depression and anxiety, including

irritability, hopelessness and guilt. The dimension of Anhedonic

Depression (i.e., lack of positive affect) refers to lack of energy and

enthusiasm, and is most specific to depression. The dimension of

Anxious Arousal (i.e., somatic arousal) is most specific to anxiety,

and consists of symptoms of somatic tension and hyperarousal.

Additional supporting information may be found in the online version of

this article.
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The coverage of these dimensions is quite specific and likely

influenced by fewer genes than the broad phenotype of MDD.

Furthermore, the dimensions are continuous and therefore provide

more statistical power to detect small genetic effects [MacCallum

et al., 2002]. A recent simulation study indeed demonstrated that

much power is gained when the multidimensionality of the

phenotype is taken into account, such that genetic effects specific

to certain phenotype dimensions can be detected [van der Sluis

et al., 2010]. Thus, it is not very surprising that genome-wide

association studies (GWAS) for MDD yielded no significant asso-

ciations [Sullivan et al., 2009; Muglia et al., 2010; Wray et al., 2010;

Shi et al., 2011; Shyn et al., 2011]. Further, studies of candidate genes

for MDD have not revealed major disease loci [Bosker et al., 2011].

Neuroticism is a personality trait closely associated with MDD,

largely due to shared genetic risk factors [Hettema et al., 2006].

Although neuroticism provides a less complex phenotype (strongly

related to General Distress) [Clark et al., 1994], the three GWAS for

neuroticism yielded no significant findings [Shifman et al., 2008;

van den Oord et al., 2008; Calboli et al., 2010].

In complex diseases, each gene has a small effect, but unfavorable

combinations of genes in a pathway may affect the output of the

pathway. This may affect downstream phenotypes. Thus, analyses

should be carried out at the pathway-level [Comings, 1998].

Whereas gene set analyses have been widely used in the field of

microarrays, analyses of predefined gene sets in genetic association

studies are very recent [Hooper-van Veen et al., 2006; Wang et al.,

2007; Holmans et al., 2009; Ruano et al., 2010]. Replication of

genetic associations with phenotypes was shown to be easier at

the pathway level than at the gene or SNP levels [Luo et al., 2010].

Different types of pathway analyses have been used [for review,

see Holmans, 2010]. The Global test is one example, based on a

regression model that includes all SNPs of the pathway. It tests

whether on average these are associated with the phenotype

[Goeman et al., 2004]. Interpretation is intuitive as the analysis

of a pathway is a direct extension of the analysis of single genes

or single SNPs. Further, the Global test performed consistently well

in the analysis of multiple SNPs in candidate genes [Chapman and

Whittaker, 2008; Pan, 2009] and candidate pathways [Deelen et al.,

2011].

In order to unravel the heterogeneity of symptoms among

patients with MDD, we aimed to identify pathways associated

with specific dimensions of depression and anxiety. Among

individuals with a lifetimeMDD,we used the Global test to identify

gene sets associated with the symptom dimensions of the tripartite

model.

METHODS

Subjects
Data from 1,598 MDD cases from NESDA that passed quality

control in the GAIN-MDD study were used [Sullivan et al., 2009].

NESDA is a cohort study that follows patients with depressive

and/or anxiety disorders recruited between September 2004 and

February 2007 from mental health care organizations, primary

care, and community samples [Penninx et al., 2008]. Inclusion

criteria for genotyping were a lifetime diagnosis ofMDD according

to DSM-IV, assessed with the composite international diagnostic

interview (World Health Organisation version 2.1), age 18–
65 years, and self-reported western European ancestry. Individuals

not fluent in Dutch or with a primary diagnosis of a psychotic

disorder, obsessive compulsive disorder, bipolar disorder, alcohol

or substance use disorder were excluded. For details see Boomsma

et al. [2008]. The Ethical Review Boards of all participating uni-

versities approved the research protocol. All subjects provided

written informed consent. For 200 of the 1,598 cases, no dimen-

sional phenotypedatawere available (questionnaires not returned).

These respondents were younger, more often men, and more often

with currentMDD. The remaining 1,398 individuals were the basis

of the present study.

