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SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide

spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune

responses to SARS-CoV-2 play a crucial role in determining the clinical course after first

infection. Immunological studies have focused on patients with moderate to severe

disease, demonstrating excessive inflammation in tissues and organ damage. In order

to understand the basis of the protective immune response in COVID-19, we performed a

longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive

immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-

negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases;

eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease.

Our data show that high frequency of NK cells and early and transient increase of specific

IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2
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infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG,

produced relatively late in the course of the infection, characterize severe disease. Modest

increase of monocytes and different kinetics of antibodies are detected in mild COVID-19.

The importance of innate NK cells and the short-lived antibody response of asymptomatic

individuals and patients with mild disease suggest that only severe COVID-19 may result in

protective memory established by the adaptive immune response.
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INTRODUCTION

SARS-CoV-2 is a novel coronavirus, not encountered before by

humans. Thus, everyone is susceptible to infection as the SARS-

CoV-2 virus rapidly spreads in the current Coronavirus disease

2019 (COVID-19) pandemic. A wide spectrum of clinical

expression of SARS-CoV-2 infection occurs, ranging from
asymptomatic to mild upper respiratory tract illness, or moderate

to severe disease with respiratory distress and multi-organ failure

requiring intensive care and organ support (1). This variability of

disease severity suggests that the individual immune responses to

SARS-CoV-2 play a crucial role in determining the clinical course

after first infection. Understanding the pathogenesis of COVID-19

disease requires in-depth study of underlying immune responses
(2). This includes the cellular and molecular basis of the successful

protective mechanisms and the role of dysregulated and excessive

inflammation (3, 4). During the 2003 SARS outbreak, the efficacy of

the innate immune responses to SARS-CoV-1 appeared to

determine the extent of virus load (5) and adaptive immunity

played a critical role during the later stages of infection (6).
In COVID-19, lymphopenia is common and correlates with

severity of clinical disease similarly to severe influenza and other

respiratory viral infections (7–9). Because of lymphopenia,

neutrophil–lymphocyte ratio (NLR) and monocyte–lymphocyte

ratio (MLR) increase in patients affected by severe COVID-19

(10, 11). Lymphopenia is caused by the reduction of both CD4+

and CD8+ T cells. Surviving T cells are functionally exhausted, and

reduced T-cell count predicts an unfavorable clinical course (12, 13).

T cells able to react to SARS-CoV-2 peptides can be demonstrated

in healthy individuals, partly because of cross-reactivity with

previous infections by other coronaviruses (14) and are expanded

in individuals convalescent from COVID-19 (15).

Antibodies to SARS-CoV-2 are produced in large amounts in
patients with severe disease, two–three weeks after the

occurrence of first symptoms (16). The role of antibodies in

viral elimination is supported by the successful use of

convalescent plasma in patients with severe COVID-19 (17).

Neutralizing antibodies are directed against the Receptor

Binding Domain (RBD) or to other regions contained in the
S1 subunit of the Spike protein (18–20). While immune

responses to novel antigens encountered for the first time, are

first dominated by antibodies of IgM isotype, followed by IgG

(21, 22), the kinetics and protective or deleterious nature of the

antibody responses to SARS-CoV-2 remains to be defined. Initial

studies suggest that IgG may be produced earlier or at the same

time with IgM (16, 23, 24). A recent study indicated that the IgA

response to SARS-CoV-2 may be rapid, strong, and persistent

(25, 26). The observation that the highest antibody levels are

found in patients with severe COVID-19 disease led to the

suggestion that antibodies to SARS-CoV-2 may be damaging

or ineffective rather than protective (27–29), as was reported
from very sick patients with Middle East respiratory syndrome

(MERS) (30).

In order to identify the immunological features associated

with the different clinical forms of SARS-CoV-2 infection, we

performed a longitudinal study by standard 7–9 color flow-

cytometry comparing innate and adaptive immune populations
of adults with asymptomatic SARS-CoV-2 infection, mild and

severe COVID-19 disease and healthy SARS-CoV-2 negative

contacts. We also measured levels and kinetics of IgG, IgA, and

IgM anti-SARS-CoV-2 antibodies in the serum.

MATERIALS AND METHODS

Study Design
Patients were enrolled in in-patient and out-patient settings if

they agreed to participate and fulfilled the inclusion/exclusion

criteria. Sixty-four adult patients were enrolled in the study
(Supplementary Table S1A). At enrollment, after the protocol

procedures (including medical history, physical examination,

laboratory examination) participants were assigned to the

study group: a) Contacts of SARS-CoV-2 confirmed cases who

were negative by qPCR and were included as control group (28

patients); b) Asymptomatic cases (20 patients) tested positive for
viral RNA and had no symptoms. Asymptomatic patients were

quarantined and monitored for 14 days, and quarantine ended

when two consecutive nasopharyngeal swabs showed negative

results; c) Mild COVID-19 disease (eight patients), defined by

positive SARS-CoV-2 nasopharyngeal swab qPCR test, with

symptoms such as fever, myalgia, and fatigue without obvious

chest HRCT findings for COVID-19, did not require
hospitalization; d) Severe COVID-19 disease (eight patients)

with clinical signs of pneumonia (fever, cough, dyspnoea, fast

breathing) plus one of the following: respiratory rate >30

breaths/min; severe respiratory distress; or SpO2 <90% on

room air. Additional 77 patients with severe COVID-19 were

recruited from the INMI, Lazzaro Spallanzani (34 ICU and 43
non-ICU, Supplementary Table S1B). Patients were admitted to
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ICU if they had pneumonia or new or worsening respiratory

symptoms with chest imaging showing bilateral opacities, not

fully explained by volume overload, lobar or lung collapse, or

nodules with a oxygenation impairment:

• Mild ARDS: 200 mmHg < PaO2/FiO2a ≤300 mmHg (with
PEEP or CPAP ≥5 cmH2O).

