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Abstract: Background: The most effective strategy for managing cancer pain remotely should be
better defined. There is a need to identify those patients who require increased attention and
calibrated follow-up programs. Methods: Machine learning (ML) models were developed using
the data prospectively obtained from a single-center program of telemedicine-based cancer pain
management. These models included random forest (RF), gradient boosting machine (GBM), artificial
neural network (ANN), and the LASSO–RIDGE algorithm. Thirteen demographic, social, clinical,
and therapeutic variables were adopted to define the conditions that can affect the number of
teleconsultations. After ML validation, the risk analysis for more than one remote consultation was
assessed in target individuals. Results: The data from 158 patients were collected. In the training set,
the accuracy was about 95% and 98% for ANN and RF, respectively. Nevertheless, the best accuracy
on the test set was obtained with RF (70%). The ML-based simulations showed that young age (<55
years), lung cancer, and occurrence of breakthrough cancer pain help to predict the number of remote
consultations. Elderly patients (>75 years) with bone metastases may require more telemedicine-
based clinical evaluations. Conclusion: ML-based analyses may enable clinicians to identify the best
model for predicting the need for more remote consultations. It could be useful for calibrating care
interventions and resource allocation.

Keywords: telemedicine; telehealth; teleconsultations; predictive models; machine learning; cancer
pain; random forest; gradient boosting machine; artificial neural network; LASSO–RIDGE algorithm

1. Introduction

Managing cancer-related pain typically requires a complex and multimodal approach [1].
One of the main challenges concerns the development of a useful pathway for addressing
the multiple problems that can occur during the disease course [2–4].

Given that a model of care based on face-to-face visits requires an important com-
mitment of resources, innovative strategies must be evaluated. Telemedicine may offer
a variety of applications to re-evaluate pathways of care, including cancer pain manage-
ment [5]. In this context, telemedicine-based strategies can have a paramount economic and
organizational impact on healthcare systems [6], enhancing the quality of the care provided.
A recent evidence-based analysis demonstrated that eHealth interventions are effective
in improving pain management [7]. Although during the COVID-19 pandemic, different
telemedicine approaches have been proposed [8], there is a need for establishing pathways
that are valid beyond the emergency and routinely applied to clinical practice [9,10].

On the other hand, lacking the literature data from large-scale clinical experiences and
precise directives from scientific societies, it is difficult to establish a model that provides
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for the integration of telemedicine in the treatment process. Consequently, a proper strategy
for the management of cancer pain through telemedicine should be fully designed.

The use of predictive models represents an important opportunity in medicine. The
benefits of artificial intelligence (AI) and its branches such as machine learning (ML) are
intended to enhance patient care, but also involve organizational processes and healthcare
systems [11]. In the planning of care pathways, AI represents a valuable helpful resource to
improve hospital workflows, identifying the activities that require priority and providing
an adequate service to the patient’s needs. Recently, for example, it was demonstrated that
AI strategies such as natural language processing models can be a reliable guide to trigger
early access for uncontrolled pain and other symptoms in palliative care [12].

In a recent cross-sectional investigation, we proposed a model of care and evaluated
adherence to the telemedicine pathway [13]. This “hybrid” model provides for scheduled
remote visits, but the patient can require other consultations. Additionally, in-person access
is provided for emergencies or for diagnostic or clinical aims. For each patient, the number
of telemedicine visits can vary depending on an unspecified number of reasons, and we
have noticed that some patients required a greater number of remote consultations. On
these premises, the purpose of this study is the development of data-driven predictive
models for identifying those patients who may require more remote consultations. In the
context of precision medicine for cancer pain management, we implemented ML algorithms
to better customize treatment strategies. As pieces of evidence are needed to establish the
most appropriate telemedicine pathways, the recognition of those patients who require a
greater number of remote visits can stimulate the planning of ad hoc processes for managing
multiple care needs and calibrating resource allocation.

2. Materials and Methods
2.1. Study Population

The study population included adult patients treated for cancer pain at the Istituto
Nazionale Tumori, Fondazione Pascale, Italy.

