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Abstract

Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional
reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment
returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces
cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast
strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond
more slowly, resulting in long periods of slow growth (the so-called ‘‘lag phase’’) and large differences between individual
cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the
frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end
of this spectrum are ‘‘specialist’’ strategies that display high rates of growth in stable environments, with more stringent
catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite
repression, resulting in leaky expression of genes that are not required for growth in glucose. This ‘‘generalist’’ strategy
reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to
shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory
genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations
leading to alternative gene regulatory strategies that allow ‘‘stochastic sensing’’ of the environment. Together, our study
unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth.
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Introduction

A stable environment generally favors organisms that are well-

adapted to that specific niche [1–3]. However, in many cases,

adaptation to one environment comes at costs to fitness in

alternative niches [1,4–9]. Aside from the fitness tradeoffs,

adaptation through mutation is relatively slow. Thus to deal with

certain recurring environmental changes, many organisms have

evolved the capacity to change gene expression in response to the

environment, reducing the need for genetic adaptation.

Microbial nutrient uptake and metabolism is a prime example

of how organisms use transcriptional regulation to optimize fitness

in variable environments. Because the expression of nonnecessary

metabolic routes and genes is costly [3,10,11], microbes often use

catabolite repression mechanisms to preferentially consume

nutrients that afford high growth rates. This way, nonpreferred

nutrient genes are only expressed when other, more preferred

nutrients have been depleted. The sensing and signaling cascades

required for carbon catabolite repression in the yeast Saccharomyces

cerevisiae are particularly well-studied and serve as a model for

similar systems in higher eukaryotes [12–15]. Glucose acts as a

primary signal, triggering a regulatory cascade that results in

repression of the consumption of alternative carbon sources, such

as maltose, galactose, or ethanol. The main mechanism by which

glucose regulates transcription is via the Ras/protein kinase A

(PKA) signal transduction pathway. Other effectors include Snf1,

the yeast homologue of mammalian AMP-activated PK, and Rgt1.

Both of these proteins effect catabolite repression by triggering the

transcriptional rewiring of a small subset of genes, many of which

are directly involved in the uptake and metabolism of alternative

carbon sources [12–14,16].

Like other gene regulation programs, catabolite repression

reduces the fitness cost associated with unnecessary gene

expression while preserving the possibility of growth in environ-

ments with different nutrients. However, the ability to adapt to

changing environments appears to be intrinsically opposed to

obtaining maximal fitness in stable environments [6,17–20]. This

is partly because maintaining a regulatory mechanism requires
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energy and provides little benefit in stable environments [1,21–

25]. Moreover, in variable environments, transcriptional repro-

gramming also requires energy and time. This is clearly manifested

when microbes switch from growth on one carbon source to

another. During such a switch, cells show temporarily reduced

growth rates (a so-called ‘‘lag phase’’) because transcription is not

yet adapted to the new environment [1,26,27]. As a consequence,

an organism’s fitness in a given environment depends not only on

the maximal reproductive rates in that particular niche, but also

on the speed with which gene expression can adapt to the new

conditions [1,8,27–29].

Because maintaining and operating an environmental sensing

system is not always beneficial, it has been suggested that some

environments might favor simpler strategies. For example, certain

variable and unpredictable environments might stimulate strate-

gies where a clonal population uses random (stochastic) switching

between phenotypically different states. Such so-called ‘‘bet-

hedging’’ strategies can generate phenotypic diversity indepen-

dently of present environmental conditions. If this diversity

correlates with the frequency of environmental uncertainty, this

will be an ‘‘evolutionarily stable’’ strategy that ensures that some

portion of the population is always adapted to future conditions.

This strategy reduces the duration of the lag phase and also avoids

fitness costs associated with maintaining an environmental sensor

[1,19,30–33]. Other studies have proposed that microbes can

evolve mixed gene regulation strategies that combine sensing with

stochastic switching. Such ‘‘stochastic sensing’’ strategies use clues

about future environmental changes to induce anticipatory

transcriptional changes in a portion of individuals within the

population [1,2,29,34–38].

Whereas the molecular cascades underlying gene regulation have

been extensively studied, the natural diversity and fitness costs and

benefits of different gene regulation strategies have received less

attention. This is in part because accurately measuring fitness across

different environments is challenging. Because of the exponential

nature of population growth, the long-term expected fitness of an

organism is determined by its geometric mean growth rate (GMR)

across every environment it encounters, weighted by the frequency

and duration with which these environments occur [1,4–

6,27,39,40]. Hence, even short periods of low fitness may have a

significant effect on the long-term performance of an organism.

‘‘Generalist’’ strategies affording similar but more modest fitness

levels across different environments can therefore result in a higher

geometric mean fitness, even if maximal fitness in certain preferred

environments is reduced [2,41–43].

In this study, we use a combination of population- and single-

cell-level measurements of the model eukaryote S. cerevisiae to

explore how different environments shape fitness and transcrip-

tional regulatory strategies. More specifically, we measure fitness

as cells grow in environments with a stable supply of glucose

compared to environments where cells need to transition from one

carbon source to another. We find that different natural yeast

strains show large differences in the speed with which they are able

to adapt gene expression and growth to changes in carbon sources.

Using experimental evolution, we demonstrate that growing a

strain that shows slow transcriptional reprogramming in a variable

environment frequently results in mutations in key regulatory

genes such as HXK2. These mutations give rise to phenotypic

‘‘generalists’’ that thrive well in variable environments, with short

lag phases, less stringent catabolite repression, and faster

transcriptional reprogramming—at the expense of maximal

growth rates (MaxRs) in a stable glucose environment. Many of

these generalist isolates implement a transcriptional regulatory

strategy mediated by ‘‘stochastic sensing’’ of alternative carbon

sources, allowing cultures to maintain consistent fitness across

different environments. Alternatively, the same selection regime

can favor specialist mutants of an opposite character, which

display tight catabolite repression and slow adaptation to new

environments (long lag phases), but higher growth rates in stable

glucose conditions. An experimentally validated mathematical

model reveals how alternative regimes of variable carbon

environments will favor one carbon catabolite repression strategy

over another. Together, our results reveal that the speed with

which genes are induced and repressed in response to environ-

mental signals is a highly variable and evolvable trait. Our study

moreover illustrates how distinct strategies of transcriptional

reprogramming shape fitness in constant or variable environments.

Results

The Duration of the Lag Phase During Adaptation to
Different Carbon Sources Differs Widely Among Yeast
Strains
To investigate how the lag phase can influence fitness, we

compared the growth behavior of 18 different S. cerevisiae strains in

stable and variable environments. These included two commonly

used laboratory strains (S288c and SK1) as well as 16 genetically

diverse strains described by Liti et al. (2009). We used bulk

population-level growth measurements in an automated plate

reader (see Materials and Methods) to measure fitness in four

different environments, including one stable condition with

abundant glucose and three variable environments where popu-

lations gradually run out of glucose and thus need to switch to a

different carbon source to continue growth. To obtain a stable

‘‘high glucose’’ (HG) condition, we supplemented the growth

medium with 3% glucose, a condition that allowed relatively

constant growth rates until cells entered stationary phase. At the

other extreme we supplemented growth media with only 0.5%

glucose (low glucose, LG), a condition that allows cells to first grow

quickly by fermenting glucose, and then reprogram their

Author Summary

When microbes grow in a mixture of different nutrients,
they repress the metabolism of nonpreferred nutrients
such as complex carbohydrates until preferred nutrients,
like glucose, are depleted. While this ‘‘catabolite repres-
sion’’ allows cells to use the most efficient nutrients first, it
also comes at a cost because the switch to nonpreferred
nutrients requires the de-repression of specific genes, and
during this transition cells must temporarily stop dividing.
Naively, one might expect that cells would activate the
genes needed to resume growth in the new environment
as quickly as possible. However, we find that the length of
the growth lag that occurs when yeast cells are switched
from the preferred carbon source glucose to alternative
nutrients like maltose, galactose, or ethanol differs
between wild yeast strains. By repeatedly alternating a
slow-switching strain between glucose and maltose, we
obtained mutants that show shortened lag phases.
Although these variants can switch rapidly between
carbon sources, they show reduced growth rates in
environments where glucose is available continuously.
Further analysis revealed that mutations in genes like HXK2
cause variations in the degree of catabolite repression,
with some mutants showing leaky or stochastic maltose
gene expression. Together, these results reveal how
different gene regulation strategies can affect fitness in
variable or stable environments.

Costs and Benefits of Catabolite Repression
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metabolic genes to switch to respiratory growth on the ethanol

accumulated during the fermentation phase (Figure 1 and Figure

S1). Two other variable conditions included supplementation of

LG with either maltose or galactose, two nonpreferred ferment-

able carbon sources whose metabolism is repressed in the presence

of glucose (Figure 1 and Figure S1).

As expected, many yeast strains showed a clear lag phase when

grown in media that induce an adaptation to new carbon sources

(called a ‘‘diauxic shift’’) (Figure 1 and Figure S1). The shift can be

detected by three characteristic changes in growth rate: a

deceleration in growth speed as glucose is depleted, a brief phase

where the growth rate reaches a (local) minimum, and subsequent

re-acceleration to adapted growth on the alternative carbon source

(Figure 1A,B and Figure S1A). The lag phase was especially

pronounced in media with LG alone, and more subtle or in some

cases completely absent in LG + galactose and LG + maltose.

However, even when the growth deceleration during the diauxic

shift is very pronounced, it is not trivial to accurately quantify the

lag phase because populations rarely arrest growth completely,

and because the start and end of the phase cannot be clearly

defined. Furthermore, the deceleration and local minimal phases

appeared to be affected by the presence of an alternative carbon

source (Figure S1A), and this effect was highly variable between

strain backgrounds. For example, S288c growing in LG + maltose

initially decelerates faster than the LG condition, but subsequently

shows significantly higher growth rates across the rest of the

experiment. By contrast, the LG + galactose sample has a higher

rate of growth throughout the deceleration phase but decelerates

later on in the curve as the culture adapts fully to galactose

consumption (Figure 1C,D and Figure S1A). Moreover, these

differences are strain-dependent. Strain Y55, for example, shows a

more pronounced decrease in growth speed during the diauxic

shift in LG + galactose compared to LG alone (Figure S1A).

The results above show that it is difficult to quantify the

population-level lag phase by simply measuring its duration. In

order to quantify the rate with which strains are able to adapt to

variable environments, we therefore use a simple metric that

summarizes the overall growth speed (or fitness) of a population as it

transitions through a diauxic shift. This GMR is the weighted

geometric mean of growth rate values across the shift in carbon

conditions and represents the average growth rate of the strain across

a specific interval. We chose to calculate the GMR for the interval

between O.D. 0.15 and O.D. 0.75, which comprise the complete

shift from one carbon source to another (see Materials and Methods

and Figure 1A,B). The GMR can approach but never exceed the

MaxR achieved by the culture while it was growing on the preferred

carbon source glucose. Hence, the longer that a population of cells

grows in stable glucose conditions, the closer its GMR approaches

the culture’s MaxR. In mixed media, by contrast, the GMR can be

considerably lower than MaxR because of the decline in growth

speed as cultures transition to growth in the nonpreferred carbon

sources. Therefore, the ratio of the GMR in stable versus variable

conditions is a measure for how efficiently the cells can transition

between the different conditions, which in turn largely depends on

the severity of the lag phase (see also Materials and Methods).

Examining the GMR across growth in stable (HG) and variable

(LG, LG + maltose and LG + galactose) conditions allowed us to

quantify how the carbon environment affected the overall fitness of

the different strains. As expected, for all strains, the highest GMR

was found in stable (HG) conditions, whereas the LG condition

resulted in the lowest GMR (Dataset S1). Remarkably, however,

the difference between these bounds was highly variable: whereas

some strains only showed a 10% reduction in GMR in LG

conditions compared to HG conditions, others showed a 70%

reduction in GMR. A similar although less pronounced variation

between strains was also observed for LG + galactose and LG +

maltose media (Figure S1B and Dataset S1).

Together, these results indicate that the diauxic shift from glucose

to a less preferred carbon source leads to a wide array of growth

behaviors, ranging from highly variable growth rates in different

media to almost constant growth rates throughout the shift in

carbon source. The decrease in fitness during diauxic shift depends

both on the yeast strain and the carbon source. In general, the

transition from glucose to ethanol (LG medium) induced the

strongest decrease in growth rate (and thus also GMR), whereas the

glucose to maltose transition (LG + maltose medium) caused the

smallest reduction compared to stable HG conditions (Figure S1B).