• Moderate ARDS: 100 mmHg <PaO2/FiO2 ≤200 mmHg (with

PEEP ≥5 cmH2O).b

• Severe ARDS: PaO2/FiO2 ≤100 mmHg (with PEEP ≥5

cmH2O) (31).

Contacts, asymptomatic individuals and patients with mild
disease were Health Care Workers (HCW) of the Bambino

Gesù Children Hospital. We included in the study all HCWs

that had a positive swab in the period between March 15 and

May 31, 2020 and their contacts (who had a negative swab).

Blood and serum samples were collected at weekly intervals

since diagnosis (first positive nasopharyngeal swab). Severe
cases were patients from the Pulmonary division of the

Department of Public Health and infectious diseases,

Policlinico Umberto I Hospital, Rome, Italy.

Ethical Approval
Ethical approval was obtained from the Medical Research and

Ethics Committee at Sapienza, University of Rome and from the
Ethics Committee at INMI, Lazzaro Spallanzani. According to

the guidelines on Italian observational studies as established by

the Italian legislation about the obligatory occupational

surveillance and privacy management; HCWs’ confidentiality

was safeguarded, and informed consent was obtained from all the

participants. The study was performed in accordance with the

Good Clinical Practice guidelines, the International Conference
on Harmonization guidelines, and the most recent version of the

Declaration of Helsinki.

Flow-Cytometry and Antibodies
Four leukocyte profiling panels computing seven- to nine-surface

marker antigens for monitoring the major leukocyte subsets as well

as characteristics of T cell, B cell, monocytes and NK cells subsets
were designed (Supplementary Table S2). Results of immune-

profile of analyzed patients are reported in Supplementary Tables

S3–10. The graphs of the single time points refer to the sample

obtained immediately after the first positive nasopharyngeal swab.

When available, we also show the results obtained at different

time points.

1 ml of total blood (EDTA) was incubated with the lysing
solution Pharm Lyse (BD) to lyse red blood cells. Then, cells

were divided in four equal aliquots and stained with the

appropriate combination of fluorochrome-conjugated antibodies

(Supplementary Table S2) to identify immune cell subsets

according to standard techniques. For the staining of

Supplementary Figure S7, heparinized blood of three healthy
donors was isolated by Ficoll Paque™ Plus 206 (Amersham

Pharmacia Biotech) density-gradient centrifugation. Peripheral

blood mononuclear cells (PBMCs) were then stained with

antibodies against CD19, CD24, CD27, CD38, IgM, IgG, IgA, and

IgD (Supplementary Table S2). Cells were acquired on a BD

FACSLyric™ (BD Biosciences). Data were analyzed with FlowJo

ver. 10 (Treestar). Dead cells were excluded from analysis by side/

forward scatter gating.

Serum Samples
Included in this study were 160 serum samples obtained from

subjects with available clinical records. In particular: fifty-one sera

from SARS-CoV-2 negative contacts, sixty-three from SARS-CoV-
2 asymptomatic patients, thirty-one from COVID-19 mild

patients, and fifteen from COVID-19 severe patients. 86 samples

from 28 patients were collected at different time points. All sera

were kept on ice after collection and then stored at −80°C.

Serological Assays
The Euroimmun Anti-SARS-CoV-2 ELISA IgG and IgA assays

(Euroimmun), were performed on serum samples according to

the manufacturer’s instructions. The recommended serum

sample dilutions used were 1:100; in samples in which the

IgA or IgG quantity was not detectable (overflow), we used

1:1,000, 1:3,000, 1:6,000, 1:25,000 dilutions. Values were then
normalized for comparison. These ELISA assays provide a semi-

quantitative in vitro determination of human antibodies of the

immunoglobulin classes IgG and IgA against the SARS-CoV-2.

The microplate wells are coated with recombinant S1 structural

protein. The results were evaluated by calculation of the ratio

between the extinction of samples and the extinction of the
calibrator. The ratio interpretation was as follows: <0.8 =

negative, ≥0.8 to <1.1 = borderline, ≥1.1 = positive.

For the detection of IgM anti RBD we developed an in-house

ELISA. 96-well plates (Corning) were coated overnight with 1

mg/ml of purified SARS-CoV-2 RBD protein (Sino Biological).

After washing with PBS/0.05% Tween and blocking with PBS/1%
BSA, plates were incubated for 1 h at 37°C with diluted sera.