A hybrid model of care was implemented. After the first in-person visit for a complete
clinical and instrumental evaluation and for addressing legal and regulatory issues (consent
acquisition), data collection, and training, a synchronous real-time video consultation was
scheduled according to the clinical need. Further remote controls were programmed or
required by the patients. Moreover, face-to-face visits were allowed to carry out minimally
invasive procedures, for diagnosis, acute clinical motivations (e.g., drug side effects), or if
requested by the patient [13].

The local Medical Ethics Committee approved this study (protocol code 41/20 Oss;
date of approval, 26 November 2020), and all patients provided written informed consent.
The investigation was conducted in accordance with the Declaration of Helsinki.

2.2. Data Collection

For each patient, 13 demographic, clinical, and therapeutic variables were collected
to investigate the potential causes that may affect the number of remote consultations
(Table 1). All the data were reported on a prospectively filled database and then registered
on Zenodo [14]. The duration of the study was considered the time interval between the
first and last remote consultations. The death of the patient and the occurrence of in-person
visits or hospitalization were assumed as the conditions for the end of the observation
period for data acquisition. The lack of further remote consultations for a two-month period
was another condition for considering the observation closed.

The univariate analysis was performed to detect the main associations of selected
features with the outcome variable (remote consultations: one or more).
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Table 1. Data collection and variables.

Data Collected Variable(s)

Demographic and Social Information

Age
Gender

Working status (Y/N)
Living with a partner * (Y/N)

Education level

Clinical Data
Type of primary tumor

Bone metastases
ECOG-PS

Pain Therapy

MED
Drugs for NP

ROOs
PAMORAs

IV-Morphine

Remote Visits Number
Abbreviations: ECOG-PS, Eastern Cooperative Oncology Group Performance Status; MED, morphine-equivalent
dose; NP, neuropathic pain; ROOs, rapid-onset opioids; PAMORAs, peripherally acting µ-opioid receptor
antagonists; IV-Morphine, intravenous morphine. Legend: * including cohabitation and marriage.

2.3. Predictive Analysis
2.3.1. Preprocessing and Exploratory Data Analysis

After the loading, normalization, and standardization of the dataset (preparation
process or preprocessing), as well as an exploratory data analysis aimed at discovering trends,
the variables were selected. The expectation–maximization (EM) algorithm was used for the
imputation of the missing data [15]. To facilitate model implementations and the interpretation
of results, three age groups were obtained by categorizing the variable “age”: ≤55 years old
(called “younger patients”), 56–75 years old, and >75 years old (“older patients”).

2.3.2. Machine Learning Algorithms

Four ML-based algorithms were adopted as follows:

• LASSO–RIDGE regression (elastic model): This is a generalized linear regression
model that penalizes a loss function through regressor resizing (16 in all). Most of them
are made small or led to zero if not important to explain the dependent variable. This
approach reduces model complexity and prevents the over-fitting phenomena [16];

• Random forest (RF) algorithm: This algorithm can be used for both regression and
classification. It is one of the most popular ML methods, belonging to the specific
category of bagging methods. RF works on various overall models (decision trees)
to improve the performance of each of them individually. The output is the whole
contribution from all of them [17];

• Gradient boosting machine (GBM) is aimed at optimizing previsions by operating
on the previous tree regression or classification error and reducing the error function
(boosting method). In this way, the succeeding one can improve the prevision skills let
by its preceding tree [18];

• Single hidden layer artificial neural network (ANN): This strategy can minimize a loss
function by acting on some weights which tune connections between two neurons of
two adjoining layers [19].

We chose these four ML-based prediction models for implementing different methods
for regression or classification, such as bagging and boosting (RF and GMB, for additive re-
gression models), and a strong learning method to compare different numerical approaches
(LASSO–RIDGE, a binary regression model); ANN is one of the function algorithms that
are largely used for classification (and regression) problems.
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2.3.3. Model Processing and Evaluation

Since a predictive analysis was performed in order to predict which cancer patient
should need to have more than one remote consultation, the outcome variable was “the
number of remote consultations” as dichotomized. Each classifier was optimized by
repeated cross-validation (RCV) methods to focus on the best guess through the K-fold
mean error calculus and to determine the hyperparameters that support the best guess
and identify its structure. The sample was split into a training set (80% of the total size) to
identify the hyperparameters and a test set for testing the models (20% of the total size).