Sudden Carbon Source Shifts Can Elicit Long and
Heterogeneous Lag Phases Across Single Cells
To obtain a more detailed picture of the decrease in fitness

during the lag phase as cells transition from one carbon source to

another, we turned to single-cell measurements. The cells were

first grown in glucose, harvested, and then immediately transferred

to maltose-containing media. The duration of the lag phases of

individual cells after this sudden transfer to maltose was measured

using automated time-lapse microscopy (Materials and Methods

and Movies S1 and S2). We recorded the lag phases of individual

cells as the time it took a cell to begin dividing after transfer from

glucose to maltose-containing medium (i.e., the first appearance of

a cell bud or the resumption of bud growth). The results of these

experiments indicate that the 18 yeast strains showed a striking

diversity in the average duration of the lag phase (Figure 1G).

Interestingly, even within a population of a given strain, we often

observed a large diversity in lag duration among different

individual cells. Moreover, in some cases, not all cells seemed to

survive the shift in carbon source. The degree of intraclonal

variability in lag duration (measured by the standard deviation of

single-cell lag phases of a population of cells of a given strain) and

fraction of cells surviving within 20 h of recording was significantly

related to the average lag phase, an observation that held true for

all strains and mutants we examined in this study (Figure S1C–F).

Strikingly, the average duration (and thereby heterogeneity) of

the single-cell lag phase of a given yeast strain was also highly

anticorrelated with the fitness (GMR) measured in population-

level experiments where strains often displayed pronounced lag

phases, such as in LG and LG + galactose conditions. More

generally, cells showing long lag phases as measured by single-cell

microscopy also showed higher variation in fitness (standard

deviation and coefficient of variation in GMR) between different

growth media (HG, LG, LG + Gal, LG + Mal; see Figure 1H).

Further statistical analysis using proportional hazard regression

(see Text S1) confirmed this correlation (Dataset S1B).

Taken together, these analyses indicate that the efficiency with

which populations are able to shift between carbon sources varies

significantly between different strains, and is correlated with the

average lag phase measured during sudden shifts in carbon source.

Specifically, strains that show large differences in fitness between

stable (HG) and variable (LG, LG + Maltose and LG + Galactose)

environments also show long lag phases.

Glucose Repression of the MAL Genes Leads to Long Lag
Phases
The results from the previous section support that lag phases

measured for single cells in sudden glucose to maltose shifts are

correlated with lag phases measured by monitoring population-

level growth in conditions where glucose is more gradually

Costs and Benefits of Catabolite Repression
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depleted (Figure 1H and Dataset S1). Interestingly, although

sudden transitions from glucose to maltose media often led to long

and heterogeneous lag phases, most cultures growing in LG +

maltose mixed media displayed modest lag phases, suggesting that

the yeast cells were able to maintain higher overall growth rates if

the transition between glucose and maltose was more gradual.

Exploring the molecular details of this shift from glucose to

maltose proved to be an ideal model because only three genes are

required for maltose consumption, making it a simple system to

study. To grow on maltose, yeast cells need to express a maltose

transporter (MalT), a maltase (MalS), and a regulator (MalR) that

induces the genes in the presence of maltose via positive feedback

regulation [44]. To characterize this phenomenon in further

depth, we chose to work with the laboratory strain S288c because

it is genetically tractable and displays a clear lag phase in glucose-

to-maltose transitions.

It seemed likely that carbon catabolite-mediated repression of

the MAL genes was a key factor contributing to the long lag phases

in sudden glucose to maltose shifts. Using fusions of the MAL
proteins with fluorescent reporters, we observed, as expected, that

expression of MAL genes is repressed in the presence of glucose,

and induced in the presence of maltose after glucose is depleted

(Figure S2). Moreover, constitutive overexpression of the MAL

genes resulted in a much shorter lag phase (logrank Chi2=591, p,
1610216) that was comparable to some of the natural strains with

short lag phases, suggesting that a long lag phase is due to the slow

de-repression of MAL genes (Figure S2B). Taken together, these

results suggest that the duration of the lag phase is determined at

least in part by the gene expression state of cells upon transition to

the new carbon source. In sudden shifts from glucose to maltose,

lag phases appear to be longer and more heterogeneous due to the

time required to activate the MAL genes, whereas in mixed LG +

maltose medium, strains can prepare for maltose fermentation

before glucose is completely depleted (Figure 1C,D and Figure

S2).Therefore, the different lag phase behaviors are likely to be

mediated by a variable extent of carbon catabolite repression

across strains and conditions.

Long, Heterogeneous Lag Phases Can Be Beneficial
At first sight, it may seem suboptimal for strains to have long

lag phases instead of rapidly adapting to a new environment.

However, long lag phases might be adaptive under certain

conditions [1]. For example, a long lag phase caused by carbon

catabolite repression could potentially allow cells to more

rapidly resume growth should preferred carbon sources like

glucose return to the environment. To test this, we transferred a

population of glucose-repressed cells to maltose, waited until

half of the population had committed to maltose growth, as

indicated by expression of a MalS-YeCitrine fluorescent

reporter construct. We then transferred these cultures to glucose

medium and measured the initial MAL fluorescence state of

individual cells and subsequently tracked these cells’ growth

rates in glucose using time lapse microscopy (Figure 2 and

Figure S2D,E). Compared to isogenic sister cells that had not

yet escaped the lag phase, cells that already had activated their

MAL genes showed lower growth rates in glucose for at least two

cell divisions, showing that commitment to maltose growth came

at a fitness cost when glucose reappeared. The large distribution

in lag duration between isogenic cells in a population may

therefore serve as a way to distribute the costs and benefits of

commitment to nonpreferred nutrients across individuals within

the population. Strains with tight catabolite repression, with

longer and more heterogeneous distribution of single-cell lag

times, appear to implement this strategy to a greater extent than

strains with shorter and more homogeneous lag time distribu-

tions.

The Lag Phase Is an Evolvable Trait
The above results indicate that the lag phase (and thus the

speed of transcriptional reprogramming) has significant genetic

determinants: there is a wide variation in lag duration between

genetically distant yeast strains, and further we can engineer

shorter lag phases with a reverse-genetics approach. Moreover,

because it appeared that long lag phases could themselves be

beneficial when glucose returns frequently to the environment

(Figure 2), we reasoned that this trait should be subject to

natural selection. To test this, we cycled the strain S288c

between glucose and maltose to generate conditions of strong

selective pressure. In the first leg of the cycle, to maintain

selection on MaxR in preferred nutrients, cells were allowed

,10 generations of exponential growth in stable glucose

conditions. Then, in the second half of the cycle we selected

Figure 1. Yeast strains show large differences in the duration of the lag phase. (A) Example of a growth curve showing the biphasic growth
associated with the switch from one carbon source to another (diauxic shift) of a strain (YS4) growing in the presence of LG supplemented with
galactose. The figure shows a marked decrease in growth rate (lag phase) during the switch from glucose to maltose. MaxR is the maximal growth
rate (or maximal fitness) attained at the beginning of the experiment when glucose levels are high, and correspond closely with growth rate
measurements made of cells growing in very dilute conditions (not shown). GMR is a measure of average fitness throughout the experiment,
calculated as the average growth rate between two preset cell densities that represent the beginning of measurable growth and the onset of
stationary phase (see Materials and Methods for details). (B) Same data as panel (A), where the instantaneous growth rates of the culture are plotted
as a function of population size. This representation shows more clearly how growth decelerates during the lag phase, leading to the often large
difference between MaxR and GMR (black dotted line). (C and D) Growth pattern of a reference strain (S288c) with a pronounced lag phase growing
either HG conditions (3% glucose, green) or 0.5% glucose, either alone (red) or supplemented with galactose (blue), maltose (purple). The growth rate
in 3% glucose is relatively stable, whereas growth rates in the other media are more variable, with a temporary decrease typical of the lag phase
when cells shift their metabolism from glucose to another carbon source. (E and F) Similar to (B) and (C) but with a strain UWOPS83-787.3 that shows
almost equal fitness in different media. Note that the lag phase is barely detectable, and that growth only slows down at the end of the experiment,
probably because of the depletion of nutrients and the accumulation of ethanol and other toxic metabolites. (G) Live-cell microscopy of yeast
populations shifting between glucose and other carbon sources allows measurement of the lag phase of individual cells. Each curve represents the
cumulative distribution histogram of single-cell lag phases of 1 of 18 different yeast strains. Each trace represents the fraction of a population of one
given strain that has escaped the lag phase after a transfer from glucose to maltose as measured by budding events (Materials and Methods). The
histograms reveal large differences in lag duration between strains, as well as variation in lag duration between individual cells within populations.
One strain was omitted from this analysis because fewer than 1 in 150 cells resumed growth after transition to maltose. (H) Correlation between the
average single-cell lags from (1 g) and population-level fitness variability (i.e., the variability of the GMR across different growth media). The vertical
axis shows the average duration of a strain’s lag phase (as measured by single-cell live microscopy), and error bars on this axis correspond to the
lower and upper quartiles. The size of each data point is proportional to the fraction of cells that were observed to resume growth after transition to
maltose. The horizontal axis represents the ratio of a strain’s fitness in media requiring diauxic shift (LG, LG + galactose, and LG + maltose), relative to
its fitness in stable HG conditions. Error bars on this axis are the standard deviations of 1,000 repeated calculations of the statistic obtained by
random sampling of one biological replicate from each condition (n= 2–6 per strain in each condition). See also main text, Dataset S1, and Figure S1.
doi:10.1371/journal.pbio.1001764.g001
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for short lag phases by transferring these cultures into maltose-

containing medium, allowing for ,5 more generations of

growth. In a first experiment, 12 populations expressed a

constitutively transcribed YeCitrine marker to facilitate later

analysis in competition experiments. After six cycles or ,90

generations, 11 out of 12 evolving populations showed shorter

lag phases when compared to the ancestral strain (Figure S3A

and Movies S3, S4, S5).

At the end of the experiment we isolated individual cells from

each population. We found that clones isolated from different

cultures varied widely in their single-cell lag profiles (Figure 3A),

but that the profiles of individual isolates within each evolved

population were similar (Dataset S2), suggesting that a single

evolved phenotype had come to dominate each independently

growing culture. The average single-cell lags of the isolated

mutants range from as short as 5 h, comparable to the shortest

lag phases observed in the collection of different strains reported

in Figure 1, to clones with lags of longer duration than the

ancestral strain (Dataset S2). The Malthusian fitness under

conditions mimicking selection for each of three short-lagged

isolates from independent populations was ,1.35–1.4-fold

higher than the ancestral strain (Figure 3B).

Experimentally Evolved Strains Show Either Generalist or
Specialist Population-Level Growth Properties
To investigate how reproducible this result was, and to unravel

the underlying genetic and molecular mechanisms that allowed

these strains to increase fitness, we repeated the evolution

experiment, however this time using 12 populations of cells

bearing MALT-YeCitrine and MALS-mCherry constructs to allow

measurement of MAL gene expression. After eight cycles or ,120

generations, all 12 populations in this experiment showed shorter

lag phases (Figure S3B). We first carried out extensive growth rate

analyses on 36 isolates (three clones from each of the 12

populations). Similarly to what we observed in the previous

experiment, the majority of the mutants isolated after cycling

populations between glucose and maltose medium showed

shortened lag phases (Figure S3B,C). Using population-level

growth measurements similar to those reported in Figure 1, we

found that these evolved strains had smaller differences in fitness

(GMR) between different growth environments than the parental

strain, leading to overall higher fitness across the shift in carbon

sources relative to the ancestral strain (Figure 4).

Interestingly, despite the fact that selection was only based on

glucose-to-maltose cycles, the mutants also showed dramatic

improvement in fitness in media containing LG alone or LG +

galactose, conditions where the ancestral strain showed a

pronounced lag phase (Figures 4 and S4). For example, several

mutants no longer have any lag phase in galactose-containing

media, maintaining steady rates of growth throughout the curve

with no local growth rate minimum (Figures 4B and S4 and

Dataset S2). This reduction in lag phase leads to a 1.2–1.4-fold

higher fitness (GMR) during the diauxic shift. Likewise, several

isolates have a GMR increase in LG conditions of up to 1.3-fold,

an increase in fitness mediated by increased rates of growth

throughout the deceleration, local minimum, and re-acceleration

phases of the lag phase (Figure 4B,C and Figure S4). In LG +

maltose conditions, where the ancestral strain showed a relatively

limited lag phase (Figure 1C,D), we found that the evolved strains’

fitness also showed a modest increase due to a further reduction of

the lag phase.