Serum samples were measured at 1:100 dilutions. After washing,

plates were incubated for 1 h at 37°C with peroxidase-conjugated

goat anti-human IgM antibody (Jackons ImmunoResearch

Laboratories). The assay was developed with o-phenylen-

diamine tablets (Sigma-Aldrich) as a chromogen substrate.

Absorbance at 450 nm was measured, and IgM concentrations
were calculated by interpolation from the standard curve based

on serial dilutions of monoclonal human IgM antibody against

SARS-CoV-2 Spike-RBD (Invivogen). Due to the unavailability

of a human IgM antibody against SARS-CoV-2 S1 to be used as

standard we were unable to quantify the level of anti-S1 IgM. We

could, however compare the OD measured in plates coated with
either RBD or S1 (data not shown).

Statistical Analysis
For the comparison of more than two independent groups,

the non-parametric Kruskal–Wallis test was used, and if
significant, pairwise comparisons were evaluated by the Mann–

Whitney U-test. P values less than 0.05 were considered

statistically significant.
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RESULTS

Clinical Characteristics
SARS-CoV-2 asymptomatic patients (20 patients, M/F 4/16, mean

age, 40.4 years, range 27–64) and SARS-CoV-2-negative contacts

(28 patients, M/F 8/20, mean age, 40.8 years, range 27–68) had

comparable demographic characteristics. Severe adult COVID-19

patients (eight patients, M/F 6/2, mean age, 65 years, range 30–90)
and mild-symptoms adult COVID-19 patients (eight patients, M/F

5/3, mean age, 55.2 years, range 48–64) were older than

asymptomatic patients and controls (Supplementary Table S1).

During the study period, disease activity was regularly assessed, and

COVID-19 patients continued their therapies according to the

standard of care. Four out of eight severe cases were treated with
anti-IL-6R monoclonal antibody (tocilizumab). All hospitalized

COVID-19 patients were discharged and none died.

Innate Immunity
The PBMCs of patients with asymptomatic infection, mild and

severe disease and their healthy contacts were compared. We

correlated the immunological findings with the clinical course
and studied the dynamic changes of cells of innate and adaptive

immune response in time by analyzing blood samples obtained

at weekly intervals beginning on the first or second week

after diagnosis.

By flow-cytometry performed on the first sample obtained

after diagnosis, we confirmed the increase of MLR in advanced
COVID-19 cases, when T cells, normally representing the major

lymphocyte population in the peripheral blood, are reduced (32)

(Figures 1A, B). Previous studies indicated that neutrophils and

macrophages infiltrate the lungs and are expanded in the

peripheral blood of Intensive Care Unit (ICU)-admitted

patients (33, 34). The increase of circulating neutrophils and

monocytes, along with lymphopenia, explains why the NLR and
MLR are significantly higher in patients with severe COVID-19

disease (10).

T-cell frequencies are preserved in asymptomatic individuals

and in patients with mild disease. Thus, in order to investigate

whether other lymphocyte populations than T cells change in

asymptomatic and mild disease, we excluded T cells from the
analysis (Figure 1C and Supplementary Figure S1). The CD3−

gate, besides B cells discussed below, includes monocytes that can

be distinguished by their larger size measured by the high FCS,

and NK cells. NK cells express the markers CD7 (Figure 1C) and

CD56 (Supplementary Figure S1).

We found that NK cells were reduced and monocytes

increased in patients with severe COVID-19 (Figures 1C, D).
Significant reduction of the frequency of NK cells and increase of

monocytes were also observed in the group of patients with mild

disease (Figures 1C–E). We calculated the Monocyte to NK ratio

(MNKR), which was <1 in asymptomatic individuals, >1 in

patients with mild disease and even higher in severe cases

(Figure 1E).
These results were confirmed when we analyzed all the

samples collected at different time points, as the MNKR

remained stable throughout the follow up in asymptomatic and

mild disease groups (Figure 2A), because each individual

maintained his typical NK and monocyte frequency

throughout the time of follow-up (Figure 2B). Thus, the

different relative frequencies of monocytes and NK observed in

asymptomatic, mild disease and severe cases were not incidental

findings observed in a particular moment of the infection, but
rather characteristics of the clinical course of the response of the

individual immune system to SARS-CoV-2 (Figure 2B). We

confirmed the importance of the frequency of NK cells by the

analysis of another independent cohort of 77 patients

hospitalized because of severe COVID-19. Cases who did not

need ICU treatment had a significantly higher number of NK
cells (CD56+ cells calculated in CD3− lympho-monocyte gate)

than ICU patients (Figure 2C). In addition, the percentage of NK

cells was low in patients with fatal COVID-19, whereas it

increased in those individuals who recovered from severe

disease (Figure 2C). These results are corroborated by the

observation that ICU patients had lower perforin+ NK cells
compared to non-ICU patients (35).

The increase of inflammatory cytokines mostly produced by

monocytes plays an important role in determining systemic

and local damage in COVID-19. Inflammatory cytokines are

produced by intermediate monocytes that expand in the blood

of patients with severe infections (36, 37). In order to measure

the frequency of intermediate monocytes, we used CD16
and CD14 expression to differentiate the three types of

CD14+ monocytes (Figure 3A) found in the peripheral

blood, reflecting sequential stages of maturation and distinct

functions (38, 39). CD14+CD16− classical monocytes are the

precursors of the other types and play an important role in the

response to pathogens (40). CD14−CD16+ non-classical
monocytes contribute to the resolution of inflammation and

maintain vascular homeostasis and endothelial integrity (41).