MASQ-D30
The dimensions of the tripartite model were measured with the

30-item Dutch adaptation of the Mood and Anxiety Symptoms

Questionnaire (MASQ-D30) [Wardenaar et al., 2010]. TheMASQ-

D30 is a self-report questionnaire in which individuals rate how

much in the past week they have experienced ‘‘feelings, sensations,

problems, and experiences that people sometimes have’’ on a 5-

point Likert scale (1¼ not at all, 5¼ extremely). The MASQ-D30

consists of three 10-item subscales that measure General Distress,

Anhedonic Depression, and Anxious Arousal, and has good psy-

chometric characteristics [Wardenaar et al., 2010].TheMASQ-D30

was filled out by 1,398 cases of the GAIN MDD study. For 76

individuals, 1–4missing items (never more than 2 on a dimension)

were imputed with the mean score on the remaining items of the

dimension.

Genotype Data
Genotype data were collected as part of the GAIN-MDD study.

Genotyping was carried out by Perlegen Sciences according to strict

standard operating procedures. High-density oligonucleotide

arrays were used yielding 599,164 SNPs. Eight SNPs with duplicate

numbers were deleted and 73 mitochondrial SNPs were removed

for later analysis. From the remaining 599,083 SNPson the Perlegen

chip 435,291 passed quality control. For details see Boomsma et al.

[2008], Sullivan et al. [2009], Bosker et al. [2011].

Annotation
SNPswere assigned togenesusingRefSeq alignments to the genome

(UCSC, May 2010) and gene to RefSeq annotation (NCBI, build

35/hg17) [Wheeler et al., 2007]. We included SNPs between 5 kb

from50 end and2 kb from the 30 endof genes, as did others [Luciano
et al., 2011]. SNPs mapped to multiple genes were assigned to

each of these genes. The resulting gene map contained 18,601 well-

oriented Entrez Gene RefSeq clusters that defined the gene boun-

daries, and covered 170,795 SNPs. With inclusion of 5 kb at 50

and 2 kb at 30 end, 188,017 SNPs were included. For men, SNPs on

the X-chromosome were encoded 0 or 2 [Clayton, 2008].

Gene Sets
Manually curated pathway databases like Biocarta andKegg [Ogata

et al., 1999] contain high-quality information, whereas the Gene
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Ontology (GO) database has extensive coverage by electronic

annotation [Ashburner et al., 2000]. Genes assigned the same

GO term have some aspect of their biology in common. In a

comparison of several pathway databases, results were comple-

mentary [Elbers et al., 2009]. The combined use was advised to

ensure both comprehensive coverage and use of the available

high quality information [Wang et al., 2010]. In the present study,

five groups of gene sets were analyzed: (1) 12 candidate pathways

manually curated from published data (see Supplementary

Online), (2) 117 GO cellular components, (3) 211 GO molecular

functions, (4) 609 GO biological processes, (5) 880 canonical

pathways from the Molecular Signatures Database v3.0

[Subramanian et al., 2007], which consists of 217 pathways from

BioCarta, 186 from KEGG [Ogata et al., 1999], and 430 from

Reactome [Croft et al., 2011].

Selection of GO Terms
GO terms were associated with genes using all evidence codes and

with the genes of its offspring. For this, the Entrez Gene to GO

association map org.Hs.egGO2ALLEGS from the R package

org.Hs.eg.db (v2.4.1) was used. This database contained 12,327

GO terms; to restrictmultiple testing, only those with 20–100 genes
were included. From this subset, only the roots of sub-trees were

selected to avoid overlap between gene sets. A similar approach

has been used byWang et al. [2007], who selected level 4 GO terms

among those with 20–200 genes.

Global Test
To test for associationof gene setswithGeneralDistress, Anhedonic

DepressionandAnxiousArousal, theRpackageGlobalTest (v5.1.5)

was used [Goeman et al., 2004]. The genotypes for all SNPs in a

pathway were included in a linear regression model, and the tested

null hypothesis was that no SNP in the pathway was associated

with the symptom dimensions. Because the Global test is based on

a multiple regression model, it automatically takes correlation

between SNPs, such as caused by linkage disequilibrium, into

account. Furthermore, because the Global test is constructed as a

test for a single parameter, regardless of the number of SNPs in the

pathway, the test is not biased towards large or small pathways

[Goeman et al., 2006]. For pathways associated with phenotypes

and for candidate pathways, additional Global tests were done for

the genes in the pathway to investigate which genes contributed to

the pathway-signal.