Taken together, compared to the ancestor, the majority of

evolved isolates developed a low degree of fitness variability (i.e.,

similar fitness levels in stable HG and variable conditions) and

short lag durations that are similar to some of the strains measured

in Figure 1 (Figure S4D and Datasets S1 and S2). Intriguingly,

however, in addition to the isolates with increased fitness during

transition between carbon sources, clones from a few populations

showed an increase in lag duration compared to the parental strain

(Figure 4D and Figure S4C,D). These isolates appear to have

evolved higher MaxRs in stable glucose conditions at the cost of

even more pronounced lag phases than the ancestral strain. When

the average fitness (GMR) is plotted against the average MaxR, it

becomes clear that isolates generally evolved following two

different paths: the evolution of shorter lag phases and increased

fitness during carbon transitions at the expense of MaxRs in stable

glucose conditions, or the evolution of faster growth in stable

conditions at the expense of longer lag phases in variable

environments (Figure 4D and Dataset S2).

Mutations in Key Regulators of Catabolite Repression
Tune the Duration of the Lag Phase
To test which mutations might have given rise to short lag

phases and increased fitness during carbon transitions in the

evolved populations, we sequenced the genomes of four evolved

isolates showing shorter lag phases. Three mutants of the shortest

Figure 2. Rapid adaptation to a new carbon source can come at
a fitness cost. A population of glucose-repressed MALS-YeCitrine
reference strain (S288c) cells was grown in maltose until 50% of cells
had escaped the lag phase and committed to growth on maltose, and
then transferred back into glucose-containing media to measure the
costs of commitment. Commitment to growth in maltose was
measured as the cells’ initial expression of the maltase-YeCitrine
reporter. These cells were then tracked by time-lapse microscopy to
allow growth rate measurements. The blue bars represent cells
committed to growth on maltose, which grow at significantly longer
doubling times after they were transferred back to glucose compared
to sister cells that were still in the lag phase when they were transferred
back to glucose (red bars). The results of a Mann–Whitney U test,
reported in Figure S2E, show that these differences are robust for MAL
‘‘ON’’ cutoff values greater than background levels (p,0.01).
doi:10.1371/journal.pbio.1001764.g002
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lag phase length carried mutations in the glucose sensor HXK2, a

gene that encodes a protein with multiple genetically dissociable

roles in glucose sensing. Specifically, in addition to phosphorylat-

ing glucose for entry into glycolysis, Hxk2p plays a signaling role in

the SNF1 and Ras/PKA pathway, and further can itself

translocate into the nucleus to repress certain nonpreferred carbon

catabolite genes [45]. High throughput studies have shown that

clean deletions of this gene lead to reduced fitness in YPD media (a

condition akin to our HG media, YPD contains 2% glucose)

relative to the WT, and increased fitness in diauxic shift from 0.1%

glucose to ethanol and glycerol [46]. Another study demonstrated

that deletion of this gene leads to genome-wide disruption of

transcription, with significant gene ontological (GO) enrichment

for genes involved with respiration and nonpreferred carbon

metabolism [47].

Another isolate (Isolate 3) showing longer lag phase duration

carried a mutation in the STD1 gene, encoding a protein that

interacts with glucose sensors Snf3 and Rgt2 to regulate RGT1-

mediated repression of nonpreferred carbon source genes. Like

HXK2, STD1 is also involved in glucose-induced repression of

alternative metabolic pathways [48]. Interestingly, however,

deletion of this gene typically leads to higher rates of growth

[46,49] and a disruption of gene regulation that is anticorrelated

with that of a strain in which HKX2 has been disrupted [47].

Sequencing of HXK2 and STD1 in the 36 different evolved

isolates revealed that HXK2 was mutated at different positions in

all but one of the different populations that showed shorter lag

phases, whereas STD1 was mutated only once (Figure 5A and

Datasets S3 and S4). Isolates bearing HXK2 mutations had

significantly shorter single-cell lag phases in sudden glucose to

maltose shifts than other isolates (12.7262.85 versus 4.6060.77 h

for non-HXK2mut and HXK2mut strains, respectively) and were 26

times more likely to resume growth after a transition from glucose

to maltose (Cox hazard coefficient = 3.26, p,10210). Moreover

isolates with HXK2 mutations had significantly reduced popula-

tion-level MaxR and increased GMR across the four carbon

source environments (p,0.001). To confirm that these mutations

were sufficient to confer comparable growth strategies to the

evolved strains, we introduced the mutated STD1 allele and two of

the HXK2 alleles into the ancestral S288c genome (Materials and

Methods). The mutations phenocopied the behavior of the evolved

isolates (Figure 5B,C). Furthermore, reverting the mutation back

to WT in the evolved clones had the opposite effect, restoring wild-

type growth patterns and fitness. Control strains bearing the same

dominant marker but that did not incorporate the intended allele

all behaved as the parental strain (Figure 5B,C and Datasets S3

and S4). Taken together, these findings reveal how simple

mutations in carbon sensing pathways can tune the length of the

lag phase in both gradually and suddenly changing environments.

Evolved Mutants Display Differing Degrees of Catabolite
Repression
To determine the molecular mechanisms giving rise to the altered

growth characteristics in evolved isolates, we examined whether the

mutants display altered MAL gene regulation. Flow cytometry

measuring the fluorescence of the MALT-YeCitrine and MALS-

mCherry reporter constructs revealed that many short-lagged

mutants showed reduced catabolite repression of the MAL genes

(indicated by ‘‘leaky’’ MAL gene expression in glucose), possibly

explaining why they have shorter lag phases in sudden glucose-to-

maltose transitions (Figure 6A). Furthermore, the degree of leaky

background expression correlated with high fitness (GMR) in

variable carbon environments and was inversely correlated with the

MaxR and lag-phase length (Figure S5A and Dataset S2). Although

the MAL genes are not necessary per se for growth in alternative

carbon sources like ethanol or galactose, this correlation indicates

that the leaky expression of the MAL genetic reporter relates more

generally to a partial loss of glucose catabolite repression.

Most interestingly, in contrast to the leaky expression we

observed in glucose media alone, we found that when maltose was

added to glucose media, some HXK2 mutants expressed their

MALT and MALS genes to a great extent (Figure 6A and Figure

Figure 3. Experimental evolution in variable environments shapes the lag phase. Parallel cultures of a strain showing long lag phases were
evolved in variable nutrient conditions, by transferring the cells back and forth between glucose and maltose medium. After 6–8 cycles, individual
cells were isolated from the different cultures and their growth properties were analyzed (see main text for details). (A) Single-cell lag profiles from
representative isolates from independently evolving populations, illustrating the diversity of glucose-to-maltose lag phase lengths. Note that a few
isolates showed longer lag phases than the ancestral strain (Isolate 6, orange trace and Figure S3C). (B) The isolates are fitter than the ancestor in
conditions mimicking the selection. Three of these isolates and the ancestor were directly competed against a reference strain in conditions
mimicking the selection protocol (Materials and Methods). The large circles represent the average fitness relative to the ancestor of six biological
replicates, and error bars represent standard deviations.
doi:10.1371/journal.pbio.1001764.g003

Costs and Benefits of Catabolite Repression

PLOS Biology | www.plosbiology.org 7 January 2014 | Volume 12 | Issue 1 | e1001764



S5). Deleting the MAL activator protein MalR (Figure S5D) did

not affect leaky background expression but did relieve high levels

of MAL gene expression in maltose and glucose-containing media,

indicating that the MAL genes were being induced by the presence

of maltose despite the glucose present in the media. There was

significant variability in magnitude between isolates, and further

between isogenic cells in the same population (Figure 6A and

Dataset S2). However, within single cells, the average MalT and

MalS signals were expressed to similar extents, implying that the

entire MAL system was activated (Dataset S2). The different HXK2

mutants show a wide range of MAL expression levels and

expression noise, suggesting that the different mutations have

distinct effects on catabolite repression.

Different Degrees of Catabolite Repression Vary the
Speed of Transcriptional Reprogramming and Allow
Stochastic Sensing of the Environment
We reasoned that this heterogeneous MAL expression could

serve as a model to elucidate how evolved isolates maintain steady

fitness levels in more gradual diauxic shifts between glucose and

maltose. To address this, we used both population- and single-cell

analyses to track MAL gene activity (using fluorescent reporter

constructs) and growth. Figure S5B and S5C and Movies S6, S7,

S8 show the result of a time-lapse microscopy experiment of one

isolate’s cells growing in the presence of glucose and maltose. This

experiment suggested that cells in the population switch stochas-

tically between MAL-active and MAL-repressed states. Moreover,

flow cytometry of a population of cells indicated that in the

absence of glucose repression, similar to other positive feedback-

driven networks in microbes [11,30,50], the MAL genes of these

mutants show hysteresis (history dependence). That is, cultures

that are inoculated into maltose/glucose media with repressed

MAL genes display fewer induced cells than populations inoculated

with MAL genes induced, even after ,10 generations of growth

(Figure 6B). We found the extent of this hysteresis was widely

variable across the different HXK2 mutants, with wide variability

in the rates at which populations switch from induced to

uninduced (ON to OFF) and vice versa (Figures 6B and S6 and

S7 and Dataset S2). The per-generation switching rate from ON

Figure 4. Fitness tradeoffs between rapid adaptation and MaxRs. Many evolved strains show reduced lag phases in variable environments
(LG; LG + maltose or LG + galactose). (A) Growth pattern of the ancestral strain in either stable glucose conditions (HG or in media that require a shift
from glucose to a less preferred carbon source (LG; LG + maltose or LG + galactose). (B) Similar analysis as panel (A) of Isolate 1 from Figure 3A. Note
that the reduction in growth speed (lag phase) is much less pronounced than for the ancestral strain shown in panel (A). (C) Dividing the growth rates
of the evolved clone by the ancestral reveals that the evolved clone grows more slowly than the ancestral strain, except during the lag phase, where
the evolved isolate shows a much higher growth rate. This shorter lag phase is responsible for the increased GMR relative to the ancestral strain. (D)
The MaxR and the GMRs are anticorrelated. Each point represents the geometric mean of the GMRs in all different conditions used in this study (LG,
LG + galactose, LG + maltose, HG) versus the geometric mean of all MaxRs in the same conditions. Error bars represent standard deviations. The grey
square represents the ancestral strain.
doi:10.1371/journal.pbio.1001764.g004
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to OFF and OFF to ON for HXK2 isolates depended on the initial

carbon source (maltose or glucose) and the strain’s genotype (two-

way ANOVA F=27, p,0.001; see Figure S7). The magnitude of

expression of MAL protein for these strains exceeds the generation

time, indicating that newborn cells inherit and propagate the MAL

activity state from their respective mother cell (Figures 6B and S5,

S6, S7 and Movies S6, S7, S8). These results imply that the

different HXK2 alleles led to varying rates of switching between

MAL induced and repressed states.

The variability in MAL gene regulation has a profound effect on

growth rate (Figure S8). For example, the magnitude of

population-level MAL gene expression in maltose/glucose medium

is anticorrelated with the population-level growth rate (Figure

S8A), suggesting that the expression of MAL genes in medium

containing glucose comes at a significant fitness cost. This cost is

dependent upon an intact MAL activator, which drives MAL gene

expression via positive feedback regulation (Figure S8B) [44].

Further single-cell analyses of one isolate confirm that genetically

identical cells with transcriptionally active MAL genes grow at

slower rates compared to cells that keep their MAL genes inactive

(Figure S8C). Although induced cells suffer a fitness defect as long

as glucose is present, they show a much reduced or even absent lag

phase when glucose is no longer available, increasing their fitness

during this transition phase (Figure S8D,E). In diauxic shift

conditions, this bimodal gene expression state leads to a diversified

growth strategy that distributes the costs and benefits of expressing

the genes involved in alternative carbon source metabolism across

individuals, allowing the population to maintain steady fitness

levels in both stable and variable environments.