Intermediate monocytes express CD14 with variable levels

of CD16.

We confirm that, as reported in a recent paper (42), non-

classical monocytes were significantly reduced in patients with

severe COVID-19 when compared to SARS-CoV-2 negative
contacts, SARS-CoV-2 positive asymptomatic and also mild

COVID-19 disease patients (Figure 3B). We also confirm (43)

that HLADR expression on CD14+ monocytes was significantly

reduced in severe cases (Figure 3B) reflecting the complex

immune-dysregulation triggered by the disease (43). Intermediate

monocytes tended to increase in the severe cases. As the
progression from the classical to intermediate stage is a dynamic

step driven by infectious triggers (38), we compared the monocyte

phenotype in the same patients at different time points during the

course of the disease. Whereas intermediate monocytes were rare

in the blood of contacts, asymptomatic and mild disease patients at

all time points, transient increases were observed in patients with

severe disease (Figure 3C).
In summary, we found that the MNKR reflects the clinical

phenotype of the disease. Contact and asymptomatic patients

had either higher representation of NK cells or a similar

frequency of NK and monocytes (ratio around 1). The ratio

was >1 in patients with mild disease and reached higher values in
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A

B

D

E

C

FIGURE 1 | (A) Flow-cytometry analysis of the monocyte to lymphocyte ratio (MLR) in the blood of three representative patients with asymptomatic, mild and severe

disease. Total blood (EDTA) was stained with antibodies against CD45, CD3, CD4, CD8, CD7, CD56, CD16. The lympho-monocyte gate was designed based on

physical characteristics (FSC-A vs SSC-A). Lymphocytes were gated as FSC-Alow and CD3+ or CD3− and monocytes as CD3− FSC-Ahigh. (B) Scatter plot depicts

the MLR in the sixty-four adult patients enrolled in the study (contacts n = 28; asymptomatic n = 20; mild n = 8; severe n = 8). (C) Gating strategy used to identify

natural killer (NK) and monocytes inside the CD3- cells in three representative patients with asymptomatic, mild and severe disease. NK cells were defined as

CD3−CD7+FSC-Alow and monocytes as CD3−CD7−FSC-Ahigh. (D) Heatmap shows percentages of NK and monocytes in contacts (indicated by the light green bar),

asymptomatic (blue), mild (orange) and severe (red) patients. Percentages are represented by the different expression of red, blue and white as indicated in the color

code. (E) Plots indicate the frequency of NK, monocytes and the monocytes/NK ratio (MNKR) in our patients. (B, E) Midlines indicate median. Statistical

significances were determined using unpaired, two-tailed Mann–Whitney U-tests. *p ≤ 0.05, **p < 0.01, ***p < 0.001.
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the severe cases (Figure 2B). Thus, the equilibrium between two

cell types of the innate immune system may play a role in the

control of SARS-CoV-2 infection. Prevalence of NK cells is

associated to asymptomatic infection, while increased

frequency of monocytes to severe disease.

Adaptive Immunity
T and B cells play key roles in response to viral infections.

CD8+ T lymphocytes are crucial for the limitation of viral spread

through their cytotoxic function. CD4+ T cells are indispensable

for the expansion of CD8+ T cells (44) and the generation of

CD8+ memory T cells (45, 46). In addition, CD4+ T cells are

necessary for the germinal centre (GC) response and the

production of memory B cells (MBCs) and plasma cells (47–

49). As demonstrated before (35, 50), we found that CD3+ T cells
were reduced only in severe COVID-19 patients (Figure 4A). In

this group the frequency of activated HLADR+CD8+ T cells

significantly increased in line with previous observations based

A

B

C

FIGURE 2 | (A) Plots indicate the frequency of NK, monocytes and MNKR ratio in all analyzed samples collected at different time points. (B) Graphs depict the kinetics

of the MNKR during the first 6 weeks of disease (midlines indicate mean) in all patients samples. Data referring to severe patients has a different scale due to the high

value of MNKR. Heatmaps show the percentage of NK and monocytes in patients who had samples collected at different time points during the first 6 weeks. In the

heatmap percentages are represented by the different expression of red, blue and white as indicated in the color code. (C) Scatter plot shows the percentage of NK cells

in non-ICU (n = 43) and ICU (n = 34) patients. Graphs show the kinetics over time of NK cells percentage in patients with favorable and fatal outcome. (A, C) Midlines

indicate median. Statistical significances were determined using unpaired, two-tailed Mann–Whitney U-tests. **p < 0.01, ***p < 0.001.
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A

B

C

FIGURE 3 | (A) Total blood was stained with antibodies against CD45, CD3, CD4, CD8, CD14, CD16, CD33, CD38 and HLADR. FACS plot show the gating

strategy for the identification of monocytes (CD3−FSC-Ahigh) in three representative patients with asymptomatic, mild and severe disease. True monocytes are double

positive for HLADR and CD14. In the true monocytes gate, we identified the classical (CD14++CD16−), intermediate (CD14+CD16+) and non-classical (CD14+CD16++)

populations. (B) Scatter plots indicate the percentage of classical, intermediate and non-classical monocytes in each group of patients reported as single value. The