Control of False Discoveries
To control the risk of false-positive discoveries, Benjamini and

Hochberg false discovery rates (FDR-BH) were calculated for each

group of gene sets and for each of the outcomes. The use of FDR

is preferable to more traditional multiple testing controls because

they provide a better balance between the competing goals of

finding true positives versus controlling false discoveries, are

much less dependent on the number of tests conducted, and are

relatively robust against the effects of correlated tests [Benjamini

and Hochberg, 1995]. Five percent of the significant findings were

allowed to be false discoveries.

Calculation of R2

An R2 measure of explained variance was calculated by fitting a

linear ridge regression model to the MASQ-D30 phenotype using

the SNPs in the pathway as predictor covariates. The parameter of

the ridge penalty was determined by 10-fold cross-validation using

the penalized package (v0.9-32) in R [Goeman andOosting, 2011],

and the cross-validated results were used for the R2 calculation.

Because the R2 measure is obtained from a penalized model and

calculated using cross-validation, it can be interpreted as an

adjusted R2 measure.

Weighted Analysis
In our main analysis, all SNPs contribute equally to the pathway

score. As larger genes contain more SNPs, these get more weight

than small genes. Thus, this analysis favors pathways in which

multiple (independent) polymorphisms in large genes contribute

to the phenotype. If the phenotype is influenced by a few SNPs in

small genes, the effect is dilutedby themanynon-associatedSNPs in

the large genes. In this case, effects can more readily be detected by

ananalysis inwhich genes rather thanSNPshave equal contribution

to the pathway score. Therefore, all pathways were also analyzed

with the Global test using weights assigned to each of the SNPs.

The weight of a SNP was 1 divided by the number of SNPs in the

gene.

Analyses were carried out with R statistical software (v2.11.1).

RESULTS

Sample Description
Table I shows that 548 (39%) respondents had current MDD and

850 (61%) remitted MDD. For General Distress, the median score

was 21 (interquartile range (IQR) 15–29), for Anhedonic Depres-
sion 23 (IQR 16–31), for Anxious Arousal 15 (IQR 12–20). Thus,
there was considerable variability on the dimensions.

Gene Sets
Surprisingly, pathways around importantmolecules like serotonin,

noradrenalin, or BDNF were not associated with symptom dimen-

TABLE I. Characteristics of the Study Population (N¼ 1,398)

Characteristic
Age (years)a 43.0 (12.4)
Gender (n, % women) 965 (69%)
Onset age (years)a 27.4 (12.4)
Current MDD (past month) 548 (39)
Remitted MDD 850 (61)
MASQ-D30b

General distress 21 (15–29)
Anhedonic depression 23 (16–31)
Anxious arousal 15 (12–20)

aMean (SD).
bMedian (interquartile range, IQR).

VAN VEEN ET AL. 521



sions. Only Epigenetic Changes after Fear Conditioning was asso-

ciated with Anhedonic Depression.

After correction for multiple testing, no pathway remained

associated with General Distress (see Supplementary Online).

However, Anhedonic Depression was associated with six GO-

terms, and three gene sets were associated with Anxious Arousal.

The variance explained by these pathways ranged from 0.67% to

1.69%.

Figure 1 demonstrates that pathways associated with one of

the symptom dimensions show little signal for the other dimen-

sions. Thus, distinct gene sets contribute to different symptom

dimensions.

SNPs
The candidate pathwayEpigeneticChanges after FearConditioning

was associated with Anhedonic Depression (FDR 0.0267).

Figure 2A shows that the signal for this pathway was not driven

by a few important SNPs, as few SNPs showed small P-values.

Further, the signal was driven by SNPs in different genes (see

SupplementaryOnline for theotherpathways). Importantly, differ-

ent SNPs contributed to different dimensions.

Genes
For all significant gene sets, several genes contributed to the path-

way signal. Even without adjustment for multiple testing few genes

had P-values <0.05 (see Supplementary Online). Figure 2B shows

associations of the genes in pathway Epigenetic Changes after Fear

Conditioning.