A Mathematical Model Predicts Which Conditions Favor
Specific Carbon-Catabolite Gene Regulatory Strategies
The isolates resulting from our evolution experiment and

subsequent population- and single-cell-level analyses indicate that

cultures can generally evolve in two directions. In one case, a

‘‘glucose-specialist’’ phenotype emerges, with faster adapted growth

rates in glucose together with long lag phases upon a switch to a

different carbon source. Alternatively, generalist phenotypes evolve

with shorter lag phases in maltose, at an apparent cost to MaxRs in

glucose. Furthermore, increased leaky expression of the MAL genes

in short-lagged mutants is anticorrelated with MaxR in glucose, and

positively correlated with reduced lag phases and fitness variability

during diauxic shift (Figure S5A). This further suggests that a

molecular cost is paid in order for cells to be prepared for sudden

environmental changes (Figures 6 and S5, S6, S7, S8). We reasoned

Figure 5. Mutations in global carbon catabolite repression genes give rise to diversified growth behaviors. Sequencing of the
genomes of isolates with shorter lag phases isolated after repeated cycling between glucose and maltose medium revealed mutations in two genes,
STD1 and HXK2 (see text for details). (A) Sanger sequencing confirmed the presence of multiple HXK2 mutations and one STD1 mutation in the
evolved short-lagged strains. (B) Single-cell lag profiles of independent transformants of the ancestral strain bearing either WT (red and purple traces)
or evolved (blue traces) HXK2 alleles. Black traces correspond to the original evolved strains; the finely dotted line is Isolate 1 and the coarsely dotted
line is Isolate 2. (C) Same as (B) but for the STD1 allele identified in Isolate 3. Shown in blue are two independent transformants bearing Isolate 3’s
STD1 allele.
doi:10.1371/journal.pbio.1001764.g005
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that the predominant growth strategy would be shaped by both (1)

how often the culture must switch from stable glucose environments

to alternative carbon sources and (2) the relative duration of these

environments [1,27,34].

To test this, we first developed a stochastic model of the growth

characteristics of population-level behavior based upon a culture

of single cells escaping from the lag phase. In the model, each cell

of a given strain’s population is assigned a time tau corresponding

to the point at which the cell will begin growth in maltose. The

distribution of tau for a given strain in maltose is equivalent to the

cumulative lag time distribution measurements (as reported in

Figure 3A). After the time exceeds tau, the cell begins growth at the

strain’s specific growth rate in maltose. In glucose environments,

we simulated that cells would grow without a lag phase at the

measured MaxR. At any given time, the sum of the growing and

nongrowing cells equals the total population growth as it escapes

from the lag phase (Materials and Methods).

The model allows prediction of the clonal interference patterns

that would result between competing strains with different lag

characteristics across various maltose-to-glucose switching re-

gimes. For example, the heat map in Figure 7A illustrates how

Isolate 1, a ‘‘carbon source generalist’’ HXK2 mutant with short

lag phases, would compare in direct head-to-head competition

with Isolate 6, a ‘‘glucose-specialist’’ strain with ,28% faster

growth rate in glucose compared to Isolate 1 but with considerably

longer and more heterogeneous lag phases (as shown in Dataset

S2). The model predicts that an environment that consists of a

single shift from glucose to maltose will result in Isolate 1 growing

rapidly to high relative frequencies in the population due to its

very short lag phase. However, during prolonged growth in

glucose, Isolate 1 grows more slowly and thus is rapidly

outcompeted. Importantly, certain regimes of maltose-to-glucose

shifts are predicted to result in a stable abundance of each isolate

relative to the other (green region in Figure 7A).

Experimental Validation of the Model Reveals How the
Frequency and Duration of Glucose and Maltose
Environments Shapes the Evolution of the Lag Phase and
Growth Rates
We tested the model in a set of experiments where two strains

with different lag characteristics were competed in different carbon

Figure 6. Mutants isolated after repeated cycling between glucose and maltose show altered catabolite repression of the MAL
genes. (A) Flow cytometric analysis of four characteristic phenotypes that emerged after repeated glucose-to-maltose selection cycles show different
degrees of glucose repression of the MAL genes. The different evolved strains with fluorescently tagged MALS genes were pregrown in maltose and
then transferred to glucose media with or without maltose for 20 h of exponential growth, after which fluorescence intensities were measured using
flow cytometry. (B) MAL expression in the evolved strains depends on the history of the cells. Initial state (black traces) of samples grown in maltose
(left) or glucose (right) are shown, and in blue and red are the same cultures’ expression levels after 20 h of growth in glucose alone or in a mixture of
glucose and maltose. Note that the MAL expression level in the glucose/maltose mixture clearly depends on the history of the cells; the ancestral
strain does not display this hysteresis.
doi:10.1371/journal.pbio.1001764.g006
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switching regimes. In a first set of experiments (Figure 7B), we

measured Isolate 1 and Isolate 6’s abundance relative to one

another in single shifts from glucose to maltose, with varying

duration of growth in glucose and in maltose. The cultures were

grown initially in glucose so that they would have a lag phase upon

switching to maltose, or alternatively carry on at steady-state

growth rates in glucose. The results confirm the trend suggested by

the model: under regimes with longer periods of maltose growth,

Isolate 1 shows the highest competitive fitness; conversely, with

increasing time in glucose, the fast-growing Isolate 6 performs

better. Second, to examine if the model could predict strain

performance over multiple cycles of glucose-to-maltose shifts, we

carried the experiment forward for another two cycles for the

cultures growing under the 4 h:20 h, 8 h:16 h, and 12 h:12 h

maltose-to-glucose switching regimes (Figure 7C). The results

confirm that different regimes of environmental change result in

drastic changes in the frequency of the two competing genotypes

within the total population. For example, in the top panel of

Figure 7C, when the period of time in glucose exceeds the time in

maltose, Isolate 6 comes to dominate because the benefits of faster

growth rates in glucose outweigh those of shorter lag phases in

maltose. By contrast, as the length of time in maltose increases, the

short-lagged Isolate 1 outperforms the slower switching strain

despite lower rates of growth in glucose (Figure 7C, bottom panel).

Note that the competitor populations depicted in the middle panel

remain at relatively equal frequencies when the culture undergoes

cycles of 8 h of growth in maltose followed by 16 h of growth in

glucose.

Interestingly, in the 12 h:12 h regime, we observed that Isolate

1 grew ,10% more slowly over the glucose leg of the cycle

compared to our measurements of the same strain in steady-state

conditions (Dataset S8)—thus growing ,40% more slowly than

the Isolate 6 competitor during glucose growth. Across the entire

24-h period of the glucose to maltose cycles, we measured that this

slower rate of growth in glucose reduces the average growth rate of

this strain by about 5% (Dataset S8). The reduced rate of growth

in glucose indicates that Isolate 1 paid a considerable cost upon

reintroduction to the glucose-containing environment. This result

further supports conclusions from the experiment reported in

Figures 2 and S8 where commitment to maltose resulted in slower

growth rates for individual cells.

Taken together, these results demonstrate that the duration and

frequency of carbon environments shape the fitness of two of the

archetypal phenotypes recovered from the evolution experiments.

Environmental regimes with long periods of growth in glucose

relative to the duration of time in maltose will favor the growth of

the specialist phenotype, with stringent catabolite repression and

high growth rates in glucose, but long lag phases upon switching to

a different carbon source. By contrast, more frequent shifts of

carbon source and longer periods of growth in maltose will favor

the growth of strains with less stringent catabolite repression,

resulting in short, homogeneous lag phases and slow growth in

glucose.

Discussion

‘‘Why the Lag Phase?’’ An Old Problem Revisited
When Monod (1941) [26] first described the diauxic shift and

the corresponding lag phase, he was frustrated by why a culture

would reach such slow growth rates despite the abundance of

alternative carbon sources. Monod realized that the lag phase was

due to the time required for transcriptional reprogramming, which

in turn propelled research into the molecular mechanisms

underlying gene regulation. However, surprisingly little attention

was given to how this transcriptional reprogramming affects

growth rate. Our experiments show that the speed with which

metabolic genes are reprogrammed in the face of changes in

carbon availability is a highly variable and evolvable trait. Strains

can maintain high fitness in stable glucose conditions by tightly

repressing the costly expression of genes needed for growth in

alternative carbon sources. However, this results in slow

transcriptional reprogramming when glucose is depleted, leading

to reduced fitness during the adaptation to a less-preferred carbon

source. By contrast, less stringent catabolite repression and

‘‘stochastic sensing’’ strategies come at a fitness cost in stable

conditions, but allow quick and more uniform adaptation, which

in turn can lead to higher fitness during the transition phase.

Similarities and Differences Between Natural and
Laboratory Evolution
It is tempting to speculate that feral yeasts are faced both with

relatively stable as well as variable carbon supplies, and are

therefore subjected to pressure that is similar to the selection in our

directed evolution experiments. Moreover, the mutants that we

isolated after experimental evolution closely resembles the diversity

found in natural isolates, both regarding differences between

strains as well as differences between single cells within populations

(Figures 1H, S3, and S4D). Furthermore, we observe that mutants

isolated after selection in variable environments appear to be

constrained by opposing selection for maximal reproductive fitness

in stable glucose environments versus adaptability in variable

environments. These results are consistent with theories of

phenotypic tradeoffs associated with optimality at specific tasks

versus the capacity to adapt to new environments [4,6,9,17–20]. It

is notable, however, that we do not observe the same level of direct

tradeoffs between MaxR and lag phase across the strains reported

in Figure 1 as we do in the evolved isolates. Given the allelic

diversity of these strains, such a result is not unexpected. For

example, previous evolution experiments have observed that

common phenotypic tradeoffs, such as that between growth rate

and carrying capacity, become undetectable with increasing

genotypic distance [7]. We therefore speculate that single

mutations that give rise to tradeoffs in the evolved isolates could

potentially be compensated by additional mutations that might

increase overall fitness or that other evolutionary paths are

followed in more complex natural environments [51].

The Lag Phase from an Ecological Viewpoint
The natural strains and evolved mutants with short lag phases

show similar differences in lag duration and fitness variability.

More specifically, strains with short lag phases show similar fitness

levels across different environments, a phenotype referred to in the

ecological literature as a ‘‘generalist’’ strategy to indicate that these

organisms thrive equally well in different environments. It is also

worth noting that the HXK2 and STD1 mutants showed increased

fitness both in gradually changing conditions (LG, LG + maltose,

and LG + galactose) where the preferred carbon source is

gradually depleted, as well as in conditions where the cells

experience sudden changes in carbon availability (Figure 4 and

Dataset S2). In ecological theory, both of these ‘‘fine-grained’’ and

‘‘temporally fluctuating’’ environments are predicted to favor

generalist growth strategies, with reduced variability in fitness

across different environments [1,4–6,27,39,40]. However, in

contrast to our results, most experimental evolution studies tend

only to find niche specialization (i.e., higher rates of growth on one

carbon source or the other) [52,53]. It seems likely that these

studies uncovered specialist phenotypes because the selective

pressure to improve adapted growth speeds on particular carbon
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sources was greater than the pressure to reduce lag phases or

increase switching rates between carbon sources [28,54].

The mathematical model and experiments reported in Figure 7

provide further insight how these strategies are shaped and favored

by the environment. These analyses illustrate how different

regimes of environmental change favor the growth of either

specialist strains with stringent catabolite repression or alterna-

tively generalist strains with leaky or even stochastic expression of

genes involved in metabolism of different carbohydrates. More

broadly, these results confirm theoretical analyses and experimen-

tal reports that while stable preferred environments will promote

slow switching rates, frequently changing environments can favor

the growth of phenotypes with high adaptability, even at the cost

of slower rates of growth in preferred environments [1,8,27].

Single-Cell Heterogeneity as a Bet-Hedging Gene
Regulation Strategy
Interestingly, apart from revealing differences in growth

strategies between genetically different yeast strains, our results

also illustrate how genetically identical cells within a population

can also show different growth behaviors that can help to optimize

a strain’s fitness in variable conditions. Specifically, the results

show that an organism can maintain competitiveness by allowing

only a fraction of the population to adapt to a new environment.

This subpopulation of cells contributes some progeny to

exponential growth while keeping others dormant (Figures 1G,

3A, and S3). Although they contribute no progeny in the new

environment, these uninduced cells appear to have an advantage

upon reintroduction of the previous environment (Figure 2),

increasing overall mean growth rates (Figure 7). Such growth

strategies have commonly been investigated for the model of seed

germination in annual plants, a system that in many ways bears

semblance to our model system of the lag phase [42,55,56].

