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Di�erent Nonlinear Regression Models with
Incorrectly Observed Covariates

Markus Thamerus� SFB ���
Institut f�ur Statistik� Universit�at M�unchen

Abstract

We present quasi�likelihood models for di�erent regression problems when

one of the explanatory variables is measured with heteroscedastic error� In

order to derive models for the observed data the conditional mean and variance

functions of the regression models are only expressed through functions of the

observable covariates� The latent covariable is treated as a random variable that

follows a normal distribution� Furthermore it is assumed that enough additional

information is provided to estimate the individual measurement error variances�

e�g� through replicated measurements of the fallible predictor variable� The

discussion includes the polynomial regression model as well as the probit and

logit model for binary data� the Poisson model for count data and ordinal

regression models�

Keywords� heteroscedastic measurement error� quasi�likelihood� polynomial regres�

sion� Poisson model� binary regression models� ordinal regression models

� Introduction

It is a familiar situation for practical researchers that some of the predictors of a

regression model cannot be observed correctly and instead are only measured with

error� If this measurement error is not taken into account the estimators of the model

parameters will be biased� This was shown by Stefanski 	
��� in general for all

regression models where the parameters of interest are estimated by an M�estimator�

which is consistent in the absence of measurement error�

For all discussed models in this paper the response variables Yi� i � 
� � � � � n

are related to the explanatory variables Zi � 	Zi�� � � � � Zik
� and Xi by a nonlinear

regression function� The continuous regressors Xi can only be observed by their

incorrect measurements Wi� We assume that the true predictors Xi are related to

the observed covariates Wi through Wi � Xi �Ui� where the measurement errors Ui�

i � 
� � � � � n are independent stochastic variables with expectations zero and we do

not restrict the error variances to be constant but allow for heteroscedasticity�

We will consider the structural case of errors�in�variables models and treat the

latent regressors Xi as independent and identically distributed random variables�



�

The structural approach to regression models with covariate error consists of three

main components�

a the unobservable true regression model� that relates the response variables

Yi and the true regressors Zi and Xi�

b the error model� that characterizes the relationship between the latent

regressors Xi and their measurements Wi and

c the assumed marginal distribution of the Xi�s�

For the main part of nonlinear regression models likelihood analysis depending on

the associated distributions of all three parts a�c remains computationally di�cult�

since it requires numerical optimization routines to evaluate an integral in the like�

lihood function of the observed data� Carroll� Ruppert and Stefanski 	
��� give an

excellent overview of methods for treating measurement error in nonlinear regression

models including likelihood models as well� For more details on the maximization

of likelihood functions in errors�in�variables models see e�g� Crouch and Spiegelman

	
��� or Liu and Pierce 	
���� An indirect method to obtain maximum likelihood

estimates of the regression parameters is to use an EM algorithm as it is proposed

by Schafer 	
��� for a probit regression model or by Schafer and Purdy 	
��� for

the linear regression model� Due to all the computational di�culties associated with

likelihood analysis in the errors�in�variables problem we prefer an alternative method�

that directly allows to model heteroscedastic measurement errors as well�

We will use quasi�likelihood models� see e�g� McCullagh 	
��
 for an introduc�

tion� that solely base on the �rst and second conditional moments of the response Yi

given the known explanatory variables Zi and the observed measurements Wi� If the

mean and variance function of the model in the observable variables can be speci�ed�

estimation is carried out by the usual iteratively reweighted least square algorithm for

such models which is easier to implement than the numerical integration methods for

the likelihood analysis� The unbiasedness of the quasi�score function guarantees the

consistency and asymptotic normality of the parameter estimates� One of the �rst

to use quasi�likelihood methods to analyze errors�in�variables models is Armstrong