However, all GO terms associated with Anhedonic Depression

contained the gene NRG1 (unadjusted P-value 5.36� 10�5), and

all GO-terms associated with Anxious Arousal contained FMN2

(unadjusted P-value 1.08� 10�3). These genes contained 190 and

110 SNPs, respectively, and thus contributed importantly to the

pathway scores. The influence of these genes was much diminished

in the weighted analysis. Only the KEGG pathway Dorso-Ventral

Axis Formation and the GO-term Meiosis showed weak evidence

for association in the weighted analysis (both with adj. P¼ 0.0726)

(see Supplementary Online).

Weighted Analysis
In theweighted analysis, we again tested the 12 candidate pathways,

937 GO-terms and 880 canonical pathways for association with the

symptom dimensions. After adjustment for multiple testing, only

GO-term Endoplasmatic Reticulum Lumen was associated with

General Distress (see Table II).

DISCUSSION

We sought a genetic basis for the clinical heterogeneity among

patients withMDD.Our study revealed that distinct genetic factors

contribute to different dimensions of depression and anxiety. We

FIG. 1. Associations of the candidate pathways and significant pathways with General Distress, Anhedonic Depression, and Anxious Arousal.
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identified seven pathways for Anhedonic Depression. If verified,

this implies that Anhedonic Depression is highly complex, and a

‘‘simple’’ treatment might be out of reach. However, in six of these

pathways the gene encoding neuregulin (NRG1) appeared. This

gene is an important candidate gene for schizophrenia [Mei and

Xiong, 2008]. If neuregulin proves to be a key feature of the

pathogenesis of Anhedonic Depression, it may provide an impor-

tant drug target. Three pathways were associated with Anxious

Arousal, and only one pathway was associated with General Dis-

tress, possibly due to the heterogeneity of this dimension [Den

Hollander-Gijsman et al., 2010]. Together, these results indicate

that the symptom dimensions underlying anxiety and depression

have different etiologies.

General distress has been identified as the core of internalizing

disorders [Hettema et al., 2006; Goldberg et al., 2009; Griffith et al.,

2010]. Factor analysis of general distress items has clearly estab-

lished that the items cannot be reduced to a single dimension.

Separate subdimensions of depression, anxiety, and anger could be

distinguished. Although these factors were strongly correlated, this

indicates thatGeneralDistress is not unidimensional [Watson et al.,

2008]. The structure of General Distress needs to be unraveled to

identifymore homogeneous phenotypes of this important aspect of

emotional disorders.

The gene set associated with General Distress concerned mol-

ecules located in the endoplasmatic reticulum (ER). In the ER,

secretory and membrane proteins are synthesized and folded with

help from ER-chaperones. Malfolded proteins form aggregates

which are toxic and cause an ER stress response. A dysregulated

ER stress response was shown to be involved in neurodegenerative

and in mood disorders [Yoshida, 2007]. Furthermore, mood

stabilizers valproate and lithium increased expression of ER chap-

erones. In our study, unfavorable genotypes at these genes were

associated with General Distress.

Seven gene sets were associated with Anhedonic Depression.

Several of these had no clear function, but were collections of genes

with a common theme. They contained genes that were also

included in the candidate pathways, including BCL2, HDAC5,

ADRB2, andACVR1. Also, the themes were highly relevant: muscle

cell differentiation contained genes implicated in cell death, mes-

enchyme development fits nicely with observations that mesen-

chymal stem cells increased hippocampal neurogenesis and

ameliorated depression in rodents [Tfilin et al., 2010], cardiac

cell differentiation contained motility-genes that are highly

expressed in the brain. However, it is unclear how these gene

FIG. 2. For the pathway Epigenetic Changes after Fear

Conditioning, the Global test result is decomposed, such that the

contribution is shown of each SNP (A), and each gene (B). The

results are sorted by P-value of Anhedonic Depression to

facilitate comparison of the three dimensions. A: The most left

SNP is rs17434924 in RELN, with P¼ 7.32� 10�5 for Anhedonic

Depression, 9.99� 10�4 for General Distress, and 6.83� 10�2

for Anxious Arousal.