Heterogeneity within isogenic populations bears further similari-

ties to other microbial systems that lead to variable physiological

states between isogenic individuals in the same population. For

example, heat-shock resistance [19], the variable timing of meiosis

[57], or the switch-like commitment to mating [58] in yeasts likely

underlie a cost-benefit strategy that increases fitness in the long

term. Indeed, these systems are costly to implement [19,57,59] but

offer fitness advantages in stressful environments. However,

despite receiving much attention in the literature, few studies

have systematically quantified how heterogeneous individual-level

behavior can affect evolutionary outcomes [27,33,55,56].

Mutations in Global Regulators Control Growth
Strategies
Our evolution experiments demonstrated the flexibility of

growth strategies and also revealed that simple genetic switches

in catabolite repression can regulate lag duration (Figures 4–6).

Specifically, HXK2 mutations appear to increase fitness in lag

phases in glucose-to-maltose shifts in part by allowing leaky

expression of MAL genes (Figure S5). The repression of other

genes involved in alternative carbohydrate metabolism is also

likely relieved because the fitness of the mutants also improved in

mixed carbon conditions different from those used in the selection

scheme. This conclusion is supported by whole-genome gene

expression profiling of a targeted hxk2 deletion [47], where genes

involved with respiration and alternative carbon source utilization

are significantly up-regulated. Although null mutations in HXK2

are known to relieve catabolite repression in S288c, the potential

for more subtle mutations in this key regulator to allow ‘‘tuning’’ of

switching rates between alternative carbon sources has not been

explored extensively [45,52,53,60,61]. Furthermore, in the case of

the STD1 allele, we observe reduced growth rates, which is the

opposite effect to that usually observed in high-throughput studies,

where null STD1 alleles grow with higher fitness than the WT

S288c strain [46,49]. Taken together, this aspect of our results

suggests that regulators such as HXK2 sit at an apical position in

the regulation of cellular physiology, allowing adaptive repro-

gramming of cellular fitness strategies in times of environmental

change.

‘‘Stochastic Sensing’’ Is a Gene Regulatory Strategy That
Falls Between Bet-Hedging and Environmental Sensing
Interestingly, some of the short-lagged isolates show a high

degree of heterogeneity in MAL expression within a population

(Figures 6 and S5). Specifically, in medium containing both

glucose and maltose, some HXK2 mutants exhibit a striking

multimodal state, where MAL genes in individual cells are

expressed to varying extents ranging from repressed to induced.

This behavior emerges because the rate of switching between ON

and OFF is slower than the generation time, allowing newly

budded cells to inherit their MAL expression state from the mother

cell (Figures S6 and S7). This epigenetic behavior is due to the

structure of the MAL genetic circuit, which induces via positive

feedback (Figures S5D and S8B) [11,30,44,50]. Furthermore, it

appears that distinct HXK2 mutations can set different ‘‘energy

barriers’’ for transitions between induced and uninduced states

(Figures 6A,B, S6, and S7). Although such ‘‘stochastic switching’’

networks have been reverse engineered (for example, [27]), and

shortened lag phases observed in natural selection [28,54], no

studies have found that mutations in global regulators can give rise

to such a wide array of diversified gene regulation strategies.

The simple genetic architecture of the MAL system has allowed

us to closely examine the costs and benefits of different levels of

catabolite repression and the outcomes of stochastic gene

regulation [3,10,11,20,62,63]. The stochastic nature of the

transition between MAL activation and repression results in

diversified growth behavior that appears to be a bet-hedging

strategy. However, maltose must be present to induce the positive

feedback necessary for the high levels of MAL gene expression

Figure 7. The tradeoffs associated with different levels of catabolite repression depend upon the frequency and duration of
environmental change. Shown are modeled growth characteristics and experimental results of a head-to-head competition between Isolate 1, a
strain with reduced catabolite repression, short lag phases, and slow rates of growth in glucose, and Isolate 6, a strain with stringent catabolite
repression, long and heterogeneous lag phases but high growth rates in glucose, under varying regimes of glucose-to-maltose shifts. (A) Modeled
fitness landscape predicting the relative abundance of short-lagged Isolate 1 relative to the long-lagged parental strain. The model uses
experimentally determined lag phase distributions and adapted growth rates for each strain in maltose or glucose (see main text and Materials and
Methods for details). (B) Heat map (same color scale as in A) of experiments where the two isolates were competed for different lengths of time in
maltose and glucose (12 different regimes, with each 5–6 repetitions). The strains were grown for 20 h in glucose before being transferred to maltose
for 1 h, and then mixed together to begin the competition experiment. (C) The cultures represented by the points in panel (B) corresponding to
4 h:20 h, 8 h:16 h, and 12 h:12 h maltose-to-glucose cycles were repeatedly subjected to the same regime of maltose-to-glucose changes to track
relative abundance of the competing clones over time. Dots represent experimental observations, and lines represent modeled growth
characteristics of these strains.
doi:10.1371/journal.pbio.1001764.g007
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shown in Figures 6 and S5, S6, S7, and thus this environmental

dependence does not satisfy the most stringent criteria for bet-

hedging [33]. Even in the case of stable, constant glucose

environments, the low leaky expression of costly nutrient

assimilation genes could be viewed as a mechanism of ‘‘stochastic

sensing,’’ a term first used by Perkins and Swain (2009) [37] to

describe predictive microbial networks [35,36]. More recently,

Arnoldini et al. (2012) [34] demonstrated analytically that

combinations of sensing and stochastic switching strategies are

evolutionarily stable when environments provide partially reliable

signals about future events. Given that such positive feedback-

driven circuits are widespread in microbes, it is likely that nutrient

assimilation pathways act as basic sensing tools to maintain long-

term fitness in changing environments, without the need for

complex sensing and signaling systems [1,21,27,29,30,34,35,37,

64,65].

Conclusions
Taken together, our results show that individual-level hetero-

geneity in gene regulation and growth has strong genetic

determinants. The speed of metabolic reprogramming in the face

of environmental change is a highly regulated trait, and

populations can implement catabolite regulatory strategies that

fall between traditional sensing/signaling cascades and stochastic

switching mechanisms. Specifically, stringent catabolite repression

seems favorable in relatively stable environments, whereas less

stringent regulation, or even stochastic sensing strategies can

increase fitness in variable conditions where cells often need to

switch their metabolism. We speculate that similar principles and

emergent (epi)genetic switches likely also contribute to other gene

regulation systems, including in human diseases involving clonal

growth, such as microbial pathogenesis and cancer.

Materials and Methods

Strains and Media Used
Standard protocols were used for routine S. cerevisiae strain

propagation [66]. A specially engineered maltose-prototrophic

S288c strain, bearing a functionalMAL regulator allele (MAL63) in
place of MAL13 on chromosome VII [67], was engineered to have

a low petite frequency by rescuing a frameshift mutation in SAL1
to reduce the high petite frequency that occurs after extended

growth on glucose (Text S1 and [68]). Other feral strains were part

of the SGRP collection [69]. Special attention was given to

standardization of pregrowth conditions, in particular to avoid

cells that would experience carbon depletion prior to transfer to

maltose for lag phase measurements. Specifically, this entails

keeping cultures at low densities throughout the experiments.

Moreover, where appropriate, care was taken to measure steady-

state conditions (where the growth speed of the population was

stable). Please refer to specific experimental details provided in

Text S1 for the precise conditions for each experiment.

Population-Level Growth Rate Measurements Using
Bioscreen C
Cells from a turbid culture grown in YPD for 14 h were

inoculated to a final density of 16105 (haploid S288c) cells per ml

in 150 microliters of YP media containing the appropriate carbon

source and allowed to grow in the Bioscreen C (Growthcurves

USA) at 30uC and continuous medium-amplitude shaking until

stationary phase. All media for growth rate measurements were

prepared starting from the same batch of double concentrated YP

medium (20 g/l yeast extract, 40 g/l bacterial peptone), which was

supplemented with an equal volume of filter-sterilized sugar

solutions to generate 16 YP medium containing the required

mixture of carbon sources to obtain HG (30 g/l glucose), LG (5 g/

l glucose), LG + Gal (5 g/l glucose and 25 g/l galactose), or LG +

Mal (5 g/l glucose and 50 g/l maltose). We found that variation in

osmolarity is a significant factor affecting the lag phase, and we

therefore supplemented LG medium with 0.14 molar sorbitol to

match the osmolarity of the HG, LG + Mal, and LG + Gal media.

All media were divided into smaller batches that were kept frozen

until the day of use.

All growth measurements represent the averages of at least three

biological replicates. In general, growth measurements were highly

reproducible, with standard errors generally below 5% of the

measured growth rates. Standard errors are reported in detail in

Datasets S1, S2, S3, S4, S5, S6, S7, S8. Growth of populations of

S. cerevisiae were measured by OD600 readings every 15 min in the

Bioscreen C automated OD meter at 30uC with constant medium

amplitude shaking. This plate reader uses 100-well microcultiva-

tion of microbial cultures covered by a heated lid to prevent

evaporation. R and MS Excel software were used for all data

analyses. Briefly, all growth curves were smoothed using R’s

smooth.spline function, and then the first derivative of the log-

transformed smoothed data was plotted as a function of population

size between 0.15 and 0.75 OD600 units, corresponding to

1.06107 to 56107 haploid S288c cells per ml (see Datasets S6 and

S7). These values are linearly correlated with cell density, and

further correspond to lowest and highest OD at which we were

able to obtain reproducible measurements, and further capture

most of the active growth phase of the cultures before other

noncarbon growth resources become depleted.

Reported maximum growth rates were calculated as the slope of

a linear regression model to ln-transformed OD600 values

between 0.15 and 0.3 A.U. To calculate GMR, we used R’s

splinefun function to determine the amount of time t that the

culture spent between interpolated OD600 values of 0.15 and

0.75; the GMR is thus equal to ln(0.75/0.15)/t. This interpolation

approach significantly reduces the coefficient of variation between

biological replicates (error) compared to a simpler approach that

would only use the raw OD measurements. These statistics were

further analyzed to determine relative variability across the

different environments (see Datasets S1 and S2).

Note that the GMR is an average growth rate that could be

calculated for many different initial and final population densities.

Here, we use the GMR to reflect the average growth rate across

the linear range of our spectrophotometer (i.e., between O.D. 0.15

and 0.75). This is a relatively wide interval that comprises the

initially high growth rate in glucose, the lag phase, and the

resumption of growth on the new carbon source (Figure 1A,B;

Materials and Methods). This interval is easy to standardize and

yielded a high reproducibility (Datasets S1 and S2). However, to

explore the role that the lag phase played in the GMR, we also

calculated average growth rates over other more narrow windows

centered on the middle of the lag phase (defined as the point where

the culture reaches a minimal growth rate). These measures

correlate strongly with the GMR. For example, the narrowest

possible window—the minimal growth rate (reported in Datasets

S1)—explained 55% of the variance in GMR for the SGRP strains

that had lag phases (Dataset S1, R2=0.55, p,0.001). Computing

the average growth rate across a wider custom-drawn window

encompassing 0.1 to 1 doublings prior to and 0.1 doublings after

the minimal growth rate explained from 66% to 79% of the

variance in GMR (p,0.001). In summary, the GMR in between

OD 0.15 and 0.75 seems to be largely influenced by the actual lag

phase. Moreover, calculating the GMR across more narrow

intervals around the center of the lag phase is much more
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complex, is not always possible for all growth conditions where

strains do not always show a local minimal growth rate, and yields

similar results. Further details and example raw data and analyses

are available in Text S1.

Single-Cell Measurements of Lag Phases, Growth Rates,
and Gene Expression
We devised a system that traps cells between a coverslip and an

agar pad containing media necessary for growth. This allowed

continuous monitoring of cellular growth for long periods of time

using an inverted automated Nikon TiE fluorescence microscope

placed in a temperature-controlled incubator. A 606, 1.40 NA oil

immersion lens was used to monitor up to 120 XY positions per

experiment, and lag measurements were made using the

microscope’s automated Z-plane focusing.

Lag phases for a given strain become longer as the culture grows

for longer periods of time in glucose (Figure S2A). Thus, for

analysis of lag phases, we varied the length of time that cells were

grown in glucose to regulate the severity of single-cell lag phases.