A wide choice of hyperparameters was given to every algorithm to finally evaluate
the best performance. In particular, each combination of hyperparameters was inserted
as input for the algorithm. An 8-fold 5-repeated cross-validation method was adopted to
find the best one, so the dataset was divided into 8 parts (20 individuals for any time),
and the training and test parts were performed for each combination and for 5 times; the
misclassification error rate was calculated upon 5 attempts (for a more precise managing of
results). For each algorithm, the following features were applied:

• GBM: The number of sequential trees from 20 to 100 by 10, tree depth from 2 to
5 shrinkage parameter (regularizing the error function) from 0.01 to 0.1 by 0.01, and a
minimum observation-in-a-leaf from 10 to 20 for a total of 3960 were assessed;

• RF: Only the number of splitting variables was required, which was from 3 to 13;
• LASSO–RIDGE: Regression alpha and beta were, respectively, given as from 0 to 1 by

0.05 and 0 to 10 by 0.1, for a total of 2121 trials;
• ANN: This layer was made from 1 to 12 neurons and the decay (a regularization

parameter to avoid the over-fitting of weights) ranged from 0.01 to 0.2 by 0.01, for a
total of 240 trials.

Comparations were assessed through these models by calculating the accuracy and
area under the receiver operating characteristic (ROC) curve (AUC). The AUC represents the
sensibility (i.e., TP/(TP+FN)) and 1-specificity (1-FP/(TN+FP)) ratio. The AUC can easily
be approximated with the measure of accuracy in the case of equidistribution between
the modalities of the employee, but it is also suitable for solving problems of poorly
distributed modalities. Each member is comparable to the observed value conditional
correct classification rates, respectively. In other words, the AUC is equivalent to the
probability that a random positive response is classified with respect to a random negative
one. Another adopted goodness-of-prevision statistic parameter was the F1 score:

F1 = 2 * (precision * recall)/(precision + recall) (1)

This measure considers the precision and recall of the test; precision is the number of
true positives divided by the number of all the positive results, while recall is the number
of true positives divided by the number of all the tests that should have been positive
(i.e., true positives plus false negatives). The values of F1 scores range from 0 to 1.

Finally, Mathew’s correlation coefficients (MCC) were calculated (from the confusion
matrix) for each model, for obtaining a broad view of their predictive power and robustness
(TP, true positive; TN, true negative; FP, false positive; FN, false negative):

MCC =
TP ∗ TN− FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

2.3.4. Risk Analysis

Based on the ML processes, the risk analysis for an increased number (>1) of remote
consultations was assessed. We used an odds-ratio-like analysis that we indicated as the
simulated odds ratios (SORs). Simulations were assessed in order to evaluate the risk of
more consultations in target individuals. In particular, approximately 500 simulations were
performed 150 times for creating a classification rate for the cases (target individuals) and
control individuals. Subsequently, we calculated the odds ratio as the ratio of the effective
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odds for each individual typology and 95% credibility intervals (95% CIs) as the effective
2.5 and 97.5 percentiles for the SOR samples. Although wide possibilities were possible,
the following four standard clinical conditions (targets) were established:

• Condition 1: Young patients (≤55 years old) with bone metastases and rapid-acting
oral and nasal transmucosal fentanyl formulation (ROO) use (morphine-equivalent
dose, MED > 60 mg) for breakthrough cancer pain (BTcP);

• Condition 2: Older cancer patients (>75 years old), with and without bone metastases;
• Condition 3:Male and female young patients (≤55 years old) with bone metastases;
• Condition 4: Younger (≤55 years old) vs. older (>75 years old) patients with bone

metastases with gender differences.

2.4. Algorithmic Toolkit

The data were analyzed using the R software version 4.1.3 (R Core Teams, R Founda-
tion for Statistical Computing, Vienna, Austria). The toolkit included the mice package [20]
for the imputation of the missing data. Caret was the main suite used for the implemen-
tation (creation, training) and evaluation (testing) of the classifiers [21]. Moreover, purr,
pROC, and pRROC [22] were adopted for the construction and visualization of the ROC
curves. The graphics packages included ggplot, ggpubr, and cowplot.