Mean Fluorescence Intensity (MFI) of HLADR on total monocytes is shown by the last scatter plot. Midlines indicate median. Statistical significances were determined

using unpaired, two-tailed Mann–Whitney U-tests. *p ≤ 0.05. (C) FACS plots show the different distribution of monocytes populations in two representative patients

(one mild and one severe) during the course of the disease (2–6 weeks).
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A

B

D

C

FIGURE 4 | Total blood was stained with antibodies against CD45, CD3, CD4, CD8, CD14, CD16, CD33, CD38 and HLADR and in a second staining antibodies

used were anti-CD3, CD4, CD8, CD45RA, CD27, CD28, CD31 and CCR7. (A) Graphs indicate the percentage of total CD3+, CD3+CD4+ and CD3+CD8+ T cells.

(B) FACS plots depict the gating strategy to measure the frequency of CD4+ and CD8+ T cells expressing HLADR in three representative patients (asymptomatic,

mild and severe). Percentage of CD4+HLADR+ or CD8+HLADR+ T cells is shown in the relative graphs (at the first sample collected after diagnosis). (C) Pseudocolor

plots show CD31 expression in CD4+ and CD8+ naïve T cells (CD3+CCR7+CD45RA+). CD31+ are recent thymic emigrants and CD31− are naïve T cells. Graphs

show the percentage of CD31+ and CD31− T cells in all patients (at the first sample collected after diagnosis). (D) FACS plots show CD4+ or CD8+ central memory

(CD3+CCR7+CD45RA−), effector memory (CD3+CCR7−CD45RA−) T cells and TEMRA (CD3+CCR7−CD45RA+) T cells. Scatter plots depict the percentage of CD4+

and CD8+ TEMRA (at the first sample collected after diagnosis). Median is shown as midline. Statistical significances were determined using unpaired, two-tailed

Mann–Whitney U-tests. *p ≤ 0.05, **p < 0.01, ***p < 0.001.
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on transcriptomic analysis (51), whereas activated HLADR+

CD4 T cells were measurable in patients with both mild and

severe disease (Figure 4B). All these findings were confirmed

when we included all serially collected samples in the analysis

(Supplementary Figure S2A and B).

In a separate staining, we identified naïve and memory T cells,
including central, effector and terminally differentiated

(TEMRA) memory T cells (gating strategy in Supplementary

Figure S3). We detected a reduction of recent thymic emigrants

(CD45RA+CCR7+CD31+) and a relative increase of naïve

(CD45RA+CCR7+CD31−) CD4+ T cells in both mild and

severe disease patients (Figure 4C and Supplementary Figure

S2C). CD8+ T cell distribution was only changed in patients with

severe disease. CD8 naïve T cells were reduced and, as reported

before (52, 53) exhausted CD8+ TEMRA were significantly

increased (Figure 4D and Supplementary Figure S2D).

We identified the different B-cell populations in the peripheral

blood by staining with a combination of antibodies able to
distinguish transitional, naïve, memory, atypical MBCs and

plasmablasts (PBs) (Figure 5A). In the CD27+ MBC population,

we separately analyzed IgM+ and switched MBCs. The latter

include IgG+ MBCs and IgG− MBCs. Most of the IgG− B cells

correspond to IgA-expressing memory B and in minimal

part to MBCs without detectable surface immunoglobulin

(Supplementary Figure S4A). The most significant findings
were the reduction of total B cells and the increase of PBs in the

severe cases (Figure 5B), as reported in other studies (54–56).

Among MBCs, we found an increase of IgM+ and a reduction of

switched MBCs in asymptomatic and mild cases (Figure 5C). In

patients with severe disease, in contrast, we observed an increase of

switched MBCs negative for IgG and mostly expressing IgA
(Figure 5D). All the findings were confirmed by the cumulative

analysis of all samples (Supplementary Figures S4B–D).

B cells fight viruses by producing antibodies when they

differentiate into circulating PBs or tissue-resident plasma cells

(57). The final stages of differentiation can be reached by B cells

in the GCs, where either naïve or IgM+ MBCs (58, 59) acquire

somatic mutations and are selected for their increased affinity to
the stimulating antigen (48). T- and GC-independent antibody

production is efficiently and rapidly triggered by TLR-mediated

stimulation of MBCs (60, 61).

IgG and IgA antibodies directed against the S1 domain of the

SARS-CoV-2 Spike protein were measured in the entire study

cohort. We also measured the concentrations of IgM specific for
the SARS-CoV-2 RBD.

When we analyzed all samples collected throughout the study

we observed that both COVID-19 patients and SARS-CoV-2

positive asymptomatic individuals produced specific antibodies,

with higher levels of IgG and IgA being detected in the serum of

patients with severe disease (Figure 6A) as reported before (18,

26, 28, 52). IgM antibodies were instead equally increased in
asymptomatic, mild and severe disease (Figure 6A).