Apart from the results reported in Figure S2A, we either grew

populations in glucose for 6 h (reported in Figure 1) or 20 h

(reported in Figure 3—the length of time cells grew in glucose

during the evolution experiment). After growth in this glucose

environment, we transferred cells by two brief (2 min at 1,2506g)

centrifugations and resuspension in maltose-containing media.

Cells were then transferred to the custom growth chamber (see

Text S1) and transferred to the microscope for analysis. Under the

microscope, brightfield imaging proceeded every 15 min. After the

experiment, cell budding events were scored manually as the hour

at which the first morphological change leading to a new bud

occurred, or when an already existing bud began to grow.

Examiners were blind to experimental conditions at the time of

scoring, and separate investigators independently replicated results

of preliminary analyses.

For statistical analysis of single-cell lag data, we used survival

analysis: log-rank tests for pairwise comparisons between different

WT strains or between ancestral strains and mutants, and a Cox

proportional hazards test for datasets for which we had covariate

information (see Text S1). For these latter analyses, single covariates

were used (1 degree of freedom), and the most significant predictors

were then used in paired analyses using other covariates (2 degrees

of freedom). The majority of single-cell lag variance was explained

by single covariates that reflected relative fitness (GMR) or fitness

variability (Dataset S1).

For doubling time measurements presented in Figure 2, an

initial fluorescence image was acquired, followed by brightfield

imaging every 5 min. Mother cell doubling times were recorded as

the time t taken for a cell to complete two cell divisions (equal to t/
2). Brightfield images reported in Figures S5 and S8 were acquired

every 5 min, with fluorescence images in the mCherry field every

hour. Growth rate measurements of microcolonies reported in

Figure S8C account for the fold change in area of microcolonies

between 3 and 6 h after recording began (equal to D(ln(area))/3 h)

[19].

Population-Level Gene Expression Measurements
To measure the relative MAL expression reported in Figure 6

and Dataset S2, we pregrew cultures in maltose media (Figure 6A)

or either maltose or glucose media (Figure 6B) and diluted

them as exponentially growing cultures into a mixture of 2%

glucose + 5% maltose in YP media to a final population density

of 1–2,000 cells/ml and allowed them to grow for 20 h for final cell

densities between 1–56106 cells per ml. Cultures were then

centrifuged to concentrate cells, and these were frozen at 280uC

in 16phosphate buffered saline (Sigma-Aldrich no P5493) in 25%

glycerol until flow cytometric analysis. The low densities at

which these cultures grew did not measurably affect glucose

concentrations (unpublished data). For gene expression measure-

ments, cell samples were thawed on ice until analysis on a

BD Bioscience Influx flow cytometer. mCherry signal detection

used a 561 nm laser coupled to a 610/20 nm detector and

YeCitrine signal detection used a 488 nm laser coupled to a

580/30 nm detector. R’s flowCore package was used to first filter

out ,70% of events using a filter (curv2Filt) that selected

the highest-density regions in side- and forward-scatter dimen-

sions. mCherry and YeCitrine intensities for each filtered sample

were stored as binned fluorescent measurements and summary

statistics.

Experimental Evolution and Selection Protocol
For each evolution experiment, the methods established by

Lenski were largely followed [70]. All growth for the experimental

evolution experiment was in 5 ml of YP media containing either

10% glucose or 20% maltose at 30uC on a rotating wheel. The

protocol was followed for two founding S288c strains derived

from the modified S288c strain (see above): AN296 constitutively

expressed a YeCitrine marker [71], and AN148 contained fusion

constructs of MAL11-YeCitrine (encoding a MalT) and MAL12-

mCherry (encoding a MalS). Populations of ,30,000 initial cells

were grown exponentially for 20 h in 5 ml glucose YP to reach

population sizes of ,1–56107, and then cultures were centrifuged

and resuspended in 20% maltose YP and then put back on

the wheel for another 3 d until the populations reached high

densities (,56108 cells/ml, with a final population size of

,2.56109). After each round of selection in maltose, we froze

an aliquot at 280 for future analysis and resurrection. At the end

of the selection experiments, we resurrected individual clones for

analysis by diluting the populations to single colonies, and then

restreaking random single colonies again to single colonies before

phenotypic characterization and long-term storage at 280uC in

glycerol.

Malthusian Fitness Measurements
For the experiment reported in Figure 3B, we pregrew

constitutively YeCitrine-labeled query strains (isolates 1, 3, and

4) in sextuplicate and mixed these 1:1 with an mCherry

fluorescently labeled S288c reference strain (AN74; see strain list

in Dataset S4) exactly as in the selection protocol in 20% maltose

YP media for 24 h. OD600s were determined and query cultures

were mixed at a 1:1 ratio between reference and query strains.

Samples were frozen for initial ratio measurements, and initial

population densities determined by diluting cells down such that

100–200 single colonies would grow in 2 d time on solid YPD

plates. Thereafter, the exact protocol from the selection procedure

was then followed: a 20-h growth in glucose, followed by 2 d of

growth to high turbidity in maltose media. At the end, samples

were frozen in 16PBS + 25% glycerol for later analysis, and final

population densities determined by plating as before. For flow

cytometry analysis, see below.

We calculated the Malthusian growth rate w of the query as:

wquery~ln
fractionquery final|population sizefinal

fractionquery initial|population sizeinitial

� �

,

where N is the total population size determined by plating.

Likewise w(reference) was calculated for the fluorescently labeled

reference. The w(query)/w(reference) was taken as the fitness of
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the query strain. This value divided by the ancestral strain’s fitness

(calculated identically against the same reference) gives the fitness

of the query strain. All fitness or relative growth rate measure-

ments are the ratio of the query strain’s fitness relative to the

reference strain divided by the control query strain’s fitness relative

to the reference strain.

Mathematical Model of Population Growth in Maltose-to-
Glucose Cycling Environments
For a given culture of cells, the population total Ntotal is equal to

the sum of each ith growing and nongrowing cell. Within the

population, there are J phenotypes (or strains) and each cell

belongs to the jth strain or phenotype such that Ntotalj is the number

of cells of the given phenotype or strain. At any given time, the

proportion of cells in the jth phenotype is:

p ið Þ~
Ntotalj

PNJ
j~1

PNI
i~1

cellij
~

Ntotalj

Ntotal

:

Each strain j in environment k has a specific growth rate equal

to mj,k.

The model assumes specifically that cells entering into glucose

from maltose do not have lag phases. Cells that have no lag phase

in environment k grow at steady-state growth rates; thus, at time

t the total population size of strain j is determined by:

NtotalJ tð Þ~N0j e
mjkt with total population size Ntotal~

P

NJ

j~1

N0j e
mjkt.

The model assumes specifically that cells going from glucose to

maltose do have a lag phase. In a lag phase within environment k,

cells of strain j have lag phase durations tau equal to a vector of lag

phase durations drawn from experimentally determined distribu-

tions dist(tj,k).

In the lag phase, cells of strain j only begin growth at steady-

state growth rate m(j,k) when t = tj,k(cellij).

Each celli,j has an initial population size equal to 1. Thus, in the

lag phase the population size N for the jth strain at time t is the sum

of growth of all cells i.

Ntotalj
tð Þ~

X

NI

i~1

1|e
mjk|max 0,t{tjk

� �

:

And the total populations size N at time t is the sum of all j

competitors.

NtotalJ
tð Þ~

X

NJ

j~1

X

NI

i~1

1|e
mjk|max 0,t{tjk

� �

:

The model was implemented as a stochastic simulation in R

(functions and scripts available upon request). Time was iterated in

glucose and maltose environments in 0.1-h increments. A total of

50,000 cells were chosen as initial population sizes for maltose lag

phase simulations, and each cell was given a lag time tau and a

status (1 or 0) that indicated whether this cell would begin growth

within 24 h (the period of time for which we had data about lag

time distributions for these strains). A normal distribution of tau

was chosen for Isolate 1, and a uniform distribution for Isolate 6.

After computing lag phase growth as a function of time in maltose,

growth in the glucose environment was computed for each time

point in maltose. The resulting matrices of population sizes for the

two competitors were used to compute the proportion of each

strain in the total population.

In the text and in Figure 7, p(i) is the only parameter reported.

In Figure 7A, the plot reflects the initial conditions of the

experiment pictured in Figure 7B and 7C, where the average

initial proportion of Isolate 1 relative to Isolate 6 for the six

independently competing populations was 0.53317 and the cells

had been in maltose for 1 h prior to time point 0. See Dataset S8

for the exact parameters used in the model.

Competition in Variable Maltose and Glucose
Environments
To begin the experiment where strains were competed in

various carbon switching regimes, six independent replicate

populations of Isolate 1, a strain constitutively expressing

YeCitrine, and Isolate 6, a MALT-YeCitrine and MALS-mCherry

strain, were inoculated from turbid YPD overnight cultures into

glucose media and allowed to grow for 20 h until they had reached

population densities of ,56106 cells per ml, such that both

cultures would have lag phases upon transfer to maltose. The

cultures were washed into maltose media, OD600 values

measured, and then mixed 1:1 and either kept in maltose or were

transferred to glucose to generate the results shown in Figure 7B.

This initial time point also served as the beginning of the glucose-

to-maltose cycling populations shown in Figure 7C. Growth was at

maximum 56106 cells per ml, and minimal population sizes for

long periods of glucose growth were ,20,000 cells. At each time

point, cells were centrifuged and frozen at 280uC in 16 PBS +

25% glycerol for later analysis at the flow cytometer. We used the

same glucose and maltose YP media and volumes in this

experiment as in the selection procedure.

For analysis of competitions, 50,000 single-cell events were

acquired by a BD Biosciences Influx flow cytometer. We used a

561 nm laser coupled to a 610/20 nm detector for mCherry,

and for YeCitrine signal detection, we used a 488 nm laser

coupled to a 580/30 nm detector. We used R’s Flowcore package

to identify subpopulations of unlabeled, YeCitrine-labeled, or

mCherry-labeled cells using polygonal gates. We used control

cultures of each competitor growing on its own in identical

conditions to those of the competition to determine the fraction of

events that were incorrectly determined to be one competitor

when in fact they were from the other. In general these error rates

were below 1/5,000 events.

Whole Genome Sequencing and Variant Calling
Selected samples were whole-genome sequenced using Illumina

HiSeq 2000 with 500 bp inserted library. Quality assessment of

resulted short reads was performed using FASTX-Toolkit (http://

hannonlab.cshl.edu/fastx_toolkit/index.html). After removing the

low-quality reads (below Q30) and adaptors, pair-end reads were

then mapped onto the reference S. cerevisiae genome (S288C,

version genebank64) using Burrows–Wheeler Alignment [72].

Default settings were used except the maximum edit distance was

set to 0.01 (2n 0.01). The MarkDuplicates command in Picard

(http://picard.sourceforge.net/) was used to remove the reads that

mapped to the same positions in the reference genome (PCR

duplications). Consensus single-nucleotide variations (SNPs) and

small insertions and deletions (Indels) were called for each

chromosome using SAMtools and GATK [73,74]. Default settings

were used, except the maximum read depth in SAMtools was set

to 1506 (2D 150). The generated SNPs and Indels were then

filtered to minimize the false positive mutation calls. First, SNPs
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and Indels lying in low complexity sequences (such as telomeric,

subtelomeric, transposon, repeat regions, etc.) were filtered out.

Second, mutations with a total read depth below 206 were

discarded. Third, SNPs and Indels with a quality score below 30

were removed. Fourth, mutation calls were only kept when at least

80% of the reads were positive for the SNP sites. Only the SNPs/

Indels that were verified by both GATK and SAMtools were kept

as confident sites. The lists of SNPs/Indels were then annotated by

in-house Perl scripts with the yeastgenome database [75]. CNV-

seq [76] was used to identify consecutive regions along the

chromosome that show abnormal log2-ratios, which indicated the

potential copy number variation (CNV). Only regions larger that

1 Kb were considered as CNV regions.

Genetic Complementation Analysis
Mutations identified by whole genome sequencing that lead to

nonsynonymous or frame-shifted protein products in HXK2 and

STD1 were first confirmed with dye-terminator Sanger sequenc-

ing. To test whether the mutations caused the observed

phenotypes, we first integrated a dominant (KANMX) marker

downstream of the ancestral and evolved alleles. This marker,

including the upstream coding region containing the mutated or

WT allele, was used as a template for PCR, which was then

transformed via homologous recombination into the correspond-

ing loci in the evolved or ancestral clones. The mutations were

subsequently confirmed using Sanger sequencing, and the

phenotypes of the genetically transformed strains was compared

to that of strains bearing the same KANMX marker at the same

locus, but lacking the mutation.