TABLE II. Gene Sets Associated With Symptom Dimensions

Description Nr SNPs P-value FDR-BH R2 (%)
General distress

1 Endoplasmatic reticulum lumen GO:0005788 470 4.10� 10�4 0.0410 0.93
Anhedonic depression

1 Regulation muscle cell differentiation GO:0051147 634 3.99� 10�5 0.0243 1.69
2 Regulation of protein binding GO:0043393 596 1.30� 10�4 0.0260 0.86
3 Macromolecular complex disassembly GO:0032984 680 1.76� 10�4 0.0260 0.84
4 Notch signalling pathway GO:0007219 1,041 1.78� 10�4 0.0260 0.79
5 Cardiac cell differentiation GO:0035051 503 2.14� 10�4 0.0260 0.67
6 Epigenetic changes after fear conditioning 367 1.27� 10�3 0.0267 1.22
7 Mesenchyme development GO:0060485 690 3.38� 10�4 0.0343 0.78

Anxious arousal
1 Dorso ventral axis formation Kegg hsa04320 478 1.85� 10�5 0.0163 1.19
2 Meiosis I GO:0007127 371 3.60� 10�5 0.0221 0.73
3 Cytokinesis GO:0000910 390 9.62� 10�5 0.0293 0.74
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sets influence Anhedonic Depression. Below, we discuss GO terms

that represent biological processes.

Macromolecular complex disassembly (GO:0032984) contrib-

uted to Anhedonic Depression and consists of genes that regulate

the dynamic structure of the cytoskeleton. These genes regulate the

shape and functionof dendritic spines, structures critically involved

in learning and memory [Hotulainen and Hoogenraad, 2010].

Many of these genes have been associated with autism, mental

retardation, Alzheimer’s disease, and schizophrenia, which like

depression are neurodevelopmental or neurodegenerative condi-

tions. In rodents, both early and adult stresses lead to impaired

memory accompanied by morphological changes in the hippo-

campus and frontal cortex. There, cytoskeletal modifications were

associated with reduced density of dendritic spines and altered

structure of synaptic terminals [Yan et al., 2010]. Thus, a genetic

makeup associated with less synaptic structures necessary for

learning and memory may contribute to Anhedonic Depression.

Notch signaling (GO:0007219) also contributed to Anhedonic

Depression. The adult hippocampus generates new neurons, a

process in which Notch1 signaling is involved [Androutsellis-

Theotokis et al., 2006]. This neurogenesis has been associated

with sad mood [Doetsch and Hen, 2005] and was necessary for

behavioral effects of antidepressants [Santarelli et al., 2003; Guo

et al., 2009].

Candidate pathway Epigenetic Changes after Fear Conditioning

contributed to Anhedonic Depression. Epigenetic changes are

modifications of chromatin that have lasting influence on gene

expression. For instance, acetylation of histones by histone acetyl-

transferases reduces their affinity for DNA and facilitates gene

expression. In contrast, deacetylation by histone deacetylases

(HDACs), or DNA methylation by DNA methyltransferases

(DNMTs) is associated with gene silencing. Classical fear condi-

tioning is based on Pavlov’s observations that neutral stimuli can

acquire affective properties due to associationwith aversive stimuli.

Animal models of fear conditioning have provided insight into

the biology of fear, much of which can be extended to human fear

and anxiety [Delgado et al., 2006]. Fear conditioning induced

hippocampal expression of DNMT3A and -3B, and DNMT

blockers inhibited fear conditioning [Miller and Sweatt, 2007].

Protein phosphatase-1 (PP1) suppresses memory formation and

was methylated (silenced) in fear conditioning [Miller and Sweatt,

2007].RELN encodes reelin, amemory-promoting gene,whichwas

demethylated (activated) in fear conditioning [Miller and Sweatt,

2007]. These epigenetic changes were also involved in depression.

In mice, anhedonia was accompanied by histone methylation in

hippocampus. Antidepressant imipramine reversed the anhedonia,

not by demethylation, but by increased acetylation of the histones

[Tsankova et al., 2006]. Thus, aversive environmental signals cause

epigenetic changes with lasting effects on mood and anxiety. The

genetic profile for this pathwaymay render individualsmore or less

sensitive to adverse events. In our study, it was associated with

Anhedonic Depression.