3. Results

A total of 267 patients were evaluated for cancer pain management through remote
consultations between March 2021 and February 2022. Of these patients, 109 were excluded
for not being available or having incomplete data; finally, the data from 158 patients were
used for the descriptive and predictive analyses (Figure 1).
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Figure 1. Flowchart of the study. Abbreviations: ML, machine learning; ECOG-PS, Eastern Coopera-
tive Oncology Group Performance Status; MED, morphine-equivalent dose; PAMORAs, peripherally
acting µ-opioid receptor antagonists; ROOs, rapid-onset opioids; IV-Morphine, intravenous morphine.
Legend: the category “living with a partner” includes cohabitation and marriage.



J. Clin. Med. 2022, 11, 5484 6 of 15

3.1. Descriptive Analysis

The median age was 63 years old. Fifty-one percent were female. Just over half of
the patients (53%) had more than one visit. The average number of visits was 2.27, with a
standard deviation of 2.05 (Table 2).

The reasons for interruption of the telemedicine pathway (dropouts) were the patient’s
death (n = 63, 39.9%), the need for an invasive procedure (n = 15, 9.5%) or an in-person clin-
ical assessment (n = 14, 8.9%). Six patients (3.8%) requested an in-person visit. Unplanned
hospital admissions occurred in seven patients (4.4%). About a third of the patients (n = 53,
33.5%) were not evaluated (in person or remotely) for at least two months. These patients
were contacted (email and telephone), and about half (n = 28) did not provide an answer;
the remainder (n = 25) said they did not need further visits for cancer pain (Figure 2).

The univariate analysis was performed for evaluating the differences between the
cohort of patients who underwent one remote consultation and those who received more
telemedicine evaluations (Table 3).
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Figure 2. Reasons for interruption of the telemedicine pathway (n = 158).

3.2. Predictive Analysis

Table 4 summarizes the results of the implemented ML methods. In our analyses, the
accuracy, that is the proportion of the well-ranked parameters, relative to the training set,
reached almost 100% for the RF and ANN algorithms. Nevertheless, the accuracy of the
ANN on the test set was reduced by almost 50 percentage points. By contrast, RF showed an
acceptable classification level (70% accuracy in the test) (p = 0.05) with an F1 score of 0.71.

The overall performance of a classifier, summarized over all the possible thresholds, is
given by the area under the ROC curve (AUC). An ideal ROC curve will hug the top left
corner: the larger the area under the curve, the better the classifier. Reducing the false-positive
rate (FPR) and, at the same time, increasing the true-negative rate (TNR) is like finding a
trade-off cut point between the error rates. A classifier that performs worse than a random
classification has an AUC statistic of 0.5. Thus, an AUC value closer to 1 indicates a more
adequate classification and a lower level of error: Its value is theoretically almost 1 as it is
built. The AUC performances of the considered classifiers are reported in Figure 3.
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Table 2. Data from the considered variables.

Variable n = 158 *

Age (years)
Mean (SD) 63 (13)

Median (IQR) 65 (55, 72)
Class of Age (years old)

≤55 43 (27%)
56–75 86 (54%)
>75 29 (18%)

Gender
Female 81 (51%)
Male 77 (49%)

Working Status (n = 153)
Not Working 110 (72%)

Working 43 (28%)
Education Level (n = 146)

Secondary School 41 (28%)
High School 68 (47%)

Bachelor’s or Higher Degrees 37 (25%)
Living with a Partner (n = 153)

Yes 107 (70%)
No 46 (30%)

Neoplasm
Lung 22 (14%)

Colorectal 39 (25%)
Breast 21 (13%)
Others 76 (48%)

Bone metastases (n = 156)
No 72 (46%)
Yes 84 (54%)

ECOG-PS
ECOG-PS <3 84 (53%)
ECOG-PS = 3 74 (47%)

MED
≤60 mg 64 (41%)
>60 mg 94 (59%)

Assuming ROOs
No 114 (72%)
Yes 44 (28%)

Assuming PAMORAs
No 125 (79%)
Yes 33 (21%)

Assuming drugs for NP
No 78 (49%)
Yes 80 (51%)