	
���� The subject is also considered by Liang and Liu 	
��
�

In this article we will discuss the quasi�likelihood approach for di�erent nonlin�

ear regression models with incorrectly observed covariates under the assumption of

heteroscedastic measurement errors� We will state a structural approach for the poly�

nomial regression model and the Poisson regression model� The use of quasi�likelihood
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methods for binary regression models in the case of nonconstant measurement error

variances is discussed and the idea is extended to the multicategorial case when or�

dinal response variables are observed� In the next section we discuss quasi�likelihood

models for the errors�in�variables problem in general and state a heteroscedastic error

model� Section three reviews the use of quasi�likelihood methods for the di�erent

nonlinear regression models with heteroscedastic measurement errors in one of the

covariates and it is shown how a model in the observable variables is derived when

the latent regressors follow a normal distribution�

� Model of the Observed Data

The fundamental idea of using quasi�likelihood methods to analyse regression models

with incorrectly observed covariates is to make a transition from the unobservable

model� formulated in terms of the latent variables� to a model of the observable data�

The unobservable model of interest is given by a nonlinear regression model� where the

vector of the regression parameters � is estimated by solving an unbiased estimating

equation� In the case of no measurement error estimation is based on the mean and

variance function of the observed data� i�e�� the conditional mean and variance of Yi

as a function of Zi and Xi� These are given by

� 	Zi� Xi� � � E 	Yi j Zi� Xi for the mean and 	


�� 	Zi� Xi� �� � � V	Yi j Zi� Xi for the variance function� 	�

where � denotes an additional 	optional variance parameter� This includes the class

of generalized linear models where the conditional distribution of Yi given Zi and Xi

belongs to the exponential family and the mean function 	
 is given by

�	Zi� Xi� � � g	�� � Z �
i�Z � �XXi with � � 	��� �

�
Z � �X

and where g��	� is the link function of the model� To derive a model in the observable

variables we denote the �rst two moments of the conditional distribution of Yi given

Zi and Wi with

mQ	Zi�Wi� � � E 	Yi j Zi�Wi for the mean and

vQ	Zi�Wi� �� � � V	Yi j Zi�Wi for the variance function�

If those two functions can be speci�ed� the estimation of � can be carried out by the

usual iteratively reweighted least square algorithm for quasi�likelihood models 	see



�

e�g� McCullagh� 
��
� The quasi�score function

s 	� �
nX
i��

� mQ 	Zi�Wi� �

� �
v��Q 	Zi�Wi� �� �	Yi �mQ	Zi�Wi� � �

nX
i��

si	�

provides an unbiased estimating equation for � and the quasi�likelihood estimator ��ql

is found as the root of the equation s 	� � �� This provides the asymptotic properties

of ��ql and it holds that ��ql is a consistent estimator of � and that

��ql
a
� N	�� n��F��	�V 	�F��	��

The covariance matrix of ��ql is of the �sandwich� form and its parts are the inverse

of the expected quasi�information matrix and the estimated covariance matrix of the

score function� It is estimated empirically by

dCov 	 ��ql � n�� �F��	 ��ql �V 	 ��ql �F��	 ��ql

with its components given through

�F 	 ��ql �



n

�� nX
i��

�
� si	�

� �
�

�����
����ql

�A and �V 	 ��ql �



n

�
nX
i��

si	� 	si	�
�
���
����ql

�
�

It is supposed that the measurement error is nondi�erential� which is de�ned as

the conditional independence of Yi and Wi given Xi and Zi� For most measurement

problems this assumption is reasonable since it implies that no additional information

about the response Yi is provided by the measurement Wi if the true explanatory

variables Zi and Xi are observed� In the case of nondi�erential measurement error

the fallible predictor Wi is called a surrogate� With this assumption the construction

principle for the functions mQ and vQ can be demonstrated� For all models in the

next section we have to compute the expectations

mQ 	Zi�Wi� � � E 	E 	Yi j Zi� Xi�Wi j Zi�Wi � E 	E 	Yi j Zi� Xi j Zi�Wi

� E 	� 	Zi� Xi� � j Zi�Wi and 	�

vQ 	Zi�Wi� �� � � V	E 	Yi j Zi� Xi�Wi j Zi�Wi � E 	V	Yi j Zi� Xi�Wi j Zi�Wi

� V	E 	Yi j Zi� Xi j Zi�Wi � E 	V	Yi j Zi� Xi j Zi�Wi

� V	� 	Zi� Xi� � j Zi�Wi � E 	�� 	Zi� Xi� �� � j Zi�Wi � 	�

After we have set up the framework to estimate regression models with surrogate

predictors we now regard the relationship between the latent regressors Xi and their
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measurements Wi� For all discussed models in section three we assume an additive