Three pathways contributed to Anxious Arousal. The pathway

Dorso-Ventral Axis Formation represents a developmental path-

way, although the genes are also highly expressed in adult brain. The

pathway Cytokinesis regards the division of cytoplasm into two

daughter cells, but the generation of dendritic spines is a similar

process that shares involvement ofmany genes. Remarkablewas the

association of Anxious Arousal with GO-term Meiosis 1. This

pathway consists of genes encoding elements of the synaptonemal

complex (SC) and regulators of DNA recombination. The SC plays

a major role in chromosome pairing and genetic recombination

[Page and Hawley, 2003]. Intriguingly, components of the SC

[Dietrich and Been, 2001], and pairing of homologous chromo-

somes [Arnoldus et al., 1989] have been demonstrated in neurons

in brain tissue of rats. Moreover, DNA recombination and/or

DNA repair in the brain was necessary for long-term memory in

fear conditioning [Wang et al., 2003; Colon-Cesario et al., 2006;

Saavedra-Rodriguez et al., 2009]. Many proteins involved in

homologous recombination are also active in somatic DNA

recombination/repair. DNA recombination has been suggested

to contribute to neuronal diversity in the developing brain, like

V(D)J rearrangement contributes to antibody diversity in the

immune system [Chun and Schatz, 1999; Muotri and Gage,

2006]. Interestingly, in a GWAS for bipolar disorder, GO-term

V(D)J recombination was high-ranking [Holmans et al., 2009].

Thus, genetically determined variation in DNA recombination

in the brain may contribute to variation in Anxious Arousal.

However, the nature of this process remains to be elucidated.

Surprisingly, candidate pathways had little effect on the symp-

tom dimensions. Explorative network analyses may be more

likely to identify gene sets around seemingly important genes, as

they visualize interactions or shared functions of selected SNPs

[Baranzini et al., 2009; Vink et al., 2009]. Subsequent verification

with Global test in a replication cohort would provide convincing

evidence for association.

In the pathways that showed significant association, only few

genes and SNPs had small P-values. This is in line with the idea

that many SNPs with small effects are involved. Recent GWASs

in thousands of individuals have identified 50 SNPs associated

with height, which together explained 5% of phenotypic variance

[Yang et al., 2010]. Another 40% of variation was explained by the

rest of the SNPs. In this light, our observations of 0.67–1.69%
variance explained by the gene sets are promising.

In most pathway analyses, the pathway score is calculated from

gene scores. Often, the genes are summarized by the most signifi-

cant SNP [Wang et al., 2007; Holmans et al., 2009; Yu et al., 2009].

As larger genes may contain more SNPs, these are more likely to

be selected [Wang et al., 2007]. To prevent this gene size bias, such

analyses need adjustment for gene size. However, adjustment for

gene size is not necessary but optional in the Global test. The

Global test uses all SNPs in a pathway, adjusts for correlation

between markers (i.e., linkage disequilibrium), and its results are

valid. Importantly, gene-based pathway tests have different proper-

ties than SNP-based pathway tests. In the SNP-based analysis,

NRG1 strongly influenced the pathway score for six GO-terms in

association with Anhedonic Depression. This gene contained 190

SNPs, and the signal was not due to a few highly significant SNPs,

but rather to a larger number of less impressive signals. In the

weighted analysis, the contribution of these 190 SNPs was down-

weighted to let every gene have an equal contribution to the

pathway. This diminished the effect of NRG1 to a large extent.

SNP-based analyses may favor pathways in which multiple inde-

pendent signals are present in large genes. In gene-based analyses,
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single signals in smaller genes have as much weight as larger genes.

Therefore, it is not surprising that we observed different results in

the SNP-based and gene-based analyses. For only three pathways,

both the SNP-based and the gene-based results were in the top-10

associations.