Assuming IV-morphine
No 146 (92%)
Yes 12 (7.6%)

Remote consultations (n = 158)
Mean (SD) 2.27 (2.05)

Median (IQR) 2 (1, 3)
Min–Max for Patient 1–16

Remote consultations (categories)
1 74 (47%)

>1 84 (53%)
Abbreviations: * n (%); ECOG-PS, Eastern Cooperative Oncology Group Performance Status; MED, morphine-
equivalent dose; ROOs, rapid-onset opioids; PAMORAs, peripherally acting µ-opioid receptor antagonists; NP,
neuropathic pain; IV-Morphine, intravenous morphine.
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Table 3. Univariate analysis for data exploration.

Remote Consultations

Variable one, n = 74 * ≥2, n = 84 * p-value ˆ

Age (years) 0.019
n 74 84

Mean (SD) 65 (13) 61 (13)
Median (IQR) 68 (57, 75) 62 (53, 70)

Class of Age (years
old) 0.030

≤55 13 (18%) 30 (36%)
56–75 44 (59%) 42 (50%)
>75 17 (23%) 12 (14%)

Gender 0.537
Female 36 (49%) 45 (54%)
Male 38 (51%) 39 (46%)

Working Status 0.987
No 51 (72%) 59 (72%)
Yes 20 (28%) 23 (28%)

(Missing) 3 2
Education Level 0.374

Secondary School 22 (33%) 19 (24%)
High School 31 (46%) 37 (47%)
Graduation 14 (21%) 23 (29%)
(Missing) 7 5

Cohabiting/Marriage 0.711
Yes 50 (71%) 57 (69%)
No 20 (29%) 26 (31%)

(Missing) 4 1
Cancer Type 0.516

Lung 8 (11%) 14 (17%)
Colorectal 19 (26%) 20 (24%)

Breast 8 (11%) 13 (15%)
Others 39 (53%) 37 (44%)

Bone Metastases 0.458
No 36 (49%) 36 (43%)
Yes 37 (51%) 47 (57%)

(Missing) 1 1
ECOG-PS 0.396

<3 42 (57%) 42 (50%)
=3 32 (43%) 42 (50%)

MED
<60 mg 33 (45%) 31 (37%)
>60 mg 41 (55%) 53 (63%)

Assuming ROOs 0.829
No 54 (73%) 60 (71%)
Yes 20 (27%) 24 (29%)

Assuming PAMORA 0.831
No 58 (78%) 67 (80%)
Yes 16 (22%) 17 (20%)

Assuming anti-NP
Drugs 0.269

No 40 (54%) 38 (45%)
Yes 34 (46%) 46 (55%)

Assuming
IV-Morphine 0.115

No 71 (96%) 75 (89%)
Yes 3 (4.1%) 9 (11%)

Legend: * n (%); ˆ Wilcoxon rank-sum test; Pearson’s chi-squared test; significance at 95%. Abbreviations:
ECOG-PS, Eastern Cooperative Oncology Group Performance Status; MED, morphine-equivalent dose; ROOs,
rapid-onset opioids; PAMORAs, peripherally acting µ-opioid receptor antagonists; NP, neuropathic pain; IV-
Morphine, intravenous morphine.
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Table 4. Performance comparison of the different classifiers for the developed machine learning models.

Classifier AUC ACC (tr) ACC
(tst) L U p Sens

(tst)
Spec
(tst) F1 Score MCC

GBM 0.59 0.58 0.5 0.31 0.69 0.71 0.69 0.29 0.59 −0.03
RF 0.98 1 0.7 0.51 0.85 0.05 0.69 0.71 0.71 0.40

LASSO 0.5 0.53 0.53 0.34 0.72 0.57 1 0 0.7 -
ANN 0.95 1 0.57 0.37 0.75 0.43 0.5 0.64 0.55 0.14

Abbreviations: GBM, gradient boosting machine; RF, random forest; LASSO, LASSO–RIDGE regression; ANN,
artificial neural network; AUC, area under the receiver operating characteristic curve; ACC (tr), accuracy on
training; ACC (tst), accuracy on test set; L and U, 95%CI lower and upper limits of test set accuracy statistic; p,
accuracy on the test set and relative test for significance; Sens (tst), sensibility on the test; Spec (tst), specificity on
the test. MCC, Mathew’s Correlation Coefficient.
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Abbreviations: LASSO, LASSO–RIDGE regression; GBM, gradient boosting machine; ANN, artificial
neural network; RF, random forest.