Supporting Information

Dataset S1 Overview of the growth rate and lag

measurements for 16 feral yeast strains. The three

subtables (A–C) in this MS Excel document summarize the data

we used to determine lag phase characteristics in the SGRP yeast

strains. (A) This table includes population-level growth rate

measurements of the wild strains, including MaxR, GMR,

MaxR-Normalized GMR, the minimum growth rate detected in

each experiment, and the point in the growth curve at which the

locally minimal growth rate was observed. Samples where the

minimal growth rate is approximately equal to 0.75 indicates that

there was no lag phase, as this was the maximal OD600 value over

which growth rates were analyzed (see Experimental Procedures).

Variates of across-environmental variability used as covariates for

Cox proportional hazards analysis in R. (B) This table includes all

censored single-cell measurements made for the 16 yeast strains

reported in the text, used to generate, for example, Figure 1G and

1H. The single-cell lag phases of some strains were measured

following identical procedures using galactose or ethanol in place

of maltose. (C) Each strain’s censored single-cell lag data going

from glucose-to-maltose were paired with covariate data and used

as input for R’s Cox proportional hazards analysis. The table

summarizes the output of this analysis for each of the covariates

examined. Each covariate was compared alone to single-cell lag

time observations (1 degree of freedom), and then we used a

couple covariates in combination with the other covariates to see

how much more variance could be explained by the combination

of factors. The fold likelihood of lag phase escape of samples’

maximal or minimal covariate values is calculated based upon the

equation exp(beta6min)/exp(beta6max). Hazard coefficients of

negative value are factors that tend to correlate with average

single-cell lag length (final column, outside the black line). In

general, measures of growth rate (GMRs) variability explain most

of the variance in single-cell lag time distributions.

(XLSX)

Dataset S2 Overview of the growth rate and fluores-
cence measurements for the evolved strains. This dataset
relates to data presented in Figures 3, 4, and 6. (A) This table

includes population-level growth rate measurements of evolved

isolates, including MaxR, GMR, MaxR-Normalized GMR, the

minimum growth rate detected in each experiment, and the point

in the growth curve at which the locally minimal growth rate was

observed. Samples where the minimal growth rate is approxi-

mately equal to 0.75 indicates that there was no lag phase, as this

was the maximal OD600 value over which growth rates were

analyzed (see Experimental Procedures). (B) All censored single-

cell lag data of cells going from glucose to maltose for the

populations isolated from the evolution experiment; see Dataset

S1B. (C) This table includes the summary of a log-rank survival

analysis in R using the ‘‘survdiff’’ function (see Scripts.R and

Experimental Procedures for more details). The single-cell lag

phases of isolates from the experimental evolution experiment

were compared to that of the ancestral strain. For the Isolates 1–6,

samples were grown for 22 h in glucose before transfer to maltose.

Because this long period of growth results in longer and more

heterogeneous lag phases, comparison with the ancestral strain

was more difficult for the other MAL gene fluorescently labeled

cultures. Thus for the rest of the MAL gene fluorescently labeled

populations, we compared survival for samples after only 6 h

of growth in glucose. All comparisons were made against the

ancestor growing in identical conditions. Most strains have

survival that is higher than expected compared to the ancestor,

except a few that have even longer lag phases. (D) MAL gene

fluorescence measurement summaries computed using R’s Flow-

core package.

(XLSX)

Dataset S3 Overview of mutations in experimental
evolution populations. This dataset relates to the data

presented in Figure 5. Samples were dye-terminator Sanger

sequenced. Indicated is the isolate, which gene was mutated, and

whether this resulted in nonsynonymous or frameshifts that

affected the coding sequence. We observed HXK2 mutations

frequently in short-lagged strains (Dataset S2) and STD1

mutations only once.

(XLSX)

Dataset S4 Overview of primers and strains used. This
dataset relates to every figure in the article. All strains indicated

here, and a description of their genotype is provided. Primers’

usage is in Text S1.

(XLSX)

Dataset S5 Overview of experimental details for every
figure. This dataset relates to every figure in the article. Here we

include very precise experimental protocols to help people in the

future to reproduce the results we have reported in this article. Lag

phases and heterogeneous single-cell clonal behavior are techni-

cally challenging to measure reproducibly. Every figure has an in-

depth explanation of how the data were acquired. Where

experiments were exactly the same, we refer to the first figure

where this information was provided.

(XLSX)

Dataset S6 Cell density versus Bioscreen OD600 values.
Correlation of cell density with Bioscreen C plate reader’s optical

density measurements. Late log-phase AN296 cells were diluted to

varying degrees to determine the linear range of the spectropho-
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tometer. Reported in this table are values that fall within that

linear range; higher cell densities are less sensitive to cell

concentration, and lower densities cannot be reliably measured.

(XLSX)

Dataset S7 Example of how growth rates were analyzed.
Here we provide an overview of how raw plate reader values from

the Bioscreen C plate reader were analyzed (for S288c strain

AN63). We illustrate in MS Excel how OD versus specific growth

rate could be plotted using raw time versus OD readings and how

noisy these measurements are across the early parts of the growth

curve at low OD values (when growth rates are maximal). Further

to the right, we show how the raw values and calculations relate to

the output generated by our custom analysis scripts when R’s

smooth.spline (with spar = 0.35) function is first used on the data

for smoothing, and finally how the script output can be used to

plot multiple samples9 growth rates.

(XLSX)

Dataset S8 Parameters used in the model reported in
Figure 7.

(XLSX)

Figure S1 (A) The lag phase when cells transition from the

preferred carbon source glucose to another carbon source (diauxic

shift) is highly variable between strains and is characterized by

three phases: first, deceleration from a MaxR as glucose is

depleted; second, a local minimum; and finally reacceleration to

adapted growth on the alternative carbon source. The figure

shows the growth profiles of four selected yeast strains that

illustrate how the lag characteristics vary depending on the strain

and on the alternative carbon source provided. The orange line

plots the instantaneous growth rates of strains in LG conditions to

illustrate the three characteristic phases of the lag phase. The

purple and blue lines represent the log2 of the fold growth rate

increase of the culture with LG + maltose or LG + galactose

relative to LG alone. The finely dotted line corresponds to a

relative log2 growth rate equal to zero, where the culture’s growth

rate in LG maltose or galactose equals that of the culture growing

in LG alone. These results illustrate how variable the response to

diauxic shift can be across conditions and strains. Furthermore, it

is very difficult to determine where the lag phase begins and ends.

We therefore use the GMR to estimate the total fitness of the

strain across the growth curve, as well as single-cell measurements

of the lag phase (see main text and Figure 1). (B) Different yeast

strains show different variability in fitness (GMR) across different

growth media. For each strain, we plot the ratio of its fitness

(GMR) in stable glucose (HG) over its fitness in variable conditions

(LG, LG +maltose, LG + galactose) so that higher values represent

a larger drop in fitness in the mixed media compare to stable

glucose. The strains are sorted according to the variability in

GMR values. Cultures growing in abundant glucose conditions

have GMRs that are closer to their MaxR because the culture

grows in glucose for a longer period of time. In LG media, where

cultures must switch to alternative carbon sources, the GMR is

considerably lower than the MaxR. Cultures are generally able to

maintain more steady rates of growth in the transition to maltose,

followed by galactose. For all cultures, the LG condition leads to

the most variable growth rates. However, some strains are able to

maintain relatively similar fitness (GMR) in stable (HG) and

variable (LG, LG + maltose, LG + galactose) media, whereas

others show very variable fitness values. To summarize how a

strain’s fitness is affected by the carbon source, we defined a single

metric that represents the ‘‘fitness variability,’’ calculated as the

relative GMR in HG conditions divided by the geometric mean of

relative GMRs in the LG, LG + maltose, and LG + galactose

conditions. (C–F) Global properties of the single-cell lag phase

caused by sudden transfer from glucose to maltose of S. cerevisiae.
Included here are many S288c and derivative clones, as well as the

other strains reported in Figure 1. The data represent some 25,000

single-cell measurements across more than 100 experiments. (C) In

general, populations with average lag phases longer than 10 h

tended also to have a lower fraction of the population being able to

resume growth after the lag phase, suggesting that some strains

have difficulties surviving sudden nutrient transitions. (D) The

minimum lag phase was positively correlated with the average lag

phase, however many experiments led to cells with long average

lag phases despite rather short minimal lag phases. (E) The

standard deviation of single-cell lag phases is positively correlated

with the average lag phase, implying that cells with longer lag

phases have more heterogeneous growth patterns. (F) The median

‘‘noise’’ of single-cell lag times, measured by the standard

deviation divided by the average lag phase, is about 0.3, with a

slight right-handed tail corresponding to samples with especially

heterogeneous lag phase durations.

(TIF)

Figure S2 Escape from the lag phase depends on
activation of genes required for the metabolism of
alternative carbon sources. (A) The lag phase becomes

longer with increasing periods of pregrowth in glucose. Reference

strain S288c (containing MALS-YeCitrine gene fusions to monitor

MALS gene activity) was first pregrown in maltose medium, and

then transferred to glucose medium. Samples of the culture

growing in glucose were taken at regular time intervals to measure

the MalS concentrations (YeCitrine fluorescence intensities) and to

determine the average lag phase of cells that were transferred

back into maltose. The results show that cells that had been

pregrown for longer times in glucose showed lower maltase

concentrations and had longer average lag phases when they

were transferred back to maltose. For the 0 h time point, we report

the mean doubling-time of mother cells for samples coming

directly from maltose (with no growth period in glucose at all).

Error bars represent the standard deviation of ,150 single cells

measured. (B) Combined overexpression of genes encoding

maltose permease (MALT) and maltase (MALS) is sufficient to

overcome severe glucose-to-maltose lag phase of the reference

strain S288c. Single-cell lags of a wild-type reference strain or

transformants of this strain engineered with GPD promoters

overexpressing MALT, MALS, or both were measured after 24 h

of logarithmic growth in glucose. (C) Determination of the lag

phase of individual cells in a population using time-lapse

microscopy. The growth of several (typically 100–250) single cells

that are transferred from one nutrient to another was followed

using an automated time-lapse microscope with autofocus function

(see Materials and Methods section for details). The resulting time-

lapse frames were analyzed to determine the timing of the first

budding event (i.e., the end of the lag phase). Shown are just a few

images of a typical time lapse series of a maltose transporter

MALT-YeCitrine–labeled strain. Note the correlation between the

first budding event (i.e., the end of the lag phase) and the

activation of the MAL genes (as measured by the YeCitrine

fluorescent signal). (D) Distribution of the MalS-YeCitrine

fluorescence intensities for the data reported in Figure 2. About

50% of the cells show fluorescence intensities above the

background level of about 1800 A.U., indicative of MAL gene

activation. (E) Different fluorescence cutoff values do not influence

the conclusions reported in Figure 2. The plot relates to a

statistical test of the data shown in Figure 2. It shows the p values
of a Mann–Whitney U test for different cutoff values in

fluorescence levels defining ‘‘maltose commitment,’’ showing that
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the result that ‘‘ON’’ cells grow more slowly for cutoff values above

the background ,1800 A.U. fluorescence units.

(TIF)

Figure S3 Characterization of mutants isolated after

repeated cycling of a strain with a long lag phase

between glucose and maltose medium. (A) Populations

measured after the sixth cycle of growth in glucose and

maltose show different lag behaviors. Depicted here are single-

cell lag profiles from evolving populations that illustrate how

various populations began to show shorter glucose-to-maltose lag

phases compared to the ancestral strain S288c. This measurement

was conducted after the end of the selection after the 12

independently evolving cultures had grown for 22 h in glucose.

Genetically heterogeneous populations were washed into maltose-

containing media as per the selection protocol, and spotted

onto the agar pad for microscopic monitoring of lag phases. We

isolated clones from four populations (numbers 2, 3, 6, and 10) to

obtain Isolates 1, 2, 3, and 4 (shown in Figure 3). All

populations except population 7 had significantly higher survival

compared to the ancestor (logrank Chi-square.3.5, 1 df, p,0.05).