heteroscedastic measurement error model�

For i � 
� � � � � n it holds that Wi � Xi � Ui with Ui � N	�� ��i 

where Cov 	Ui� Uj � � for i �� j� j � 
� � � � � n and

the errors Ui are independent from the variables Yi� Xi and Zi� 	�

This implies that the measurement errors are nondi�erential� For some applications

the assumption of a heteroscedastic measurement error model is more reasonable than

to assume constant error variances� Thamerus 	
��� describes an example where the

true regional concentration of radon Xi is approximated by the average of ni single

measurements Wij of Xi within one region� For those individual measurements of Xi�

i � 
� � � � � n the error model

Wij � Xi � 	ij with E 		ij � � and Var 		ij � ���i for j � 
� � � � � ni

and Cov 		ij� 	il � � for j �� l� l � 
� � � � � ni

was assumed� The observed averages Wi � n��i
Pni

j��Wij therefore follow the additive

heteroscedastic error model

Wi � Xi � Ui with Ui � N	�� ��i  for i � 
� � � � � n�

The heteroscedastic error variances ��i � ni
�����i can be estimated with the help of

the sample variances s�Wi
of the measurements within each region by ���i � ni

��s�Wi
� In

general the analysis of errors�in�variables models is nonpractical without additional

information on the measurement error process� For our discussion we will assume

that the heteroscedastic error variances ��i are known or that enough information e�g�

replicated measurements of the fallible predictor variable as in the example above is

provided that the individual variances ��i at least can be estimated consistently�

In a structural errors�in�variables model the latent regressors Xi are treated as

independently and identically distributed random variables and an assumption has

to be made about the distribution of the true covariates Xi� This in fact is a crucial

point of the analysis and requires careful examination of what is known about this

distribution through the observed sample of the Wi�s� The normal distribution is

often used in the literature� If the distribution of the true covariates is skewed one

choice is to assume that the true covariates Xi are lognormally distributed and often

the transformation log 	Xi along with a multiplicative error model is used in the
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analysis� For more details on transformations of the X�variables see the recent paper

of Eckert� Carroll and Wang 	
���� More complex situations lead to the assump�

tion of a mixture of normal distributions� see e�g� K�uchenho� and Carroll 	
����

which is computationally more demanding but yields similar convenient properties as

the assumption of a normal distribution� Thamerus 	
��� used a normal mixture

distribution together with an heteroscedastic measurement error model in a Pois�

son regression model� For all discussed models in section three we assume that the

true variables Xi are independently and identically distributed normal variables with

expectation �X and variance ��X � Under the assumption of an additive heteroscedas�

tic measurement error model unbiased estimators of these parameters are given by

��X � �w and ���X � s�W � n��
n�

Pn
i�� �

�
i where �w is the sample mean and s�W is the

sample variance of the observed measurements Wi� i � 
� � � � � n�

In order to state the mean and variance functions of the di�erent quasi�likelihood

models it is necessary to specify the conditional distributions of Wi given the true

covariates Zi and Xi� If we furthermore assume that Xi is independent of the other

correctly observed covariates Zi we �nd for the conditional distributions of Xi given

the surrogate Wi for i � 
� � � � � n�

Xi j Zi�Wi � Xi jWi � N	�i� 

�
i  with

�i � �X � ��X	��X � ��i 
��	Wi � �X and


 �i � ��X

�

� ��X	��X � ��i ��

	
� 	�

Note� that the variances 
 �i of this conditional distributions di�er between individuals

as a consequence of the heteroscedastic error variances ��i � At the end of this section

we summarize all the assumptions under which the functions mQ and vQ� given in 	�

and 	�� for the di�erent models in the next section will be derived�

Assumptions

	A
 The variables Xi and Wi� i � 
� � � � � n are related by an additive

heteroscedastic measurement error model as de�ned in 	��

	A� For the latent variables it holds� Xi
i�i�d
� N	�X � �

�
X� i � 
� � � � � n�

	A� The variables Xi and Zi� i � 
� � � � � n are independent�
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� Application to Di�erent Regression Models