The confusion matrix for the two best models (RF and ANN) during the training phase
is shown in Table 5.

Table 5. Comparison (confusion matrix) for the two best models.

RF ANN

One ≥2 One ≥2
One 10 5 9 8
≥ 2 4 11 5 8

Legend: one or more consultations were considered. Abbreviations: RF, random forest; ANN, artificial
neural network.

3.3. Risk Analysis

The model with the best performance (i.e., RF) was implemented for assessing the risk
analysis in different scenarios.
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Condition 1: We calculated the risk of having repeated remote consultations for dif-
ferent cancer types. The other features were kept as randomly chosen. For those with
lung neoplasm, there was a probability of 93.4% (92.6%, 94.2%) to receive multiple con-
sultations and a higher risk (+172.2%, 95% CI = +70%, +301.1%) than cancer patients
with no bone metastases; for those patients with colorectal neoplasm, the percentage was
88.8% (88%, 89.7%), and this risk was +92.2% (95%CI = +40.4%, +156.4%). For those af-
fected by other cancers, the percentage was 71.9% (70.6%, 73.3%), and the risk was +55.5%
(95%CI = +19.2%, +106.9%). For breast neoplasm with bone metastases, 90.1%
(89.2%, 91.2%) of the patients were predicted to have multiple consultations, and +90.6%
(95%CI = +32.5%, +158%) was their predicted risk for multiple consultations, compared
with those without bone metastasis (Figure 4).
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Figure 4. Simulation 1 refers to simulated odds ratios (SORs); percentages are labeled. This was
performed for young patients (≤55 years old) with bone metastases and ROO use and young pa-
tients with bone metastases vs. those with no bone metastases. SORs for lung cancer were 2.72
(95%CI = 1.70–4.01); colorectal cancer 1.92 (95%CI = 1.40–2.56); other cancers 1.55 (95%CI = 1.19–2.07);
breast cancer 1.91 (95%CI = 1.32, 2.58).

Condition 2: The same analysis was performed for older cancer patients (>75 years
old), with and without bone metastases. For those patients affected by lung neoplasm, the
risk for multiple remote consultations was 4.4 times (+335.5%, 95%CI = +209%, +529.6%)
more than those with no bone metastasis, 2.9 times (+189.4%, 95%CI = +117.6%, +276.9%) for
colorectal neoplasm, and 4.6 times (+357.9%, 95%CI = +252.6%, +495.5%) for other types of
cancer. The expected probabilities were 88.7% (87.6%, 89.6%) for lung cancer, 82.9% (81.6%,
84%) for colorectal cancer, and 69.4% (68.0%, 70.8%) for other cancers. For those with breast
neoplasm with bone metastasis, the simulated percentage of multiple remote consultations
was 88.7% (87.8%, 89.6%) with a higher risk (+82.3%, 95%CI = +31.6%, +146.8%) of multiple
remote evaluations than those without bone metastases (Figure 5).

Condition 3: The model demonstrated that male cancer patients can have an 11 times
higher risk to receive multiple remote consultations than female cancer patients. The
SORs were 11.3 (95%CI = 4.6, 24.1) for lung neoplasm and 11.1 (95%CI = 5.9, 20.6) for
colorectal neoplasm. No statistical significance was found for other cancers (SOR = 0.97,
95%CI = 0.76, 1.23) (Figure 6).
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Figure 5. Simulation 2 refers to simulated odds ratios (SORs); percentages are labeled. This was per-
formed for older patients (>75 years old) with bone metastases vs. patients without bone metastases.
SORs for lung cancer were 4.35 (95%CI = 3.90–6.30); colorectal cancer 2.89 (95%CI = 2.18–3.77); other
cancers 4.58 (95%CI = 3.53–5.95); breast cancer 1.82 (95%CI = 1.32, 2.47).
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Figure 6. Simulation 3 refers to simulated odds ratios (SORs); percentages are labeled. It was
performed for young individuals (≤55 years old) with bone metastases: male vs. female SORs. Young
male patients had a significantly higher risk to receive multiple remote consultations when affected
by lung cancer (SOR = 11.30, 95%CI = 4.60, 24.10) and colorectal cancer (SOR = 11.1, 95%CI = 5.90,
20.60). No statistical significance was found for other cancers (SOR = 0.97, 95%CI = 0.76, 1.23).