(B) Lag phase duration of genetically heterogeneous evolving

populations descending from the MALT- and MALS-

fluorescently labeled strains at different numbers of glucose–

maltose cycles. Reported are the cumulative distribution histo-

grams of single-cell lags of populations after the indicated rounds

of glucose to maltose selection. The sixth population yielded clones

with shorter lags and also strong flocculation characteristics,

including isolate number 5 in Figure 3A. (C) Isolates from the

MALS-YeCitrine fluorescently labeled populations show variable lag

duration, some very short and others longer than the ancestral

phenotype. Samples were grown for 6 h in glucose before transfer

to maltose.

(TIF)

Figure S4 Overview of growth parameters for evolved

populations. Overview of GMR (A) and MaxR (B) in either

stable 3% glucose (HG), or environments where the cells need to

shift between carbon sources (0.5% glucose alone (LG), or LG

supplemented with either galactose or maltose). Shown are growth

measurements of three random isolates from each of the 12

evolved populations. Note that several isolates show higher GMR

(fitness), but lower MaxR in unstable environments that require a

shift between glucose and a nonpreferred carbon source. (C) High

fitness (GMR) in media requiring a switch from glucose to a

nonpreferred carbon source comes at a fitness tradeoff of

slower maximal growth speed in stable glucose conditions.

Isolates show an inverse correlation between GMR and MaxR

in variable environments (LG, LG +Mal, LG + Gal) and a positive

correlation between GMR and MaxR in stable glucose (HG)

conditions (in green). GMR and MaxR values are expressed

relative to the growth rate of the ancestral strain measured in the

same conditions. Error bars represent the standard deviation of 2–

4 biological replicates. (D) Isolates that show shorter lag

phases also show reduced variation in fitness (GMR) across

changing environments. As in Figure 1H we computed the

normalized (GMR/MaxR) for HG conditions relative to the

geometric mean of normalized GMR in variable environments

(LG, LG + galactose, and LG + maltose). The vertical axis shows

the average single-cell lag phase of cells in maltose after 6 h of

growth in glucose. The black circles are the averages of these

values for the three isolates from each population, with error bars

equal to the maximal and minimal value observed for isolates

within the population. The red triangle represents the ancestral

strain, and the grey circles are the same data as reported in

Figure 1H.

(TIF)

Figure S5 Mutants isolated after repeated cycling

between glucose and maltose of a strain with a long

lag phase show altered MAL gene expression patterns

and hysteresis. (A) MALS gene expression in glucose correlates

with growth measurements described in Figure 4. Specifically,

strains with high MALS background expression in glucose show

higher fitness across variable environments, shorter lag phases

upon transfer to maltose, and lower MaxR’s. Correlations

excluded flocculent strains. (B) To demonstrate variability and

epigenetic inheritance of MAL expression states, a culture of

Isolate 1 bearing a MALS-mCherry allele pregrown in glucose was

grown exponentially in mixed glucose + maltose medium for 24 h,

and then transferred to the same maltose + glucose medium for

time-lapse microscopy. Cell growth was monitored by brightfield

microscopy and MALS expression by MalS-mCherry fluorescence

signal. (C) Similarly to (B), MALS gene expression (through MALS-

mCherry gene fusions) was tracked during growth for the ancestral

strain as well as Isolate 1 coming from a different precondition.

Cells in microcolonies of ancestral cells do not express their MAL

genes in the glucose–maltose medium. A fluorescent particle is

included in this image to show that there was signal detection. On

the other hand, a microcolony of evolved cells (Isolate 1) that did

not show any MAL expression when it was inoculated showed slow

stochastic activation of MAL genes in some cells as the

microcolony grew. (D) The MAL activator is necessary for

high levels of MAL gene expression in maltose–glucose media.

Each pair of blue and red violin plots represents gene expression

data for individual cells determined by microscopy for various

derivatives of Isolate 1, an HXK2 mutant. The leftmost pair are

plots of Isolate 1 bearing a MALS-mCherry construct; the middle

pair is the same strain with the MAL63 activator gene deleted, and

the right-most pair is Isolate 1 without the MALS-mCherry gene.

Prior to determination of fluorescence intensities, all samples were

growing exponentially at low cell densities in either maltose–

glucose media or glucose media of the same osmolarity (containing

sorbitol) and measurements represent ,150 cells per genotype–

condition combination. A significant effect for genotype (F= 47,

df = 2, p=0) and media (F = 159, df = 1, p=0) as well as a

Genotype6Media interaction (F = 46, df = 2, p=0) were detected

by ANOVA analysis. Comparisons using Mann–Whitney U tests

suggest that leaky expression of the MALS gene in glucose-alone

media is not dependent upon the MAL63 activator (p,16228,

Bonferroni-corrected p value) but that the activator is required for

the high levels of MALS expression in maltose–glucose media

(p=0).

(TIF)

Figure S6 Dynamics of MAL gene regulation of four

HXK2 mutants compared to the ancestral strain. The

regulation of MAL gene expression is highly variable across

evolved HXK2 alleles. Shown are flow cytometry histograms of

four MALS-mCherry/MALT-YeCitrine labeled isolates and the

ancestral clone growing in the presence of abundant concentra-

tions of maltose and glucose, coming from two initial conditions:

MAL induced (ON; pre-growth in maltose-containing media) and

MAL uninduced (OFF), where cells were pregrown in glucose-

containing media. Samples were grown at low cell densities for

approximately seven generations. Note the wide variability in

response of the MAL genes of these different HXK2 mutants to the

maltose + glucose media compared to the ancestral clone. In

particular, Isolate 8.1 represents an extreme case of HXK2

Costs and Benefits of Catabolite Repression

PLOS Biology | www.plosbiology.org 19 January 2014 | Volume 12 | Issue 1 | e1001764



inactivation, where due to an AUG . GUG mutation at the start

codon of HXK2 this mutant likely has very little Hxk2p expression.

This isolate maintains high levels of expression when it is coming

from maltose, and likewise induces the MAL genes quickly when

maltose is added to glucose medium. At the other extreme, Isolate

11.1 has a slow rate of OFF to ON switching and represses the

MAL genes almost as tightly as the ancestral clone. These data are

quantified in Figure S7.

(TIF)

Figure S7 Mal protein is produced at different rates in

HXK2 mutants. The data reported in Figure S6 were analyzed

at the population level using growth and gene expression data to

determine differences in gene regulation between different evolved

isolates. (A) Different evolved isolates show different average MalS

expression patterns in glucose + maltose mixtures (each data point

represents one biological replicate). (B) Some populations show

(partial) loss of glucose repression and actively produce new MalS

proteins in glucose + maltose medium. The grey dotted line shows

the expected MalS signal for a culture that originally has its MAL

genes ON and then turned them off during growth. As expected,

the ancestral strain follows the predicted pattern, indicating

silencing of MalS expression in the presence of glucose. However,

Isolate pop8.1 produces MalS protein at a much higher rate than

would be expected according to this null model. (C) The HXK2

mutant isolates (n=2 per strain and condition) produce higher

levels of MalS protein when the culture originally had its MAL

genes on (blue diamonds) compared to cultures that began growth

in maltose–glucose media with their MAL genes OFF (red circles).

Values are the MalS protein produced per generation over the

final two time points (depicted in A). Two-way ANOVA analysis of

protein production rate as a function of genotype or original media

indicates a significant effect for genotype (F = 162.18, df = 4, p,

0.001), original media (glucose or maltose; F = 108.31, df = 1, p,

0.001), and a Genotype6Original Media interaction (F = 27.74,

df = 4, p,0.001).

(TIF)

Figure S8 Mal protein is produced at different rates in

HXK2 mutants. (A) Population-level MAL gene expression is

correlated with population-level growth rate hysteresis in mixed

media. Each dot corresponds to one isolate pregrown exponen-

tially either in maltose (diamonds) or glucose (circles), then

transferred as exponentially growing cultures to a mixture of

maltose and glucose. Growth rates were measured in a plate

reader within 8 h of inoculation. Plotted along the horizontal axis is

the average MalS-mCherry fluorescence signal (Dataset S2). Error

bars represent the standard deviation of at least two biological

replicates. (B) The MAL activator causes slow growth rates in

maltose–glucose media. Shown are the mean growth rates of n=3

measurements of Isolate 1 with and without the MAL

activator MAL63, growing in maltose–glucose or glucose media

alone. ANOVA analysis shows a significant effect for genotype

(F = 12.47, df = 2, p,0.01), growth media condition (F = 23.43,

df = 1, p,0.01), and Genotype6Media interaction (F = 15.48,

df = 2, p,0.01). The t tests between strains and conditions

indicate that the strain with the MAL-activator grows significantly

more slowly in maltose–glucose media than in glucose media

alone (two-tailed t test, p,0.04 with Bonferroni correction). (C)

Induction of MAL genes in glucose medium comes at a fitness

cost in single cells. Each dot represents the correlation between

specific growth rate of microcolonies and their final MalS-

mCherry expression state. These data were analyzed from the

experiment depicted in Figure S5B and C and as described in

Materials and Methods and Dataset S5. The final expression state

of the microcolony is anitcorrelated with its growth rate,

demonstrating that induction of MAL genes in medium containing

glucose comes at a fitness cost. (D and E) Activation of the MAL

genes in glucose + maltose medium increases fitness upon

transfer to maltose medium. An evolved clone bearing the

MALS-mCherry reporter construct (Isolate 1, an HXK2 mutant)

was transferred from maltose + glucose mixture to maltose-only

media. Initial fluorescence intensity of the cells was recorded with

a single image, followed by single-cell lag times via brightfield

time-lapse microscopy. In (F), each circle represents a single cell’s

lag phase and initial fluorescence intensity. In (G) we show

cumulative distribution histograms between ON and OFF samples

to illustrate the fitness gained by induction of the MAL genes

(samples greater than or less than 1,000 A.U. fluorescence units,

respectively).

(TIF)

Movie S1 S288c (strain AN148) tagged with MAL11-

YeCitrine was grown in glucose for 6 h and then
transferred to maltose media. Microscopic images were

acquired every 30 min in brightfield (DIC) and YFP fluorescence

channel settings. Note the heterogeneity in lag phase duration

between isogenic cells and how the end of each cell’s lag phase

correlates with induction of the YeCitrine reporter.

(MP4)

Movie S2 Strain UWOPS83-787.3 (strain in Figure 1
with low fitness variability) was grown as above and
growth monitored by brightfield time-lapse microscopy.
Note the shorter average lag phases and reduced heterogeneity in

lag phase duration between isogenic cells compared to S288c.

(MP4)

Movie S3 Strain AN296 (ancestral strain for the consti-
tutively labeled YeCitrine strain) was grown for 22 h in
glucose media and then transferred to maltose. Time-

lapse DIC imaging shows that the majority of cells do not survive

this treatment.

(MP4)

Movie S4 Evolved Isolate 1 was grown for 22 h in
glucose media and transferred to maltose media for
time-lapse microscopy (same as Movie S3). Note that

relative to the ancestor, this strain has significantly increased

survival, shortened lag phase length and decreased intercellular

heterogeneity.

(MP4)

Movie S5 Same as above for Isolate 3. Note that this

strains’ lag phase lengths are more heterogeneous but notably

shorter with higher survival than the ancestor.

(MP4)

Movie S6 Isolate 1 transformed with a MALS-mCherry

construct is shown. This movie shows the time-lapse

microscopic data from the same cells depicted in Figure S5B

and S5C. The sample’s MAL genes were multimodally induced by

pregrowth in maltose + glucose media (initial state uninduced) for

24 h before transferring to the maltose + glucose media for time-

lapse microscopy. Note that induced and uninduced states

propagate within microcolonies for many generations.

(MP4)

Movie S7 This is the same strain as in Movie S6,
depicted in Figure S5B and S5C. This time the strain was

pregrown in glucose-only media and therefore transferred to the

maltose + glucose mixture with MAL genes uninduced. Note that

as cells grow, their MAL genes slowly and stochastically switch on.
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These events propagate within lineages of individual microcolo-

nies, often resulting in sectoring within microcolonies.

(MP4)

Movie S8 The ancestral strain transformed with a
MALS-mCherry construct was pregrown in maltose +

glucose media as in Figure S5c and Movie S6. Note that its

MAL genes do not activate during the course of the experiment.

(MP4)

Text S1 Supplementary Methods.
(DOCX)
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