Polynomial regression models

In a forthcoming paper Cheng and Schneewei� 	
��� develop a functional errors�in�

variables model for the polynomial regression model by correcting the scorefunction

of the model to adjust for measurement error in the observed covariates� Moon and

Gunst 	
��� give a summary of the work on polynomial regression models with

covariate errors� In contrast to these two papers and the work cited therein we allow

for heteroscedastic measurement error and show how under the assumptions 	A
�

	A� a structural model is accomplished�

In the notation of 	
 and 	� the polynomial regression model without additional

variables Zi is given by

� 	Xi� � � �� � ��Xi � ��X
�
i � � � � � �kX

k
i and �� 	Xi� �� � � ��� 	�

with � � 	��� � � � � �k
� and � � ��� � The model of the observable data depends on

higher moments of the conditional distributions of Wi given Xi� The k�th moment of

that distribution will be denoted by

��k�i � E 	Xk
i jWi for k � 
� �� � � � with ����i � 
�

If the two functions of the unobservable model 	� are inserted into the general for�

mulas 	� and 	� for the mean and variance function mQ and vQ we �nd

mQ 	Wi� � � E 	� 	Xi� � jWi

� �� � ��E 	Xi jWi � ��E 	X�
i jWi � � � � � �kE 	Xk

i jWi

� �� � ���
�
��i � ���

�
��i � � � � � �k�

�
k�i and

vQ 	Wi� �� � � E 	�� 	Xi� �� � jWi � V	� 	Xi� � jWi

� ��� � V	�� � ��Xi � ��X
�
i � � � � � �kX

k j Wi

� ��� �
kX

j��

��
j V	Xj

i j Wi � �
k��X
l��

kX
m�l��

�l�m Cov 	X l
i � X

m
i j Wi

� ��� �
kX

j��

��
j

�
E 	X�j

i j Wi� 	E 	Xj
i jWi

�
	

� �
k��X
l��

kX
m�l��

�l�m
�
E 	X l�m

i jWi� E 	X l
i jWiE 	Xm

i j Wi
	

� ��� �
kX

j��

��
j

�
���j�i � 	��j�i

�
	

� �
k��X
l��

kX
m�l��

�l�m
�
��l�m�i � ��l�i�

�
m�i

	
�
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The mean function mQ of the quasi�likelihood model is a linear function of the �rst k

moments of the conditional distributions of Wi given Xi� The variance function mQ

uses moments up to the order �k� All those moments can be computed under the

normal assumption 	A� for the latent variables Xi since the conditional distributions

for Xi given Wi� de�ned in 	�� are normal as well with parameters �i and 
 �i � The

k�th central moments of that distributions will be denoted by

�k�i � E 		Xi � ����i
k jWi� for k � 
� �� � � � with ���i � 
�

Normality yields the calculation of the moments �k�i in dependence of the variances


 �i � For r � �� 
� �� � � � it holds that

�k�i �


�� � for k � �r � 
�


ki 	k � 
	k � � � � � � � � � 
 for k � �r�
	�

The di�erent moments are connected by the Binomial theorem� In general we have

��k�i �
kX

j��

�
k

j

�
�k�j�i	����i

j for k � 
� �� � � � � 	�

With the help of the results 	� and 	� all necessary moments to compute the func�

tions mQ and vQ can be determined under the knowledge of the means ����i � �i

and variances ���i � 
 �i � We will demonstrate this for the quadratic regression model