Condition 4: An overall higher risk of having multiple telemedicine visits was
found for young cancer patients than for male cancer patients, with SORs of +88.9%
(95%CI = +16%, +182%) for lung cancer; +70.1% (95%CI = +24.1%, +143.3%) for colorectal
cancer; and +16.5% (95%CI = −0.9%, +51.9%) for other cancers. Compared with older
patients, for young female breast cancer patients, no significant risk was found (+19.5%,
95%CI = −20%, +65.2%) (Figure 7).
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Figure 7. Simulation 4 refers to simulated odds ratios (SORs); percentages are labeled. This was
performed for younger vs. older patients with bone metastases. Young patients had a significantly
higher risk to receive multiple remote consultations for lung cancer. SORs were 1.89, 95%CI = 1.16, 2.82
for lung cancer and 1.70, 95%CI = 1.24, 2.43 for colorectal cancer. No statistical significance was found
for other cancers (SOR = 1.16, 95%CI = 0.91, 1.52) and breast cancer (SOR = 1.19, 95%CI = 0.80, 1.65).

4. Discussion

In the setting of patients suffering from cancer pain, the applications of telemedicine
strategies can enhance the effectiveness of clinical management [13] and lead to the opti-
mization of resources [23]. Nevertheless, despite the growing use of telehealth methods,
scientific evidence is still scarce to design care pathways.

Previously, we evaluated patient satisfaction with telemedicine and found high sat-
isfaction rates with the care provided and the platform used. The dropout from the
telemedicine pathway was investigated, and we found that approximately 10% of patients
leave the telemedicine process due to unplanned clinic or hospital readmission or the need
for non-pharmacological treatments [13]. Therefore, in this clinical setting, the development
of telemedicine-based programs must consider multiple factors. The proposed model of
care provides for a variable number of telemedicine visits by combining scheduled con-
sultations and patient requests. In-person visits can be required to carry out minimally
invasive procedures, diagnoses, or for other purposes. Furthermore, access to the hospital
is provided for acute clinical conditions. Nevertheless, by following this approach, clinical
practice has suggested that the careful planning of controls and the design of a safety
pathway is a fundamental preliminary phase for validating our telemedicine-based model
of care. The aim is to design a model of care that is generalizable while guaranteeing a
patient-centered treatment.

In the clinical practice through telemedicine, we observed that many cancer patients
had just one consultation. However, some individuals required a large number of closely
remote visits. Consequently, we decided to evaluate the typology of cancer patients who
may require more than one remote consultation. We searched for a more suitable strategy
useful for achieving internal and external validation and translating the chosen model into
the clinic [24]. For this aim, we adopted different ML models and decided to categorize
the number of remote consultations as “one” or “more than one” remote consultation.
Furthermore, the prediction of the number of remote consultations for new patients can
involve several practical implications, including the design of personalized paths and
optimal resource allocation. An increased number of remote consultations for cancer
pain management may also reflect on ad hoc public or private healthcare/insurance health
programs. For example, in Italy, the Ministry of Health released guidelines for the provision
of telemedicine services, stimulating the design of paths for different care needs [25].
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In ML analyses, preprocessing and exploratory data analysis (EDA) are the key el-
ements of the process and take a large part of the time used for the whole analysis. The
variable analysis is a crucial point for the modeling: It is part of the data quality and has a
significant influence on the model’s predictive power, robustness, and confidence. During
these phases, it emerged that the variable “age” offered useful information for the model
construction and understanding. This variable was categorized into three age groups
(younger, mean age, and older patients). Consequently, in the univariate analysis, it was
found that younger patients underwent more visits (p = 0.03). These data were used in the
predictive analysis (simulations) for assessing, in target individuals, the risk of having mul-
tiple remote consultations. For example, the application of the chosen model (RF) showed
that younger patients (≤55 years old) with bone metastases and ROO administration for
BTcP treatment have an increased risk for more consultations, especially if affected by lung
cancer. These data confirm what we previously highlighted in an analysis focused on the
BTcP phenomenon. In a hierarchical classification, the worst phenotype of cancer pain
patients was characterized by the presence of BTcP, younger age, and lung cancer [26].