Two other (regression) methods also favor pathways containing

genes with multiple, independent disease-associated SNPs. GRASS

jointly analyses principal components within genes to compute a

pathway score [Chen et al., 2010], and the Plink pathway score is

the average statistic of all the (selected) SNPs in the pathway

[Purcell et al., 2007]. In the brain, many very large genes are

expressed, so for psychiatric disorders, the power of the Global

test, GRASS and Plink set-test to incorporate multiple indepen-

dent effects in these genes may be favorable over other pathway

approaches. These methods were shown to yield similar results

[Deelen et al., 2011].

Symptoms of depression and anxiety are often used to measure

state effects, like response to treatment. However, as these symp-

toms were shown to be quite stable during a 7- to 8-year follow-up

period, they also possess trait-like characteristics [Ormel and

Wohlfarth, 1991; Kendler and Gardner, 2011]. The stable part of

symptoms was demonstrated to reflect the level of neuroticism,

which is predetermined by genes and childhood adversities. The

variable part of symptoms of depression and anxiety was shown to

be due to episodes of MDD and GAD, caused by genetic risk and

adversities during childhood and recent adulthood [Kendler and

Gardner, 2011]. In line with this, among patients with a diagnosis

of depression and/or anxiety at baseline, 2-year course trajectories

were predicted by baseline scores for dimensions of depression and

anxiety [Wardenaar et al., 2012]. Thus, symptoms of depression

and anxiety seem tohave a strong genetic basis. Indeed, twin studies

have demonstrated large effects of genetic factors on symptoms of

depression and anxiety [Gillespie et al., 2004; Boomsma et al., 2005;

Kendler et al., 2008]. Likewise, a substantial genetic component has

beendemonstrated forGeneralDistress andAnhedonicDepression

[Clark and Watson, 2008].

Previously, our group has shown distinct associations of General

Distress, Anhedonic Depression, and Anxious Arousal with differ-

ent aspects of the hypothalamo-pituitary-adrenal (HPA) axis

among subjects with a lifetime diagnosis of MDD [Wardenaar

et al., 2011]. Our present observations that these dimensions are

associated with distinct gene sets provide further validation of

the dimensions of the tripartite model as promising clinical phe-

notypes for etiologic research.

A major goal for future DSM is to incorporate the dimensional

natureofpsychopathology into thediagnostic system.Comorbidity

can then be recognized as a logical consequence of shared risk

[Andrews et al., 2009]. Anhedonic Depression is not unique to

depressive disorders, but also associated with social phobia and

agoraphobia, bipolar disorder, and schizophrenia [Mineka et al.,

1998; Bienvenu et al., 2007; Horan et al., 2008]. Thus, the gene sets

we identified to be associated with Anhedonic Depression in

patients with MDD may be relevant for those disorders as well.

As these dimensions of depression and anxiety have distinct

etiology, it is likely that they are also separate targets of cognitive or

pharmacological treatment [Tang et al., 2009]. In time, the rapidly

growing literature on the neurobiological and genetic correlates of

these dimensions may help identify targets for pharmacological

intervention [Whittle et al., 2006].

Unfortunately, we did not have a replication cohort, so verifi-

cation of our findings awaits subsequent research. Further, our

sample consisted of patients only. Compared to healthy controls,

patients will on average have higher symptom scores and a higher

number of unfavorable variants in contributing gene sets. The lack

of healthy controls in our analyses reduces power to identify genetic

risk factors, as the positive side of the continuum is not represented:

healthy controls will on average have fewer symptoms and a higher

number of favorable variants in the contributing gene sets. There-

fore, the range of scores was reduced, and thereby the power to

detect genetic effects. However, the interpretation of gene sets

associated with symptom dimensions need not be very different

whether controls are included or not. As this case-only analysis

covered a broad range of psychiatric outpatients, we were able to

test our dimensional approach as a means to account for hetero-

geneity across real-world patients. Strengths of this study were the

well-characterized patients, formal hypothesis testing of predefined

pathways, and relatively homogeneous phenotypes.

To conclude, we identified pathways associated with Anhedonic

Depression and Anxious Arousal. Many of these processes were

known from animal studies to be involved in depression or anxiety,

and now we demonstrated that common variability in these proc-

esses contributes to psychopathology in humans. Our observations

help to understand the heterogeneity of symptoms among patients

with depression. These pathways provide leads for further study to

understand the neurobiology of depression and anxiety.
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