	k � � that is given by

� 	Xi� � � �� � ��Xi � ��X
�
i and �� 	Xi� �� � � ��� �

Mean and variance function of the model of the observed data are found as

mB 	Wi� � � �� � ���
�
��i � ���

�
��i � �� � ���i � ��	


�
i � ��i  and 	
�

vB 	Wi� �� � � ��� � ��
�

�
����i � 	����i

�
	

� ��
�

�
����i � 	����i

�
	

� � ����
�
����i � ����i�

�
��i

	
� ��� � ��

�

�

 �i � ��i � ��i

	
� ��

�

�
�
 �i � �
 �i �

�
i � ��i � 
 �i � �
 �i �

�
i � ��i

	
� � ����

�
�
 �i �i � ��i � �i


�
i � ��i

	
� ��� � ��

�

�
i � ���

�

�

 �i � �
 �i �

�
i

	
� �����


�
i �i� 	



A particular property of the polynomial regression model with incorrectly observed

covariates is that the measurement error itself is raised to the power of k� The
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regressors of the naive approach W
j
i � 	Xi � Ui

j� j � 
� � � � � k are replaced in the

quasi�likelihood model by the moments ��j�i� j � 
� � � � � k and additionally the di�erent

variance structure of the model that is caused by the measurement errors is taken

into account� This can already be seen in the example of the quadratic regression

model� The variance ��� that occurs in the variance function vQ has to be updated

in every iteration step of the estimation procedure� This can be done by the residual

variance which in the r � 
�th step can be computed with the help of the estimator

��
	r

� from the previous step as

	����	r��
 � 	n� k � 
��
nX
i��

�
yi � 	 ��

	r

� � ��

	r

� ����i � ��

	r

� ����i � � � � � ��

	r

k ��k�i

	�
�

Poisson regression model

Quasi�likelihood methods in Poisson regression models were mostly used to account

for overdispersion� see e�g� Breslow 	
���� Additional variation in the data can

also be caused by measurement error in the covariates� Armstrong 	
��� derives a

model in the observable variables for the Poisson regression model when the erro�

neous predictor variables follow a normal distribution� This approach was adopted

by Thamerus 	
��� and modi�ed for a mixture of normal distributions combined

with a heteroscedastic measurement error model� We will demonstrate how a model

under the assumptions 	A
�	A� can be derived�

The mean and variance function 	
 and 	� of the unobservable Poisson regression

model are identical and given by

� 	Zi� Xi� � � �� 	Zi� Xi� � � exp 	�� � Z
�

i�Z � �XXi� 	
�

To derive the model of the observable data we insert the mean and variance function

given in 	
� into the equations 	� and 	�� Under the assumptions 	A
 and 	A�

we at �rst obtain for the mean and variance function mQ and vQ the expressions

mQ 	Zi�Wi� � � E 	exp 	�� � Z
�

i�Z � �XXi j Zi�Wi

� exp 	�� � Z
�

i�Z E 	exp 	�XXi j Wi and 	
�

vQ 	Zi�Wi� � � V	exp 	�� � Z
�

i�Z � �XXi j Zi�Wi

� E 	exp 	�� � Z
�

i�Z � �XXi j Zi�Wi

� exp 	��� � �Z
�

i�Z E 	exp 	��XXi jWi

�
�
exp 	�� � Z

�

i�Z E 	exp 	�XXi jWi
	�

� exp 	�� � Z
�

i�Z E 	exp 	�XXi jWi� 	
�




�

As can be seen from 	
� and 	
� the essential task is to compute expectations of

the form E 	exp 	cXi jWi� where the constant factor c has to be replaced by �X or

��X � As a result of the further assumption 	A� the conditional distributions of Xi

given Wi are normal with the associated parameters �i and 
 �i � see 	�� and hence all

expectations can be expressed as

E 	exp 	cXi j Wi � exp

�
c �i �

c� 
 �i
�

�
�

With this result all expectations in 	
� and 	
� can be calculated and we �nally get

the mean and variance function of the observable model as

mQ 	Zi�Wi� � � exp

�
�� � Z

�

i�Z � �X�i �
��
X


�
i

�

�
and

vQ 	Zi�Wi� � � exp
�
��� � �Z

�

i�Z � ��X�i � ���
X


�
i

	
�

�
exp

�
�� � Z

�

i�Z � �X�i �
��
X


�
i

�

���

� exp

�
�� � Z

�

i�Z � �X�i �
��
X


�
i

�

�
� exp

�
��� � �Z

�

i�Z � ��X�i � ���
X


�
i

	
� 	mB 	Zi�Wi� �� � mB 	Zi�Wi� ��

Binary regression models

The most popular method to treat covariate measurement error in a logistic regression

model is the regression calibration approach� It was initiated by Rosner� Willett an