In patients of advanced age (>75 years), the variable “bone metastasis” affected the
prediction of the number of visits. Although this finding was confirmed above all for lung
cancer, it concerns all cancer types. The combination of age and bone metastases identifies
a particular class of fragile patients. These patients should be given greater attention by
planning closer evaluations, also through telehealth strategies.

Male and female young patients (≤55 years old) with bone metastases were evaluated
for their risk of needing multiple remote visits. The RF model showed that male patients
had an 11 times higher risk to need multiple remote consultations for pain management
than female patients, especially for lung and colorectal cancers. These data must be
interpreted very carefully and not only based on the possible gender/age differences in
pain perception [27]. This is probably due to the low sample size. The ongoing creation
of a larger dataset will allow us to carry out multivariate analyses and define whether
other variables such as the differences in the type and stage of the tumor, the impact
of the disease on functionality, psychosocial aspects, any comorbidities, as well as the
associated anticancer therapies, may influence the data. Based on the results of this
predictive analysis, we will develop more accurate pathways for addressing the multiple
management problems of cancer pain. The proposed model of care, in fact, also provides for
a multidisciplinary approach with the simultaneous involvement of different professionals,
such as psychologists, physical therapists, surgeons, general practitioners, etc.

This study has several limitations. The small size of the dataset is the most important
limitation. With a higher sample size, some variables could be more representative within
the predictive processes. Nevertheless, since not many predictors were present in the
models, analyses could be performed despite the limited number of patients.

Numerical variables contain more information than their categorial transformations.
For example, the ROO variable could be used as discrete. For these reasons, we chose to
categorize the cancer patients’ age into three categories (younger, middle-aged, and elderly
patients). Another important limitation concerns the number of consultations per patient
who is squeezed into the unit. Therefore, with a different distribution and the variables
kept as numerical, better results would have been obtained.

The variables we adopted reflect our clinical practice. For example, although several
opioids can be used for BTcP management [28], we usually prefer ROOs as the formulations
licensed for this aim [29]. Moreover, this set of variables is not exhaustive. In cancer
patients, for example, pain may not come from bone metastasis but often derives from
invasion or abdominal metastasis, such as the peritoneal metastasis of colon cancer, and
other causes. Probably, other variables such as cancer stage (e.g., TNM classification) should
have been considered. In this regard, an improved dataset is planned in terms of its sample
size and features. This will allow us to implement more sophisticated algorithms. The
data from this study, however, can be useful for providing guidance for research in a field
(telemedicine for cancer pain management) that is yet to be fully explored. The intervals
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between remote consultations, the needs for physical examinations, and the approaches for
disease progression, as well as a careful definition of the process of early and simultaneous
palliative care, are just some of the problems to be faced.

The methodological approach used in the simulations (i.e., SORs) has important
potential that the clinician can exploit in predicting the outcome. On the other hand, SORs
and simulations are obviously penalized by the sample size. In our analysis, the comparison
between genders is an example of this gap. We highlight that their interpretation makes a
practical and clinically useful sense if they are assessed through a good classifier.

Finally, we carried out only a few simulations as an example of the application of the
evaluated model. The model, indeed, can be applied to a very large series of combina-
tions of variables. Consequently, upon request, the dataset and model are available for
further investigation.

5. Conclusions

The application of ML in telemedicine for pain management can enable physicians to
make effective, real-time, and data-driven choices. This approach can be a key component
in generating a better patient experience and improving health outcomes. A methodological
approach to predictive analysis has great potential and could allow clinicians to provide
important information to predict the outcome. Despite the important limitations of this
study, in our analysis, the outcome (the number of remote consultations) was influenced by
the selected variables such as the patient’s age, the cancer type, and the occurrence of bone
metastases. Further studies are needed to design and refine this model of care for cancer
pain patients.
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