We show in detail the kinetics of the antibody response of

asymptomatic and mild disease individuals initiating from the

earliest sample obtained after the first positive nasopharyngeal

swab (Figures 6B, C).

We found that asymptomatic patients secrete specific IgA and

IgM early after diagnosis. As for IgA and IgG there is an

established threshold of positivity (dashed line), we could

establish that individuals lacking IgG and IgA at week 1, later

produced antibodies. Levels of IgA and IgG declined with time as

reported by others (62–66). There is no established threshold for
anti-RBD IgM, but we found that the median IgM concentration

in 54 healthy contacts was 2.1 mg/ml (range 0.3–5.4). We found

that IgM levels remained stable over the mean value of contacts

in most asymptomatic individuals (Figure 6B).

In Figure 6C we show the antibody response of mild disease

patients. In this group values below the threshold were found in
two individuals, throughout the course of disease. Pt14, an

otherwise healthy 48 year-old HCW, never produced IgG, IgA

or IgM (five samples were evaluated). She had neurological

symptoms and a positive nasopharyngeal swab PCR for 6

weeks. Pt12 (54-year-old), with respiratory symptoms and a

PCR that remained positive for 8 weeks, had very low IgG, IgA
and IgM levels fluctuating around the detection threshold. In the

rest of the mild disease patients, IgA, IgG, and IgM abs increased

later than in asymptomatic individuals but remained over the

threshold for 9 weeks.

In summary, we observed that severe patients showed a

strong antibody response in line with other observations (18,

26, 28, 52, 67). Levels of IgA and IgG in asymptomatic
individuals returned to levels comparable to those measured in

healthy contacts 6–8 weeks from the first positive swab.

Antibodies did not decline rapidly in mild disease patients.

DISCUSSION

The first response to a novel virus is typically characterized by

the cooperation between NK cells and natural antibodies, key

components of innate immune system (68–72). Since the
adaptive response requires time to build up after first

encounter with an unknown pathogen, NK cells and natural

antibodies contain the infection, whilst adaptive immune

responses develop and generate highly-specific memory T and

B cells that will clear the virus and prevent re-infection (22).

We still do not know whether the infection with SARS-CoV-2
triggers this typical response. We do know that individual

immune responses play an important role in determining the

clinical course of SARS-CoV-2 infection.

In order to understand the basis of the immune response in

COVID-19, we performed a global analysis of innate and adaptive

immunity in patients selected across the spectrum of disease
severity, ranging from SARS-CoV-2 positive asymptomatic

individuals to patients with mild and severe COVID-19. We

used standard flow-cytometry and serology with the aim of

finding an easy-to-use tool for the clinics.

Our data show that the balance between NK cells and

monocytes is a sensitive indicator of the individual reaction to

the virus and is related to the clinical course of the disease
(Figures 1D, E). We calculated the ratio between the frequency

of peripheral blood monocyte and NK cells (MNKR) and found
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D
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FIGURE 5 | For the staining of the B cells we used the B-cell tube (BD biosciences) that includes: CD19, CD24, CD27, CD38, IgM, IgG, IgD, and CD21. (A) Viable

lymphocytes were gated and then selected as CD19+ B cells in three representative patients with asymptomatic, mild and severe disease. The identification of the

different B-cell populations is shown in the empty plots of the upper line. We identified transitional (CD24+CD38++), naïve (CD24+CD27−), memory (CD24+CD27+),

atypical MBCs (CD24−CD38−) and plasmablasts (CD24−CD27++CD38++). In the CD27+ memory B-cell population based on IgM expression, we show IgM and

switched (IgM−) MBCs. MBCs were also gated as IgM+, IgG+ and IgG-IgM− MBCs. (B) Plots indicate the percentage of B cells, MBCs and plasmablasts. In (C) the

frequencies of IgM and switched MBCs are shown. In panel (D) we show the frequency of IgG+ and IgG−IgM−MBCs. Midlines indicate median. Statistical

significances were determined using unpaired, two-tailed Mann–Whitney U-tests. *p ≤ 0.05, **p < 0.01, ***p < 0.001.
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that each individual included in our study maintained his typical

MNKR throughout the time of follow-up (Figure 2B). The

MNKR is below 1 in contacts and asymptomatic individuals and
increases when monocytes expand, and NK cells are reduced. This

phenomenon occurs in mild COVID-19, when the frequency of

NK cell slightly declines and that of monocytes increases and is

more and is more evident in patients with severe disease, where

the loss of NK cells is associated to the expansion of monocytes

(Figure 2B). Monocytes secrete inflammatory cytokines causing

local and systemic damage (73–75). These alterations are
reminiscent of Hemophagocytic Lymphohistiocytosis (HLH), a

condition often related to mutations of genes governing the

cytotoxic lymphocyte machinery indispensable for the function

of NK cells. In HLH, chronic expansion and activation of

monocytes cause the life-threatening condition known as

cytokine storm (76–79). A similar “storm” is also responsible for

the dramatic evolution of severe COVID-19. In these cases,

therapeutic strategies aiming at controlling excessive pro-

inflammatory cytokine levels have been successfully used (80, 81).
In most viral infection the production of type 1 Interferons