Spiegelman 	
��� and generalized for any regression model by Carroll and Stefanski

	
���� Carroll et al� 	
��� give a detailed description of the di�erent approaches�

structural and functional� to model measurement errors in binary regression models�

Quasi�likelihood methods for such models have also been studied by Liang and Liu

	
��
 assuming homoscedastic measurement errors�

We will extend this idea to the heteroscedastic case and consider the probit and

logit model for binary responses� For the conditional distribution of the response

variables given the true covariates it holds that Yi j Zi� Xi � B 	
� �i	��

Probit regression� Mean and variance function 	
 and 	� of the unobserved

probit regression model are given by

� 	Zi� Xi� � � �	�� � Z �
i�Z � �XXi � �i	� and 	
�







�� 	Zi� Xi� � � �i	�	
� �i	�� 	
�

With �	� and �	� we denote the density and distribution function of the standard

normal distribution� For establishing the quasilikelihood model under the assump�

tions 	A
�	A� we make use of a probit integral argument� see e�g� Tosteson� Schafer

and Stefanski 	
���� For the �xed quantities s  � and m it holds in general thatZ ��

��
s���	a � bx� 	

x�m

s
 dx � �

�
a � bm

	
 � b�s�
�

�

�
� 	
�

If we insert the functions 	
� and 	
� into the general equations 	� and 	� of the

quasi�likelihood model� the relation 	
� enables us to determine the functions mQ

and vQ� For the mean function mQ of the observable data we �nd

mQ 	Zi�Wi� � � E 	�	�� � Z �
i�Z � �XXi j Zi�Wi

�
Z ��

��
�	�� � Z �

i�Z � �Xxi fXijWi
	xi dxi

�
Z ��

��




i
�	�� � Z �

i�Z � �Xxi�

xi � �i


i

�
dxi

� �

�
�� � Z �

i�Z � �X�i

	
 � ��
X


�
i 

�

�

�
� ��i 	��

The variance function of that model simply results in vB 	Zi�Wi� � � ��i 	�	
 �

��i 	�� Hence we �nd that under the assumptions 	A
�	A� the model in the ob�

servable data again is a probit regression model� For the conditional distribution of

Yi given the observable regressors Zi and Wi we �nd that Yi j Zi�Wi � B 	
� ��i 	�

with the probabilities ��i 	� given in 	
�� The functions mQ and vQ therefore provide

a likelihood model for the probit regression with heteroscedastic measurement error�

Logistic regression� In order to state the logistic regression model we will denote

the logistic distribution function with H	t � 	
�exp 	�t�� and therefore can write

the mean function 	
 of the true model in this case as

� 	Zi� Xi� � � H	�� � Z �
i�Z � �XXi � �i	�� 	
�

To derive the mean function mQ under the assumptions 	A
�	A� we insert 	
� into

	� and with the conditional distribution given in 	� we end up with the integral

mQ 	Zi�Wi� � � E 	H	�� � Z �
i�Z � �XXi j Zi�Wi

�
Z ��

��




i
H	�� � Z �

i�Z � �Xxi�

xi � �i


i

�
dxi �




�

which can not be expressed in closed form� Alternatively to numerical integration

methods the function mQ can be su�ciently approximated by exploiting the relation