(IFN-I) promotes NK cell expansion (82) and has a direct anti-

viral effects (83). It has been demonstrated that antiviral IFN-I

and III are not significantly induced by SARS-CoV-2 infection

of respiratory epithelial cells, whereas a chemokines signature

is established (84). As a consequence, NK cells survival

and function are not supported, but monocytes are attracted to
the site of infection. IFN beta-1 was administered as early

treatment together with a triple combination of anti-viral

drugs in a recently published multicenter, open randomized

trial. The therapy was effective in suppressing the shedding of

SARS-CoV-2 by acting on virus replication and innate immunity

(85). In agreement with our hypothesis it has been demonstrated

A

B

C

FIGURE 6 | (A) Arbitrary units (AU) of IgG and IgA specific for the S1 domain of the SARS-CoV-2 Spike protein and concentration of RBD specific IgM were

detected by ELISA at different time points. For some patients we had the opportunity to have serum samples at different time points of the disease. Data relative to

all samples collected are shown (Contacts n = 51; Asymptomatic n = 63; Mild n = 31; Severe n = 15). Midlines indicate median. Statistical significances were

determined using unpaired, two-tailed Mann–Whitney U-tests. *p ≤ 0.05, **p < 0.01, ***p < 0.001. (B, C) Graphs show the levels of IgA, IgG and IgM during the

course of the disease in asymptomatic (B) and mild (C) patients. Time is indicated in weeks starting from the first positive nasopharyngeal swab. Dashed line

indicates detection threshold (1.1).
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that inborn error of type I IFN immunity and neutralization of

type I IFN function by autoantibodies are associated to the most

severe forms of COVID-19 (86, 87).

It has been reported that antibodies are produced late in

hospitalized patients with COVID-19: IgG increased after three

weeks and IgM antibodies were transiently detected often later
than IgG (16, 24). Earlier antibody production has been shown

more recently (88, 89).

We measured the specific response to the S1 domain of the

SARS-CoV-2 spike protein (IgG and IgA) and to the RBD (IgM)

in the serum of all patients and controls in our study at different

time points (Figure 6). We confirm that the highest levels of IgG
and also IgA are produced by patients with severe disease. Our

most interesting observation is the different kinetics of response

in asymptomatic and mild disease forms of infection. The early

and transient IgM, IgA, and IgG responses distinguish

asymptomatic individuals from mild-disease patients, who

have a slower, but more persistent antibody production
(Figure 6).

In asymptomatic individuals, the early burst of IgA may

rapidly and effectively eliminate the virus in the respiratory

mucosa and prevent the development of a full adaptive

immune reaction. The slightly slower IgG and IgA production

that persist in time suggests that the adaptive immune response

is triggered in mild disease and may be able to generate
immunological memory. A long and severe disease fully

activates the adaptive immune response and is associated with

the production of anti-SARS-CoV-2 antibodies, PBs and

memory B cells (90). Further studies are necessary to establish

whether specific memory persist and for how long after

asymptomatic and mild disease.
The particular antigen-specific IgA/IgG profile associated

with clinical outcome may reflect TGFbeta production induced

by coronavirus-species (91, 92). Augmented viral load may

increase TGFbeta production, that, if locally secreted in the

lung, facilitates neutrophil attraction and specifically induces

the isotype switch to IgA (93), a situation that prompted the

suggestion of anti-TGFbeta directed immunotherapies (94, 95).
Innate MBCs are increased in asymptomatic and mild disease.

Innate MBCs produce natural antibodies in response to TLR

stimulation (60, 96) but are also able to enter the GC where they

remodel their antibodies to increase their affinity (58, 97). IgM+

MBCs are the precursors of most IgA+ and IgG+ switched MBCs

(97) and give rise to IgA+ plasma cells at mucosal site (98).
‘Natural antibodies’, produced by innate MBCs, are antibodies

that have a protective role in the early phases of the response

independently of any previous encounter with antigen (96, 99,

100). These antibodies, have not yet been shaped by antigenic

selection, carry few somatic mutations (58) and have broad

reactivity (101). We recently suggested that natural antibodies

might explain why most pediatric cases with laboratory-
confirmed SARS-CoV-2 infection have either no or mild

symptoms and recover within 1–2 weeks (102). Cross-reactive

antibodies found in children and adult never exposed to SARS-

CoV-2 (103) may correspond to natural antibodies. We speculate

that the early IgA burst of asymptomatic individuals may derive

from the rapid activation of pre-existing innate or cross-reactive

IgM+ MBCs that switched to IgA in the respiratory mucosa (25),

as suggested also by the demonstration that moderate levels of

IgM and IgA cross-reactive to SARS-CoV-2 are present in the

blood of healthy individuals never exposed to the infection (103).

In addition, neutralizing IgG MBCs isolated from COVID-19
patients may have none or very few somatic mutations (104) thus

suggesting that the pre-immune or innate MBC repertoire may

contain SARS-CoV-2 specificities (89). In patients with severe

COVID-19, IgM+ MBCs are reduced and switched MBCs are

increased (Figure 5C). The increase of switched MBCs may

reflect the immune reaction in the lymphoid tissue associated to
the respiratory tree for local protection. Circulating PBs are also

increased only in the severe cases in correlation with their higher

antibody levels.