H	t � �	 t
c
 with c � ���

��
p
�
� see Johnson and Kotz 	
���� Ch� ��� With the help

of the relation 	
� this leads to an approximation of the mean function mQ for the

logistic model by a �scaled� probit model

mQ 	Zi�Wi� � �
Z ��

��




i
�





c
	�� � Z �

i�Z � �Xxi
�
�


xi � �i


i

�
dxi

� �

�



c

�
�� � Z �

i�Z � �X�i

	
 � c����
X


�
i 

�

�

��
�� �ai �

The variance function vQ of the observed model is thus approximated by

vQ 	Zi�Wi� � � �ai 	�	
 � �ai 	�� Just like in the probit case but merely approx�

imately we �nd for the conditional distribution Yi j Zi�Wi
a
� B 	
� �ai 	��

Ordinal regression models

Ordinal regression models with measurement error in the covariates were examined by

Tosteson et al� 	
��� who supposed to estimate the model parameters by adjusting

the estimator that is obtained if the regression calibration method is used� We will

restrict our discussion on the cumulative probit model for ordinal data and show that

the results of the probit model for binary data under the assumptions 	A
�	A� can

easily be transferred to the multicategorial case�

With Y �
i � f
� � � � � pg we will denote the observed ordinal response variables that

are modeled by the vector of dummy variables Yi � 	Yi�� � � � � Yiq
� and it holds that

Yir � 
 � Y �
i � r for r � 
� � � � � q � p� 
� The observed variables Y �

i are categorized

versions of the latent response variables �i where

Y �
i � r� �r�� � �i 	 �r� r � 
� � � � � p with �
 � �� � �� � � � � � �p � 
�

The latent response variables �i are related to the true covariates Zi and Xi by

�i � � 	Z �
i�Z � �XXi � 	i with 	i � N	�� 
� 	
�

The vectors Yi given the true covariates Zi and Xi are multinominal distributed with

Yi j Zi� Xi � M	
��i	�� �� The q�dimensional mean function 	
 of the cumulative

probit model is given by

� 	Zi� Xi��� � � �i	�� � � 	�i�	��� ��� �� � � � � �iq	�q� �q��� �� 	��

with the elements �ir	�r� �r��� � for r � 
� � � � � q given by

�ir	�r� �r��� � � �	�r � Z �
i�Z � �XXi� �	�r�� � Z �

i�Z � �XXi�




�

The model parameters are denoted by � � 	��� � � � � �q
� and � � 	� �Z � �X�� For the

variance function 	� of the unobserved regression model we have

�� 	Zi� Xi��� � � diag �i	�� �� �i	�� �	�i	�� ���

To derive a model in the observable variables under the assumptions 	A
�	A� we

have to compute the conditional expectation 	� of the mean function 	��� that is

mQ 	Zi�Wi��� � � E 	�i	�� � j Zi�Wi �

The same arguments that were used to �nd the mean function 	
� in the univariate

case can be applied to every element of the vector mQ� This leads to the result

mB 	Zi�Wi��� � � ��
i 	�� � �

�
��i�	��� ��� �� � � � � ��iq	�q� �q��� �

	�
	�


with the elements ��ir	�r� �r��� � for r � 
� � � � � q given by

��ir	�r� �r��� � � �

�
�r � Z �

i�Z � �X�i

	
 � ��
X


�
i 

�

�

�
� �

�
�r�� � Z �

i�Z � �X�i

	
 � ��
X


�
i 

�

�

�
�

The variance function 	� of that model is just given by

vB 	Zi�Wi��� � � diag ��
i 	�� �� ��

i 	�� �	��
i 	�� ���

The vectors Yi given Zi and Wi follow a multinomial distribution and it holds that

Yi j Zi�Wi � M	
���
i 	�� � with the probability vector ��

i 	�� � given in 	 �
� The

model of the observed data again is a cumulative probit model�

� Conclusion

Quasi�likelihood models o�er an useful method to analyze nonlinear regression models

with measurement error in the covariates� Provided additional information on the

error process is given an heteroscedastic variance structure of the measurement errors

can be embedded into the models as well� In this approach the latent regressor

variables are treated as stochastic variables following a normal distribution� Even if

mandatory this assumption may not be ful�lled for some applications and one way to

consider this would be a straightforward extension to the case of a mixture of normal

distributions�




�
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