Our analysis of circulating T cells shows that SARS-COV-2

infection does not alter the T cell pool in asymptomatic

individuals (Figure 4). In mild and severe COVID-19, instead,
the increase of activated CD4+ T cells reflects the ongoing

immune activation (Figure 4B). Activated CD4+ T cells are

indispensable for the effector function during acute viral

infections and for the expansion of CD8+ T cells (105). In

severe cases, also CD8+ T cell are activated (Figure 4B), as also

reported in a recent study analyzing the immune response in 76

COVID-19 patients from two independent cohorts (54), and
TEMRA accumulate in the blood (Figure 4D). A persistent viral

antigen stimulation and immune dysregulation may lead to T-

cell exhaustion, a state of T-cell dysfunction demonstrated to

occur during many chronic infections and cancer (106).

SARS-CoV-2 has evolved in bats, which control the infection

through their innate immune system, enriched for NK receptors
and different types of INF type I genes (107). Bats also produce

antibodies that are highly diverse thanks to a repertoire of VH,

DH and JH fragments that is much larger than that found in

humans (108, 109). Antibodies do not undergo further

improvement by introduction of somatic mutation. Thus,

constitutive IFN type I secretion and ready-to-use antibodies

may control viral infection in bats without the need of adaptive
immune responses. For this reason, coronaviruses and other

viruses remain endemic in bats, without damaging the host

(107). Asymptomatic humans may behave like bats, controlling

the infection thanks to NK cells and antibodies. The adaptive

immune response is strongest in patients with severe disease,

following the extensive tissue damage caused by the uncontrolled
inflammatory reaction.

Our data may contribute to monitor the clinical disease.

Although many large studies have described the inflammatory

reaction in severe disease (76, 110), clinically it is indispensable

to have prognostic markers early in the course of disease in

order to promptly choose appropriate treatments (111). The

increase of the ratio between Neutrophils (NLR) or Monocytes
and lymphocytes (MLR), mainly caused by the loss of

lymphocytes, is an indicator of severe disease (3), but does not

change in less severe forms when lymphocytes numbers are still

maintained (Figure 1B). We propose that the monocyte to NK

ratio (MNKR) and the levels of specific IgG, IgA and IgM
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antibodies in the serum may be more sensible early markers of

disease evolution. In particular, low level of antibodies in the first

two weeks after diagnosis and increase of the MNKR may

indicate patients at risk for increased severity of disease.

Our study has some limitations: 1) Patients with mild as well

as severe disease were significantly older than the asymptomatic
cases and contacts. The age range, however, reflects the

epidemiology to COVID-19 at the study time. 2) All data on

the kinetics of the COVID-19 are generated from the first blood

sample collected at the time of the first positive PCR and not

from to the date of first COVID-19 symptom. Due to variety of

symptoms presentation and the inclusion of asymptomatic
individuals, we preferred to use a uniform starting point for all

subjects included in the study.
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SUPPLEMENTARY FIGURE 1 | The lympho-monocyte gate was designed

based on physical characteristics (FSC-A vs SSC-A). Singlets are identified by FSC-H

vs FSC-A parameters. NK were identified as CD3-CD7+FSC-Alow and monocytes as

CD3-CD7-FSC-Ahigh. NK cells identified as CD7+ in the CD3- gate also express CD56.

SUPPLEMENTARY FIGURE 2 | (A) Scatter plots show percentage of T cells

(CD3+), CD4+ and CD8+. (B) Plots show the percentage of CD4+HLADR+and

CD8+HLADR+ T cells in all sample serially collected and analyzed in the study.

(C) Naïve T cells were divided based on CD31 expression (CD31+ and CD31-).

(D) Plots show the percentage of TEMRA in CD4+ and CD8+ T cells in all sample

serially collected and analyzed in the study. Midlines indicate median. Statistical

significances were determined using unpaired, two-tailed Mann-Whitney U-tests.

*p ≤ 0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE 3 | Gating strategy to analyze T cells subset. The

CD4+ and CD8+ T cells were subdivided into the main T cell subsets. HLADR was

used to identify activated CD4+ and CD8+ T cells. Using CD45RA and CCR7: naïve

(CD45RA+CCR7+), central memory (CM CD45RA-CCR7+), effector memory (EM

CD45RA-CCR7−) and TEMRA (CD45RA+CCR7−) T cells were identified. Naïve T

cells were further divided based on CD31 expression (CD31+ and CD31−). CM and

EM were separated based on the expression of CD27 and CD28.

SUPPLEMENTARY FIGURE 4 | (A) FACS plots in three healthy donors

indicates that most of IgG-IgM- MBCs correspond to IgA expressing MBCs and

minimal part of these cells are IgA-IgG−IgM− MBCs. (B) Plots indicate the

percentage of B cells, MBCs and plasmablasts. In (C) we show the frequencies of

IgM and switched MBCs. In (D) we show the frequency of IgG+, IgG−IgM−MBCs.

(B–D) Graphs refer to all samples analyzed in the study. Midlines indicate median.

Statistical significances were determined using unpaired, two-tailed Mann–Whitney

U-tests. *p ≤ 0.05, **p < 0.01, ***p < 0.001.
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